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Quasineutral plasma models
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The quasineutral plasma model proposed by Langmuir more than 75 years ago is still widely used today and
is based on two approximations: charge neutrality and the Boltzmann relationship for electrons. However, the
Boltzmann relationship is unnecessary and is not always justified. Moreover, because the Boltzmann relation-
ship is fluid based, it compromises kinetic treatments and gives rise to troublesome singularities in the Bohm
condition. To overcome these limitations, more general quasineutral models are developed. Two of the models
are fluid based while the third is fully kinetic. The kinetic model and one of the fluid models lead directly to
the Bohm condition, but without the singularities seen earlier. Fluid simulations are presented to test and
compare the various approaches.
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[. INTRODUCTION sumption that the charge density is small. While this model

Many of today’s plasma models date back to the seminarl‘as a wide range of validity, it reveals little about the screen-
work done by Langmuif1,2] more than 75 years ago. Lang- N9 ab|l[ty qf the plasma. The model also has no direct ana-
muir recognized that plasmas are sufficiently good electrical®d 'Q klne.tlc theolry.f h Ki . .
conductors that the electrostatic field in the interior can be 1€ major goal of the present work is to derive quasineu-
determined without solving Poisson’s equation. The plasm&@l models, in both kinetig11] and fluid[12] forms, directly
frequencyw,, conductivityo, and Debye lengthp, are then O™ Poisson's equatiofGauss's lay. These models treat

Il species equally and account for the plasma current in full.

no longer relevant as scale parameters, so numerical sol Vhile the fluid version is not necessarily more accurate than
tions can be formulated around macroscopic temporal an ; . . ;
P P revious models, it more clearly reveals the physical basis

spatial scales insteafB,4]. Because the macroscopic and and limitations of quasineutrality. The kinetic version is ac-

pIasgya sca_les c,an d|ﬁgr by many Iordersf IOL mafgmtudetua"y easier to derive, and it gives the quasineutral field in
avoiding Poisson’s equation is not only useful but often €Sy g of a set of velocity integrals. Both formulations lead

sential[5]. Poisson’s equation is needed, of course, to deyjrectly to the Bohm condition, and the integrals in the ki-
scribe the highly charged sheaths that form at the boundariegetic version are inherently nonsingular, unlike in previous
Langmuir obtained the electrostatic field from the electronyork [7—10]. Both models are derived by using the deriva-
density using the Boltzmann relationship, and he obtainegive of Gauss's law to obtain a higher-order field equation in
the electron density from the ion densities by setting theierms of a plasma screening distance. The full equation re-
charge density to zero in the plasma interior. Tonks andjuces to an algebraic expression in regions where the field
Langmuir [2] showed the latter assumption is justified varies slowly over the screening distance, and the validity of
as long as the electric field varies slowly over thethe quasineutral expression can be assessed by examining the
plasma screening distance. That property is the basis fderms dropped. Underlying the analysis is the assumption
quasineutrality. that the plasma varies along one direction only and slowly in
However, while the Boltzmann relationship simplifies time relative tow, and 4ro. To validate the overall concept,
quasineutral modeling, it is unnecessary and not alwaysve compare fluid solutions from the various quasineutral
valid. It fails, for example, in plasmas that are strongly mag-models with the solution from Poisson’s equation. The solu-
netized or highly electronegatiié], and it fails in dc dis- tions differ, sometimes radically, from one another and from
charges where Ohm’s law usually gives bettend funda- traditional plasma theory.
mentally different results. In addition, because the The paper is organized as follows. After briefly reviewing
Boltzmann relationship is fluid based, it compromises kinetiowhy sheaths form, a general set of fluid equations is pre-
analysis and leads to unphysical singularities in the Bohnsented. These equations serve as the basis for two different
condition when the ions are treated kineticdlf~10]. quasineutral models, the second of which leads directly to a
Some of these limitations can be overcome by using th&8ohm condition similar to that derived by Riemanf].
electron momentum equation in place of the Boltzmann apA fully kinetic treatment is presented in Sec. lll. In Sec. IV
proximation, and this approach has been tried at various lewe compare the various fluid models. We describe the ef-
els of approximatior[3,4,6.. However, even these models fects of a perpendicular magnetic field in Appendix A and
fail in electron-free(ion-ion) plasmas, so we first derive a give a closed-form solution for a magnetized discharge
field equation based on all the momentum equations. Likéen Appendix B. Characteristic time scales are discussed in
Langmuir, we then replace Poisson’s equation with the asAppendix C.
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[l. FLUID ANALYSIS acterizes the plasma area. For planar fisis) =1, for cylin-
drical flow A(s)=2ms, and for spherical flowA(s)=47s%. In
the latter two cases measures the distance from the center
To understand why plasmas charge and sheaths form, cogf cyrvature.
sider a wall located ax,. If the wall emits few or no par- Other variations irA(s) are possible and can be produced,
tlcles,_ kinetic theory_ indicates that gach plas_ma SPecies for example, by using a longitudinal magnetic fi@)5 that
flows into the wall with a mean velocity satisfying varies withs. Indeed, a rapidly diverging magnetic field can
T, be used to accelerafé4,15 quasineutral plasmas to veloci-
u(X) = xi\/——. 1) ties above the ion sound speeg= \s‘“Te/mp. Here T, is the
electron temperature and, is the positive-ion mass. How-
HereT; is the species temperatufi@ units of energy, m is  €Ver, Eq.(3b) still applies, because the magnetic mirror force
the species mass; <1 is a numerical factor determined by alongsis small, as long as collisions keep the electron pres-
the velocity distribution, ang; is a sticking coefficient lying  sure nearly isotropi¢4]. Moreover, if the magnetic field is
between zerdtotal reflection and unity (total absorption  instead perpendicular t§ the magnetic forces alongcan
For charged species impinging on surfages 1, while for ~ often be incorporated simply by modifying the momentum-
Maxwellian distributionsy;=1/2s. These values are used in l0Ss ratesR;, as shown in Appendix A. Equatiori8a and

A. Background

the analysis below for convenience. (3b) thus have a wide range of applicability.

In the absence of an electric field, conditi¢h) is an The electric fieldE lies alongs as well in this case and
equality and species arrive at the wall with flow velocities 0beys Gauss’s law,
determined by the thermal speedﬁi/mi. If the wall is an 1 9(EA
insulator, the net current quickly approaches z&@gn;y; ————=A4mp= 4me), ain;. (4)
—0, while the plasma densitiag adjust to allow for the A s i

differences inu;. The charge density is then nonzero,
=2;eqn; # 0, where € is the electron charge argje is the
charge of species The plasma charge generates an elec-
trostatic field that reduces but does not eliminate the differ
ences iny;.

As shown later, quasineutrality is justified only in regions
wherep is small relative to the total positive and total nega-

tive charge densities separately. This requirement can be ex- ] . )
pressed as Langmuir replaced Eq4) with the Boltzmann relation-

ship for electrons,

However, as mentioned earlier, the goal of quasineutrality is
to replace this differential equation with an algebraic ap-
proximation in the plasma interior whepdas small. The next
‘several sections outline various approaches toward that goal.

C. Langmuir model

|p|<2i glen. ) 1,n,

eE= ,
N dS

(5
Condition (2) is well met in the interior of dense plasmas
(where the flow velocities approach zgrbut it is met at the  and he obtained the electron densifyfrom the ion densities
boundaries only if the thermal velocitieS;/m, are compa- by settingp=0 in the plasma interior. However, while E&)
rable for all major species. Hence, while quasineutrality cans widely used, it is not always justified. Let us therefore first

apply throughout ion-ion plasmdg43], it invariably fails  determine when Eq5) and the Langmuir model apply.

near the boundaries of electron-rich plasmas, bec@use To understand the basis for E(), assumed/dt=0 for
is much larger for electrons than ions. simplicity and use the last term in EBb) to compute the
current densitieeqgn;u;. Then set the sum of the current
B. Fluid equations densities equal to the total current densltyl./A, and ex-

Assume all parameters vary along direct®only. Tem- tract the electric field to obtain

porarily neglecting magnetic forces, the continuity and mo- I s eq [&(ni-ri) n; (9(miui2)}
. o e i
mentum equations for specieshen reduce to A= mRr| s > s o
E= . 6
an; 10 e2 2
—+-—(NuA =9 (33 D eaqni
gt Ads ~ mR
and This equation is exact, given the assumptions made.
The net current, flowing through ared is uniform in
a(nT,) steady stategl./ds=0, and satisfies Ohm’s lalx=cEA if

nmuR;, (3b)  the plasma itself is uniforngd/ 9s=0). Ohm’s law is a good
approximation when the flow is mobility limite(as in dc
respectively. Here§ is the net production rate for the spe- dischargesbut not when the flow is driven by particle pres-
cies,R; is the rate at which the species loses momentum tsure instead(e.g., whenl.=0). Rogoff [16] and others
collisions of any typeE is the electric field, and\(s) char- [17,18 gave similar expressions f&, but withoutl. or the

ﬂui (9Ui
nm— + M= = gieEn
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inertial terms. Any current flowing through the plasma thention and to keep the charge density from growing unphysi-

affects the electron flow velocity, only, as is true in the cally[4]. To do so, compute the densities and velocities of all

Langmuir model as well. According to E¢6), however, the species save one, using E@3). Then use charge neutrality

current affects the fieléE and thus the velocities and densi-

ties of all species. N -

The electron temperature usually varies weakly \gitind M=~ % gkq'”' (83)

satisfiesT,>muZ by virtue of Eq.(1). Equation(5) is there-

fore justified provided, is small and electrons control both

the numerator and denominator of E). The denominator and current conservation

equals the dc conductivityg and is controlled by electrons

only if |
—= =2 agny,

1
u =
Nette> 2 [GilMui, (7) “ ankleA ik ]
i#e

(8b)

where u;=|eq/mR}| is the effective mobility of species to compute the density and velocity of the last spedies
and the subscript denotes electrons. This condition is well Condition (8b) is not actually needed but simplifies the
satisfied in unmagnetized, electropositive plasmas, becausalculations.
in those plasmas; <n, and u; <1072 u, for all i #e. As an aside, we note that the Boltzmann relationship is
In electronegative plasmas, however, the ion densities cagometimes used for negative ions as wedlB-21], even
exceedn,, and condition(7) is then met only if the total though they do not satisfy a condition equivalent to &).
negative-ion density satisfies,<(uo/ui)ne for all i+e.  This treatment is nevertheless justified, provided the negative
Similarly, as outlined in Appendixes A and B, a magneticions are nearly collisionledd 8] and carry little current. The
field B perpendicular tcs increases the effective collision underlying physics is therefore different and of little interest
frequencyR, far more for electrons than iori§], and conse- here.
qguently condition(7) is met only if the electron cyclotron
frequency is modestQ),=eB/mc< yreym/m, for all i
# e. Herev; is the momentum-transfer collision frequency of
species i. The magnetic condition translates tB/P Like the Boltzmann relationship, E¢6) gives no measure
<1 G/mtorr in electropositive gases like nitrogen, but aof plasma screening, even though it applies in regions where
stronger condition is needed if the gas is electronegativethe plasma is non-neutral. To overcome that limitation, we
(B/P)(np/ng) <1 G/mtorr. HereP is the equivalent gas now derive a higher-order field equation. Time derivatives
pressure at room temperature amgds the total positive-ion are retained as well, mainly to allow for currents and volt-
density. ages that vary with time.
The above limitations can be avoided by using E).in To derive the higher-order equation, first eliminate the
place of the Boltzmann relationsh(p). Quasineutrality must velocity gradientsiu;/ds from Eqgs.(3a) and(3b). The den-
still be imposed, however, both to represent Poisson’s equaity gradients are then given by

D. Different approach

aT, Zd |n(A) an; U
on qieEn_miui(niRi"'S)_nig"'nimiui ds +m U T
i _ . . 9
s T, — mu;

To elim!nate those g_radients, mult_iply byréq _and sum - s qiP;
over alli. Then combine the sum with the spatial derivative Qe =4me2, — 5 (100
of Gauss’s law4) to produce toro

_i[la(EA)}_ P

5 p_ ., and
VE= _47Tas_ksE_Q°’ (109

ds| A ds
aT; ,d In(A)
Pi=mu(nR +8) +n— —nmy; d
where s S
an; au;
2 +mi<ui_l—ni_l>. (10d)
5 amn, at ot
K= d4ne?d | —— |, (10b)
i \Ti—mu; These equations are as valid as Gauss'’s law but are more
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complicated and of higher order. They thus have no imme- 1x108 T
diate utility.
In the plasma interior, however, the charge dengitis s
small by assumption, sép/ds is small as well. Dropping 5x10
that term from Eq(109 leaves the algebraic result ~
§ 0
E= % (119 ~
- SL -
This expression, which is the key result of the paper, is jus- Sx10
tified in regions where the fiel&E varies slowly over the
“screening distancefk]™ or slowly relative to changes in —1x10° TN S
k2. The general requirement is thus 0.0 05 1.0 }.s )2.0 25 3.0
X {cm
VZE 5
- <z 3.0 T T T T T
= | <l (11b " |
2.5} ']
or I
2.0f '
19 k2 — I
‘——VZE < S . (110 E !
Eds as > 1SF N
The last two conditions are the basis for quasineutrality. ool i
To understand that basis better, consider the screening pa- |
rameterk§ as given by Eq(10b). This parameter is closely 0.5F 8
related to the plasma Debye lengtpg defined by 00 :
o’n; 00 05 1.0 1.5 2.0 25 3.0
A2 = 4me?D, '? (12) x (em)
i

. 5 o » FIG. 1. Plasma produced by an external ionization solace
and indeedks=\y" if the flow velocitiesu;=0. If EqQ. (108  glectron beamthat is uniform from 0.5 to +0.5 cm in a gas com-
were used to compute, the screening distandky™ would  prised of 5 mtorr He and 5 mtorr Afa) Screening paramet&g(x).
have to be resolved or at least taken into account. In thep) Electric field E(x) from Poisson’s equatiofisolid curve and
plasma interior, however, the field varies so slowly that Eqfrom Eq.(13) (dashed curve
(113 is sufficient andkg™%is no longer relevant as a length
scale. Note thalky™ depends stronglj22] on the flow ve-  congisting of electrons and two species of positive ions.
locitiesu;. For example, if the plasma is electron rich and thehese results were obtained using Poisson’s equation and are
ions are colder than the electronky *approaches the ion valid to ordermu?/T,<1, as discussed in Appendix C. Ac-
Debye length in the plasma midd{ehere u;— 0) but ap- _cording to Eqs.(?LOb) and (100), kg and Q, diverge and
proaches the electron Debye length near the boundanq;,1ange sign when the flow velocity of a species equals its
(Whereui'—>cs). . . thermal speeds=++T;/m. In Fig. 1(a), for example, one

Equation(11a was derived by assuminganddp/dsare i, gpecies(Ar*) reaches its thermal speed xt=1.7 cm
small. To enforce this assumption, set0 for all sand | .0 he secondHe") does so ak=2.32 cm: at each Ioc:a-
compute the density of one speciesising Eq.(8a as be- tion k? diverges. Although this divergence is an artifact of the

fore. Moreover, becausép/dt=0, we can impose current . °. . . .
L _ . fluid model(as shown in Sec. IV { condition(11b) is fully
continuity 7l¢/¢s=0, and again use E¢8b) to compute the met, and thus Eq119 is “exact.” The thermal singularities

flow velocity u, of that species. These tactics stabilize and e .
accelerate the calculations. As indicated in Appendix C, curs? therefore be eliminated by rewriting H413 as

rent continuity is justified as long as the plasma evolves S qPII (T - mu?
slowly relative to 470 and w,, whereo is the dc conductiv- e V! 13
ity and w,, is the plasma frequency. ee= .
P > | anldl (Tj- mJUZ J
i j#i

E. Singularities and the Bohm condition Equation (13) is singular only if the denominator van-

Several singularities are evident in EgdOb—(118. ishes, because the numerator is now everywhere finite. How-
Some of the singularities are inherent to quasineutralityever, the denominator can and does vanish at multiple loca-
while others are easily eliminated and appear in the fluidions in plasmas containing more than two species, because
model only. The fundamental singularities are buried in Eqk?=0 between each pair of thermal poles; for examffe,

(6) as well, of course, and in that sense the present model is0 atx=2.2 and 2.9 cm in Fig. (B). Nevertheless, the field
more transparent. To understand the singularities, consid€ remains finite(and the plasma remains quasineytedlall
the plot of kﬁ(x) shown in Fig. 1a) for a planar plasma but the last location, because the numerator of (Eg). van-
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ishes as well. To show th[23], assume the flow velocitiag 5 ed
increase monotonically with distance from the plasma Ve =A4mn(en.— pion) = 47| eng, €X )~ Pion
middle. The number of thermal poles is then no greater than €

the number of specie, sok? crosses zerd\-1 times or 47Te2neo)¢+

less[9]. The quasineutrality conditio(8a) reduces the num- Te

ber of independent species fradito N-1, and therefore the

number of independent species equals the number of singtiere ¢ is the electrostatic potential measured from the
larities in Eq.(13) . The quasineutral equations thus containmiddle, ne, is the electron density in the middle, apg,
enough degrees of freedom to eliminate all the singularitiess the ion charge density. The terfit¢ is negligible in re-
depending on the boundary conditions and other constraintglions whereg varies slowly over the electron Debye length
see Appendix B. Quasineutrality fails, of course, once conipe=\Te/4me N, and in those regions quasineutrality is
ditions (11b) and (119 fail, and the failure can be abrupt. In justified[26] andeg(s) = T, In[pion(S)/ €N, l.

Fig. 1(b), for example, we compare the fiekl from Pois-

= 4m(eno— pion) + ( (16)

son’s equatior{solid curvé_with that from Eq.(13) (dashed B. Fully kinetic model
curve. Except for the glitch ax=2.2 cm, the two plots o ) )
nearly overlap out to the sheath edges=2.9 cm. Atx the A fully kinetic model can be obtained by dropping the

quasineutra] field diverges and quasineutra“ty fails. Th@onzmann rE|ati0nShip as before. ASSUming the electric field
glitch at 2.2 cm occurs because the numerator and denomis alongs and neglecting the magnetic field for simplicity,
nator of Eq.(13) pass through zero at slightly different loca- the kinetic Boltzmann equation for speciess given by

tions when Poisson’s equation is used.

The Bohm condition represents the one true singularity in (9_fi ) 0_fi . qieEa_fi )

Eqg. (13), and it consists ofwo requirements: U C. (17)
. at s m dus
K(xg) = 4me”> Tﬁl—luz =0 (148 Here the velocity distribution§ depend on the longitudinal
T My velocity v, the transverse velocity, , the spatial coordinate
and s, and timet only. The velocity distributions and collision
cross sections determine the collision opera@rs
Qclxs) # 0. (14b) Gauss's law is given in this case by
These two requirements define the boundary within which
quasineutrality applies, and the first requirement reduces to 1 0(EA) o
the Bohm condition as given by Rieman®] when = = Amp(st) = 4me, qif J dvaf duf;.
MU/ Te— 0. Sincem,u2< T, in practice, the main difference A Js i o
between the two models is the addition of requireniédb). (18)
As already mentioned, that requirement eliminates all but
one of the locations where El43 is satisfied. Taking the derivative of this equation and obtaini#fig/ ds
Bohm [24] derived the equivalent of conditiofi4g by  from Eq.(17), we find that
assuming that the plasma ar@daand temperature3; are
constant and that no collisions occur inside the sheaths. In .
that caseQ.=0 in the sheaths and E¢L03 reduces to V2E = 47> qif J dvaf dvsi_‘;
P’E ' -
a2 ~KE 15 =ICE-Q., (198

This equation shows that the fielel grows monotonically ) .
with s near the edge of a collisionless sheath 0n|y§(fxs) where the screening and source parameters are now given by

=0. That requirement is a restatement of the Bohm condi-

tion [7,9,29. The quasineutral model applies only if 2 ” 1 of.
d’E/ds’— 0, however, and thus the quasineutral boundary k§:—4we22 q—'f f d2va dvs__l (19b)
condition at the edge of a collisionless sheatkés- 0. i m — UsdUs

IIl. KINETIC ANALYSIS and

A. Plasma screening

. . N * C o[~ f.
Tonks and Langmuif2] treated the ions kinetically but Q.= - 4me), f f dzul{f du— - —f dvs—':|.
treated the electrons as a fluid using the Boltzmann relation- i - U It T

ship. Taking the electron temperatufgto be constant, they (190
then expanded Poisson’s equation from the plasma middle to
obtain Equations(19) are the analogs of Eq§10) and again yield
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the integrals should then be left in their original fo(wmith a

Q simple pole only.
E— ) (20 ple pole only
in regions where the quasineutrality conditiofislb) and IV. SIMULATIONS
(110 are met. As before, the time derivatives in EtP¢) are ] o
usually important only if the current varies with time. To test the various models, we compared the electric field

Equations(19b—(20) constitute a complete, kinetic model @S given by Egst5), (6), and(13) with that from Poisson’s
for the quasineutral electric field. While each species is noréguation for three planar problems The walls in each
mally followed separately, quasineutrality must again be im-casé were located at+3 cm and were held at zero poten-
posed, because E(RO) applies only in that limit. The den- tial. To produce strong spatial variations in the e!ectrlc f|elq
sity of one species should therefore be renormalized t$@nd to avoid the eigenvalue problem discussed in Appendix
satisfy Eq.(8a) before using Eqs(19b) and(19¢). However, B), we took the gas ionization rate to be constant from -0.5
the current-continuity conditiof8b) is impractical(and un- 0 +0.5 cm and zero elsewhere. The rate was based on the

necessaryin this case, because the velocity distributions ardonization generated by a 3 keV electron bea#v-31
difficult to adjust. Hence, specify the current only at thePropagating iny. For beam-produced plasmas, the electron
boundaries, using a procedure like that outlined in Rgf. Mperaturel, ranges from~0.5 eV in molecular gases to
for collisionless sheaths. In particular, the potential drop™1 €V in rarefied noble gasq28-30, and these values
across a collisionless sheath determines whether particles $€re used in the simulations. The collision frequencies and
a given charge and velocity pass through the sheath or reflefd€ coefficients were derived from data compiled by Dutton
off it. Particles reflecting off the sheath reenter the quasineuk32; Ellis et al. [33], and Christophorou and Olthoff84].
tral plasma with their velocities reversed, and thus the poten- Eduations(3) were first solved as functions of time using
tial at each sheath can be adjusted until the total plasmB0iSson's equation, conditiofl), and the adjustments de-
current equalsl (t). The velocity distributions inside the Scribed in Appendix C. The code was run until equilibrium
plasma respond to those at the boundaries through the co@S reachedi.—0. Resolving the sheath required a small
vective term in Eq(17) , sodl./ds— 0 automatically. Note 9rd Siz€AX<Ape, which in turn required a small time step
that this method yields the voltage across each sheatti ~ At<ApeV27mMe/T,, based on the Courant criterion. Hevg;

thus the final ion energigsvithout explicitly modeling the IS the electron Debye length and'e/27m, is the electron
sheath 4]. flow velocity at the walls. Additional restrictions okt are

discussed in Appendix C.

We next inserted the ion solutions obtained with Poisson’s
equation into Eqs(8) to determine the quasineutral electron

The velocity distributiond; are positive, and they fall off ~density ng(x) and flow velocity us(x). These values were
faster than;;l at y,= = since the plasma densities are finite. close to the original values, except near the walls. The new
In addition, the distributions are analytic =0 due to values were then inserted into E&), (6), or (13) to deter-
smoothing by collisions and other processes. The derivative®ine the quasineutral fielt(x). Results from Eqs(6) and
ofil9s and collision operator€; have the same properties, (13) were largely indistinguishable, so only those from Eg.
and thusk§ andQ, are finite everywhere, despite the pole in (13) are shown.
Egs.(19b and(19¢. Hence, unlike the fluid model, the ki- The quasineutral models were also run in time, but with
netic model is singulaonly when the Bohm condition is limited success. In particular, solutions based on @®)
met:k?=0 andQ, # 0. As before, this condition applies at the were often unstable in plasmas containing more than two
boundaries only, if at all. species, because of the singularitiek%t0. In simpler plas-

Previous kinetic expressions for the Bohm condition aremas the solutions were stable and agreed well with the solu-
similar, except the poles are one order higher1Q. For tions from Poisson’s equation up to the sheath edge. Solu-

C. Bohm condition

example, Riemanf9,10] obtained the form tions based on Ed5) or (6) were more robust in general, but
, those from Eq(5) did not always agree with the solutions to
- < f 1 o 1af Poisson’s equation.
EiffdvaJ dvs—;=—fjd2vlf dus——=. g
i+eM U5 Mg U O

This form confirms the kinetic result obtained earlier by Har- A. Two species of positive ions

rison and Thompsofi7], and it can be derived by integrating  The example cited in Sec. Il E describes a plasma nomi-
Eq. (19b) by parts fori #e. Riemann[10] showed that this nally formed in a mixture of 5 mtorr Ar and 5 mtorr He. The
form of the Bohm condition is met only if the positive ions magnetic field was zerd,, was 1 eV, and the temperatures
acquire a mean velocity no less than the sound smged of Ar" and Hé were set to 0.25 eV to highlight the singu-
However, integration by parts is justified only fi=0 atvs  larities. Apart from the glitch at 2.2 crtwhere k§:O), the

=0, and that requirement is met only for species that arelectric field from Eq.(13) agreed well with that from Pois-
driven toward the walls by the fiel& and are neither pro- son’s equation up to the sheath edggs=2.9 cm; see Fig.
duced nor suffer collisions within the sheaths. For all otherl(b). The field from Eq.5) agreed equally well in this case
specieqand for actual sheaths in gengrd| # 0 atvs=0 and  but without the glitch.
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In the simulation, the Heions were lighter but had a
higher collision frequency than ArThe flow velocityu, was
therefore greater for He but the drift energymiuizlz was
larger for Ar. As a result, the Bohm condition was met when
u>c for Ar" but u<c for He", where ¢
= /(Te+T;)/(me+my) is the sound speed of speciesThis
result is consistent with claims made by Sevetral. [35]
and Franklin[36].

B. Electronegative plasma

Now consider two problems where the Boltzmann rela-

PHYSICAL REVIEW E71, 026401(2005

-’-)b.\l\

T T T
——— o
——

1
i
!
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tionship(5) is not justified. In the first problem the gas con- 0.0 0.5 1.0

sisted of 1 torr He plus a trace amou@t0.1%) of the x (em)

highly attaching gas SFThe magnetic field was again zero, N —
T. was 0.5 eV, and the ion temperatures were set to the gas 1.4 b) ]
temperature 0.025 eV. To simplify the calculations, we ne- 12k ]
glected charge exchange, took ion-ion recombination as the )

sole loss mechanism, and assumed the plasma consisted of 1.0f .
electrons(e) and Hé (p) and SE(n) ions only. Given those T o .f

assumptions, most electrons attached to form negative ions S 0.8 i ]
before reaching the walls, but not before generating an am- o 0.6 i
bipolar electric field that pushed negative ions toward the ¢ | 7
plasma middle and positive ions toward the walls. The nega- e ]
tive ions therefore accumulated in the middle until they re- 0.2 // ]
combined with positive ions. As a result, the ion densities 0.0 / . . . . .
became larg¢17,18,37 in the middle:n,=n,~50n,. See 0.0 05 1.0 1.5 2.0 2.5 3.0

Fig. 2(a).
Using the ion densities and velocities obtained with Pois-
son’s equation, we recomputed the electric field using Eqs. FIG. 2. Beam-produced plasma in 1 torr He pt§.1% Sk.
(5) and(13). In Fig. 2b) the field from Eq.(13) (diamond$ (& Density of positive ions(dashed curve negative ions(dot-
agrees well with that from Poisson’s equati@olid curve  dashed curve and electrongsolid curve. (b) E(x) from Poisson’s
up to the sheath edge,=2.9 cm, but the field from Eq5)  equation(solid curve, from Eq.(5) (dot-dashed curyeand from
(dot-dashejlis too large by nearly 30%. The Boltzmann re- Ed. (13) (diamonds.
lationship(and thus the Langmuir modelvorked poorly in
this case because the electronegativity was largén,  Fig. 3(@), but the electrostatic potentigl peaked off axis and
~ 0.5u¢/ up~ 50, wherew, is the mobility of HE. Further-  remained well belowf/e in Fig. 3(b).
more, using a Boltzmann relationship for the negative ions, Using the ion density and velocity obtained with Pois-
eE=-T,[d In(n,)/dx], gives a field that is nearly two orders son’s equation, we again recomputed the electric field from
of magnitude too small. The Boltzmann relationship is thereEgs. (5) and (13). In Fig. 3c) the field from Eq.(13) (dia-
fore not justified forany species in this example. mondg agrees with that from Poisson’s equatigsolid
The ion-neutral collision frequency was so high in this curve, but the field from Eq(5) (dot-dashed curyas more
case that the ion flow velocities remained below the soundhan two orders of magnitude too largaed has the wrong
speed for alk. The Bohm condition was therefore never metsign. This failure results from the inability of the Boltzmann
and thus is unsuitable as a quasineutral boundary conditiomelationship(and thus the Langmuir modeto account for
the momentum lost by electrons. See also the analytic solu-
tion given in Appendix B for a related problem.

The magnetic field kept the ion flow velocity below the
The Boltzmann relationship failed more dramatically yetsound speed for aK, as in the previous example. Hence, the
for the last problem presented. In this case a magnetic fielBohm condition was never met and is again not suitable as a

of 100 G was applied along in 10 mtorr of pure He. The quasineutral boundary condition.

plasma electron temperature was 1 eV and the ion tempera-
ture was 0.025 eV. The magnetic field confined the electrons
so strongly that they diffused more slowly than the ions,
even though the ions were far heavier and colder. As a result, Three models were presented to generalize the original
the ambipolar electric fiel& was negative rather than posi- quasineutral plasma model proposed by Langmuir. Lang-
tive in the plasma middIg5], andE became positive near the muir’'s model is based on the Boltzmann relationship for
walls only after ion inertia became important. The plasmaelectrons, but that approximation fails in dc discharges and in
densities therefore peaked as usual in the plasma middle plasmas that are highly magnetized or electronegative. The

x (em)

C. Magnetized plasma

V. SUMMARY
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models presented here avoid these limitations and are bas&dn beams. This work was supported by the Office of Naval
on two different approaches. The first approach used the mdresearch.

mentum equations of all species, not just electrons, to derive
a general field equation. Charge neutrality was then imposed,
as in the Langmuir model. The second approach used
Gauss’s law to obtain a higher-order field equation in terms
of a plasma screening distance. Quasineutrality was then im-
posed by assuming the field varies slowly over the screening. = >~ . . )
distance. The second approach does not require fluid equ implicity that particles are created with zero net velocity on

tions and was used to derive a fully kinetic model, as well asaverage(i.e., randomly in all Qirectior)sand are destroyeq
another fluid model. Both of these models lead directly to tha"dependent of velocity. Particle sources then add particles

Bohm condition, but without the singularities seen in previ-2ut N0t momentum to the ensemble, so the mean momentum

ous kinetic analyses. However, the last two models contaiffit Of the species as a whole decreases. The sinks, on the

removable singularities that must be treated properly to ob(-)thefr hand, remove an average momentum equajupper
tain stable numerical solutions. particle destroyed, and thus the mean momentum of the en-

To test the various approaches, fluid solutions were first°‘emb[|)e IS u.ncharl]ngedb He.n.cfe, only the sources ddlrectly affect
obtained using Poisson’s equation. The field from Poisson’§4i- Dropping the subscriptfor convenience and assuming

equation was then compared to that from the quasineutr teadfy st%te, the momentum equations alangnd z can
models. The field from the two fluid models presented herdn€refore be written as

APPENDIX A: EFFECTS OF A PERPENDICULAR
MAGNETIC FIELD

Consider a weakly ionized plasma that varies witbnly
nd is embedded in a uniform magnetic figiyl Assume for

agreed well with Poisson’s equatigup to the sheath edge du, geE 1 d(nT)
in all cases, but the field based on the Boltzmann relationship U = m o dx Qu,— (v+S/nu, (A1)
did not. Indeed, even the sign of the field from the Boltz-
mann relationship was wrong in some cases. and
du,
ACKNOWLEDGMENTS Uax = Qu = (v+ S, (A2)

The authors thank Dr. M. Lampe, Dr. W. Manheimer, andrespectively. Here, is the flow velocity in thex direction,u,
Professor R. Franklin for their insights and comments oris the flow velocity in thez direction, v is the momentum-
various aspects of the problem. We are also grateful to Ditransfer collision frequency) =geB/mcis the cyclotron fre-
D. Leonhardt, Dr. S. Walton, and Dr. R. Meger for sharingquency, andS; is the volumetric creation rate. We assume
experimental results on plasmas produced by energetic elethere is no flow along.
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In quasineutral regions, is less than the sound speeg  an eigenvalue determined by settir@cs) = £x;. Using the
so the left-hand side of EqA2) can be dropped provided continuity equation, one can show that the plasma density is
d/dx<v/cgs This condition is usually well met for electrons given by
[31] (and even for ions at gas pressures above 100 jmtorr

Equation(A2) then reduces ta,— [Q/(v+S./n)]u,, while . (Retarg) /2R,
Eq. (A1) reduces to n(u) = no<+2) : (B3)
aeCS + Rtu

% geE_ 1 dinT)

— Ru,. A3 i i =
X dx m _mn dx U (A3) wheren, is the plasma density at=0.

Solutions(B2) and (B3) apply to the Langmuir model as
Here the effective momentum-loss rate alonig defined as  well, but only in the limit thatm,—0 andR—R,. These
) restrictions arise because the Langmuir model is based on the
R= v+ §+ Q _ (A4) Boltzmann approximation and thus cannot account for the
n v+S/n momentum lost by the electrons. As a result, the Langmuir

model overestimates both the ionization ratg and the
power needed to maintain a magnetized plasma of dengity
The errors are large B/P>3 G/mtorr, and even the sign of
Q= (v+SJn). (A5)  the electric field is wrong iB/P is much larger yet. In the
latter case, the Bohm condition is no longer valid as a bound-
ary condition, as discussed in Sec. VC.

The magnetic field thus increasBsappreciably if the cyclo-
tron frequency is large,

APPENDIX B: CLOSED-FORM EXAMPLE

To illustrate the limitations of the Langmuir model, con-
sider an ambipolar dischardé.=0) consisting of electrons
(e) and one species of singly ionized, positive idps. Ne- Maxwell’s equations conserve the sum of the conduction
glecting recombination, the net production rate for both speand displacement currents, and therefore in media that vary
cies is given byS=a.n,, Where the electron avalanche rate along a single directios only,

a, is taken as constant. If the discharge varies witmly but

resides in a uniform magnetic field alogigthe electrons lose 1 JE
momentum along at a rate given byR.= ve+ae+Q§/(ve [J(s,t) +——
+ag), according to Appendix A. Here, is the electron col- 4 dt
lision frequency and), is the electron cyclotron frequency. Here the total currerit(t) depends on timébut not location
The magnetic field increases the ion momentum-loss rate as SettingJ=c¢E reduces Eq(C1) to
well, but the increase is much less because the ion cyclotron

frequency is small{),<(),. The magnetic field therefore

reduces the effective electron mobility, = e/ m.R, far more 9E + 47roE = M
than the ion mobilityw,=e/myR,. ot As)

The densities and velocities of the electrons and ions ar
equal in the quasineutral interiafe=ny,=n and u,=u,=u.
Consequently, Eqg3) and (13) can be combined in steady
state into a single, first-order differential equation

APPENDIX C: NUMERICAL STABILITY

}A(s) = 1(0). (C1)

(C2

Fhis equation shows that the field relaxes at a rater,4
which indicates that explicit field solvers are stable only
if the time step satisfiesAt<(4mo)™l. More generally
J=e3;(giny;) in plasmas, where)(nmu;)/dt=genE+---.
Taking the time derivative of EqC1) then gives

du_ acl+RuU?

— = Bl
dx  c2-u? (BL 5 47 dl,
| B+ =t (€3
Here cg=1(Te+Tp)/(Mme+my) is the sound speed and at A(s) dt
Ri=(meRe+mpRy)/(me+my) is the total momentum-loss wherew)=4me?S(g7n;/m) is the plasma frequency squared.

rate.

Because its numerator is positive definite, E{l) is sin-
gular when the Bohm condition is mai= +c.. Using that
condition as a boundary condition @t £x;, we can imme-
diately integrate Eq.(B1) to produce the transcendental
solution

_ G| (Rt -1<£\/E
x(u)—R(K\’ﬁ)tan e Va

e

Hence, when time derivatives are retained in the velocity
equations, explicit field solvers are stable only if the time
step additionally satisfiedt<w_*. These restrictions apply
to Poisson’s equation as well, because it is equivalent to Eq.
(C1) when the field is set t&E=—-d¢/ds. Typically 4mo
~10°n,/P in unmagnetized plasmas, whilg,= 6 10*\n,.
Here n, is the electron density in cr and P is the gas
pressurgat room temperatuygn mtorr.
_C_s - (B2 Plasmas diffuse to the walls, however, in a timg
=x2/D,, wherex, is the distance to the walls and,

The two boundary conditions make the problem overdeter~ 10°/P is the ambipolar diffusion coefficient in éts. The
mined, however, and thereforg is not a free parameter but number of time steps needed to reach equilibrium is there-
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fore often excessiveNg> (4mo+w,) 73> 10°nxG,~ 10 if, 10 cm® and the walls were moved in tq,= +3 cm.
for example,n,=10'2 cm™2 andx,,=10 cm. The quasineutral models drop the displacement current, so

To reduce the number of times steps, several changable conduction currenti;=JA is constant instead. Only the
were made in the simulations reported. The first was to solveource rates, collision frequencies, and Courant condition
Poisson’s equation using a semi-implicit scheme like thathen limit At. Moreover, the grid spacingx can be much
proposed by Ventzelet al. [38] The second was to drop larger than the Debye length, while the Courant condition
electron inertia from the left-hand side of E@b), which is  falls to At<<Ax/cs. Here the sound spe@dis much less than
justified to ordermeu§/T9< 1. lons alone then contribute to the electron speedT./2mm, at the walls. The net result is
the plasma frequency, appearing in Eq(C3). To further  that quasineutrality greatly reduces the stability restrictions
accelerate the calculations, the ion densities were kept unden the time stept.
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