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We present a semianalytical free-energy model aimed at characterizing the thermodynamic properties of
dense fluid helium, from the low-density atomic phase to the high-density fully ionized regime. The model is
based on a free-energy minimization method and includes various different contributions representative of the
correlations between atomic and ionic species and electrons. This model allows the computation of the ther-
modynamic properties of dense helium over an extended range of density and temperature and leads to the
computation of the phase diagram of dense fluid helium, with its various temperature and pressure ionization
contours. One of the predictions of the model is that pressure ionization occurs abruptly atr*10 g cm−3, i.e.,
P*20 Mbar, from atomic helium He to fully ionized helium He2+, or at least to a strongly ionized state,
without a He+ stage, except at high enough temperature for temperature ionization to become dominant. These
predictions and this phase diagram provide a guide for future dynamical experiments or numerical first-
principle calculations aimed at studying the properties of helium at very high density, in particular its metal-
lization. Indeed, the characterization of the helium phase diagram bears important consequences for the ther-
modynamic, magnetic, and transport properties of cool and dense astrophysical objects, among which are the
solar and the numerous recently discovered extrasolar giant planets.
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I. INTRODUCTION

Within the past decade, over a hundred brown dwarfs,
astrophysical bodies not dense enough to sustain hydrogen
fusion in their core, and extrasolar giant planets, i.e., jovian
planets orbiting stars outside the solar system, have been
discovered. These objects are composed essentially of hydro-
gen and helium. Given their large gravity and relatively low
temperature, within astrophysical standards, the hydrogen
and heluim fluid is in an atomic or molecular form in the
outermost part of the body and in the form of a fully ionized
electron-ion plasma in the innermost regions. Such an inter-
nal structure is common to many so-called compact objects,
from our own jovian planets to the external layers of white
dwarfs or neutron stars. The characterization of the structure
and cooling properties of these compact objects thus requires
the knowledge of the thermodynamic properties of dense hy-
drogen and helium fluids, and more importantly a realistic
description of the partial, pressure ionization regime. Given
the large variations of thermodynamic conditions character-
istic of the structure and evolution of such astrophysical bod-
ies, these thermodynamic properties, characterized by the
equation of statesEOSd, must be calculated over several or-
ders of magnitudes in density and temperature. As discussed
below, the necessity to calculate the thermodynamic proper-
ties over such a large range of conditions precludes the use
of heavy computer simulations and thus necessitates the deri-
vation of EOS models which allow extensive calculations
within a reasonable amount of computer time, unfortunately
at the price of a more approximate, or say phenomenological

description of the properties of matter at high density.
Interestingly enough, these EOS’s of dense matter under

astrophysical conditions can now be probed on Earth by
shock-wave experiments. Future large laser experiments,
like, e.g., the NIF project at Livermore or the LMJ project in
France, will reach conditions characteristic of the deep inte-
rior of the aforementioned astrophysical bodies. So not only
is the calculation of dense matter EOS of interest for astro-
physical applications, but it is necessary for the confrontation
of theory with existing and future high-pressure experiments,
yielding eventually a correct knowledge of the properties of
matter under extreme conditions. Hydrogen, the most com-
mon element in the universe, has been studied extensively,
on both the experimental and theoretical fronts, and the EOS
of dense hydrogen becomes more and more constrained, al-
though the very regime of pressure ionization still remains ill
determined. The same cannot be said for helium. Although
some experiments exist in the regime of neutral helium at
high density, as detailed below, the regime of helium pres-
sure ionization, from He to He+ and He2+ remains for now
unexplored, and no attempt has been made to give a detailed
theoretical description of these domains. It is the very pur-
pose of the present paper to derive an EOS for dense, par-
tially ionized helium, covering the gap between the previous
study of dense neutral heliumf1g and the fully ionized re-
gime f2,3g. As mentioned above, not only is the calculation
of such a dense helium EOS necessary for a description of
the thermodynamic properties of astrophysical compact ob-
jects, in particular the recently discovered gaseous exoplan-
ets, but it provides a useful guide for future high-pressure
shock-wave or laser experiments.

The paper is organized as follows. In Sec. II, we briefly
comment on the general formalism underlying the present
calculations. The various contributions entering our general
model free energy are presented in detail in Sec. III. The
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results and the limitations of the model are presented in Sec.
IV. Special attention is devoted to the impact of various ap-
proximations in the free-energy calculation on the final re-
sults. Section V is devoted to the conclusion.

II. GENERAL CONSIDERATIONS

A. Chemical picture of a dense plasma

Equation-of-state calculations can be divided into two ge-
neric categories. The “physical approach” is formally exact
as it involves only fundamental particles, electrons and nu-
clei, interacting through the Coulomb potential. The partition
function is calculated using the eigenvalues corresponding to
this N-body system. In practice, however, the exact solution
cannot be calculated, in particular when bound states form,
and either perturbative expansions or approximate numerical
schemes must be used. The validity of the expansions is
limited to high temperatures and/or low densities, i.e., apply
to weakly or moderately coupled plasmas. The regime of
pressure ionization thus cannot be described by such expan-
sion schemes. Numerical techniques, such as density func-
tional theory, molecular dynamics, or path-integral Monte
Carlo simulations, do extend to the strongly correlated re-
gime but the description of the pressure ionization regime
then becomes a formidable task, and involves also physical
approximations in the calculations of either the electron
functional or the nodal functions, not mentioning the finite
size effects due to the limited number of particles in the
simulation. In practice, these simulations do not allow the
calculation of thermodynamic quantities over a large range
of temperatures and densities, as needed for practical appli-
cations, as mentioned earlier. For this reason, a more phe-
nomenological approach has been developed which com-
bines a simplified description of the properties of dense
matter and a semianalytical derivation, allowing the calcula-
tions of extended thermodynamic tables with moderate com-
puter time investment. This is the so-called “chemical pic-
ture.” In this approach, the basic particles are no longer only
electrons and nuclei but also bound speciessatoms, mol-
ecules, ionsd, which are characterized by their interparticle
potentials. That means that the particles remain distinguish-
ablesin a classical sensed in the plasma, with their own iden-
tities and interaction properties. The problem thus reduces to
the free-energy minimization of a multicomponent system,
taking into account chemical and ionization equilibrium be-
tween the various species. Although certainly of doubtful
validity in the regime of pressure ionization, where the con-
cepts of pair potential and bound states become meaningless,
this approach has been shown to yield reasonably accurate
descriptions of hydrogen at high densityf4,5g. Moreover, as
mentioned above, this approach presents the advantage of
being semianalytical and thus has a valuable practical inter-
est for EOS calculations. Last but not least, the chemical
approach offers the noticeable advantage of clearly identify-
ing the terms and the approximations aimed at describing
various physical effects. Such terms can be added or re-
moved with limited effort, allowing a rapid identification of
the dominant contributions responsible for the thermody-
namic properties of matter under complex conditions. There-

fore, despite its shortcomings, the chemical approach should
be seen as a useful alternative to the “exact” physical ap-
proach.

B. General free-energy model

The chemical approach is based on the minimization of
the free energyFshNij ,T,Vd corresponding to a system con-
taining hNij different species inside a volumeV at tempera-
ture T. This minimizationdF=ois]F /]NiddNi =0 must sat-
isfy the electroneutrality condition and the stoichiometric
conditions corresponding in our case to the following set of
chemical equations:

He� He+ + e−,

He+� He2+ + e−. s1d

The canonical partition function of the systemZ is assumed
to be factorizable into different contributions, so that the free
energyF=−kT ln Z can be split into the sum of translational,
configurational, and internal contributionsf6,7g. Adding up
the correction arising from the quantum behavior of the
heavy particles, one gets

FshNij,T,Vd = FidshNij,T,Vd + FconfshNij,T,Vd

+ FintshNij,T,Vd + FqmshNij,T,Vd. s2d

The conditions of validity of such a separability are as fol-
lows.

s1d The discretization of the eigenvalues corresponding to
the translational degrees of freedom and to the center-of-
mass positions is negligible. This is the quasiclassical ap-
proximation.

s2d There is no coupling between the translation degrees
of freedom and the center-of-mass positions.

s3d The internal energy levels remain essentially unper-
turbed by the interactions with surrounding particles.

If the two first conditions are satisfied in the present con-
text, the last one certainly becomes invalid in the pressure
ionization regime. We expect this regime, however, to cover
a limited range of density, as pressure ionization generally
occurs rather abruptly. Eventually, only comparison with ex-
perimental data can give a quantitative estimate of the dis-
crepancy due to this underlying factorization condition. The
various contributions toF are described in the next section.

III. FREE-ENERGY MODEL

We first present the models used to calculate the contri-
butions to the total free energy arising from each different
species He, He+, and He2+. Then, we describe the modeliza-
tion of the coupling between these various species.

A. Model for atomic helium He

1. The kinetic free energy Fid

The ideal part of the free energy, corresponding to the
kinetic part of the Hamiltonian, is given byf8g
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FidsN,T,Vd = − NkBTH1 + lnFV

N
S2pMkBT

h2 D3/2GJ , s3d

whereN is the number of helium atoms of massM inside the
volumeV at temperatureT.

2. The configurational free energy Fconf

The configurational free energyFconf, arising from the in-
teractions between helium atoms, is calculated within the
Weeks-Chandler-AndersensWCAd perturbation theory
f9,10g. The interaction potentialFsrd is split into a reference
potentialFrefsrd and a perturbative partFpertsrd. Truncating
the perturbative expansion of the free energy after the first
order, the so-called high-temperature approximationsHTAd
yields

Fconf = FrefsT,V,Nd +
N2

2V
E drFpertsrdgrefsr,V,Nd. s4d

The problem is thus reduced to the potential separation and
to the calculation ofFrefsT,V,Nd andgrefsr ,V,Nd. Concern-
ing the first point, we use a modification of the procedure of
Kang et al. f11g, namely,

Frefsrd = 5Fsrd − SFsld + UdF

dr
U

r=l

sr − ldD if r , l,

0 if r ù l,
6
s5d

Fpertsrd = 5Fsld + UdF

dr
U

r=l

sr − ld if r , l,

Fsrd if r ù l,
6

where l=safcc
−3 +r*−3d−1/3; afcc=fÎ2/sN/Vdg1/3 and r* corre-

sponds to the minimum of the potentialFsrd. This choice for
the density-dependent break pointl has the advantage to
give a continuously differentiablel. Concerning the second
point, we approximate the repulsive reference potential by a
hard-sphere potential. The hard-sphere radiuss is calculated
from the Barker-Henderson criterion:

sBH =E
0

`

drs1 − e−bFrefd =E
0

sBH

drs1 − e−bFrefd, s6d

with the Verlet and Weiss correctionf12g to include a density
dependence

s = sBHS1 +
s1

2s0
dD , s7d

where d is a function of the temperature ands1/2s0 is a
function of T and s. This nonlinear equation is solved by
direct iteration, usingsBH as an initial guess fors
;ssT,nd. An example of the evolution ofs with density and
temperature is presented in Fig. 1. The free energy and the
radial distribution functions for the hard-sphere reference
system Fref;FHS, gref;gHS, are obtained analytically
f13,14g.

To describe the interaction between two helium atoms, we
choose the Aziz and Slamanf15g potential forr ù1.8 Å, and

the Ceperley and Partridgef16g one forr ,1.8 Å. Following
Aparicio and Chabrierf1g, this two-body potential is modi-
fied by a density-dependent function to mimic the softening
due toN-body effects at high density:

Fsrd = Ss1 − Cd +
C

1 + Dr
DFr→0srd. s8d

The two parametersC andD are optimized to reproduce the
experimental measures of adiabatic sound velocityf17g. A x2

minimization yieldssC,Dd=s0.44,0.8 cm3/gd. This poten-
tial is illustrated in Fig. 2 whereas Fig. 3 compares the mea-
sured sound velocity and the one calculated with our poten-
tial. Figure 4 compares the Hugoniot curves obtained with
the present atomic helium free-energy model and interatomic
potential with presently available shock-wave experiments
f18g. These comparisons assess the validity of the present
model at least up to the limit of the data, i.e.,P.1 Mbar.

FIG. 1. Hard-sphere radiisWCA for atomic heliumssolid lined,
for T=103.0, 103.5, and 104.0 K from top to bottom, and break point
l sdotted lined as a function of the density.

FIG. 2. Interaction potential between two helium atoms, without
N-body correctionssolid lined and with theN-body softening cor-
rection atr=10 g/cm3 sdotted lined.
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3. The internal free energy Fint

The divergence of the internal partition function
olgl exps−El /kBTd of an isolated atom is a well-known prob-
lem in statistical physics. It emphasizes the necessity to take
into account the interactions between atoms in the calcula-
tion of the internal partition functionZint=exps−bFintd. For a
densityn, each atom has a typical available volumen−1/3 so
that, as density increases, the levels associated with the high-
est eigenvalues will move into the continuum. When the den-
sity is high enough to disturb even the ground state, the
electrons can no longer remain bound to the nuclei: this is
the pressure ionization phenomenon. We have included the
effect of the interactions of surrounding particles on the in-
ternal partition function of helium within the so-called occu-
pation probability formalismsOPFd f19g. The OPF ensures
the statistical-mechanical consistency between the configura-
tional free energy characterizing the interactions between at-

oms, Fconf, and the internal free-energy contribution,Fint.
The OPF has been extensively presented in various papers
ssee, e.g.,f20gd, and is only briefly outlined for complete-
ness. We consider a system of interacting particles, of free
energyF=Fid−kBT ln Zint+ f, where f is the nonideal term.
Within the OPF, the total free energy can be rewritten under
the form

F = Fid − kBT ln Z̃ + f − o
a

Na

]f

]Na

, s9d

with

Z̃ = o
a

vagae−bEa and va = expS− b
]f

]Na
D . s10d

The termva can be seen as the probability that the eigenstate
a of the atom still exists in the midst of the surrounding
particles. These factorsva are calculated consistently from
the configurational termf, and the termoaNa]f /]Na ensures
the statistical-mechanical consistencyssee f19gd. The OPF
has several noticeable advantages, among which are the fol-
lowing.

s1d va decreases monotonically and continuously with in-

creasing density, ensuring the convergence ofZ̃int and the
derivability of Fint.

s2d No ill-controlled energy shifts of the levels are intro-
duced, as required from the condition of factorizability of the
partition functionfEq. s2dg. Experiments at low densityf21g
and calculationsf22,23g do not show such energy shifts.

s3d The probabilistic interpretation ofva enables us to
combine several occupation probabilities arising from statis-
tically independent interactions. We will come back to this
point in Sec. III D.

The exact solution, in principle, requires the knowledge of
all the interaction potentials between an atom in statea and
another one in statea8. In the absence of such information,
we have adopted the simplest approach which consists of
characterizing excited state interactions by hard-sphere ex-
cluded volumes in the phase space. The hard-sphere radii are
calculated with the scaling law derived by Aparicio and
Chabrierf1g fEqs.s14ad ands14bdg. Within the first order in
the expansion of the nonideal partf of the free energyfEq.
s4dg, the va

HS for the excited states are thus given by

va
HS = expS− b

]fHSshNaj,V,Td
]Na

D . s11d

This nonlinear equation is solved iteratively by using results
obtained within the low excitation approximationsLEAd
and low-density approximation sLDA d, va

HS,LEA+LDA

=expf−pNssa+s1d3/6Vg, as initial guess.

4. The quantum correction of the free energy Fqm

We have taken into account the correction to the free en-
ergy arising from quantum effects due to the finite size of the
atoms by keeping the first order of the Wigner-Kirkwood"2

expansion of Trfe−bHg f24,25,8g:

FIG. 3. Comparison between the experimental measures of the
adiabatic sound velocityf17g ssolid lined and the present calcula-
tions with sC,Dd=s0.44,0.8 cm3/gd scrossesd and sC,Dd
=s0,0 cm3/gd sdotted lined.

FIG. 4. Comparison between the experimental single- and
double-shock Hugoniot curvesf18g and the present calculations
with sC,Dd=s0.44,0.8 cm3/gd ssolid lined and sC,Dd
=s0,0 cm3/gd sdotted lined.
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Fqm =
"2

24kBTVMHe
N2E dr =2Fsrdgsrd. s12d

Fsrd corresponds to the potential shown in Sec. III A 2, and
gsrd;ysrde−bFsrd is approximated byyHSsrde−bFsrd.

B. Model for the partially ionized plasma ˆHe+,e−
‰

Because of the presence of bound states, the treatment of
He+ presents the same difficulties as for He. We adopt the
same formalism, namely, the WCA perturbation expansion,
to calculate the He+ configurational free energyswith the
hard-sphere model as the reference systemd and the OPF to
treat the internal partition function. For the long-range inter-
action potential between He+ ions, we take a Yukawa poten-
tial e−ksr / r, where the density- and temperature-dependent
screening wave vector is given byf26g

kssn,Td =
1
Î2

kTFfu1/2F−1/2sm/kBTdg1/2, s13d

where kTF=s4mee
2/p"2d1/2s3p2ned1/6 is the Thomas-Fermi

screening wave vector,ne is the total free electron density,
u=T/TF is the electronic degeneracy parametersTF is the
electron Fermi temperatured, Fn is the Fermi integral of order
n, and m /kBT is the electron chemical potential defined by
F1/2sm /kBTd=2u−3/2/3.

For the treatment of the internal free energy, we need a
scaling law to associate a hard-sphere radius with the excited
states of He+. Since He+ is hydrogenlike, and the energy
levels are degenerate toward the orbital quantum numberl,
we write this scaling law as

sn = n2s1, s14d

wheres1 is the WCA hard-sphere radius associated with the
ground state, andn is the main quantum number.

The calculations then proceed exactly as in Sec. III A.

C. Model for the fully ionized plasma ˆHe2+,e−
‰

The free energy of a fully ionized electron-ion plasma
sFIPd has been calculated by Chabrier and Potekhinf2g and
Potekhin and Chabrierf3g. These authors provide analytical
parametrizations for the various thermodynamic quantities.
We refer the reader to these papers for a description of the
fully ionized plasma model.

D. Interactions between different species

Besides all the afore-described contributions to the free
energy, arising from interactions between species of same
nature, we must also include contributions arising from the
interactions between species ofdifferentnature.

1. Hard-sphere interactions between atoms and ions

The first-order interaction between the atomic and ionic
species He, He+, and He2+ is the hard-sphere excluded vol-
ume interaction, FHSshNHe,a ,NHe+,a ,NHe2+j ,hsHe,a ,sHe+,a ,
sHe2+j ,V,Td, with a radiussHe2+;0 for the He2+ ions, cal-
culated consistently from the hard-sphere free energy of a

multicomponent interacting systemf13g. It can be shown
easily that the contribution arising from thesHe2+=0 compo-
nent is equivalent to renormalizing the idealskineticd term
for this species with a volumeV8=s1−hdV, whereh
=oi[hHSjpnisi

3/6 corresponds to the total packing fraction
f4g. This term thus takes into account the He-He, He+-He+,
He-He+, He-He2+, and He+-He2+ interactions. Note that, in
contrast to previous approaches, we do not consider excluded
volume interactions between bound species and free elec-
trons. Indeed, such an approach does not seem to be justified,
for the quantum exclusion principle applies only to electrons
in the same state. The entire volume of the system is thus
available to the majority of the free electrons, even in the
presence of bound species, as long as the free electrons are in
a quantum state different from those corresponding to the
bound states. In any event, we have checked that the intro-
duction of an excluded volume for the electrons does not
modify significantly the final results.

2. Induced interactions between atoms and ions

The presence of charges in the neighborhood of species
with bound states has two consequences. The first one is the
induced polarization due to the electronic cloud, which trans-
lates into a related contribution to the free energy. The sec-
ond one is the induced Stark effect on the bound states, due
to the ambient electric field which modifies the one associ-
ated with the atom nucleus. These two effects have been
taken into account in our model as described below.

a. Polarization effects. The polarization contribution to
the free energy arising from the interactions between the
charges and the neutral atoms He has been handled as in
previousN-body approachesf27,4g:

Fpol =
2kBT

V
NHe o

i=He+,He2+,e−

NiBHe,i . s15d

The second virial coefficientsBHe,i are given by

BHe,i = 2pE
sHe-i

`

dr r2s1 − e−bFpol
i

d, s16d

where

Fpol
i srd = −

Zie
2ai

2
F 1 + ksr

r2 + sHe-i
2 G2

exps− 2ksrd s17d

is the polarization potential between He and the speciesi.
The two free parameterssHe-i andai are the hard-core radius
and the polarizability. For the He-He2+ and He-e− interac-
tions, the hard-core radius is chosen to be the He atom
ground-state radiussHe-He

HS , and the polarizabilityswhich has
the dimension of a volumed is equal tossHe-He

HS d3. For the
He-He+ interaction, the hard core radius issHe-He+

HS =ssHe-He
HS

+sHe+-He+
HS d /2 and the polarizability is equal tossHe-He+

HS d3.
b. Electric microfield effects. The Stark effect on the

bound states, arising from the electric microfieldE due to the
surrounding charges, is also treated within the framework of
the OPF. The occupation probability associated with the
Stark interaction on the internal states of He and He+ is given
by f19g
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va
mE =E

0

ba
crit

db Psbd, s18d

where b=s4p«0a
2/ZedE is the dimensionless electric field

fZe is the ion charge anda=s4pn/3d−1/3 is the mean inter-
particle distanceg, Psbd is the probability that the central
ionic center experiences a field betweenb and b+db, and
ba

crit is a critical field associated with each bound statea.
Potekhinet al. f28g have calculated the microfield distribu-
tion of an atomsneutral ionic centerd or an ionscharged ionic
centerd immersed in a surrounding ionized plasma. These
calculations take into account the interactions in the plasma
fG=sZed2/akTÞ0g, and recover the Holtzmark limit in the
case of a noninteracting, perfect gassG=0d. These authors
provide analytical formulas forQsb ,Gd=e0

bdt Pst ,Gd in the
case of a neutral or a charged central ionic center. Note that
Qsb ,Gd and thus the probabilityva

mE depend not only on the
temperature, as in the Holtzmark limit, but also on the den-
sity, through the parameterG. The critical fields are given by
Hummer and Mihalasf19g in the case of a hydrogenlike
system. We have directly applied their prescription to He+,
and used the similarity between a He atom and a hydrogen-
like system, with a central charge equal to 7/4 for the ground
state and 1 for the 1snl-type levelsf1g, to calculate the criti-
cal fields corresponding to atomic helium He.

3. Long-range interaction between He+ and He2+

The remaining coupling contribution between the various
species stems from the long-range Coulomb interaction be-
tween helium ions He+,He2+ and electrons. Short-distance
interactions due to the internal levels of He+ have been con-
sidered in the previous sections. The treatment of the long-
range Coulomb interaction between the two ionic species
will certainly have some impact in the pressure ionization
regime where He+ and He2+ coexist, but will not modify the
rest of the phase diagram. This contribution, however, is dif-
ficult to evaluate accurately. Considering the He+-He2+ inter-
action as a pure Coulomb contribution, thus representing the
He+-He2+ fluid as an interacting two-componentZ1=1, Z2
=2 point-charge plasma, is not satisfactory, for it precludes a
correct treatment of the internal levels of He+, which has
been included in our formalismssee previous sectiond. In this
context, and in the absence of an accurate formulation, we
estimate the contribution to the total free energy arising from
the He+,He2+,e− long-range interaction in the framework of
the ion-sphere modelf29g, thus considering only the electro-

static contribution to the free energy. In this very simplified
model, the interaction between He+ and He2+ gives a contri-
bution equal toZ1Z2e

2/a per pair, with Z1=1 and Z2=2,
whereas the contribution due to the interaction between the
central ion He+ and the uniformly charged sphere −Z1e gives
a contribution −3/2sZ1ed2/a per He+. The He2+-e− and e−

-e− contributions are already included in the FIP model men-
tioned in Sec. III C. The contribution thus reads

FsNHe+,NHe2+d =
NHe+NHe2+

2
Z1Z2

e2

a
−

3

2
NHe+

sZ1ed2

a
.

s19d

The very crude treatment of this interaction between
He+,He2+ and electrons is certainly a major shortcoming of
the present model and Eq.s19d gives at best the order of
magnitude of the contribution of this interaction to the free
energy. As mentioned above, there is no satisfactory descrip-
tion of ions with bound states, He+ in the present context,
immersed in a surrounding dense plasma. Indeed, it is diffi-
cult to capture the drastically different nature of the short-
and long-range interactions of such species with surrounding
charged particles. This is undoubtedly a limitation of the
chemical picture, and of the related distinction between dif-
ferent entities. In reality, the concept of identifying He+ or
He2+ particles, based on the concept of a potential or pseudo-
potential, becomes meaningless at high density. Only at high
temperature, when kinetic contributions dominate, is the ap-
proach conceptually correct. Therefore, although He+ and
He2+ are distinguishable in our model free energy, we do not
pretend to give an accurate description of the second stage of
helium pressure ionization, from He+ to He2+. As detailed in
the next section, however, we have checked that the present,
crude description of the He+-He2+ interactions does not alter
the final phase diagram. The reason is that, at least in the
present model, helium pressure ionization proceeds directly
from atomic helium He to fully ionized helium He2+, or at
least to a strongly ionized stage. It will certainly be interest-
ing to compare these results with experiments and with re-
sults obtained with first-principles calculations, although
these latter will certainly have to face their own difficulties
in this complex regime.

4. Summary

Summarizing the various contributions described in the
previous sections, and following Eqs.s4d and s9d, the full
model free energy reads

bF

Ntot
sV,T,hNijd = − o

i=He,He+

Ni

Ntot
H1 + lnF V

Ni
S2pMkBT

h2 D3/2GJ − o
i=He,He+

Ni

Ntot
ln o

a

giavia
HSvia

mEe−bEia

+
bFHSshNHe,a,NHe+,a,NHe2+j,hsHe,a,sHe+,a,sHe2+ = 0j,V,Td

Ntot

− o
i=hHe,aj,hHe+,aj

Ni

Ntot

b]FHSshNij,hsHe,a,sHe+,aj,V,Td

]Ni
+

bFpolsHe,He+,He2+,Ne−,V,Td

Ntot

C. WINISDOERFFER AND G. CHABRIER PHYSICAL REVIEW E71, 026402s2005d

026402-6



+
bNtot

2V
o

i,j=He,He+

Ni

Ntot

Nj

Ntot
E dr Fpert

i j srde−bFref
i j srdyHS

i j srd

+
"2

24skBTd2MHe

Ntot

V
o

i,j=He,He+

Ni

Ntot

Nj

Ntot
E dr =2Fsrde−bFi j srdyHS

i j srd +
NHe+NHe2+

2Ntot
2 Z1Z2

e2

a
−

3

2

NHe+

Ntot

sZ1ed2

a

+
bFFIPsV,T,NHe2+,Ne−d

Ntot
, s20d

whereNtot=NHe+NHe++NHe2+. Note thatvia
HSvia

mE include the
occupation probabilities calculated from interactions with
neutral surrounding particlesfhard-sphere interaction, Eq.
s11dg and with charged surrounding particlesfmicrofield in-
teraction, Eq.s18dg.

The equilibrium populations are derived from the minimi-
zation of the free energyFsV,T,hNijd with respect to two
independent variables, given the conditions of mass conser-
vation NHe2+=Ntot−NHe+−NHe and electroneutrality Ne−

=NHe++2NHe2+:

U ]sbF/Ntotd
]NHe

U
T,V,NHe+

= 0 =U ]sbF/Ntotd
]NHe+

U
T,V,NHe

. s21d

Convergence of this two-dimensional minimization is
achieved when the change in the populations from one itera-
tion to the next one is less than one part in 3310−7. The
various thermodynamic quantities are then calculated from
appropriate derivations of the free energy.

IV. RESULTS

As mentioned previously, our free-energy model, with the
He-He potential calibrated on sound velocity measurements
f17g, reproduces the available Hugoniot experimentsf18g

ssee Fig. 4d. We have also checked that we recover the results
of the Saha equations in the low-density limit and, by con-
struction, the fully ionized plasma model at high density. An
example is shown in Fig. 5 forT=104.7 K. The vanishing
fraction of bound species populations forr*10 g cm−3 illus-
trates the onset of pressure ionization.

We have also checked that we recover the results of
Aparicio and Chabrierf1g for pure atomic helium in the low-
density, low-temperature regime until pressure ionization
sets inssee Fig. 6 forT=103.5 Kd.

A. Limitations of the model

As mentioned earlier, our free-energy minimization
method is rooted in the chemical approach. It is based on a
heuristic treatment of the dominant physical effects respon-
sible for the thermodynamic properties of dense atomic or
ionized helium. Although it certainly retains some degree of
reality, this model cannot pretend to give an exact description
of these properties, and the results should depend to some
extent on the main approximations used in the model. We
examine this issue in the present section.

1. Lower boundary fors1

At very high density, the WCA radii tend eventually to
zero, as shown in Fig. 1. This favors the He and He+ species

FIG. 5. Comparison between the populations obtained with our
modelslinesd and those corresponding to the Saha equationsssym-
bolsd. The solidsdottedd line corresponds to the HesHe+d fraction.
The temperature isT=104.7 K.

FIG. 6. Comparison between the present modelssolid linesd and
the results of Aparicio and Chabrierf1g sdotted lines with symbolsd,
which do not include pressure ionization, for the pressure, the mas-
sic entropy, the massic internal energy, and the specific heat atT
=103.5 K.
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and thus prevent pressure ionization to occur, a well identi-
fied artifact of the chemical picturef4,30g. In order to pre-
vent such an unphysical behavior, we define arbitrarily a
lower limit for sHe and sHe+. Figure 7sfor the 104.7 K iso-
thermd illustrates the effect of this approximation fors1
ù0.8 Å ands1ù0.5 Å.

Not surprisingly, the choice of a lower limit fors1 affects
appreciably the populations in the very regime of pressure
ionization. However, the effect is almost inconsequential on
the thermodynamic quantities, the very purpose of the
present calculations. This stems from the fact that the bound
species do not contribute to the free energy when they are
associated with a very small radius. The final model calcula-
tions were made withs1=0.8 Å.

2. Polarizability of He-He+

We have also tested the influence of the polarizabilityai
which appears in the He-He+ potential, and which has been
taken equal to the volumesHe-He+

3 . Calculations conducted
with a value ofai reduced or increased by a factor of 10 left
the results nearly unaffected. This can be easily understood
as in the domain where nonideal effects play a role, He and
He+ do not coexist in comparable fractions most of the time.
Moreover, the contribution ofFpol to the total free energy
remains always marginal.

3. Validity of the quantum correction Fqm

As mentioned in Sec. III A 4, we have used the first-order
term of the Wigner-Kirkwood expansion to take into account
the quantum effects between atomic centers. This expansion
becomes invalid at high density and low temperature. As a
rule of thumb, the domain of reliability of the expansion is
given by log10fT sKdg−log10fr sg/cm3dg*2. Such a limita-
tion has no consequence in an astrophysical context, as no
astrophysical object with a helium composition exists be-
yond this limit.

4. Influence of the He+-He2+ coupling

As mentioned in Sec. III D 3, the long-range interaction
between He+, He2+, ande− is treated in a rather crude way in
the present model. We have tested the influence of this ap-
proximation by submitting a few tests without this term. The
results are illustrated in Fig. 8 forT=104.5 K. We have
checked other isotherms, and the conclusion is that the EOS
and its derivatives are nearly independent of this coupling
term except in a very limited temperature-density range. As
illustrated in the next section, but also on Figs. 5, 7, and 8,
the reason is that pressure ionization occurs directly from He
to He2+, with no regions where He+ and He2+ coexist in
comparable number, except at high temperaturesT*105 Kd
where temperature ionization dominates. Although we cer-
tainly cannot rule out the fact that this is an artifact of our
model, a possible physical explanation might be the large
differences between the ground-state energies of the different
species, much larger than for hydrogen. The contribution of
the ground-state energy of He to the total free energy thus
prevents partial ionization from occurring, favoring the
atomic phase. As mentioned previously, it will be interesting
to compare this prediction with experimental results and
first-principles calculations, once they become available, to
verify whether this behavior is a flaw of the present model or
whether it reflects the behavior of helium pressure ionization,
an extremely interesting issue.

B. Thermodynamical quantities

A subset of our final EOS calculations, based on the
model free energys20d is presented in Tables I–III, corre-
sponding to Fig. 9sfor the pressured, Fig. 10sfor the massic
entropyd, and Fig. 11sfor the specific heatd. For these calcu-
lations, ten internal levels have been considered, for both He
and He+. These ten levels are enough to represent the internal
partition function as the highest levels are always destroyed

FIG. 7. Effect of the lower boundary fors1 on the populations,
the pressure, the massic entropy, and the specific heat as a function
of the density. The solid lines correspond to the cases1ù0.8 Å, the
dotted lines to the cases1ù0.5 Å; the temperature isT=104.7 K.

FIG. 8. Effect of the description of the He+-He2+ and He+-e−

couplings on the populationssw.c.;with coupling, n.c.;no cou-
plingd, the pressure, the massic entropy, and the specific heat as a
function of the density. If not specified, the solid line corresponds to
the case with coupling and the dotted line to the case without any
coupling; the temperature isT=104.5 K.
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even for the lowest density we are considering. No He dou-
bly excited states have been considered in our calculation.
This is a reasonable approximation for the two following
reasons. First of all, the high energy cost of these statessthe
first doubly excited state lies,60 eV above the He ground
stated disfavors their formationsin a way similar to the direct
ionization of He to He2+ without any He+ state; see the fol-
lowing discussiond. The second reason is their rapid decay by
autoionizationstypically in 10−13–10−14 sd. It is therefore un-

likely that these states survive in the midst of interacting
neighbor particles. The zero of energy corresponds to the
fully ionized plasma at zero temperature. The rising behavior
of CV for log10fr sg/cm3dg*−1 stems from correlations be-
tween helium atomssconfigurational free energyd, since all
excited levels are destroyed at this density, at least for the
coolest temperature. The drop at larger density reflects pres-
sure ionization, from He to He2+. We also present in Fig. 12
the phase diagram of helium. The lines separate the different

TABLE I. Equation of state for the isothermT=103.8 K. For each value of the density are given the abundances of He, He+, and He2+,
the pressure, the massic entropy, the massic internal energyswith a zero of energy corresponding to the fully ionized plasma at zero
temperatured, and the specific heat.

log10fr sg/cm3dg xHe xHe+ xHe2+ P sdyn/cm2d S serg/g/Kd U serg/gd CvsNkBd

−2.00 1.00003100 0.00003100 0.00003100 0.133031010 0.32463109 −0.188631014 0.15043101

−1.60 1.00003100 0.00003100 0.00003100 0.340931010 0.30523109 −0.188631014 0.15103101

−1.20 1.00003100 0.00003100 0.00003100 0.900331010 0.28543109 −0.188631014 0.15273101

−0.80 1.00003100 0.00003100 0.00003100 0.255431011 0.26463109 −0.188531014 0.15653101

−0.40 1.00003100 0.00003100 0.00003100 0.853831011 0.24153109 −0.188331014 0.16703101

0.00 1.00003100 0.00003100 0.00003100 0.409231012 0.21413109 −0.187331014 0.19293101

0.40 1.00003100 0.00003100 0.00003100 0.303731013 0.18163109 −0.182831014 0.23013101

0.60 1.00003100 0.00003100 0.00003100 0.872931013 0.16463109 −0.176231014 0.25133101

0.80 0.71583100 0.1688310−4 0.28423100 0.108231014 0.14843109 −0.163231014 0.26933101

1.00 0.43163100 0.2531310−4 0.56843100 0.221031014 0.13243109 −0.150231014 0.28223101

1.20 0.31443100 0.2531310−4 0.68563100 0.714331014 0.11613109 −0.130731014 0.28783101

1.40 0.19833100 0.2531310−4 0.80173100 0.231431015 0.98753108 −0.872831013 0.28413101

1.60 0.10623100 0.1688310−4 0.89383100 0.683231015 0.79753108 −0.562031012 0.26893101

2.00 0.4980310−1 0.1688310−4 0.95023100 0.424931016 0.41013108 0.284631014 0.20983101

2.40 0.1980310−1 0.1688310−4 0.98023100 0.233831017 0.16813108 0.921531014 0.13603101

2.80 0.7880310−2 0.1125310−4 0.99213100 0.119731018 0.43173107 0.221031015 0.65083100

TABLE II. Equation of state for the isothermT=104.2 K. For each value of the density are given the abundances of He, He+, and He2+,
the pressure, the massic entropy, the massic internal energyswith a zero of energy corresponding to the fully ionized plasma at zero
temperatured, and the specific heat.

log10fr sg/cm3dg xHe xHe+ xHe2+ P sdyn/cm2d S serg/g/Kd U serg/gd CvsNkBd

−2.00 0.99953100 0.4950310−3 0.00003100 0.332731010 0.35363109 −0.185631014 0.15053101

−1.60 0.99973100 0.3000310−3 0.00003100 0.847431010 0.33423109 −0.185631014 0.15083101

−1.20 0.99983100 0.1800310−3 0.00003100 0.220331011 0.31463109 −0.185631014 0.15193101

−0.80 0.99993100 0.1100310−3 0.00003100 0.600431011 0.29443109 −0.185431014 0.15493101

−0.40 0.99993100 0.6750310−4 0.00003100 0.181731012 0.27303109 −0.185031014 0.16183101

0.00 0.99993100 0.6000310−4 0.00003100 0.689831012 0.24933109 −0.183731014 0.17653101

0.40 1.00003100 0.00003100 0.00003100 0.381431013 0.22283109 −0.178531014 0.19963101

0.60 1.00003100 0.00003100 0.00003100 0.996431013 0.20913109 −0.171731014 0.21423101

0.80 0.73253100 0.1688310−4 0.26753100 0.129531014 0.20433109 −0.159331014 0.23363101

1.00 0.46503100 0.2531310−4 0.53503100 0.266031014 0.19233109 −0.146931014 0.24423101

1.20 0.24053100 0.2531310−4 0.75953100 0.733531014 0.17513109 −0.125731014 0.24893101

1.40 0.19833100 0.2531310−4 0.80173100 0.230531015 0.15513109 −0.812531013 0.25073101

1.60 0.10623100 0.1688310−4 0.89383100 0.701231015 0.13453109 0.122931012 0.25263101

2.00 0.4980310−1 0.1688310−4 0.95023100 0.429431016 0.98333108 0.292331014 0.25733101

2.40 0.1980310−1 0.1688310−4 0.98023100 0.234631017 0.54253108 0.925531014 0.24563101

2.80 0.7880310−2 0.1125310−4 0.99213100 0.119931018 0.28363108 0.221331015 0.18653101
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domains where either He, He+, or He2+ is the dominant spe-
cies, i.e., represents a fraction larger than 50%. As mentioned
previously, an interesting prediction of this diagramssee also
the tablesd is that forT&105 K, pressure ionization, defined
as xHe2+*0.5, proceeds directly from He to He2+ at r
*10 g cm−3, i.e., P*20 Mbar. As mentioned in Sec.
IV A 4, the sharp transition due to pressure ionization, from
xHe*0.5 toxHe2+*0.5 atr,10 g cm−3 ssee tablesd, and the
persistence of atomic helium at high density, might reflect
the large energy cost of the ground-state energies of ionized
speciess24.587 and 79.003 eVd to the total free energy.
Eventually, abrupt ionization occurs from He to He2+, unless
temperature is high enough to unbound one of the two elec-
trons from the helium atom. This is corroborated by the fact
that the pressure ionization of He+ swhich happens ifT

*105 Kd occurs at lower densitiesr*1 g cm−3. This phase
diagram can be compared with the one for hydrogenf31g.
For deuterium, the EOS is essentially the same as for hydro-
gen providing the nucleus mass is rescaledf5g. However, for
helium, because of theZ=2 nucleus and the induced elec-
tronic structures, the phase diagram is different, and pressure
ionization occurs at larger pressures than for H or D.

V. CONCLUSION

In this paper, we have computed a free-energy model
aimed at deriving the thermodynamic quantities of dense
fluid helium, from the low-density atomic domain to the
high-density fully ionized regime, covering the regime of
partial ionization. The model is based on the so-called
chemical picture for the description of the interactions be-

TABLE III. Equation of state for the isothermT=104.5 K. For each value of the density are given the abundances of He, He+, and He2+,
the pressure, the massic entropy, the massic internal energyswith a zero of energy corresponding to the fully ionized plasma at zero
temperatured, and the specific heat.

log10fr sg/cm3dg xHe xHe+ xHe2+ P sdyn/cm2d S serg/g/Kd U serg/gd CvsNkBd

−2.00 0.92873100 0.7128310−1 0.00003100 0.708331010 0.39363109 −0.175831014 0.18623101

−1.60 0.95323100 0.4680310−1 0.00003100 0.175731011 0.36763109 −0.177531014 0.16893101

−1.20 0.96903100 0.3102310−1 0.00003100 0.444131011 0.34393109 −0.178631014 0.15903101

−0.80 0.97883100 0.2124310−1 0.00003100 0.116931012 0.32163109 −0.179031014 0.15823101

−0.40 0.98483100 0.1524310−1 0.00003100 0.332231012 0.29953109 −0.178931014 0.16193101

0.00 0.98623100 0.1376310−1 0.00003100 0.109831013 0.27693109 −0.177331014 0.17153101

0.40 0.92713100 0.7296310−1 0.00003100 0.456731013 0.25903109 −0.169931014 0.19473101

0.60 0.80633100 0.7988310−1 0.11393100 0.900531013 0.24923109 −0.165131014 0.20313101

0.80 0.64573100 0.5800310−1 0.29643100 0.178831014 0.23663109 −0.152731014 0.20733101

1.00 0.47263100 0.2536310−1 0.50203100 0.379131014 0.22183109 −0.140331014 0.20993101

1.20 0.31443100 0.2531310−4 0.68563100 0.909831014 0.20503109 −0.118931014 0.21323101

1.40 0.19833100 0.2531310−4 0.80173100 0.261931015 0.18673109 −0.739031013 0.21983101

1.60 0.10623100 0.1688310−4 0.89383100 0.728031015 0.17003109 0.930531012 0.23873101

2.00 0.4980310−1 0.1688310−4 0.95023100 0.435931016 0.13563109 0.300831014 0.25633101

2.40 0.1980310−1 0.1688310−4 0.98023100 0.236431017 0.10493109 0.938231014 0.26193101

2.80 0.7880310−2 0.1125310−4 0.99213100 0.120331018 0.77313108 0.222631015 0.23863101

FIG. 9. Pressure as a function of the density for three isotherms.
Solid line, T=103.8 K; dotted line,T=104.2 K; dot-dashed line,T
=104.5 K. FIG. 10. Same as Fig. 9 for the massic entropy.

C. WINISDOERFFER AND G. CHABRIER PHYSICAL REVIEW E71, 026402s2005d

026402-10



tween the different species in the fluid. The abundances of
the various atomic and ionic components are obtained
through minimization of the free energy. Despite the short-
comings inherent to the chemical approach, we believe the
present model to give a reasonable description of the equa-
tion of state of dense helium, including the regime of pres-
sure ionization. Although the basis of the model becomes of
doubtful validity in this latter domain, this affects only lim-
ited regions of the temperature-density diagram. Compari-
sons with available sound speed measurements and shock-
wave experiments for atomic helium assess the validity of
the model up to the megabar range, whereas at very high
density the model recovers the fully ionized plasma model
and thus Monte Carlo simulations of the thermodynamic
properties of the so-called one-component plasmasOCPd
model. Although the present model cannot pretend giving a
precise determination of the various atomic and ionic con-
centrations in the fluid, at least in the pressure ionization
regimes, it yields a reasonably accurate determination of the
phase diagram of dense, fluid helium with its various
He/He+/He2+ ionization contours. ForT&105 K, pressure
ionization is found to occur directly from atomic helium He
to fully ionized helium He2+, or at least to a strongly ionized
state, without the He+ stagesxHe+,a few percentd. It would
be interesting to test such a prediction with high-pressure
dynamical experiments. Indeed, such a behavior of the phase
diagram bears important consequences for the thermody-
namic, magnetic, and transport properties of the interior of
cool and dense astrophysical objects, including giant planets.
In all cases,pressureionization is found to occur aroundr
,10 g cm−3, i.e., P,203106 bar. Detailed explorations of
the sensitivity of the results to various approximations enter-
ing the free-energy model show that they remain inconse-
quential for the first derivatives of the free energy over most

of the phase diagram. In some limited regions, however,
characteristic of the pressure ionization regime, maximum
variations of the entropy and the pressure can reach,5%
and ,20%, respectively, in the worst case. Although still
modest in most cases, the uncertainties become larger for
second derivatives, in particular the ones directly related to
the different degrees of freedom and thus to the relative
populations, like the specific heat. As mentioned above, how-
ever, only limited regions of the phase diagram are con-
cerned by the regime where various species coexist in com-
parable numbers. As a whole, the present model remains
simple enough to allow the calculation of the EOS of dense
helium over an extended domain of pressure and density, a
necessary condition for applications to the computation of
stellar and giant planet internal structure and high-pressure
experiment diagnostics.

Besides its astrophysical interest, the calculation of the
phase diagram of dense helium is of intrinsic theoretical in-
terest. Indeed, comparison betwen these calculations and
near-future high-pressure shock-wave or laser experiments
will allow a better determination of the domains of validity
of the present model and of the possible improvements. By
such, these comparisons will yield a better understanding of
the properties of matter under extreme conditions, and more
specifically of the complex regime of matter pressure ioniza-
tion and metallization.
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FIG. 12. Phase diagram of helium. The lines separate the differ-
ent domains of predominance of the different species He, He+, and
He2+.

FIG. 11. Same as Fig. 9 for the specific heat.
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