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Nonlinear magnetoacoustic waves in rare-earth orthoferrites

Dmitry L. Dorofeev, Gennady V. Pakhomov, and Boris A. Zon
Mathematical Physics Department, Voronezh State University, Voronezh 394006, Russia
(Received 13 May 2004; published 18 February 2005

The dynamics of magnetoacoustic waves in a rare-earth orthoferrite Yéfg&al is experimentally inves-
tigated. The waves are excited by a high-power laser pulse. The analysis of results is carried out taking into
account the nonlinear interaction of oscillation modes. It allows us to interpret the results as energy exchange
between modes in the time scale, a phenomenon known in nonlinear optics. Based on the proposed model an
estimation is obtained for effective nonlinear magnetoacoustic modules of fourth order for yttrium orthoferrite
=2.5x107-2.5x 10 /n¥.
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I. INTRODUCTION Il. EXPERIMENTAL SETUP

. o . We have previously used this method of laser-induced
Mag_netoelastlg mteractpn in weak fe_rr_omagnetlcs lead%hange of magnetization in yttrium orthoferr[@8], and its
to a giant effective acoustic anharmonicity several orderg,ain‘igea is the following. A pulse of laser radiation gives
larger than would be expected in the absence of such intefise 1o an initial deformation of the crystal wafer, which then
action. This fact was first noted in wofk] (see als¢2]) and  transforms into standing acoustic waves. These acoustic os-
experimentally confirmed by observation of acoustic secondgillations, due to magnetoelastic and piezomagnetic interac-
harmonic generation and rectification in hemdgll and in  tions, lead to changes of magnetization, which can be regis-
thulium orthoferrite in the spin-flip regiofb,6]. tered using the induction technique. This technique enables
In the present work acoustic waves were generated usings to register the change of the magnetization component
laser excitation of sound, following the technique describechormal to the wafer surface.
in [7,8], which allows one to reach rather high deformations Yttrium orthoferrite monocrystals were grown by the
and clearly observe nonlinear processes in a sample, in paechnique of crucible-free zone melting. They represented
ticular, the changes in time of the energy distribution be-thin plane-parallel wafers cut normally to th@01] axis and

tween different harmonics of magnetization. normally to the optical axis, with thicknesses
A similar phenomenon for progressive electromagnetic=0.055-0.96 mm and base area 0.2-0.5.cm
waves was theoretically described in nonlinear opi®;40]. The wafers were placed in an external magnetic field per-

However, in nonlinear acoustics the initial and boundarypendicular to their plane. The strength of field00 Oe was
conditions of the problem, as well as the type of nonlinearitysufficient for saturation of magnetization. All the measure-
can be rather different from the ones in optj[d4-13. In ments were performed at room temperature. The laser radia-
particular, in nonlinear optics one usually has only one optition was linearly polarized and had the wavelength 1.064
cal harmonic in the input to the medium, higher harmonicsum, pulse duration 7-15 ns, and pulse energy 0.02-0.03 J.
are registered in the output, and the dependence of their infFhe diameter of the laser beam was 1.5-2 mm.
tensities on the thickness of the sample is analyzed. The magnetization changAM induced by the laser
In acoustics, the experiment can be carried out in a compulses was registered by a flat coil with diameter of 3.5 mm
pletely different way[7,8]: a laser pulse with a duration of consisting of 3—10 turns of thin copper wire. The signal from
several nanoseconds irradiates the surface of a sample givittige coil was transmitted after amplification to an oscillo-
rise to intensive acoustic oscillations, with excitation of sev-scope. The coil was placed directly on the surface of the
eral acoustic modes with different frequencies, and afterwardample. The laser beam passed through the central opening
a change of mode amplitudes is observed, due to their norsf the coil without touching its turns. Such a positional rela-
linear interaction. In addition, unlike electromagnetic wavestionship between the wafer and coil allows one to register
the interacting magnetoacoustic waves are not pure transvepnly the change of magnetic induction in tlzedirection,
sal ones but have a mixed transversal-longitudinal charactenormal to the wafer plane.
additionally increasing the complexity of the problem. The value of the electromotive force from one turn of the
In the present paper we discuss this phenomenon of ercoil is proportional to the rate of change of the magnetic
ergy exchange between acoustical modes. We interpret induction flux through it:
theoretically using the method of effective acoustic anharmo-
g o . : . 1dd
nicity [1,2]. This interpretation may be helpful in evaluating e=—--"—, @ :J (B -n)dS, (1)
effective nonlinear magnetoelastic modules of fourth order. c dt s

wheren is the normal to the wafer plane amwds the light
velocity. In Appendix A we give some formulas for calcula-
*Electronic address: zon@niif.vsu.ru tion of the magnetic induction flux corresponding to a given
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0.088 mm:(a) oscillogram,(b) spectrum. Values on this and follow-

ing pictures are given in arbitrary units.

nomena in orthoferrites.

Ill. EXPERIMENTAL RESULTS
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FIG. 3. Magnetoacoustic oscillations in a wafer of thickness
0.96 mm:(a) oscillogram,(b) spectrum.

the initial laser pulse, and an oscillating part, corresponding
to a stable sound wave in the wafer. The initial part was
analyzed in detail if7]. In the present work, as well as in

FIG. 1. Magnetoacoustic oscillations in a wafer of thickness[8], we consider the oscillating part.

In experiments we observed three different regimes of

oscillations: (i) essentially one-frequency oscillations, ob-
served in thinner plate@ig. 1); (ii) oscillations with a small

distribution of magnetization and some specific cases argumber(typically two) of dominating frequencies, observed
considered. Thus, a theoretical calculation of magnetizatioin plates of intermediate thickne$Big. 2); (i) a multiple-
allows one to find the emf in the coil. Comparing the calcu-frequency regime, observed in thicker platégy. 3).

lated values with the experimental ones enables us to test the Figure 1 presents the oscillogram and frequency spectrum

theory developed below of nonlinear magnetoacoustic pheof a signal obtained for the wafer with 0.088 mm thickness
cut perpendicularly to the axi§001]. As for other thin

samples the oscillating part of the signal here has predomi-
nantly a single-frequency character. Such a simple structure
of the signal is due to the following fact. In this case only the
The signal registered by the oscilloscope comprised twanodes with lowest frequencids=v/2h are excitedh is the
parts: an initial pulse, corresponding in form and duration towafer thickness and is the velocity of the sound wave in

FIG. 2. Magnetoacoustic oscil-
lations in a wafer of thickness
0.58 mm: (a) oscillogram, (b)
spectrum.
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FIG. 4. Intensity of oscillation
in the bandf =3.54+0.2 MHz as
. ‘ . . a function of time for the signal

2 4 6 8 10 presented in Fig. 2.
7 (us)

P (arb. units)
e

the direction perpendicular to the wafer surfaoghile the AL ,

modes with higher frequencids=vn/2h, n=2, 3,.., are al- uc,f) :f u(re " dr. Q)
most absent, because their period for thin samples is much -At

less than the laser pulse duration. The relafierw/2h en- - . .
ables us to estimate the velocity of the acoustic wave 1Nn€ valué ofAt should be sufficiently large in comparison
=2hf. For the signal in Fig. 1 we gev=(7.4+0.2 Wlth the perlc_)d of oscﬂ!auons_ at the fre.quer_]t‘(yand. sufﬁ—l

% 10° m/s, which is close to velocity of nearly longitudinal ciently smalliln comparison with the typ'lcal time of |nten§|ty
magnetoacoustic eigenwaves along the dired®1] in the change. In Fig. £(t) is presented graphically, corresponding
YFeQ; Crysta|[]_4_]_a_ to f=3.54+0.2 MHz andAt=0.5 MS.

In a thicker sample ofhi=0.58 mm cut perpendicularly to  This intensity change may be related to energy exchange
the optical axis the signal becomes more comfég. 2). It  between oscillation modes due to their nonlinear interaction.
contains mainly the oscillations with frequencieb In general, such exchange can be both periodic and aperiodic
=3.54+0.2 MHz, but their third harmonics also have no-and even chaotic, if the number of interacting modes is large
table amplitudegsee the spectrum in Fig.(l®]. Hence in  [12]. It must be noted that for the signal presented in Fig. 2
this case not only the lowest oscillation modes arise but alsae have not found other frequency bands where intensity
some higher ones. Estimating, from the frequencies of loweswould synchronously increadelecreasein antiphase with
modes, the velocity of the acoustic wave we get its decreasedincreases in the bandf=3.54+0.2 MHz.
=(4.1+0.2 X 10° m/s, which is close to velocity of nearly Nevertheless, this fact does not conflict with the proposed
transversal magnetoacoustic eigenwaves along the optichypothesis of energy exchange between modes, because in
axis in the YFeQ crystal[14-18. the time frame of the experimental technique used we could

In a still thicker sample witth=0.96 mm, also cut per- not observe all oscillation modes but only those generating
pendicularly to the optical axis the signal becomes evemonzero magnetization in the direction perpendicular to the
more complexFig. 3), and its spectrum contains many com- sample surface. Thus the observed modes could exchange
ponents with various frequencies. In this case the estimatiotheir energy with some “dark” unobserved modes.
of wave velocity gives a value =(3.8+0.4 X10° m/s,
close to the previous one.

With the use of the formulagl) and expressions given in

the Appendixes, it is possible to estimate the magnetization The general model outlined below describes long-time
(Appendix A) and corresponding deformati¢Appendix B.  eyolution of coupled stable acoustic waves in a nonlinear
Thus, for the signal presented in Fig. 2 the amplitude ofynisotropic elastic plate. It is applicable independently to the
oscillations of deformation in the oscillating part of the sig- natyre of effective acoustic nonlinearity. With the use of this
nal was about 10-10"*. Such large deformations can in- model one can estimate the modules of effective nonlinear
duce pronounced nonlinear effects. For comparison it may bgjasticity, which can be difficult to get using other methods.
noted that second-harmonic generation in orthoferrite near A quantitative description of experimentally observed os-
spin flip [5] was observed with deformation107°. cillation shape variation and dispersion as a function of the
_ The signal most interesting in this respect is presented i|ate thickness would be rather desirable, but it could be
Fig. 2. Its spectrum contains components with various frézarried out only on the basis of equally detailed information
quencies, but on the other hand it is relatively simple an¢toncerning the values of all nonzero components of the ten-
allows one to interpret it theoretically on a qualitative level gors of nonlinear elasticity modules, the magnetoacoustic
of consideration. In particular, it can be inferred that in thisgpq piezomagnetic ones. Unfortunately, such information for
case the intensity of oscillations of low mode frequendies yitrium orthoferrite is unavailable now. Therefore we are
=3.54+0.2 MHz significantly changes in time: it increasesonly able so far to develop an idealized general mathematical
up to the moment=1.5 us, then it almost disappears, once model of the observed nonlinear magnetoacoustic oscilla-
more increases up to the momenrt6 us, and falls down tjons, interpret qualitatively the experimental results, and get
again. _ ) ) _ a rough numeric estimation of the order of magnitude of the
Such behavior can be described numerically using th@ffective nonlinear elastic modules of fourth order.

sliding window Fourier transformation. The total intensity of  The dependence of displacement figlér ,t) on time is
oscillations in a frequency barfg+ Af during atime interval  g6vemed by the equation

t+ At for a signalu(t) can be determined as

IV. THEORY

fotAf FPU. gt
P(t) = [Ti(t, )| 2df, (2) 205 = (4)
_ ]
foAf
where wherep is the density of the crystal,
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JF dU;
eff _ eff
L 07((9U,/z9xl) ( ) U oz

is the effective strain tensor, determined by the distortion
tensordU;/dx; and the density of the effective elastic energy , here
of the crystal

dU;au, ., dU;dU U,
o T likmnT o o
ﬂXJ' (9X| (9XJ &X| (9Xn
, 90Uy 7Un U,
"k'm”pqaxj X Xy OXg

Fett = Ciju

+

(6)
The expression(6) has a standard form for the elastic
energy of a crystal with inclusion of nonlinear terms. How-
ever, when dealing with weak ferromagnetics, the Coefﬁ_tensors.
cientsC’ andC” are not of purely elastic origin, they effec-
tively take into account the coupling of elastic and magnetic
subsystems, as described in2]. Since this coupling is very
strong in weak ferromagnetics, the corresponding effectiv
nonlinearitiesC’ andC” turn out to be rather high compared
with what could be expected in the case of no such coupling.
This phenomenon is referred to as giant acoustic anharmon-
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One can see thdt is the Christoffel tensor for the waves
propagating along theaxis;I"" andI™ are similar nonlinear

By means of proper rotation of the coordinate system the
Christoffel tensor can be diagonalizeld;=pv25;, where

ij s

v are velocities of acoustic eigenwaves. Let us seek the
olution of Eq.(10) with boundary conditiong11) in the
orm of an expansion over these eigenwaves:

©

Uzt)= >, Up(tcodkyz)expliolt),

ism, and it is comprehensively investigated in2]. The ne- N=—c

cessity to account in Eq6) for not only the third-degree

nonlinear ter_m3v((?ui/5>xj)3 but aI;o the fourth-degree ones Ui = U K= N ol =k (12)
~(aU;/ox)* is connected, as will be shown further, with EANTEING BN BN T ONE

specific peculiarities of the considered problem.
Let us direct the axig perpendicularly to the front and

The above formula for the harmonic frequend&{% does

back planes of the crystal. The boundary conditions at thesgot account for the frequency dispersion of the sound veloc-

free surfaces, i.e., @=0,h, have the form

ity. To account for this dispersion it is necessary to consider

v as a value depending also upon the indiex

oi/'=0. (7

iz

Substituting Egs(5) and (6) into Egs.(4) and(7), we get

Substituting Eq.(12) into Eg. (10), we obtain the equa-
tions for the amplitudes:

U .. ;dy, , ,
U e PV o i[&&] o2 20l 12 = 3 T Ui UiakuksSing
ot? T ax; % KM Goxi L ax 3% MN
ac J aUk&UmM ® XeXdi(wg\]A) + wg\ll‘) - wg))t]
*+ 4Cikmnpg oo | o , , ,
IXjL 9% Xy 9% + 2 TiigUimUiaUipkuknkeSiinpo
MNP
ou dUy U N i
{ZCiZkl_k + 8 xexfli(of) + o +op - wg)t],
I X X (13)
dUy dU,,,oU
+4C 1mn ——k m—E} =0. (99  where
PAox 9%y 9Xq |=on A
2 .
The transverse size of the crystal plate is much larger than Suno = P J coskqz(kycoskyz sinkyz
its thickness; hence for the lowest harmonics of the oscilla- PJo
tions + kycoskyz sinkyz)dz, (14)

Uy U, aU,
— <
ax'aday  dz

This fact makes it reasonable to omit in E¢R). and (9) all
terms that contain differentiation ov&ror y, and hence

2,
U YL z{y&}
o2~V o2 T Kozl 9z oz
L a| au;au U,
Fijkl_[_l__] (10
d0z| dz dz 09z
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SunPQ= h_pJO coskqz(kycoskyz sinkyz sinkpz

+ kycoskyz sinkyz sinkpz
+ K, coskpz sinkyz sinkyz)dz. (15)

A convenient approach to analyze equations similar to
(13) is the averaging techniqué9]. Following this approach
we assume the amplitudés to be slowly changing during
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the time interval~1/w, omit the term with the second time ¥
derivative in the left-hand side of E1l3) and recast these L
equations maintaining only the slowly varying terms:

(] dUQ ’ ’
2|wg) dtl = 2 FiijjMUk,Q—MkMkQ—MS\/I,Q—M,Q
M

xexdi(wl + wg)_M - wg))t]

+2 i UinmUiaU1 o-m-nKnknKo-m-n
MN

4 ] (
X S no-m-noeXHI (@) + o) + 03y
- wt]. (16)

It is taken into account here that the eigenwave velocities " 'C: O Phase portrait of Syste@1): x=p cosf, y=psin 6, Ap
v weakly differ: therefore all omitted terms in the right- 'S ¢ distance between a stationary point and the point of the tra-
hand side of E (i6) are fast oscillating, Integrating E(L4) jectory crossing thes axis. Trajectories are presented fp=0.1,

; o ihating. Integrating 0.2, 0.3, 0.4, 0.49.
with N=Q-M gives usS =0. This fact means that the non-
linearity ~((9Ui/(?xj)3 is not essential for the effect under
consideration. Such elimination of this nonlinearity is a re- 0=y - 3¢
sult of homogeneous boundary conditions of the second kind 3 o
(7), which arise due to the assumption that the front and back N h lue. = VA—322. which foll
surfaces of the crystal are free. It is well known that such Substituting now the value,=yA-3as, which follows

strong dependence of the results on the type of boundargorn Eq.(18), into the second and third equations(ir9) we
conditions does not take place in linear problems. et a system of two ordinary differential equations of first

_ 77_31'\//
- 8puh®’

Y

Integrating Eq(15) with P=Q-M-N gives us order:
y = az= y(A-3a3)%%in g,
S\/I,N,Q—M—N,Q_ 4P.
A detailed analysis of equations similar tb6) was car- b= — YA- 335)1/2(A_ 1282)c086. 20
ried out in both nonlinear optics and nonlinear acoustics ag

[9,10,20,21 in the approximation of a finite number of in-
teracting modes. In the present case we get nontrivial results
even taking into account only the interaction of first and third
harmonics. For a qualitative analysis we neglect below the
difference of eigenwave velocities and omit the dependenc
of all terms upon wave polarization:

Transferring to dimensionless variables
p= \e"ﬁa& 7= Ayt,

$ie rewrite these equations in the form

1Y _ —3773F"u uz Y i ud (17) p=-3(1-p)¥%ine,
dt ~8pvh® 1’ ' dt  8pwhd v
i - (1 _p2)1/2
Equations(17) have an integral of motion 6=—\3y———(1 - 4p?)cos. (21
p
3|U52+|U>=const= A, (18)

These equations have stationary points

which presents the acoustic energy conservation law.
Introducing real amplitudes and phases of harmonics #9=0,m p¥=1/2. (22)

Up=a€?, Ug=aze?s, Figure 5 presents the phase portrait of this system. One can
see that the above stationary points are centers. Phase trajec-
tories close to them are elliptical; further away they become
deformed and in the limit transform into unit half circles.
Linearizing Egs.(21) in the neighborhood of stationary
pointsp=p®+ &p, 6= 69+ 56, we readily get that the motion

let us recast Eqg17) as follows:

a, = 3yaZagsin 0,

ag=yassing, near stationary points has the perigid dimensionless time
units 7)
0=- &(az - 9a2)cosd (19) 32
2y (20 983)C0S0, To= (213327 = 1.71, (23
where which is equal(in usual dimensional time unijt$o
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2.5 T
qD:f Adl. (A1)
2 C

13 Thus the calculation of flow becomes reduced to finding the

1 vector potential of the field. Let us suppose that in the region
V there is a stationary magnetization with a continuous dis-
0.5 tribution M (r). Beyond the regiorlV the magnetization is

Ap equal to zero; therefore at the boundarpf V the magneti-

0.1 0.2 0.3 0.4 0.5 zation generally undergoes a stepwise discontinuity, a jump
from M (r) to 0. The vector potential generated by such mag-
netization has the following form:

FIG. 6. Period of harmonic exchangeas a function ofAp.

To=1.71A. (24 A = rotM(r”)dV’ N [nM(r:)]
The motion along phase trajectories further from the station- v r=r'| rolr-r|
ary points becomes slower and tends to infinity at limiting
semicircle trajectoriegsee Fig. 6.
These motions along the phase trajectories represent pe
odical changes of third-harmonic amplitudg As follows
from the conversation lawl8), the first-harmonic amplitude

ar’,  (A2)

wheren is the outward normal; the integration is carried out
quer the variable .

The expressionfAl) and(A2) make it straightforward to
find the flow in the case of a static magnetic field. For alter-
nating field these expressions remain valid in the frame of

a; will also be oscillating with the same frequency, but in the quasistationary approximation. i the following inequalit
antiphase withas. Thus, Egs(19) describe the behavior of . qu ?'S_ ! y approximation, It wing inequaiity
is satisfied:y<<c/L, where y is a typical frequency of the

harmonic amplitudes similar to the one observed in the ex—ield cis the liaht velocity. and. is a tvpical size of the
periment presented in Fig. 2. In the frame of the propose& ' 9 Y, yp

model this behavior may be interpreted as an energy exs_ystem(sme of regionV, diameter of contouC, and the

change between harmonics induced by their nonlinear interqIStance between thémin the conditions of the discussed

action. It is obvious that in case of a greater number of in_experiments this - approximation is satisfied with high

teracting modes this exchange will be of a moreaccl:_urtacy. id icul hen th o

sophisticated aperiodic character similar to the one displayed et us consider a particuiar case when the contoyre-

in Fig. 3. sents a circle V'\Ilt'h radiui Ioca’ged in the 'plane(O'y with
Substituting into Eq(24) the experimental values for the center at t_he orlgln,_the r_na_gr_letlze_d regibiis a cyllnder O.f

typical period of amplitude chang&=5 us and A= U2 radiusa with the axis coinciding with the coordinate axs

~25x101-25x107m2 we get the estimationy=5 and upper.and lower faces lying ath,; and h,, and the

X 1075 107, which implies, taking into account E6L9) magnetization everywhere M has a constant valuil. In

[ =2 5% 1019_’2 5 1017J/m3’ This value agrees with t’he this case rd¥l =0; therefore the field is completely deter-

estimation of corresponding nonlinear elastic modules fmrn!ned by the second, surface term In £42). Analysis of
hematiteCiympq= 10 J/n?, obtained in[1]. this term shows that the corresponding flow through the con-

Thus the proposed theoretical model satisfactorily ex—tour C is equal 1o the flow generated by a V|rtu_al current
unning along the lateral surface of the cylindéwith sur-

plains at a qualitative level the experimentally observe ce densiteM... This allows one to write the final expres-
changes of magnetoacoustic mode amplitudes and allows VS Yz P
Son for the flow in the form

to estimate the effective nonlinear modules of fourth orde
for yttrium orthoferrite. hy
d=9M, 7= naR;h,hy) = cf L(a,R;2)dz,

ACKNOWLEDGMENTS hy

We express our gratitude to Professor N. Bloembergen fowhere
fruitful notes indicating analogies between nonlinear phe- . K2
nomena in optics and acoustics. We also thank A. Krivchen- | (a,R;z) = —VZ2+ (a+ R)2[<1 - —)K(k) - E(k)] ,
kova and |. Kretinin for participating in discussion and the- c 2
oretical analysis of experimental data. The work is carried

out with support of CRDF and Ministry of Education of RF - 4aR
(Award No. VZ-010-0. k®= 2+ (@+R?
APPENDIX A: CALCULATION OF MAGNETIC is the coefficient of mutual induction for two coaxial ring
INDUCTION FLOW contours with radiiR and a, respectively, located at a dis-

} . tancez one from anothef22]; K andE are full elliptic inte-
In order to calculate the induction vector flow through the gy

surface restricted by the conto@y it is useful to express the It is obvious that
induction vectorB in terms of vector potentigB=rotA, and
then the flow may be expressed in terms of circulation n(a,R;hy,hy) = n(R,a;hy,hy),
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1g tion of the crystal the lengths and directions of these vectors
change. This change can be derived from the condition of
minimal full energy of the crystal, including pure magnetic,
08 piezomagnetic, and magnetoelastic componghbtg]. We
give below final expressions in projections on axed,
0.6 _ andc:
a/R=1
04 a/R=0.8 Am, = x1€qc
0.2 a/R=0.01 Amy, = xz€pc,
0.5 1 1.5 5 MR AMc = X31€aa+ X32€bb * X33€cc)
FIG. 7. g(a/R;h/R) as a function oh/R for different values of Al =
a/R. b = X4€abs
Al = ye€ea,
n(@,Rihy,hy) = p(Ra:0,h) - Ra0hy), PN
1[0y @)
" = "— = — — +
n(Rvayoyh) 77(R1a1 h,O) 6” 2< (9XJ ﬂxl 1
Therefore we restrict consideration éo<R and h>0. We
representy(a,R;0,h) as - HpBss
1= [l
7(a,R;0,h) = 27%a’g(a/R;h/R), (A3) MoHgHA
where the functiorg(a/R;h/R) for h/R=0-2 and for some A
. . . _ 421
values ofa/R is presented in Fig. 7. Xo=—————,
Let us also present some asymptotics. 2MoHe
(1) h<|R-a|,
: . P &
7(a,R;0,h) = chL(a,R;0). X3i AMgHE
(2) h<Randa=R,
2Bgg
7(a,R;0,h) = 47ahIn(8a/h). 4= ———————,
" Mo(mgHp = Hp)
(3) h>Randa<R,
(a,R;0,h) = 27%a2. st_%_
MoHa
(4) a<R,

) 1o HereH, is the field of anisotropyHg is the exchange field,
7(a,R;0,h) = 27%a*(h/R)[1 + (WR)?] 2. Hp is the field of Dzyaloshinsky, anB,A are the magneto-
Recall that the functiom connects the crystal magnetiza- elastic and piezomagnetic modules, respectively. The compo-

tion with the experimentally measured magnetic induction€NtAla is set equal to zero, becausg, <l,=lo.
flow. Let us present also the expression for the change of crys-

tal magnetization along the optical axis:

APPENDIX B: INTERACTION OF DEFORMATION AND AM,=2MoAm, = Ry €, + Ry€,;, (B1)
MAGNETIZATION

The orthoferrite YFe@ is antiferromagnetic with weak 1 oX2SINa Cos «,

ferromagnetism. The state of its magnetic system is charac- :
terized by the vectors of ferromagnetisbm=(M, R = 2Mo(xs + xsifacosa. (B2)
+M,)/2My and antiferromagnetisml=(M;-M,)/2My,  Here the axis is directed along the optical axis, the axis
whereM ; , are the magnetization vectors of sublattices, andies in the plane of crystallographic axésand c, and «
Mo=|M 4 is the saturation magnetization of sublattices. Full=52° is the angle between the optical axis and the axis
magnetization can be presentedMsM;+M,=2Mym. In The expression(B1) is needed for calculation of the emf
the case of zero strains the vectbemdm are directed along with the use of formuldl) for a plate cut perpendicularly to
crystallographic axea andc, respectively. Under deforma- the optical axis.
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