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The dynamics of magnetoacoustic waves in a rare-earth orthoferrite YFeO3 crystal is experimentally inves-
tigated. The waves are excited by a high-power laser pulse. The analysis of results is carried out taking into
account the nonlinear interaction of oscillation modes. It allows us to interpret the results as energy exchange
between modes in the time scale, a phenomenon known in nonlinear optics. Based on the proposed model an
estimation is obtained for effective nonlinear magnetoacoustic modules of fourth order for yttrium orthoferrite
.2.531017–2.531019J/m3.
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I. INTRODUCTION

Magnetoelastic interaction in weak ferromagnetics leads
to a giant effective acoustic anharmonicity several orders
larger than would be expected in the absence of such inter-
action. This fact was first noted in workf1g ssee alsof2gd and
experimentally confirmed by observation of acoustic second-
harmonic generation and rectification in hematitef3,4g and in
thulium orthoferrite in the spin-flip regionf5,6g.

In the present work acoustic waves were generated using
laser excitation of sound, following the technique described
in f7,8g, which allows one to reach rather high deformations
and clearly observe nonlinear processes in a sample, in par-
ticular, the changes in time of the energy distribution be-
tween different harmonics of magnetization.

A similar phenomenon for progressive electromagnetic
waves was theoretically described in nonlinear opticsf9,10g.
However, in nonlinear acoustics the initial and boundary
conditions of the problem, as well as the type of nonlinearity,
can be rather different from the ones in opticsf11–13g. In
particular, in nonlinear optics one usually has only one opti-
cal harmonic in the input to the medium, higher harmonics
are registered in the output, and the dependence of their in-
tensities on the thickness of the sample is analyzed.

In acoustics, the experiment can be carried out in a com-
pletely different wayf7,8g: a laser pulse with a duration of
several nanoseconds irradiates the surface of a sample giving
rise to intensive acoustic oscillations, with excitation of sev-
eral acoustic modes with different frequencies, and afterward
a change of mode amplitudes is observed, due to their non-
linear interaction. In addition, unlike electromagnetic waves,
the interacting magnetoacoustic waves are not pure transver-
sal ones but have a mixed transversal-longitudinal character,
additionally increasing the complexity of the problem.

In the present paper we discuss this phenomenon of en-
ergy exchange between acoustical modes. We interpret it
theoretically using the method of effective acoustic anharmo-
nicity f1,2g. This interpretation may be helpful in evaluating
effective nonlinear magnetoelastic modules of fourth order.

II. EXPERIMENTAL SETUP

We have previously used this method of laser-induced
change of magnetization in yttrium orthoferritef7,8g, and its
main idea is the following. A pulse of laser radiation gives
rise to an initial deformation of the crystal wafer, which then
transforms into standing acoustic waves. These acoustic os-
cillations, due to magnetoelastic and piezomagnetic interac-
tions, lead to changes of magnetization, which can be regis-
tered using the induction technique. This technique enables
us to register the change of the magnetization component
normal to the wafer surface.

Yttrium orthoferrite monocrystals were grown by the
technique of crucible-free zone melting. They represented
thin plane-parallel wafers cut normally to thef001g axis and
normally to the optical axis, with thicknessesL
=0.055–0.96 mm and base area 0.2–0.5 cm2.

The wafers were placed in an external magnetic field per-
pendicular to their plane. The strength of field,500 Oe was
sufficient for saturation of magnetization. All the measure-
ments were performed at room temperature. The laser radia-
tion was linearly polarized and had the wavelength 1.064
µm, pulse duration 7–15 ns, and pulse energy 0.02–0.03 J.
The diameter of the laser beam was 1.5–2 mm.

The magnetization changeDM induced by the laser
pulses was registered by a flat coil with diameter of 3.5 mm
consisting of 3–10 turns of thin copper wire. The signal from
the coil was transmitted after amplification to an oscillo-
scope. The coil was placed directly on the surface of the
sample. The laser beam passed through the central opening
of the coil without touching its turns. Such a positional rela-
tionship between the wafer and coil allows one to register
only the change of magnetic induction in thez direction,
normal to the wafer plane.

The value of the electromotive force from one turn of the
coil is proportional to the rate of change of the magnetic
induction flux through it:

« = −
1

c

dF

dt
, F =E

s

sB ·nddS, s1d

wheren is the normal to the wafer plane andc is the light
velocity. In Appendix A we give some formulas for calcula-
tion of the magnetic induction flux corresponding to a given*Electronic address: zon@niif.vsu.ru
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distribution of magnetization and some specific cases are
considered. Thus, a theoretical calculation of magnetization
allows one to find the emf in the coil. Comparing the calcu-
lated values with the experimental ones enables us to test the
theory developed below of nonlinear magnetoacoustic phe-
nomena in orthoferrites.

III. EXPERIMENTAL RESULTS

The signal registered by the oscilloscope comprised two
parts: an initial pulse, corresponding in form and duration to

the initial laser pulse, and an oscillating part, corresponding
to a stable sound wave in the wafer. The initial part was
analyzed in detail inf7g. In the present work, as well as in
f8g, we consider the oscillating part.

In experiments we observed three different regimes of
oscillations: sid essentially one-frequency oscillations, ob-
served in thinner platessFig. 1d; sii d oscillations with a small
numberstypically twod of dominating frequencies, observed
in plates of intermediate thicknesssFig. 2d; siii d a multiple-
frequency regime, observed in thicker platessFig. 3d.

Figure 1 presents the oscillogram and frequency spectrum
of a signal obtained for the wafer with 0.088 mm thickness
cut perpendicularly to the axisf001g. As for other thin
samples the oscillating part of the signal here has predomi-
nantly a single-frequency character. Such a simple structure
of the signal is due to the following fact. In this case only the
modes with lowest frequenciesf .v /2h are excitedsh is the
wafer thickness andv is the velocity of the sound wave in

FIG. 1. Magnetoacoustic oscillations in a wafer of thickness
0.088 mm:sad oscillogram,sbd spectrum. Values on this and follow-
ing pictures are given in arbitrary units.

FIG. 2. Magnetoacoustic oscil-
lations in a wafer of thickness
0.58 mm: sad oscillogram, sbd
spectrum.

FIG. 3. Magnetoacoustic oscillations in a wafer of thickness
0.96 mm:sad oscillogram,sbd spectrum.
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the direction perpendicular to the wafer surfaced, while the
modes with higher frequenciesf .vn/2h, n=2, 3,…, are al-
most absent, because their period for thin samples is much
less than the laser pulse duration. The relationf .v /2h en-
ables us to estimate the velocity of the acoustic wavev
=2hf. For the signal in Fig. 1 we getv.s7.4±0.2d
3103 m/s, which is close to velocity of nearly longitudinal
magnetoacoustic eigenwaves along the directionf001g in the
YFeO3 crystal f14–18g.

In a thicker sample ofh=0.58 mm cut perpendicularly to
the optical axis the signal becomes more complexsFig. 2d. It
contains mainly the oscillations with frequenciesf
.3.54±0.2 MHz, but their third harmonics also have no-
table amplitudesfsee the spectrum in Fig. 2sbdg. Hence in
this case not only the lowest oscillation modes arise but also
some higher ones. Estimating, from the frequencies of lowest
modes, the velocity of the acoustic wave we getv
.s4.1±0.2d3103 m/s, which is close to velocity of nearly
transversal magnetoacoustic eigenwaves along the optical
axis in the YFeO3 crystal f14–18g.

In a still thicker sample withh=0.96 mm, also cut per-
pendicularly to the optical axis the signal becomes even
more complexsFig. 3d, and its spectrum contains many com-
ponents with various frequencies. In this case the estimation
of wave velocity gives a valuev.s3.8±0.4d3103 m/s,
close to the previous one.

With the use of the formulass1d and expressions given in
the Appendixes, it is possible to estimate the magnetization
sAppendix Ad and corresponding deformationsAppendix Bd.
Thus, for the signal presented in Fig. 2 the amplitude of
oscillations of deformation in the oscillating part of the sig-
nal was about 10−5–10−4. Such large deformations can in-
duce pronounced nonlinear effects. For comparison it may be
noted that second-harmonic generation in orthoferrite near
spin flip f5g was observed with deformation,10−6.

The signal most interesting in this respect is presented in
Fig. 2. Its spectrum contains components with various fre-
quencies, but on the other hand it is relatively simple and
allows one to interpret it theoretically on a qualitative level
of consideration. In particular, it can be inferred that in this
case the intensity of oscillations of low mode frequenciesf
.3.54±0.2 MHz significantly changes in time: it increases
up to the momentt.1.5 ms, then it almost disappears, once
more increases up to the momentt.6 ms, and falls down
again.

Such behavior can be described numerically using the
sliding window Fourier transformation. The total intensity of
oscillations in a frequency bandf0±Df during a time interval
t±Dt for a signalustd can be determined as

Pstd =E
f0−Df

f0+Df

uũst, fdu2df , s2d

where

ũst, fd =E
t−Dt

t+Dt

ustde−2pi f tdt. s3d

The value ofDt should be sufficiently large in comparison
with the period of oscillations at the frequencyf0 and suffi-
ciently small in comparison with the typical time of intensity
change. In Fig. 4Pstd is presented graphically, corresponding
to f .3.54±0.2 MHz andDt=0.5 ms.

This intensity change may be related to energy exchange
between oscillation modes due to their nonlinear interaction.
In general, such exchange can be both periodic and aperiodic
and even chaotic, if the number of interacting modes is large
f12g. It must be noted that for the signal presented in Fig. 2
we have not found other frequency bands where intensity
would synchronously increasesdecreased in antiphase with
its decreasessincreasesd in the band f .3.54±0.2 MHz.
Nevertheless, this fact does not conflict with the proposed
hypothesis of energy exchange between modes, because in
the time frame of the experimental technique used we could
not observe all oscillation modes but only those generating
nonzero magnetization in the direction perpendicular to the
sample surface. Thus the observed modes could exchange
their energy with some “dark” unobserved modes.

IV. THEORY

The general model outlined below describes long-time
evolution of coupled stable acoustic waves in a nonlinear
anisotropic elastic plate. It is applicable independently to the
nature of effective acoustic nonlinearity. With the use of this
model one can estimate the modules of effective nonlinear
elasticity, which can be difficult to get using other methods.

A quantitative description of experimentally observed os-
cillation shape variation and dispersion as a function of the
plate thickness would be rather desirable, but it could be
carried out only on the basis of equally detailed information
concerning the values of all nonzero components of the ten-
sors of nonlinear elasticity modules, the magnetoacoustic
and piezomagnetic ones. Unfortunately, such information for
yttrium orthoferrite is unavailable now. Therefore we are
only able so far to develop an idealized general mathematical
model of the observed nonlinear magnetoacoustic oscilla-
tions, interpret qualitatively the experimental results, and get
a rough numeric estimation of the order of magnitude of the
effective nonlinear elastic modules of fourth order.

The dependence of displacement fieldUsr ,td on time is
governed by the equation

2r
]2Ui

]t2
=

]si j
ef f

]xj
, s4d

wherer is the density of the crystal,

FIG. 4. Intensity of oscillation
in the bandf .3.54±0.2 MHz as
a function of time for the signal
presented in Fig. 2.
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si j
ef f =

]Fef f

]s]Ui/]xjd
s5d

is the effective strain tensor, determined by the distortion
tensor]Ui /]xj and the density of the effective elastic energy
of the crystal

Fef f = Cijkl
]Ui

]xj

]Uk

]xl
+ Cijklmn8

]Ui

]xj

]Uk

]xl

]Um

]xn

+ Cijklmnpq9
]Ui

]xj

]Uk

]xl

]Um

]xn

]Up

]xq
. s6d

The expressions6d has a standard form for the elastic
energy of a crystal with inclusion of nonlinear terms. How-
ever, when dealing with weak ferromagnetics, the coeffi-
cientsC8 andC9 are not of purely elastic origin, they effec-
tively take into account the coupling of elastic and magnetic
subsystems, as described inf1,2g. Since this coupling is very
strong in weak ferromagnetics, the corresponding effective
nonlinearitiesC8 andC9 turn out to be rather high compared
with what could be expected in the case of no such coupling.
This phenomenon is referred to as giant acoustic anharmon-
ism, and it is comprehensively investigated inf1,2g. The ne-
cessity to account in Eq.s6d for not only the third-degree
nonlinear terms,s]Ui /]xjd3 but also the fourth-degree ones
,s]Ui /]xjd4 is connected, as will be shown further, with
specific peculiarities of the considered problem.

Let us direct the axisz perpendicularly to the front and
back planes of the crystal. The boundary conditions at these
free surfaces, i.e., atz=0,h, have the form

siz
ef f = 0. s7d

Substituting Eqs.s5d ands6d into Eqs.s4d ands7d, we get

r
]2Ui

]t2
= 2Cijkl

]2Uk

]xj ] xl
+ 3Cijklmn8

]

]xj
F ]Uk

]xl

]Um

]xn
G

+ 4Cijklmnpq9
]

]xj
F ]Uk

]xl

]Um

]xn

]Up

]xq
G , s8d

F2Cizkl
]Uk

]xl
+ 3Cizklmn8

]Uk

]xl

]Um

]xn

+ 4Cizklmnpq9
]Uk

]xl

]Um

]xn

]Up

]xq
G

z=0,h
= 0. s9d

The transverse size of the crystal plate is much larger than
its thickness; hence for the lowest harmonics of the oscilla-
tions

]Uk

]x
,
]Uk

]y
!

]Uk

]z
.

This fact makes it reasonable to omit in Eqs.s8d and s9d all
terms that contain differentiation overx or y, and hence

r
]2Ui

]t2
= Gi j

]2Uj

]z2 + Gi jk8
]

]z
F ]Uj

]z

]Uk

]z
G

+ Gi jkl9
]

]z
F ]Uj

]z

]Uk

]z

]Ul

]z
G , s10d

FGi j
]Uj

]z
+ Gi jk8

]Uj

]z

]Uk

]z
+ Gi jkl9

]Uj

]z

]Uk

]z

]Ul

]z
G

z=0,h
= 0,

s11d

where

Gi j = 2Cizjz,

Gi jk8 = 3Cizjzkz8 ,

Gi jkl9 = 4Cizjzkzlz9 .

One can see thatG is the Christoffel tensor for the waves
propagating along thez axis;G8 andG9 are similar nonlinear
tensors.

By means of proper rotation of the coordinate system the
Christoffel tensor can be diagonalized:Gi j =rvsid2di j , where
vsid are velocities of acoustic eigenwaves. Let us seek the
solution of Eq.s10d with boundary conditionss11d in the
form of an expansion over these eigenwaves:

Ulsz,td = o
N=−`

`

UlNstdcosskNzdexpsivN
sldtd,

Ul,−N = UlN
* , kN =

pN

h
, vN

sld = kNvsld. s12d

The above formula for the harmonic frequenciesvN
sld does

not account for the frequency dispersion of the sound veloc-
ity. To account for this dispersion it is necessary to consider
vsld as a value depending also upon the indexN.

Substituting Eq.s12d into Eq. s10d, we obtain the equa-
tions for the amplitudes:

d2UiQ

dt2
+ 2ivQ

siddUiQ

dt
= o

MN

Gi jk8 UjMUkNkMkNSMNQ8

3expfisvM
s jd + vN

skd − vQ
siddtg

+ o
MNP

Gi jkl9 UjMUkNUlPkMkNkPSMNPQ9

3expfisvM
s jd + vN

skd + vP
sld − vQ

siddtg,

s13d

where

SMNQ8 =
2

hr
E

0

h

coskQzskNcoskNzsinkMz

+ kMcoskMzsinkNzddz, s14d

SMNPQ9 = −
2

hr
E

0

h

coskQzskNcoskNzsinkMzsinkPz

+ kMcoskMzsinkNzsinkPz

+ kp coskpzsinkMzsinkNzddz. s15d

A convenient approach to analyze equations similar to
s13d is the averaging techniquef19g. Following this approach
we assume the amplitudesU to be slowly changing during
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the time interval,1/v, omit the term with the second time
derivative in the left-hand side of Eq.s13d and recast these
equations maintaining only the slowly varying terms:

2ivQ
siddUiQ

dt
= o

M

Gi jk8 UjMUk,Q−MkMkQ−MSM,Q−M,Q8

3expfisvM
s jd + vQ−M

skd − vQ
siddtg

+ o
MN

Gi jkl9 UjMUkNUl,Q−M−NkMkNkQ−M−N

3SM,N,Q−M−N,Q9 expfisvM
s jd + vN

skd + vQ−M−N
sld

− vQ
siddtg. s16d

It is taken into account here that the eigenwave velocities
vsid weakly differ; therefore all omitted terms in the right-
hand side of Eq.s16d are fast oscillating. Integrating Eq.s14d
with N=Q−M gives usS8=0. This fact means that the non-
linearity ,s]Ui /]xjd3 is not essential for the effect under
consideration. Such elimination of this nonlinearity is a re-
sult of homogeneous boundary conditions of the second kind
s7d, which arise due to the assumption that the front and back
surfaces of the crystal are free. It is well known that such
strong dependence of the results on the type of boundary
conditions does not take place in linear problems.

Integrating Eq.s15d with P=Q−M −N gives us

SM,N,Q−M−N,Q9 =
kQ

4r
.

A detailed analysis of equations similar tos16d was car-
ried out in both nonlinear optics and nonlinear acoustics
f9,10,20,21g in the approximation of a finite number of in-
teracting modes. In the present case we get nontrivial results
even taking into account only the interaction of first and third
harmonics. For a qualitative analysis we neglect below the
difference of eigenwave velocities and omit the dependence
of all terms upon wave polarization:

i
dU1

dt
=

3p3G9

8rvh3 U3U1
*2, i

dU3

dt
=

p3G9

8rvh3U1
3. s17d

Equationss17d have an integral of motion

3uU3u2 + uU1u2 = const; A, s18d

which presents the acoustic energy conservation law.
Introducing real amplitudes and phases of harmonics

U1 = a1e
if1, U3 = a3e

if3,

let us recast Eqs.s17d as follows:

ȧ1 = 3ga1
2a3sinu,

ȧ3 = ga1
3sinu,

u̇ = −
ga1

a3
sa1

2 − 9a3
2dcosu, s19d

where

u = f3 − 3f1, g =
p3G9

8rvh3 .

Substituting now the valuea1=ÎA−3a3
2, which follows

from Eq.s18d, into the second and third equations ins19d we
get a system of two ordinary differential equations of first
order:

ȧ3 = gsA − 3a3
2d3/2sinu,

u̇ = −
gsA − 3a3

2d1/2

a3
sA − 12a3

2dcosu. s20d

Transferring to dimensionless variables

r = Î3/Aa3, t = Agt,

we rewrite these equations in the form

ṙ = − Î3s1 − r2d3/2sinu,

u̇ = − Î3g
s1 − r2d1/2

r
s1 − 4r2dcosu. s21d

These equations have stationary points

ussd = 0,p, rssd = 1/2. s22d

Figure 5 presents the phase portrait of this system. One can
see that the above stationary points are centers. Phase trajec-
tories close to them are elliptical; further away they become
deformed and in the limit transform into unit half circles.

Linearizing Eqs.s21d in the neighborhood of stationary
pointsr=rssd+dr, u=ussd+du, we readily get that the motion
near stationary points has the periodsin dimensionless time
units td

T0 = s2/3d3/2p . 1.71, s23d

which is equalsin usual dimensional time unitsd to

FIG. 5. Phase portrait of systems21d: x=r cosu, y=r sinu; Dr
is the distance between a stationary point and the point of the tra-
jectory crossing thex axis. Trajectories are presented forDr=0.1,
0.2, 0.3, 0.4, 0.49.
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T0 = 1.71gA. s24d

The motion along phase trajectories further from the station-
ary points becomes slower and tends to infinity at limiting
semicircle trajectoriesssee Fig. 6d.

These motions along the phase trajectories represent peri-
odical changes of third-harmonic amplitudea3. As follows
from the conversation laws18d, the first-harmonic amplitude
a1 will also be oscillating with the same frequency, but in
antiphase witha3. Thus, Eqs.s19d describe the behavior of
harmonic amplitudes similar to the one observed in the ex-
periment presented in Fig. 2. In the frame of the proposed
model this behavior may be interpreted as an energy ex-
change between harmonics induced by their nonlinear inter-
action. It is obvious that in case of a greater number of in-
teracting modes this exchange will be of a more
sophisticated aperiodic character similar to the one displayed
in Fig. 3.

Substituting into Eq.s24d the experimental values for the
typical period of amplitude changeT.5 ms and A.U2

.2.5310−19–2.5310−17m2 we get the estimationg.5
31022–531020, which implies, taking into account Eq.s19d,
G9.2.531019–2.531017J/m3. This value agrees with the
estimation of corresponding nonlinear elastic modules for
hematiteCijklmnpq.1019 J/m3, obtained inf1g.

Thus the proposed theoretical model satisfactorily ex-
plains at a qualitative level the experimentally observed
changes of magnetoacoustic mode amplitudes and allows us
to estimate the effective nonlinear modules of fourth order
for yttrium orthoferrite.
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APPENDIX A: CALCULATION OF MAGNETIC
INDUCTION FLOW

In order to calculate the induction vector flow through the
surface restricted by the contourC, it is useful to express the
induction vectorB in terms of vector potentialB=rotA, and
then the flow may be expressed in terms of circulation

F =E
C

A dl . sA1d

Thus the calculation of flow becomes reduced to finding the
vector potential of the field. Let us suppose that in the region
V there is a stationary magnetization with a continuous dis-
tribution M sr d. Beyond the regionV the magnetization is
equal to zero; therefore at the boundaryG of V the magneti-
zation generally undergoes a stepwise discontinuity, a jump
from M sr d to 0. The vector potential generated by such mag-
netization has the following form:

Asr d =E
V

rotM sr 8d
ur − r 8u

dV8 +E
G

fnM sr 8dg
ur − r 8u

dG8, sA2d

wheren is the outward normal; the integration is carried out
over the variabler 8.

The expressionssA1d andsA2d make it straightforward to
find the flow in the case of a static magnetic field. For alter-
nating field these expressions remain valid in the frame of
the quasistationary approximation, if the following inequality
is satisfied:g!c/L, whereg is a typical frequency of the
field, c is the light velocity, andL is a typical size of the
systemssize of regionV, diameter of contourC, and the
distance between themd. In the conditions of the discussed
experiments this approximation is satisfied with high
accuracy.

Let us consider a particular case when the contourC pre-
sents a circle with radiusR located in the planexOy with
center at the origin, the magnetized regionV is a cylinder of
radiusa with the axis coinciding with the coordinate axisz
and upper and lower faces lying atz=h1 and h2, and the
magnetization everywhere inV has a constant valueM . In
this case rotM =0; therefore the field is completely deter-
mined by the second, surface term in Eq.sA2d. Analysis of
this term shows that the corresponding flow through the con-
tour C is equal to the flow generated by a virtual current
running along the lateral surface of the cylinderV with sur-
face densitycMz. This allows one to write the final expres-
sion for the flow in the form

F = hMz, h ; hsa,R;h1,h2d = cE
h1

h2

Lsa,R;zddz,

where

Lsa,R;zd =
4p

c
Îz2 + sa + Rd2FS1 −

k2

2
DKskd − EskdG ,

k2 =
4aR

z2 + sa + Rd2

is the coefficient of mutual induction for two coaxial ring
contours with radiiR and a, respectively, located at a dis-
tancez one from anotherf22g; K andE are full elliptic inte-
grals.

It is obvious that

hsa,R;h1,h2d = hsR,a;h1,h2d,

FIG. 6. Period of harmonic exchangeT as a function ofDr.
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hsa,R;h1,h2d = hsR,a;0,h2d − hsR,a;0,h1d,

hsR,a;0,hd = hsR,a;− h,0d.

Therefore we restrict consideration toaøR and h.0. We
representhsa,R;0 ,hd as

hsa,R;0,hd = 2p2a2gsa/R;h/Rd, sA3d

where the functiongsa/R;h/Rd for h/R=0–2 and for some
values ofa/R is presented in Fig. 7.

Let us also present some asymptotics.
s1d h! uR−au,

hsa,R;0,hd . chLsa,R;0d.

s2d h!R anda=R,

hsa,R;0,hd . 4pah lns8a/hd.

s3d h@R andaøR,

hsa,R;0,hd . 2p2a2.

s4d a!R,

hsa,R;0,hd . 2p2a2sh/Rdf1 + sh/Rd2g−1/2.

Recall that the functionh connects the crystal magnetiza-
tion with the experimentally measured magnetic induction
flow.

APPENDIX B: INTERACTION OF DEFORMATION AND
MAGNETIZATION

The orthoferrite YFeO3 is antiferromagnetic with weak
ferromagnetism. The state of its magnetic system is charac-
terized by the vectors of ferromagnetismm=sM 1

+M 2d /2M0 and antiferromagnetisml =sM 1−M 2d /2M0,
whereM 1,2 are the magnetization vectors of sublattices, and
M0= uM 1,2u is the saturation magnetization of sublattices. Full
magnetization can be presented asM =M 1+M 2=2M0m. In
the case of zero strains the vectorsl andm are directed along
crystallographic axesa andc, respectively. Under deforma-

tion of the crystal the lengths and directions of these vectors
change. This change can be derived from the condition of
minimal full energy of the crystal, including pure magnetic,
piezomagnetic, and magnetoelastic componentsf5,7g. We
give below final expressions in projections on axesa,b,
andc:

Dma = x1eac,

Dmb = x2ebc,

Dmc = x31eaa + x32ebb + x33ecc,

Dlb = x4eab,

Dlc = x5eac,

ei j =
1

2
S ]Ui

]xj
+

]Uj

]xi
D ,

x1 = −
HDB55

M0HEHA
,

x2 = −
L421

2M0HE
,

x3i = −
Li31

4M0HE
,

x4 = −
2B66

M0sm0HD − HAd
,

x5 = −
2B55

M0HA
.

HereHA is the field of anisotropy,HE is the exchange field,
HD is the field of Dzyaloshinsky, andB,A are the magneto-
elastic and piezomagnetic modules, respectively. The compo-
nentDla is set equal to zero, becauseDla! la= l0.

Let us present also the expression for the change of crys-
tal magnetization along the optical axis:

DMz = 2M0Dmz = R1eyz+ R2ezz, sB1d

R1 = 2M0x2sina cos 2a,

R2 = 2M0sx3 + x2sin2adcosa. sB2d

Here the axisz is directed along the optical axis, the axisy
lies in the plane of crystallographic axesb and c, and a
.52° is the angle between the optical axis and the axisc.
The expressionsB1d is needed for calculation of the emf
with the use of formulas1d for a plate cut perpendicularly to
the optical axis.

FIG. 7. gsa/R;h/Rd as a function ofh/R for different values of
a/R.
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