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Propagation of vertical wave packets was observed experimentally in a crystallized hexagonal monolayer
complex plasma. It was found that the phase velocity exceeded the group velocity by a factor 65 and was
directed into the opposite direction as expected for an inverse optical-like dispersion relation. The wave
packets propagated keeping their width constant. The explanation of this behavior is based on three-
dimensional equations of motion and uses a long-wavelength weak dispersion weak inhomogeneity approxi-
mation. While the wave dispersion causes the wave packet to spread, lattice inhomogeneity and neutral gas
drag counteract spreading. A plasma diagnostic method was developed that is based on the ratio between
vertical and dust-lattice wave speeds. This ratio is very sensitive to the lattice parameterk sratio of the particle
separation to the screening lengthd in a very useful range ofk&2. It was found that only a two-dimensional
lattice model can provide a quantitative description of the vertical waves, while a linear chain model gives only
a qualitative agreement.
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I. INTRODUCTION

Complex sdustyd plasmasf1–5g consist of micron sized
grains immersed in an ion-electron plasma. Grains charge up
and interact collectively producing a wide range of interest-
ing effects. They can be easily observed in real time with a
video camera and therefore the kinetics of individual grains
can be studied. Complex plasmas exist in gaseoussweakly
coupledd, liquid, or solid sstrongly coupledd phase states.

Strongly coupled complex plasmassplasma crystalsd were
predictedf6g and observed experimentallyf7–10g only re-
cently. They can be used as macroscopic model systems of
liquids and solids to observe phase transitionsf6,7g, shocks
f11–15g, solitonsf16,17g, and various wave modes.

A plasma crystal, like any elastic solid, can sustain longi-
tudinal scompressionald and transversessheard wave modes
f18g. Dispersion relations of a two-dimensional hexagonal
grid of charged particles interacting via Yukawa potential
were obtained along the irreducible element of the first Bril-
louin zone in Ref.f19g. Even though these calculations were
performed for typically overdamped colloidal crystals, they
neglected friction. In plasma crystals the friction due to the
gas drag is four to five orders of magnitude lower, hence the
result of Ref. f19g is expected to apply to these systems
much better. Compressional waves in plasma crystals were
observed experimentally in Refs.f20–22g and transverse
waves were observed in Ref.f23g. Dispersion relations of
these wave modes were measured in Ref.f24g for long wave-
lengths. Using naturally excited or thermal waves it became
possible to measure the dispersion relations even for very
short wavelength wavesf25g, as well as their dependence on
the direction of propagationf26g.

There is one more wave mode in two-dimensionals2Dd
elastic solids due to the fact that they exist in a 3D space, the

so called vertical transverse mode. If a 2D membrane is
placed horizontally then out of planesverticald motion pro-
duces this mode. The vertical transverse mode was studied
theoretically in Refs.f27,28g. It was found that it has inverse
optical-like dispersion. Self-excited vertical oscillations were
observed experimentallyf29g and explained by an instability
of the vertical transverse mode. A dispersion relation of the
vertical transverse waves was obtained using a molecular
dynamics simulationf30g. Transverse waves were observed
experimentally in a one-dimensional Yukawa chainf31g.

Wave packets were intensively studied in opticsf32,33g,
in atomic beamsf33,34g, and in plasmasf35g. Numerous
applications include optical and radio communications, me-
trology, and atomic lithography.

Propagation of wave packets is usually observed to study
how the wave energy is transferred. In the approximation of
small dispersion and nonabsorbing medium, the speed of en-
ergy transfer is equal to the group velocity of the medium. In
case of strong dispersion and absorptionf36,37g, however,
the shape of the wave packet changes significantly as it
propagates, and its speed is not determined only by the dis-
persion properties of the medium. It was pointed out in Ref.
f36g that the group velocity, the energy transport velocity,
and the signal velocity are not equal to each other in general
case.

The wave packet propagation was studied experimentally
and theoretically using different approximations in various
dispersive mediaf38g, optical fibersf32g, and cold plasmas
f35g. It was demonstrated experimentally that the wave
packet velocity could be different from the wave group ve-
locity f35g.

Here we report an experimental observation of a vertical
transverse wave packet with constant width, propagating in a
monolayer hexagonal plasma crystal. We analyze theoreti-
cally how the medium dispersion, inhomogeneity, and dissi-
pation affect the width of the wave packet observed in the
experiment.

*Permanent address: Moscow Engineering and Physics Institute,
Kashirskoe shosse 31, 115409 Moscow, Russia.

PHYSICAL REVIEW E 71, 026410s2005d

1539-3755/2005/71s2d/026410s7d/$23.00 ©2005 The American Physical Society026410-1



II. EXPERIMENTAL SETUP AND OBSERVATIONS

The experiments were performed in a setupsFig. 1d simi-
lar to that of Ref.f16g using a capacitively coupled radio-
frequencysrfd discharge. The discharge chamber had a lower
disk electrode and an upper ring electrode. The upper elec-
trode and the chamber were grounded. A rf power of 4–10 W
smeasured as forward minus reversed was applied to the
lower electrode. An argon gas flow at a rate of 0.5–0.9
SCCM sSCCM denotes standard cubic centimeter per
minuted maintained the working gas pressure of 1.0–1.8 Pa.
Monodisperse plastic microspheres 8.9±0.1mm in diameter
were levitated in the sheath above the lower electrode form-
ing a monolayer hexagonal lattice. They were confined radi-
ally in a bowl shaped potential formed by a rim on the outer
edge of the electrode. The monolayer particle cloud was
about 6 cm in diameter and levitated at a height of.9 mm
above the lower electrode. The particle number density in-
creased about 30% from the excitation edgesFig. 1d to the
middle of the lattice and it remained approximately constant
from the middle to the outer edge. The particles were illumi-
nated by a horizontal thins0.2–0.3 mmd sheet of light from a
doubled Nd:YAG diode pumped lasers532 nmd and imaged
by a top view digital video camera at 230.75 frames/s. The
field of view was 10243512 pixels or 4.4232.21 cm and it
contained about 3000 particles.

A horizontal tungsten wire 0.1 mm in diameter was placed
4 mm below the particle layer and roughly half way between
the center and the edge of the electrode. The wire was nor-
mally grounded. Its height was adjusted to minimize its static
influence on the particles and maximize the vertical wave
excitation. The wire was placed between the plasma and the
powered electrode which was self-biased at230 V. The
plasma potential was about 10 V. A short negative pulse
s225 V, 10 msd applied to the wire 0.04 s after the start of
recording pushed the particles away. Due to the lower gas
pressure, shorter excitation pulse, and slightly different wire

height than that used in Ref.f16g, mostly vertical oscillations
were excited. It was accompanied by a very weak compres-
sional solitonswith compression ratio.1d. A time interval of
about 1 min was allowed for the lattice to come into equilib-
rium. Several experimental runs were recorded with very
good reproducibility.

Note that using the wire excitation method we can vary
neither the excitation frequency nor the wave number of the
packets. The reason is that the grain interaction with the wire
is long distancef39g, so that all observed grains are affected
with no control over the force distribution. After the voltage
pulse is applied, the wave packets are formed spontaneously
with very little control over the parameters. More excitation
control can be obtained using laser excitation which is more
local, however, it requires a more complicated setup, expen-
sive lasers, and optics.

A side view of a propagating vertical wave packet is
shown in Fig. 2. The particles forming the lattice move in the
vertical direction. Due to inverse optical dispersion of the
vertical waves, the packet envelope moves in one direction
while the modulating waves move in the opposite direction.

The top view did not allow us to observe vertical motion
of the particles directly. However, since the illuminating la-
ser sheet is thin, grains disappear from the field of view if
displaced vertically. The lattice is visible only where it is in
the plane of the laser beamsFig. 2d and the vertical waves
appear as moving stripes of particles. Figure 3 shows video
frames with such moving stripes. The individual particles
here did not move horizontally. Note that since the displace-
ment of the particles up or down cannot be distinguished,
two identical stripes per wavelength show. This effectively
doubles the apparent frequency and halves the wavelength.

The particles were illuminated by a laser sheet with a
Gaussian distribution of intensity in the vertical direction
with a width of 0.2–0.3 mm and therefore the particle bright-
ness can be used to evaluate their vertical positions. When
the grains were not displaced their brightness was the high-
est. As they moved up or down, their brightness decreased.
We identified clusters of connected pixels in the video

FIG. 1. Sketch of the apparatus.sad Oblique view. Spherical
monodisperse particles are charged negatively and form a mono-
layer, levitating in the plasma sheath above the lower electrode.sbd
Side view. The grounded wire is placed below the particles. Short
negative pulses applied to the wire excite vertical wave packets.

FIG. 2. Side view of the vertical wave packet propagating in a
monolayer lattice.sad Initial position of the packet.sbd Displaced
packet. The group velocityVgr sthe velocity of the packet envelope
marked by the dashed lined is directed right, while the phase veloc-
ity Vph sthe velocity of the modulating wave marked by the solid
lined points left. The illuminating laser beam is indicated by the
gray bar. We observe only the areas where it intersects the lattice
ssolid lined, which appear as moving stripes in the experiment.
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frames and summed their pixel values, so that both the par-
ticle visible size and its brightness were taken into account.
The values obtained were then averaged in narrow bins par-
allel to the wire in order to reduce random fluctuations.
These values were plotted as a grayscale map versus distance
and time in Fig. 4ssee also experiment 1 in Table I for the
conditionsd.

Figure 4 shows a visualization of a vertical wave packet
propagating from the excitation source positioned at 0 mm.
The data were taken for the rf power of 4 W, and gas pres-
sure of 1.0 Pasexperiment 1 in Table Id. Initially horizontal
stripes indicate stationary lattice oscillations. At 1 s the os-
cillations start propagating, i.e., the stripes become inclined
sFig. 4d and move away from the right edge of the graph. At
this time the wave packet is formed. Its group velocityVgr
=4±1 mm/s, itsphase velocityVph=−290±20 mm/s, and
its wavelengthl=18 mm. The phase velocity is negative due

to inverse optical-like dispersion of the vertical wave mode.
Inverse or negative dispersion means that the wave fre-
quencyv decreases with increasing wave numberk. Optical-
like dispersion means thatvÞ0 at k=0 or that there are
some nonpropagating oscillations. The amplitude of the ver-
tical motion decreases due to neutral gas damping. The reso-
nance frequency of the vertical oscillationsVv=16 Hz was
measured in a separate experiment under the same condi-
tions. The dust-lattice wave velocitycDL=35±2 mm/s was
measured as the speed of small compressional ripples using
the method of Ref.f16g.

We repeated the experiment at the rf power of 10 W and
the gas pressure of 1.8 Pasexperiment 2 in Table Id. We
could excite the vertical wave packets, however, due to
higher pressure, they were damped quicker. The measure-
ments of the group speed were less precise. We obtained
Vgr=2.5±1 mm/s,Vph=−300±20 mm/s,cDL=30±2 mm/s.

FIG. 3. Top view of the lattice at time 1.4–1.5 s after the exci-
tation, when the wave packet was well formed. The wire positioned
at the left edge of the field of view below the lattice excited the
wave packet. The particles are visible only if they are in the plane
of the illuminating laser sheet. The stripes of particles apparently
move from right to left due to the vertical wave motion. They cor-
respond to the lines of constant phasesphase motiond. Individual
particles do not move horizontally. The numbers on the images
indicate the frame numbersat 230.75 fpsd.

FIG. 4. Visualization of an experimentally observed vertical
wave packet. The intensity of light scattered by the particlesswhich
depends on their vertical positionsd is plotted vs distance and time.
Lighter regions indicate where particles are displaced from their
equilibrium positions. Vertical oscillations with a frequency of
about 16 Hz are excited by an electrostatic pulse applied to a wire
placed at distance 0 mm. A wave packet, appearing as inclined
stripes, is formed at time 1 s. The dashed line is drawn approxi-
mately through the ends of the stripes. Its angle indicates the packet
group velocity of 4.5 mm/s. The dotted line is drawn parallel to the
stripes. It shows the vertical wave phase velocity of2290 mm/s,
which is negative because the dispersion relation is inverse optical
like.
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III. THEORY

A. Theoretical model

The theoretical modelis based on the 3D equations of
lattice motion:

mr̈ s = fs
fr + fs

v + fs
int, fs

fr = − mnṙ s,

fs
v = − ¹ P, P = fVv

2zs
2 + Vh

2sxs
2 + ys

2dg/2,

fs
int = − ¹ Us, Us = Q2o

jÞs

rsj
−1 exps− rsj/lDd, s1d

wherem is the mass of the particles,r =sx,y,zd is the particle
coordinate with the subscriptss and j denoting different par-
ticles, fs

fr is the friction due to collisions with neutralssEp-
stein dragd, fs

v is the vertical confinement force due to a para-
bolic potential P with vertical sVvd and horizontalsVhd
eigenfrequencies,fs

int is the grain-grain interaction force,n is
the neutralsEpsteind damping rate,Us is the grain-grain in-
teraction screened CoulombsYukawad potential energy,Q is
the particle charge,rsj= ur s−r ju is the intergrain distance, and
lD is the screening length.

The particles are confined more strongly in the vertical
direction than in the horizontalsVv@Vhd. If we consider
only a small part of the lattice in the middle of the potential
well, then the horizontal confinement can be neglected. This
is equivalent to an infinite lattice confined vertically. In gen-
eral the vertical confinement potential is not parabolicf40g,
however, for vertical oscillations of very small amplitude we
can neglect the nonquadratic terms.

Equationss1d are solved using perturbation theory. We
linearize them by introducingr s=Rs+dr s, where dr s is a
small deviation from the static equilibrium position of the
particle Rs. In addition to the well known longitudinal and
transverse modesscalculated for a monolayer hexagonal lat-
tice in Ref.f26gd we obtain a vertical transverse wave mode:

ztt + nzt = − Vv
2z− cv

2zxx. s2d

Here,z=zsx,td is the vertical particle displacementswith re-
spect to the equilibrium positiond, cv is the characteristic
speed of the vertical wave mode defined by the elastic prop-
erties of the crystal.

B. Dispersion properties of the vertical transverse waves

We solve Eq.s2d assuming small amplitude harmonic mo-

tion dr s=jWk,v expsik ·Rs− ivtd. The dispersion relationsin the
long-wavelength approximationd has the form

v2 = Vv
2 − k2cv

2. s3d

cv can be calculated taking into account the particular ar-
rangement of the particles in the lattice. Using a speed pa-
rameterc* =Q/Îma swherea is the particle separationd, and
a screening parameterk=a/lD, we calculate the characteris-
tic speed of the vertical wave mode for a monolayer hexago-
nally symmetric lattice:

cv = c* fvert
s2Ddskd, fvert

s2Ddskd = Fk

4 o
n,m=−`

+`
1 + Rnm

Rnm
e−RnmG1/2

,

s4d

whereRnm=kÎn2+m2+mn, indicessn,md denote the particle
position in the lattice, and the term atn=m=0 is excluded.
For a 1D caseslinear chaind the characteristic speed of the
vertical wave mode is

cv = c* fvert
s1Ddskd, fvert

s1Ddskd = Fo
n=1

`
1 + nk

n
e−nkG1/2

, s5d

which has an analytical solution:

fvert
s1Ddskd = F kek

ek − 1
− lnsek − 1dG1/2

. s6d

Figure 5 shows how the characteristic speed of the verti-
cal wave mode depends on the screening parameter. The re-
sult is qualitatively the same for both chains1Dd and lattice
s2Dd models, however, quantitatively the characteristic
speeds are different by a factor 1.5 atk=1 and 2 atk=0.5.
This means that the linear chain model provides only a rough

TABLE I. Experimental conditions and measured parameters.

Experiment
Power
sWd

Pressure
sPad

Vv
sHzd

Vph

smm/sd
Vgr

smm/sd
CDL

smm/sd lsmmd
a

smmd R k

1 4 1.0 16 −290±20 4±1 35±2 18±2 0.70 0.97±15% 0.75

2 10 1.8 21 −300±20 2.5±1 30±2 30±3 0.54 0.9±18% 0.85

FIG. 5. Vertical characteristic speedcv vs screening parameterk
analytically calculated for a two-dimensional hexagonal lattice
ssolid lined and a linear chainsdotted lined. The discrepancy be-
tween the two models is very significant atk&2.
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qualitative description of the hexagonal lattice.
The vertical wave dispersion relations3d implies that the

phaseVph and groupVgr velocities should obey the relation

− VphVgr = cv
2, s7d

and therefore they always have opposite signs. Physically
this means that while a modulated wave packet moves in one
direction, the individual waves inside it move in the other
direction. This is the well known backward wave, observed
earlier in a linear chainf41g and in systems with an inverse
optical-like dispersion.

Note that Eq.s7d has a very simple geometric interpreta-
tion. Let us introduce two new variablesq and u such that
Vph=cv tanu,0, Vgr=cv tanq.0, then Eq.s7d can be re-
written as tanu tanq=−1. This is equivalent to cossu−qd
=0, or u−q=p /2. This means that if Fig. 4 is presented
usingsx,cvtd coordinates with the same unit length, the lines
representing the group and phase velocitysdashed and dotted
lines, respectivelyd are perpendicular to each other.

For long wavelengths, the second term on the right hand
side of Eq.s3d can be treated as a small correction. Then we
have approximately

v . Vv −
k2cv

2

2Vv
, Vph . −

Vv

uku
, 0, Vgr .

cv
2uku
Vv

. 0,

s8d

assuming thatk=−uku ,0 to fit the experimentsFig. 4d.

C. Screening length diagnostic method

Equationss4d and s5d have the same form as Eq.s3d of
Ref. f42g for the characteristic speed of a small compres-
sional perturbation:

cDL = c* fDLskd, s9d

where cDL is the dust-latticescompressionald wave speed,
and fDL is a function ofk. It turns out that the functions
fDLskd and fvertskd have very differentk dependencies. The
ratio of the vertical/compressional wave speeds is

Rskd =
cv

cDL
=

fvert
s2Ddskd
fDLskd

. s10d

The functionRskd depends strongly on the screening param-
eter sFig. 6d in the most useful range of 0.5,k,2, but not
on particle charge. Combining Eqs.s10d ands7d one can find
that

Rskd =
Î− VphVgr

cDL
. s11d

Using the values ofVph, Vgr, andcDL measured in the experi-
ment we find the values ofR. Thenk is calculated from Eq.
s10d. We find thatR=0.97±15% and thereforek=0.75sfilled
square in Fig. 6d at the experimental conditions of Fig. 4
sexperiment 1 in Table Id. Another experimentsexperiment 2
in Table Id, performed at 10 W rf powersfilled circle in Fig.
6d producedR=0.9±18% and thereforek=0.85. The mea-
sured values ofk are somewhat lower than the expected
value of 1–1.2 most likely because this calculation did not
take into account lattice inhomogeneity.

D. Wave packet in a dispersive medium

We find an analytical solution for a wave packet propa-
gating in a dispersive medium. Suppose that Eq.s2d has a
solution:

FIG. 6. RatioRskd ssolid lined of the verticalcv and compres-
sional cDL characteristic speeds vs screening parameterk analyti-
cally calculated for a two-dimensional hexagonal lattice. It is a
strong function ofk and therefore can be used for complex plasma
diagnostics to determine the screening length. The filled square and
the filled circle indicateR measured in the experiments 1 and 2
sTable Id, respectively.k is then reconstructed using the known
inverse dependenceksRd.

FIG. 7. Visualization of an analytically calculated wave packet
propagating in a dispersive medium vs distance and time. The gray-
scale map simulates the lattice illuminated by a laser sheetssimilar
to the experimental observationd, with lighter regions indicating
where particles are displaced in the vertical direction from their
equilibrium position. The wave packet spreads due to dispersionsits
half-amplitude width increasesd. However, since the wave ampli-
tude also decreases with time due to neutral damping, the visible
packet widthsdetermined by a visibility thresholdd remains nearly
constant.
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z= fAsx,tdeiVvt + A*sx,tde−iVvtge−nt/2, s12d

where we separate the fast oscillating parteiVvt and the wave
amplitude Asx,td sA* is its complex conjugated which is
slowly varying in space and time due to dispersion. Substi-
tuting Eq. s12d into Eq. s2d and omitting all higher order
terms, we obtain a simplified equation for the wave ampli-
tude:

iAt + F cv
2

2Vv
GAxx = 0. s13d

This equation is formally equivalent to the Schrödinger
equation describing the wave function of a force-free quan-
tum system. If we multiply Eq.s13d by the Planck constant
", identify the wave amplitudeA with the wave functionC,
and introduce a “quasiparticle mass”M ="Vv /cv

2, the anal-
ogy will be complete. This analogy shows that a compact
pulse spreads as it propagates. At a time scale,t the pulse
width L increases byDL=Î2cv

2t /Vv. In our experiment the
propagation time ist=2.2 s, so thatDL=7 mm.

Equationss12d and s13d have a particular solution:

zsx,td = A0e
−nt/2E

j−

j+

dh cossh2 + vt + kxd,

j± =
x ± L − Vgrt

Î2Dt
, v = Vv −

k2cv
2

2Vv
, D =

cv
2

Vv
, s14d

which describes propagation of a sinusoidally modulated
wave pulse with rectangular initial shapesFig. 7d. Dispersion
causes the wave packet to spread.

Damping reduces the apparent width of the pulse and thus
visibly counteracts the dispersion. As the packet amplitude
decreases due to damping, the part of the packet with the
vertical displacement larger than the width of the illuminat-
ing laser sheet becomes smaller. This is equivalent to change

of the detection threshold. Therefore even a constant width
pulse with reducing amplitude will appear more narrow.

E. Wave packet in an inhomogeneous medium

Medium inhomogeneity is a mechanism that reduces the
real shalf amplituded wave packet width. The lattice we used
in the experiment was slightly inhomogeneous with the par-
ticle separation decreasing by 10% from the excitation edge
to the middle. In order to take inhomogeneity into account
we assume that the vertical resonance frequencyVv in Eq.
s2d depends on the coordinateVv=Vvsxd or

Vv
2sxd = V0

2S1 − e2 x2

Lcr
2 D , s15d

where V0 is the resonance frequency in the center of the
lattice,Lcr is the half size of the lattice, ande!1 is a param-
eter that characterizes the inhomogeneity. The corresponding
inhomogeneity length isLinh=Lcr /e@Lcr.

Treating dispersion and inhomogeneity as small correc-
tions, and assuming that the solution takes the form of Eq.
s12d, we find a generalized Eq.s13d in the case of a weakly
inhomogeneous medium:

iAt + F cv
2

2V0
GAxx −

e2V0

2Lcr
2 x2A = 0, uxu , Lcr. s16d

This equation is known to have localized solutions. Let us
consider the following function as a possible solution:

Asx,td = A0 expSibstd + ikx −
fx − astdg2

2L2 D , s17d

wherebstd andastd are time-dependent functions, andk and
L are constants. In the casee!1 the solution can be written
in the form

zsx,td = A0 expS−
nt

2
+ ibstd + ikx −

fx − astdg2

2L2 D ,

ḃ = V0 −
k2cv

2

2V0
+ Osed, ȧ =

kcv
2

V0
+ Osed, L =ÎcvLcr

eV0
,

s18d

where the small correctionsOsed can be neglected. This so-
lution is valid for a time scale

Dt !
2pLcr

ecv
. s19d

The visualization of the wave packet corresponding to Eq.
s18d is shown in Fig. 8. The parametersV0, l, Vgr, andVph
were chosen the same as in the experiment, and it was as-
sumed thatLcr=30 mm, and e=0.2. The time limit Dt
.33 s of Eq.s19d is therefore satisfied. The wave packet is
focused due to the lattice inhomogeneity.

IV. SUMMARY

Nonspreading vertical wave packets were excited in a
hexagonal monolayer plasma crystal, and their propagation

FIG. 8. Visualization of an analytically calculated wave packet
propagating in an inhomogeneous medium vs distance and time.
The grayscale map simulates the lattice illuminated by a laser sheet
ssimilar to the experimental observationd, with lighter regions indi-
cating where particles are displaced in the vertical direction from
their equilibrium position. The width of the wave packet decreases
due to the inhomogeneity of the lattice.
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was observed. It was found that the phase velocity exceeded
the group velocity by a factor 65 and was directed in the
opposite direction as expected for an inverse optical-like dis-
persion relation. A theory based on the three-dimensional
equations of motion was developed to explain why the wave
packets propagate keeping their width constant. It was found
that while dispersion causes the wave packet to spread, lat-
tice inhomogeneity focuses it. Neutral gas damping can vi-
sually counteract spreading. The theory uses a long-
wavelength weak dispersion weak inhomogeneity
approximation. It describes well formed vertical wave pack-
etssnot the initial stage after the excitation pulse is appliedd
and shows good agreement with the experiment. The experi-
mental sFig. 4d and theoreticalsFigs. 7 and 8d results are

presented in a similar graphical form to facilitate their direct
comparison, which shows very good agreement.

A plasma diagnostic method was developed which is
based on the ratio between vertical and dust-lattice waves
speeds. This ratio is very sensitive to the screening parameter
in the very useful range ofk&2. It was verified that for this
range of screening parameters only a monolayer lattice
model can provide a quantitative description of the vertical
waves, while a linear chain model gives us only a qualitative
description.
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