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A high-quality electron beam can be extracted from a channel guided laser wakefield accelerator without
confining the injected particles to a small region of phase. By careful choice of the injection energy, a regime
can be found where uniformly phased particles are quickly bunched by the accelerator itself and subsequently
accelerated to high energy. The process is particularly effective in a plasma channel because of a favorable
phase shift that occurs in the focusing fields. Furthermore, particle-in-cell simulations show that the self-fields
of the injected bunches actually tend to reduce the energy spread on the final beam. The final beam charac-
teristics can be calculated using a computationally inexpensive Hamiltonian formulation when beam-loading
effects are minimal.
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I. INTRODUCTION This paper presents a study of the particle orbits in a
_ ) ) typical channel-guided LWFA which demonstrates that such

The laser wakefield accelerat@WFA) is potentially a  tight bunching of the injected electrons is not always neces-
compact and inexpensive source of high-energy electrongary. If the injected electrons are initially monoenergetic, the
[1-3]. It utilizes a short pulse laser to drive a plasma waveaccelerating structure itself possesses a phase bunching prop-
which can be used as an ultrahigh gradient acceleratingyty which can be exploited by carefully choosing the injec-
structure. In a uniform plasma, the length of the acceleratofign energy. Even when all the phases are uniformly loaded,
is limited to the Rayleigh length associated with the mini-5 sybstantial fraction of the particles can be bunched and
mum spot size of the laser pulse. This limitation can be remonoenergetically accelerated within the same device. The
moved by guiding the laser pulse in a plasma channel ofemainder of the particles are either radially expelled or left
other structur¢4—-9]. Using currently available chirped-pulse pehind as a much lower-energy beam. By tuning the injec-
amplification laserq10,11] such a system could generate tjon energy to the amplitude of the wakefield, a trade-off can
GeV electrons in a length on the order of 10 £h2-15. be made between the charge in the accelerated beam and the

In a LWFA the accelerated electrons can be taken fromenergy spread. This process involves removal or pruning of
the background plasma as well as from externally injecte@jectrons that fall into the defocusing portion of the wake,
particles. In the long-pulse “self-modulated” reginte@  combined with strong phase bunching and rapid acceleration.
> 2/ wp, where 7_is the laser pulse length ang, is the |nterestingly, the process becomes even more effective when
plasma frequendythe acceleration of particles from the there is substantial beam loading. The possibility of using a
background plasma tends to produce a beam with 100% eipng, “unphased” injected electron pulse raises the possibil-
ergy spread16-19. More recently, quasimonoenergetic ac- ity of using more conventional injector technology in place
celeration of particles from the background plasma has beegf all-optical injection.
observed in simulation20,21] and experiment22-24 op- The outline of the remainder of this paper is as follows.
erating in a shorter-pulse regime. Thus far, these experimentSection Il describes a quasi-two-dimensior(guasi-2D
have suffered from poor shot-to-shot stability. SimulationsHamiltonian model that describes the dynamics of monoen-
suggest that stable production of monoenergetic electrogrgetic electrons loaded uniformly over all phases of a
beams can be achieved by operating in the resonant LWFAWFA. Section Il applies this model to the calculation of
regime (7~ 7/ wp) with a moderate intensity drivdie<1,  trapping efficiencies and energy spreads for typical LWFA
wherea is the normalized vector potentiadnd by injecting  parameters. Section IV presentgbowave [34] simulations
electrons from an external sour25]. It has generally been of the process and compares the results to the Hamiltonian

believed that the injected electrons must be phased to withiodel. Section V summarizes the work and discusses impli-
a small fraction of a plasma period in order to produce acations for future LWFA experiments.

high-quality beam, although some counterexamples have

been offered[26—28. For typical LWFA parameters this

would require that the injected electrons and the driving laser Il. HAMILTONIAN FORMULATION
pulse be synchronized to within tens of femtoseconds and
that the length of the injected electron pulse be similarly
short. A variety of optical injection schemes have been pro- The orbits of test electrons in a one-dimensional LWFA
posed to meet this requiremdr9-33. are often studied by plotting contours of the Hamiltonian,

A. Basic formulation and phase space orbits
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which in the wave frame is a constant of the motion. The
Hamiltonian in the wave frame expressed in laboratory frame
coordinates i$3]

H(v,1%) = 11 = BgBIMC + ddy, sin ¢, (1)
where B is the velocity of the particle normalized to the
speed of lightc, y=(1-8%7Y2 vy=cp, is both the group Y

velocity of the laser pulse and the phase velocity of the

plasma wavem is the mass of the particleg,is the charge of

the particle, and the accelerating field is described by the

electrostatic potentialp= ¢y sin . Here, y=wy(z/vg—1),

wherew,, is the plasma frequency,is the longitudinal coor-

dinate of the particle, antlis time. The Hamiltonian in Eq.

(1) is valid for test particles in one dimension and assumes

that the plasma wave has a low enough amplitude so that v (radians)

harmonics can be neglected. Although the Hamiltonian is

one dimensional, transverse effects can be partly accounted 800

for by assuming that particles crossing into defocusing re-

gions are lost due to radial expulsion. In a uniform plasma,

the focusing region is defined bymR2<<2mw(n+1/2), 600

wheren is an integer. In a plasma channel the focusing re-

gion is larger{35], which can significantly improve the per-

formance of the accelerator, as will be seen below. Y 400
The contours ofH(y,#) for a wave with amplitude

lel¢p/mE=10"* are shown in Fig. (8), and those for a wave

with amplitudele|¢/mc=0.1 are shown in Fig.(b). In both 200

cases,yg=1/\f'1—,82=59 which corresponds to a plasma den-

sity of 5X 10" cm™ assuming an 800-nm laser pulse is the

driver. A particle introduced into either wave is constrained 0

to move along a single contour. 4> vy, the particles move 1 0 1 2 3 4

from left to right. If y<<'y,, the particles move from right to

left. The closed orbits correspond to trapped particles and the

open orbits to untrapped particles. The stationary pointlies at FIG. 1. Contours of the Hamiltoniarta) Particle orbits for a

Y=7 and ¢y=7/2. In the small-amplitude case, the closedwave with epo/mE=10" (b) Particle orbits for a wave with

orbits are symmetric about the ling=7y,. In the large- epy/mc=0.1. The dashed line ifi) is tangent to the retaining

amplitude case, this symmetry is broken by relativistic ef-orbit and indicates the minimum injection energy.

fects. In particular, the particle must spend more time over-

taking the wave than falling behind it due to the fact that the

velocity changes very little at high energies. . _ posed on the contours at a vertical position betwgeand

In a plasma channel, the boundaries of the focusing regiof,  Each point on the line represents the initial phase space
depend on the channel parameters. We therefore consider thgordinate of an injected particle. The phase space trajectory
general case where the focusing region is definedyby corresponding to each initial condition is simply the contour
<#<4,. The largest closed orbit that satisfigs- . con-  intersecting the line at that point. The dashed line in Fig) 1
tains all the orbits corresponding to particles that never crosgorresponds to a scenario where the injection energy.ig
into the defocusing region as they are accelerated. This “renjs case, all particles are lost except thoseyatr/2. Al-
taining orbit” is defined byH(y,#)=H(vy,¢-). The contour  though the final energy spread would vanish, so would the
tangent to the dashed line in Figalis an example where charge. By increasing the injection energy, the charge col-
=0 (uniform plasma The highest point on the retaining |ected increases but so does the energy spread. The problem
orbit gives the largest energy a particle can obtain assuming to quantify the proportion in which these two quantities

that o<y where v, is the injection energy. The lowest increase as the injection energy is raised.
point on the retaining orbit gives the minimum injection en-

ergy. These two energies can be determined by solving
H(y,#)=H(yy,#-) for y and evaluating the solution ak

=m/2. Defining p=qey(sin y_—1)/mc, the result is

—

b)

y (radians)

B. Collection efficiency and dephasing length

- (2 (B The collecti_on efficiency is defined as the ratio of the
Vs Yg+75¢— V(v +28) (vg = 7y)- 2) charge emerging from the end of the accelerator to the

Injection of a monoenergetic beam into the wave can beharge injected. For monochromatic injection, the collection
visualized as follows. Imagine a horizontal line superim-efficiency is
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B . U /2

7= Uimax l/fmm, (3) Ld:f 9 V_dl’[,+f v+d(//. (10)
2 Yimi 1z

'min ¢]

where gimin< /< ymax defines the set of initial phases for |t should be noted that in the evaluation lof a singularity
which particles with initial energyy, never cross into defo- occurs in the integrand af,. However, the singularity is
cusing regions of the wave. Graphically, this interval corre-integrable and can be evaluated without difficulty using off-

sponds to the segment of the line y, contained within the  the-shelf mathematical software. In our work we used the
retaining orbit. The end points of the line segment can be&oftware package Mathematica.

found by solvingH( o, ¥min) =H(vg, #-) for i, with the

result that _ -
. _ C. Final beam energy and phase characteristics
Yrin= SIN'L Yg = ¥o(L = Byfo) + dgho sin y-/mc (4 With the length of the accelerator known, the output
q¢po/mc energy and phase of each particle can be computed. By

; oy king a change of variables on the momentum equation
where we choose the solution satisfyifg< g, < m/2. In ~ Maxine ; ,
a uniform plasmay,,,, can be found using the fact that the 9p/dt——qV¢ and the equation ‘zf phase evolutioky/dt
focusing fields are symmetric aboyt=7/2. In a plasma =(v-vglwplvg, and using Vé=go(wp/vglcosy, two
channel, however, the focusing fields are shifted towardoupled ordinary differential equations are obtained for the

negativey which introduces an additional constraint: Eno]mentum and phase as a function of distance propagated
36]:
Ymax= MIN{7 = Yin, s} (5 q 12
w,

The final energy spread can only be computed once the d—s= —q¢0—9(—2 + ?> cos i, (11
length of the accelerator is specified. The distance traveled Vg P
by any particle is the time-integrated velocity [ Bcdt The 12
velocity can be expressed in terms of the phase by solving d_‘ﬁ: [i _ (”_‘2 + i) } (12)
H(y,#)=H, for B whereHo=H(y5, %), and (yo, o) is the dz  Plug \p* '
initial phase space coordinate of the particle. The result is Again, these equations can be integrated frond to z=L

Bg* VF(F2 + 35 -1 using standard off-the-shelf software. The result is the output
B:(4h) = : (6)  energy and phase as a function of the input energy and phase.

2 2
Pyt 1 Let the output energy be denoteg vy, i) and the output

where f=(Hgo—q¢, sin ) /mc. With a change of variables, phase be denotegk(y,, #%). Then for monochromatic injec-
the integral over time can be converted to an integral ovetion at y=v, the mean output energfy) and root-mean-

phase, giving squaredrms) energy spready are given by
123 1 Ymax
= f v di, (1) MV=5— ¥i(Yo, o) dify, (13
e 27777 Ymin
where
g \]? 5722 = [ Lot - (9Pl (19
vy = /3ic[a)p<18—ir - l)} . (8) - 2wyl YiYortho) = (V) o,
¢]

If B> 3, one uses:, and y,> 4 when evaluating the inte- while mean output phas@)) and rms pulse widthSy are
gral. If 3<,, one uses_ and 5, < ; when evaluating the 9'V€n by

integral. 1 (Ymax
To construct the integral representing the length of the (Ppy=—" i (vo, o) Ak, (15)
accelerator, the phases at which the particle velocitg,s 2 min
must be known. These can be found by solviigyy, 1)
=H, for ;. The solutions are given by 1 (Ymax
i o= | [(vodo) - (WFddo.  (16)
l/l — Sin—l(m - _m02 ) (9) ™ Ymin
9= .
Ao vgd%o Equations(13<16) quantify the beam quality of a LWFA

The dephasing lengthy can be defined as the distance for When the injected particles are loaded into all phases but at a
which electrons injected at= i, reach the phase/2. The  Single energy.
solution to Eq.(9) in the quadrant & ¢, < /2 corresponds
to the point at which these p_artlcles begin to move forward in IIl. HAMILTONIAN ANALYSIS OF UNPHASED,
phase. Foz> L, th_ese particles are decelerated,Lgdep- MONOENERGETIC INJECTION
resesents the maximum useful length for single stage accel-
eration. Using this solution along with Eq$6)—(8), the Using the formulas from Sec. Il we wrote a Mathematica
dephasing length is given by program to calculatéy and 8¢y given an injection energyy,
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wave amplitude holding the collection efficiency fixed at 10% and

evaluating at the end of the accelerator. FIG. 3. Collection efficiencyy and energy spreaéy/ y vs in-

jection energy holding wave amplitude fixedeat,/ mc=0.1. The

) ] ] length of the accelerator was 8.9 cm and the mean output energy
a wave amplitudepy, and a plasma density,. In this sec- \as 365 MeV.

tion, the phasing of the focusing fields was taken to be that of
a uniform plasmdy_=0, . =). Consider first the effect of
wave amplitude. It is not meaningful to hold the injection
energy fixed since the range of possible injection energie
depends strongly omrpy. Instead, the injection energy for
each¢, may be chosen based on the requirement that a fixe
fraction of the injected particles be transported through thg
entire accelerator. In this case, the injection energy is foun
from the implicit equation

As a final illustration, Fig. 4 compares the contours of the
Hamiltonian for two different injection energies. The wave
3mp|itude and plasma density are agaif,/mc=0.1 and

=5x 10 cm™3. The contours corresponding to injection
t 2.14 MeV are shown in Fig(d). The collection efficiency
r this case is 20% and the final energy spread is 6.0%. The
gure shows that it is primarily the outermost closed orbits
that are loaded, and therefore all the particles in the focusing
phase of the wave will eventually reaet#00 MeV. The fact
Ui (Yo bouNe) = T 7 (17) the particles reack=400 MeV at the same time can be un-
min( Y0, Por ' derstood by considering that they spend very little time in the
region y<yy compared with the time they spend in the re-
where 7 is the collection efficiency from Eq3). Consider 910N = ¥q. This is because whep< y, the energy change
the case wherep=0.1 andn,=5X10'7 cm3. The energy caused.by the wake has_ a greater effect on the velocity than
spread and pulse length as a functionfgfare plotted in Fig. wh_eny is large. The partlc!es therefore get swept back to the
2. The results are very favorable. The relative energy spreafint ¢=~0 almost immediately, after which they all move
is on the order of 1% even though 10% of the particles werdogether fromy=0 to_‘ﬂ: W/.Z'_In contrast, Fig. @) Sho"YS
collected. Furthermore, for a wide range of wave amplitude£ONtours corresponding to injection g§~30 MeV. In this
the particles are bunched to within 1° of phase when thefase' all the closed orbits are loaded which leads to an energy
reach the end of the accelerator. Interestingly, smallSPread of 100%.
amplitude waves give better relative energy spread while
large-amplitude waves give better phase bunching.

Next the wave amplitude is held fixed and the injection
energy is varied. As discussed below, a wave amplitude of The conclusions of Sec. Il are based on the assumption
edo/mc=0.1 is meaningful in terms of experiments that of exact monochromatic injection of a zero emittance beam
could be carried out in the immediate future. Using this am4into an idealized accelerating structure. It was assumed that
plitude along with a density af,=5x 10*” cm 3, the length  the only effect of the transverse fields is to eject particles that
of the accelerator is 8.9 cm, the minimum injection energystray into the defocusing phases. It was also assumed that the
v_ is about 1.7 MeV, and the 1D trapping threshold is aboutself-fields of the injected bunches are negligible. To test the
0.7 MeV. The collection efficiency; and the energy spread relevance of the conclusions drawn from this model we turn
Syl v are plotted as a function of injection energy in Fig. 3.to the particle-in-cell simulation cod&rbowave [34]. The
The collection efficiency rises very rapidly as the injectionsimulation parameters are chosen to correspond to a channel
energy is increased and eventually asymptotes to 50% aguided LWFA using a capillary discharge to create the
Yo— 7Yy The energy spread, by contrast, increases linearlplasma channel and a femtosecond Ti:sapphire laser to drive
over the range of energies plotted. The fact that the collecthe plasma wave. The simulations are fully relativistic and
tion efficiency rises much faster than the energy spread nedully electromagnetic. They take into account the nonlinear
v. makes unphased monoenergetic injection an attractivand transverse structure of the plasma wave, the finite emit-
possibility. tance and energy spread of the injected electrons, and the

IV. PARTICLE-IN-CELL SIMULATIONS
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800 half maximum(FWHM) pulse length, the pulse shape is the
one described in Ref34], and w, is the on-axis plasma
wavelength. The laser power is takenRs=8 TW. Several
monoenergetic groups of electrons are introduced, each with
a different initial kinetic energyVo=mc(y,—1). The char-
acteristic transverse dimension of the electrogs,is chosen

to coincide with the laser spot sizg. The normalized emit-
tance is taken ag,,=17 mm mrad. For the simulations dis-
cussed here and in the next section the injected charge was
negligible.

Figure 5a) shows contours of laser intensity at injection
and the location of a group of unphased 1.6-MeV injected
electrons at the entrance of the plasma chafae0) in the
two-dimensionalslab coordinate system. Hereis the axial
-1 0 1 2 3 4 coordinate in the moving windowy, is the transverse coordi-
nate, and the laser pulse moves to the right. The plasma
wavelengthh ,;=27c/ w, at this density is 47um, so the in-
jected electron bunch covers more than one acceleration pe-
800 riod, and particles are loaded over all phases. Figule 5
() shows the laser pulse and particles when the front of the
moving window is atz'=ct=3.46 cm. As a result of the
600 matched injection into the plasma channel, the laser pulse is
essentially unchanged. However, those electrons that have
survived have been strongly focused and phase bunched into
Y 400 two short bunches that are confined to a region near the axis
and are=30 times more dense than the original beam. The
tendency of the wakefield to strongly bunch the particles
helps minimize the energy spread by forcing all particles to
experience nearly the same accelerating field.

Figure Ga) plots the energy spectrum of the 1.6-MeV
injected electrons at the same propagation distatce
0 — =3.46cm and at the nominal dephasing lengtte

10 1 2 3 4 =6.62 cn). The spectrum at the first location has a narrow
v (radians) energy spread and an average energy of 225 MeV. At the
second location, the average energy has approximately

FIG. 4. Particle orbits in a wave witk¢e/mc®=0.1 for (a) doubled to 406 MeV with an rms spread of 4.9%. Figure
injection at 2.1 MeV andb) injection at the group velocity corre-  6(b) shows a similar plot for an injection energy of 3.6 MeV.
sponding to 30 MeV. The higher injection energy results in a significantly broader

energy spread and a reduction in the energy gain. For ex-

nonlinear evolution of the driving laser pulse. In one ex-ample, az=6.62 cm, the mean energy is only 320 MeV and
ample the injected charge was set high enough to lead tthe relative energy spreaxiV/W,=0.236. The collection ef-
substantial beamloading. The computational region is set ificiency is significantly higher, however.

motion at the speed of light in order to approximately match The simulation also gives the phasing between the focus-

the group velocity of the laser pulse. ing and accelerating phases of the wake. Figu@ iflus-
trates the phasing in a uniform plasma, and Fidp) Tllus-

trates the phasing in a plasma channel. Both panels are a
A. Simulation of unphased injection false color image of the longitudinal field with a translucent
The simulation models a plasma channel with radial den9'3Y overlay i_ndicating the transverse fields. The _red regions
sity profile n(r):n0(1+r2/r§1), wheren,=5x% 107 cn™ and are acceleratmgl, the blue regions are deceler_atmg, and the
rce=60 um. A step function is used for the axial density grayed Over regions are defocu§|ng. In_the uplform plasma,
variation. The laser pulse has a radial amplitude variatio he |ntersect!on of the'acceleratlr)g region Y,V'th thehite)
a(r)=aexp(-r/r2) with ro=30um. This satisfies the ocusing region occupies approx!mately 90 c_)f phase near
matched beam conditiony=r,, where[4] the axis. In terms of the Hamiltonian model, this would cor-
respond to taking/_=0 and ¢, =7/2. In the channel, by
rgl 14 contrast, the focusing region not only occupies slightly more
=\— (18) phase than the defocusing region, but is also shifted toward
the accelerating region. In the particular case considered
with r. the classical electron radius. The pulse duration ishere, the focusing region lies betwegn=-0.75 andy,
chosen to satisfy| =7/ w,=80 fs wherer is the full width ~ =2.65, with focusing and acceleration occurring for -0.75

600

Y 400

200

v (radians)

200

7Tn0re
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J I tion (solid line) and 6.62 cm of acceleratiof@ashed ling for (a)
4 i electrons injected at 1.6 MeV aith) electrons injected at 3.6 MeV.

First, the classical dephasing length assumes0 and i,
=1/2. Second, the classical dephasing length assumes that
i i the particle travels at the speed of light throughout the entire
-50 - L interaction. In both calculations, the finite spot size correc-

. - tion to the group velocity was accounted for.

y-Coordinate (um)
o
|
L 3
I

B. Comparison of simulations with Hamiltonian model

-150 -100 -50 0 The simulations discussed above confirmed the expecta-
tion that the laser pulse evolves very little during the inter-
x-Coordinate (“m) action and that the injected electrons stay near the axis once

they survive the initial bunching and pruning process. A
FIG. 5. (Color) Bunching of unphased monoenergetic electrons.quantitative comparison of the simulation results with the
Shown in(a) is a false color image of the laser intensitgd) and  Predictions of the quasi-2D Hamiltonian model is therefore
the electron densitgpurple at the start of the simulation. Shown in appropriate. The simulation is as in the previous section, ex-
(b) is the same image after 3.46 cm of propagation in the plasm&ept this time the particles are loaded uniformly over exactly
channel. The highest electron density(in is 30 times higher than 27 radians of phase. For the Hamiltonian model, we take
that in (a). $0=0.1, \p/A=59, and the phase velocity of the wake is
assumed to be at the spot-size-corrected group velocity of the
<<1.57. In fact, the intersection of the focusing and ac-laser pulse.
celerating regions is 48% larger than the same intersection in The solid line in Fig. 8 gives the collection efficienay
a uniform plasma. from the Hamiltonian model as a function of injection energy
It is interesting to note that using_=-0.75, 4,=2.65, W, using Eqs(3) and(4). The solid squares give the corre-
and Wy,=1.6 MeV in Eq.(10) gives L4=10.5 cm. This is sponding collection efficiences from the simulation. The
substantially longer than the classical dephasing length afigreement is excellent, particularly in terms of the ability to
6.62 cm. The reason for the disparity is actually twofold.predict the minimum injection energy and the location of the
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0 50 100 150 FIG. 8. Comparison of energy spread and collection efficiency
vs injection energy as computed by the Hamiltonian model and the
: : particle-in-cell simulation. The plus and the cross correspond to a
Axial Coordinate (“m) case where beam-loading effects were included in the simulation.
| ] are the simulation values. There is a significant drop in the
g i (b) B final energy as the injection energy is increased. This reflects
= - s the collection of electrons over a broader range of phases,
= . - which results in some electrons actually being decelerated as
) 50 B the propagation distance approaches the classical dephasing
IS I length. The dashed curve plots the final rms normalized
£ 1 bunch length from Eq(16), and the open circles are the
= ' I simulation values. As expected, the bunch length is ex-
8 0 . - tremely short for injection energies just above the minimum
@) , - injection energy. For example, when the injection energy is
<) . . - 1.6 MeV, the final phase spread #&/;=9.3°, which corre-
g T i sponds to a bunch length of about 4 fs.
% 50 - -
c - N
9 g - Mean Energy | | ====- Phase Spread
- ] i B MeanEnergy (sim) || O Phase Spread (sim)
X Mean Energy (20 pC) + Phase Spread (20 pC)
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FIG. 7. (Color) Phase relationship between accelerating and fo- 2 15 §
cusing fields:(a) uniform plasma(b) plasma channel. '-':-' 200 - ‘0 &
T a
“‘knee” in the curve. Furthermore, the quantitative errors are g / 2
only about 10%. The dashed line in Fig. 8 gives the relative 100 - o ls =~
energy spready/(y) from Eqgs.(13) and(14), and the open b
circles are from the simulation. For low injection energies, ol v
the quantitative errors are again about 10%, although at 0 2 4 3 8 10
Zg;er injection energies\W,=8 MeV) the error rises to Injection Energy (MeV)
0.
Figure 9 compares the mean final enetyy;)=mc*((ys) FIG. 9. Comparison of mean energy and bunch length vs injec-

—1) and rms electron bunch leng#y; as computed byur-  tion energy as computed by the Hamiltonian model and the particle-

bowAVE and the Hamiltonian model. The solid curve

givesin-cell simulation. The plus and the cross correspond to a case

the mean final energy from E@13), and the solid squares where beam-loading effects were included in the simulation.
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C. Example with beam loading V. CONCLUSIONS

To determine whether unphased monochromatic injection Channel guided laser wakefield accelerators can produce

remains effective when beam loading is taken into account)igh-quality electron beams even in cases where the injected
we repeat the above simulation for 2 MeV injection with g Particles are uniformly loaded over all phases. By selecting

k elect b densit =n./100=5x 10" cni3.  the appropriate injection energy, a tra_de-off can be made be-
peak electron beam density of=no cm tween the charge collected and the final energy spread. The

The total charge injected was 8.5 nC/cm, which in threg ; . LTS .
dimensions would translate to about 20 pC. This corres.!ri?gézfgés t\rﬁir)érjg;/;eri%ﬁelgt;gitis?; w]iéﬂji(m:g?enr:g%rl?/yté’ln
ﬁr?q?td[ss%) about 68% of the one-dimensional beam-loadin e energy s'pread. This is a result not on_Iy of the strong
phase bunching forces exerted by the wakefield, but also of a
phase shift in the focusing fields induced by the presence of
No=5 X 105(ﬁ>\’F0A, the c_hannel. If the ph_asing of the focusing field_s is known, a
Ny Hamiltonian formulation can be used to predict the mean
energy, energy spread, mean phase, and phase spread of the
whereN, is the number of electrons in the bunch,is the  accelerated electrons. The predictions of the Hamiltonian
density perturbation due to the wak®, is the ambient den- formulation agree well with 2D particle-in-cell simulations.
sity, andA is the cross sectional area of the be@amits are  Finally, the effects of beam loading can actually help to re-
cgs. The results from the simulation are shown in Figs. 8duce the final energy spread on the beam.
and 9. The collection efficiency, mean energy, and phase The practical implication of this work is that a high-
spread are all affected unfavorably, but the change is najuality channel-guided LWFA might be built using relatively
drastic. More interestingly, the energy spread is reduced sigsonventional technology as the source of externally injected
nificantly from the value obtained in the test particle limit. electrons. Technologies such as dc- or rf-driven photocath-
This can be understood by considering the fact that while thedes might provide a suitable high-charge injection pulse
wake tends to accelerate particles at the back of the bundmore reliably than other more exotic schemes.
more than at the front, the self-fields tend to accelerate par-
ticles at the front and decelerate those at the back. In other ACKNOWLEDGMENTS
words, the self-fields tend to cancel out the nonuniformity of Discussions with A. Zigler, T. G. Jones, D. Kaganovich,
the wake. Since the nonuniformity of the wake is whatJ. R. Pefiano, R. Tempkin, J. Rosenzweig, and A. G. Khacha-
causes the energy spread to grow, this partial cancellatiotmyan are gratefully acknowledged. This work was supported
helps keep the energy spread narrow. Based on this unddwy the Division of High Energy Physics, Office of Energy
standing, it appears likely that there is an optimum beanResearch, U.S. Department of Energy, the Office of Naval
current which leads to a minimization of the energy spreadResearch, and a DOE Small Business Innovation Research
We leave this and other beam-loading issues for future studySBIR) Grant to Icarus Research, Inc..
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