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Surrogate test to distinguish between chaotic and pseudoperiodic time series
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In this paper a different algorithm is proposed to produce surrogates for pseudoperiodic time series. By
imposing a few constraints on the noise components of pseudoperiodic data sets, we devise an effective method
to generate surrogates. Unlike other algorithms, this method properly copes with pseudoperiodic orbits con-
taminated with linear colored observational noise. We will demonstrate the ability of this algorithm to distin-
guish chaotic orbits from pseudoperiodic orbits through simulation data sets from the Rossler system. As an
example of application of this algorithm, we will also employ it to investigate a human electrocardiogram
record.
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[. INTRODUCTION the reliability of our results in a statistical sense.
In this paper, we are focused on discussing the algorithm
Surrogate testgl] are examples of Monte Carlo hypoth- o generate surrogates for pseudoperiodic time series. By
esis test§2]. Taking the surrogate test of nonlinearity in a pseudoperiodic time series we mean a representative of a
time serieq1] as an example, we first need to adopt a nullperiodic orbit perturbed by dynamical noise, or contaminated
hypothesis, which usually supposes the time series is genely observational noise, or with the combination of both
ated by a linear stochastic process and potentially filtered byioises, whose states within one cycle are largely independent
a nonlinear filter{3]. Based on this null hypothesis, a large of those within previous cycles given a cycle length. Note
number of data sefSurrogatesare to be produced from the that in our discussions we will always assume we have de-
original time series, which keeps the linearity of the originaltected that the time series are produced from nonlinear de-
time series but destroys all other structures. We then calcderministic systems, but they are also possibly contaminated
late some nonlinear statisti¢giscriminating statistigs for ~ by some noises. As we know, if an irregular time series
example, correlation dimension, of both the original timecomes from a nonlinear deterministic system, it shall be ei-
series and the surrogates. If the discriminating statistic of th&1€r chaotic or pseudoperiodic in most cases. In some situa-
original time series deviates from those of the surrogates, whonS it might be important for us to discriminate between

can reject the null hypothesis we proposed and claim that th@seugoper@og!city and c_haosf.t Hﬁwelz’ef' ﬁince Cha.Ot:wC and
original time series is deterministic with certain confidencePS€udoperiodic time series often look similar, we might not
IQe able to distinguish them from each other only through

visual inspections; quantitative techniques are needed instead
at this time. One choice is to apply the direct test techniques.
For instance, we can calculate some characteristic statistics
of the time series, such as the Lyapunov exponent and the
correlation dimension. However, a direct test usually will not
ive out the confidence level. If we find the Lyapunov expo-
ent of a time series is, for example, 0.01, it may be difficult
for us to tell whether the time series is chaotic or the time
Eeries is pseudoperiodic, but the presence of noise causes the
yapunov exponent to be slightly larger than zero. As an
Iternative choice, we suggest one utilizes the surrogate test
ather than the direct test, which can provide us the confi-
dence level by calculating a large number of surrogates.
Through the surrogate tests, if we could exclude the possi-
bility that the time series is pseudoperiodic, then the time
series is more likely to be chaotic. This is the essential idea
Yo apply our algorithm to distinguish chaos from pseudo-

ated, to be shown laterin general, to apply the surrogate
technique to test if a time series possesses the property
which we are interested, we first select a null hypothesis
which assumes that the time series instead has a proRerty
opposite toP. We then devise a corresponding algorithm to
produce surrogates from the observed data set. In principl
these surrogates shall preserve the potential progevipile
destroying all others. The next step is to choose a suitabl
discriminating statistic, which shall be an invariant measur
for both the surrogates and the original time series if the nul
hypothesis is true. Hence if the discriminating statistic of the,
original time series distinctly deviates from the distribution
of the discriminating statistic of the surrogates, the null hy-
pothesis is unlikely to be true, or in other words, the time
series is much more likely to possess the propBrthanQ.
In this way, we can assess the statistical significance of o
calculations through the surrogate test technique_ even wh riodicity, as to be shown in Sec. IIl.
we have only a very limited amount 9f observauon_s. SU_C First let us briefly review some of the algorithms to gen-
assessments are important because in many practical SitUgae grrogates for pseudoperiodic time series. Initially, to
tions _statlst|cal fluctuations are |ney|table due to the presenc enerate surrogates for pseudoperiodic time series, Theiler
of noise, hence the surrogate test is a proper tool to evalua ] proposed the cycle shuffling algorithm. The idea is to
divide the whole data set into some segments and let each
segment contain exactly an integer number of cycles. The
*Electronic address: enxdluo@eie.polyu.edu.hk surrogates are obtained by randomly shuffling these seg-
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ments, which will preserve the intracycle dynamics but de-gorithm to simulation data sets from the Rd&ssler system,
stroy the intercycle ones by randomizing the temporal sewhich demonstrates the ability of the surrogate test based on
quence of the individual cycles. The difficulty in applying this algorithm to distinguish chaotic orbits from pseudoperi-
this algorithm is that it requires preknowledge of the precisendic ones. As one of the applications, we will use this surro-
periodicity, otherwise shuffling the individual cycles might gate technique to investigate whether a human electrocardio-
lead to spurious resul{$]. gram (ECG) record is possibly presentative of a chaotic

Recently, with the development of the cyclic theory of gynamical system. Finally, in Sec. IV, we will have a sum-
chaos[6], many authors have shown interest in searchlngﬂary of the whole communication.

unstable periodic orbitdJPOS9 in noisy data sets from cha-
otic dynamical systems. The algorithms proposed in Réf.
essentially deal with the unstable fixed points of the UPOs. Il. A DIFFERENT ALGORITHM TO GENERATE
But as observed, the presence of noise will reduce the statis- PSEUDOPERIODIC SURROGATES
tical significance of these algorithms. One remedy is to in- N , ,
troduce the surrogate test for reliability assessments, e.g., L8t X}z be a data set witN observationgthe form{x}
Dolan et al. [7] claimed that the randomly shuffling surro- IS adopted instead for convenience when causing no confu-
gate algorithm[1] together with the simple recurrence Sion, wherex; means the observation measured at time
method[7] correctly tests the appropriate null hypothesis.=iAts with At denoting the sampling time. We assufwglL
Essentially, this approach is very similar to the cycle shuf-is stationary and can be decomposed into the deterministic
fling algorithm described previously. The simple recurrencecomponents and the noise components, which are approxi-
algorithm is equivalent to applying a Poincaré map on themately independent of each other. Similar to the surrogate
continuous dynamical systems and then studying only theéest idea of time shifting to desynchronize two data FE2,
data points falling on the cross-section plane, hence one do@ge assume the noise compone(approximately follow an
not need to consider the intracycle dynamics and no knowlidentical distribution and are uncorrelated for sufficiently
edge of the periodicity is required, while randomly shuffling large temporal translation®r time shift3. According to the
these data points exactly aims to randomize the temporalull hypothesis we proposed in the previous section, if the
sequence of the cycles. However, one potential problem ofieterministic components are periodic, then we can write a
this algorithm is that it might generate spuriously high sta-data pointx; asx;=p;+n;, wherep; andn; denote the periodic
tistical significance due to the correlation between the cyclesomponent and the noise component, respectively. In many
[8]. cases, we can séi(p;) =E(n;)=0 whereE is the expectation
Later, Smallet al. [9] proposed the pseudoperiodic surro- operator. Sincép;} are roughly independent éf;}, we have
gate(PPS algorithm from another viewpoint. They first ap- the autocovariance via¢) =var(p;) +var(n;). Let
ply the time delay embedding reconstruct{®j to the origi-
nal data set, then utilize a method based on local linear i = aX + BXiv, = (ap; + Bpis,) + (ani+ i) (1)
modeling techniques to produce surrogate data which aRyith i=1 .2
proximate the behavior of the underlying dynamical system P

As the authors pointed out, this algorithm works well even, con subsetéx ihi_lf and {Xi+r}iN:_1Ta then the autocovariance

with very large dynamical noise, but it may incorrectly reject . - _ _ _ _
the null hypothesis if the intercycles of the pseudoperiodicfunCtlon valy;) =varap+ 5pi.,) +varan;+ Sn.,). Now let

orbit have a linear stochastic dependence induced by colored® consider the noise componentszlis sufficiently large,
additive observational noigd0]. under our hypothesisy andn;, . are uncorrelated. We also

In this paper we propose a surrogate algorithm for con-nOte that{n;} and{n.,,} are drawn fromapproximately the

tinuous dynamical systems, which properly copes with lineaS2Me distribution, we have vam; +n;..,)=var(n). For the
stochastic dependence between the cycles of the pseudopefflerministic component, if we require the translatiofo
odic orbits. The null hypothesis to be tested is that the staS2liSfy coVpi,pi.;)=0, then vafap;+Bpi.,)=var(p,). Hence
tionary data set is pseudoperiodic with noise component?y Choosm_g a suitable temporal translatlolg, th_e noise levels
which are(approximately identically distributed and uncor- ©f {y}, defined bY[V@(ani‘*ﬂniw)/Vaf(yr)] » will be the
related for sufficiently large temporal translations. Note thagame as that di}iL,, i.e., [var(n;)/var(x)]*. The reason to
the constraints of the noise components in our null hypothPreserve the noise level is that the presence of noise will
esis are stronger than that of Theiler’s algorithm, which re-affect the calculation of the correlation dimension, hence we
quires the noise distribution only periodically depends on thevould like to let the surrogates and the original time series
phase of the signal. However, under our hypothesis, we caffoughly) have the same noise level in order to make the
produce the surrogates in a simple way through the algorithrfesults more conceivable.
to be described below. In addition, a large scope of noise The above deduction leads to the central idea of our sur-
processes often encountered in practical situations, includingpgate algorithm. From Ed1), we note that ifp;} is peri-
(but not limited t9 linear colored additive observational odic, the nonconstant deterministic componenisp
noise described by the autoregressive moving averagefp..,} shall also be periodic. In additiodx}t, and {y/}
(ARMA) (p,q) model[11], match the above constraints. shall have the same noise level if a suitable translatids
The remainder of this paper is organized as follows. Inselected. Therefore by randomizing the coefficienor g,
Sec. Il we will introduce our algorithm to generate pseudo-we can generate many data sys} as the surrogates of

periodic surrogates, while in Sec. Ill we will apply this al- {x};. Note that{p;} and{ap,+8p;,,} have the same degree

.,N-7, where coefficientsr and 3 satisfy a?
+3°=1 and the parameter is the temporal translation be-
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of freedom; if both of them are periodic, their correlation ommended the length of a data set shall not be too short in
dimensiong 13] will theoretically be the same. Now let us order to appropriately calculate its correlation dimension
consider the noise components. Although the noise compg45], which also impliesr shall not be too large.
nents{an;+Bn;,,} may have a different distribution fromthat ~ From Eq. (1) we see that the surrogates are generated
of {n;}, the noise level is preserved after the transform in Eqfrom two segmentgx }N;” and {x.,,}N;" of the original time

(1). As Diks[14] has reported, the Gaussian kernel algorithmseries {x; N We want segmentgx};" and {x. ;" to
(GKA) can reasonably estimate the correlation dimensions ofyivalently affect the generation of the surrogates, therefore

noisy data sets with different noise distributions. This implies o would like to let maK e/ B))=max(| B/ al), min(|a/B))
that, under the same noise level, the correlation dimension§min(|ﬂ/a|) and Pf|a/B|>l):Pr(|B/a|>,l) where

of {x}iz; and{y’}, calculated by the GKA, shall statistically max(), min(-), and P-) denote the maximal function, the
minimal function, and the probability function, respectively.

be the same ifx}, and{y} are both pseudoperiodiand
But note that the coefficient ratie/ 8 (or B/ «) shall not be

satisfy the constraints we imposedn contrast, if{p;} is
chaotic, its linear combinatiofp;+ 8p;+.t, May have a new . .

R + P o y too large or too small, otherwisg/} will be very close to
N-7

dynamical structure with a different correlation dimension -\ ! . .
{Xhi, or {Xi+iz,» which will lead to approximately the

from that of {p;}, hence by adopting the correlation dimen- "fi= - . . N
sion as the discriminating statistic we might detect this dif->3M€ correlation dimensions i};-, and{y} regardless of

ference. the dynamical behavior df},, and thus decrease the dis-
We shall also note that, for an unstable periodic Orbit'crimi_nating power of the .correlation dimension. In_ our cal-
even a small dynamical noise might drive the resultant orbieulations we leta be uniformly drawn from the interval
far away from the original position after a sufficiently long [=0-8,-0.§U[0.6,0.8 and 8=y1-a? which satisfies our
time, and the pseudoperiodicity might be broken. In sucHeduirements and provides moderate values for the sl
situations, our algorithm might fail to work. Nevertheless,
we suggest to apply our algorithm as the first step in a Ill. SURROGATE TEST TO DISTINGUISH BETWEEN
pseudoperiodicity test, which is computationally fast and in CHAOTIC AND PSEUDOPERIODIC TIME SERIES
principle deals well with a large scope of observational noise

(comparatively, the PPS algorithm will sometimes fail for <
colored observational noiself we can reject the null hy- system, we demonstrate the ability of a surrogate test based

pothesis proposed previously, the time series in test is possP? OUr algorithm to discriminate chaotic orbits from pseudo-
bly chaotic or pseudoperiodic perturbed by dynamical noiseP€rodic ones. As an application, we will also employ the
Then we can adopt the PPS algorithm for further tests, whicifUrogate technique to investigate whether a recorded human
works well even under a large amount of dynamical noise. IfléctrocardiograniECG) data set is possibly chaotic.

the corresponding null hypothesis, i.e., the time series is

pseudoperiodic perturbed by dynamical noise, can be re- A. Examples

jected again, then we may claim the time series is very likely ¢ equations of the Réssler system are given by
to be chaotic.

In this section, through four examples from the Ro&ssler

We now consider several computational issues in our al- X=-y-2z,
gorithms. As described in Eql), to generate the surrogates y=x+ay ()
{y7}, we select two subsets @k}, , {x};" and {x ¥, : ’
multiply them by the coefficients: and 3, respectively, and z=b+z(x-c).

then add them together. We shall emphasize that choosingith the initial conditionsx(0)=y(0)=2(0)=0.1. We choose
the temporal translationis a crucial issue fc_)r our a!gonthm. parameterd=2, c=4, and the sampling timat,=0.1 time
From one aspect, we require the translatioto satisfy the  njts. For each example, the system is to be integrated
condition covp;, p;.,) =0. The reason is that we want to keep 10 000 times and the first 1000 data points are discarded to
the noise level for the original time series and the surrogatesygid including transient states.

In addition, we want the deterministic componefig;} to In the first example, we set a parameaer0.390 95. The

be orthogonal tdBp;.,} for arbitrary coefficientsx and 8, Rossler system exhibits limit cycle behavior of period 6. To
otherwise the projection dep;} onto{Bp;.. might counter-  obtain pseudoperiodic time series, we introduce 5% observa-
act{Bp;.,} under some situations, for example pi=-p;.,  tional noise into the periodic time series. Although Gaussian
anda= B, the deterministic componentap;+8p;.,} will al-  white observational noise is the most common choice in this
most vanish while the noise componerdisn;+8n;,,} re-  situation, in order to demonstrate the ability of our surrogate
main. Hence the correlation dimensions calculated are actwlgorithm to deal with colored noise, we will instead adopt
ally those of the noise components instead of thethe noise generated from the autoregreséiiR) (1) process
deterministic components, which will certainly cause the[11] &,,=0.8+¢ with the variablee following the normal
false rejection of the null hypothesis. From another aspeciGaussian distributiolN(0, 1), which is the more difficult

we requirer to be sufficiently large to guarantee the decor-case due to the correlation between noise components. How-
relation between the noise components. However, we expeetver, one shall note that Gaussian white noise and other col-
{X; i“i‘f and {X;,, i“i‘f shall have at least some overlaps toored noises satisfying the constraints in our null hypothesis,
make use of the information of the whole data Qq}i’il, for example, those modeled by the ARN{#AQ) processes,
which meansr shall not exceedN/2. In addition, it is rec- in principle can be dealt with in the same way. For conven-
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FIG. 1. (a) Pseudoperiodic time series contaminated by observational nbjsstate space;.,, vs x; of the pseudoperiodic time series
from the Roéssler system with=16; (c) surrogate test for the pseudoperiodic time series based on our algorithm. The abscissa is the indices
of 100 surrogates and the ordinate is the corresponding correlation dimensions. The middle line is the mean correlation dimension of the
original time series calculated 100 times using the Gaussian kernel algdi@K#), the upper and lower lines denote the correlation
dimensions twice the standard deviation away from the mean value and the asterisks indicate the correlation dimensions of 100 surrogates.

ience of observation and comparison, we plot the time>50 and covx;,X.,) ~0. To pick a value from all these
series and the corresponding attractor in two dimensionatandidates, we first select an interya00, 150, then search
state spacéor embedding spagén panels(@) and(b) of Fig.  the temporal translation which makes the absolute value
1, respectively. |cov(x;,Xi+,)| be the minimum{most close to zeycamong all

To produce surrogate data, first we shall choose a suitablganslations 106 7<150. One shall note that the choice of
temporal translation. Since it is impractical to separate nois#ghe interval[100, 15Q is arbitrary, except that we have to
from signal completely, in general it is difficult to estimate make sure that the lower bound of the_ interval is larger than
the correlation decay time between noise components. FoRO, and there exists temporal translations to let(xox;.,)
tunately, to decorrelate noise components, all temporal trans= 0 Within the interval. After selecting the temporal transla-
lations are equivalent as long as they are large enough. [{ion, by randomizing the coefficient we will generate 100
addition, in many real situations, it is often possible to ob-Surrogates according to E(). _ _ ,
serve the background noise and thus estimate the decay time. In order to calculate the correlation dimension, we adopt
In our example, we think the AR) noise to be uncorrelated the time delay embedding reconstru_cubﬂ to recover the
when the temporal translation is larger than (&0 units of underlying system from the scalar time series. Two param-

the sampling timeAty). As another requirement, temporal eters, i.e., embedding d|m9n5|on _and time delay, sh_all be
translation satisfying cdy:,p,,.)=0 is desired. In practice, properly chosen to apply this technique. Throughout this pa-

of course, this requirement is generally impractical due to thger’ we will use the false nearest neighbor criteris] to

digitization and quantization in sampling process Recalldetermine the global optimal embedding dimension. Using
the discussion in the previous section, by lettifgp;) the program irmiSEAN packagé 17], the embedding dimen-

-0 and a?+@=1, we have vamp+Bp.)=varp) sionm of the original time series is selected at 4, which is the
’ : ' I+ ' minimal value to make the fraction of false nearest neighbors
*2af3 cov(p;, pi+,)- The function covp;,pi.;) #0 means we o ;015 To choose a suitable time delay, we will use the
do not preserve the noise level. However, under the nulloqrithm of redundancy and irrelevance tradeoff exponent
hypothesis of psgudoperlodmny, there shall always be SOMER|TE) proposed in Ref18]. This algorithm selects the time
temporal translations to make d@y,pis;)~0, hence the |5y by searching the optimal tradeoff between redundancy
noise level will n_ot deviate from the original one too much. (due to too small time delayand irrelevance(due to too
Besides, according to E@l), we generate the surrogates by |5rge time delay As demonstrated, the RITE algorithm can
uniformly drawing coefficienta’ from the interval[-0.8,  sglect equivalently suitable time delays compared to the av-
-0.6]U[0.6,0.9 (B=V1-a® is always kept positive the  erage mutual informatiofAMI) criterion[19], however, its
noise level of the surrogates will fluctuate around that of thamplementation is much simpler and the computational cost
original one due to the alternative signs of produgs. s fairly low. Therefore in the case of large data sets, adopt-
Therefore colp;, p;+,) # 0 will only cause some fluctuations ing the RITE algorithm can facilitate our calculations. In the
when calculating the correlation dimension because of théirst example we generate 100 surrogates, and for each sur-
fluctuations of noise level, however, generally such fluctuarogate we keep the embedding dimensioa4 and use the
tions will not affect our conclusion if we can select a tempo-RITE algorithm to choose the suitable time delay for time
ral translationr to let coup;,p;.,) ~0. Since we have as- delay reconstruction.
sumed the noise components are roughly independent of the We will follow Diks’s method[14] to calculate the corre-
deterministic components, then ¢&\v x;,,) =cov(p;, p;+,) for lation dimension, which is more robust against noise by ex-
a large enough temporal translatidto decorrelate noise tending the hard kernel functidir the Heaviside function
componentg therefore in all of the examples, in order to let [13] in the calculation of correlation integral to the general
cov(p;,pi+) ~0, we can equivalently require co¥,x.,)  kernel functions. In his discussions, Diks adopted the Gauss-
~0. In the first example, there are many temporal translaian kernel function, hence this method is called Gaussian
tions satisfying the two constraints discussed above, i.e., kernel algorithm(GKA). Here we will use the GKA imple-
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FIG. 2. (a) Pseudoperiodic time series with both observational noise and dynamical (iis&te space;.,, vs x; of the pseudoperiodic
time series from the Rossler system with 16; (c) surrogate test for the pseudoperiodic time series based on our algorithm. The meaning
of the lines and the asterisks is the same as that in ganhef Fig. 1.

mented in Ref[20] to calculate the correlation dimensions, tegration step, which simulates the system perturbed by
which further enhances the computational speed. Note that tdditive dynamical noise, and then introduce 5% observa-
speed up the calculation, only 2000 data points are used di®nal AR(1) noise into the previously obtained data set. The
the reference points for the GKA. There are some statisticaglobal optimal embedding dimension is chosemat4. Note
fluctuations even for the same data set when calculating it# all of the four examples, we will generate 100 surrogates,
correlation dimension, therefore for the original time series@nd parameter choices for surrogate generation will be the
we will calculate 100 times to estimate the mean correlatiors@me, i.e., we let the temporal translation be selected from
dimension and the standard deviation. As shown in pamel [100, 150 and coeff|C|enFcy_l32e uniformly drawn from

of Fig. 1, there are three lines parallel to the abscissa. The0-8,-0.8U[0.6,0.8(8=V1-a%). For the second ex-

middle line denotes the estimation of the mean correlatio@MPIe, the correlation dimensions of the original time
geries and the surrogates are shown in p&ciebf Fig. 2.

lower lines indicate the positions twice the standard devia-Under the ranking criterion, once again we cannot reject our

tion away from the mean value. For the surrogates, howevePu”. hypothesis. Therefore the time series is possibly pseudo-
we will calculate their correlation dimensions only once to periodic, which is consistent with our knowledge.

save time. The results are illustrated as the asterisks in pansélg ghgesth_ll_rr::leeé?jr;s%er, g;lgtgrl?gg?]igﬁ;agfgt]ifclzge.r(gvtigr We
(c) of Fig. 1. ' ' :

. . . . integrate Eq(2) to obtain a time series and then introduce
After the calculation of the correlation dimensions, we % observational AR) noise. The optimal embedding di-
need to inspect whether the result is consistent with our nul '

. . . ensionm is selected am=5. From panelc) of Fig. 3, we
hypothesis. Here we use the ranking criteri@i] to deter-  fij that the mean correlation dimension of the original time

mine whether.the .nuI_I hypothess shall be rejgcte.d OF NOlggeriag deviates from the distribution of the surrogate dimen-
The idea of this criterion is that, suppose the discriminatingsjons - Using the ranking criterion, we can reject our null
statistic of the original data set @, and those oNs surro- hypothesis. In order to exclude the possibility that the time
gates  are {Q_l'QZ’ ’QNs}'_ Rank the  statistics series is generated from an unstable period orbit perturbed by
{Qo,Qq, -..,Qng in the increasing order and denote the rankgynamical noise, we also apply the PPS algorithm for further
of Qo by ry, if the data set is consistent with the hypothesistesting. From the PPS algorithm we generate 100 surrogates,
(i.e., no evidence to rejectr, can have an equal possibility and then use the GKA to calculate their correlation dimen-
be any integer value between 1 aNg+1. However, if the  sjons. The results are shown in pafwl of Fig. 3; as we can
hypothesis is falseQ, might deviate from the surrogate dis- see, the mean correlation dimension of the original time
tribution {Q;,Q;, ...,Qng. i-€, Qo will be the smallest or  series also falls outside the distribution of the surrogate di-
largest amongQ, Qs .., Qng, hence we can reject the null mensions, therefore we can reject the null hypothesis again.
hypothesis ifro=1 or Ng+1, the probability of a false rejec- After the two surrogate tests for pseudoperiodicity, we can
tion is 1/(Ng+1) for one-sided tests and @s+1) for two-  claim the time series is chaotic with a confidence level up to
sided tests. 96% (98% X 98%) for the two-sided test.

For the first example, from pan@) of Fig. 1 we can see The final example to be demonstrated is a chaotic time
that the mean correlation dimension of the original timeseries also from the Rdssler system. To generate the time
series falls within the dimension distribution of the surro-series, we keep parameter 0.395. Similar to the way in the
gates, therefore we cannot reject the null hypothesis as wsecond example, we add Gaussian white noise with the stan-
expect, which means the original time series is possiblydard deviation of 0.15% to the component at each integra-
pseudoperiodi¢22]. tion step as the dynamical noise, and then introduce 5% ob-

Now let us examine the other examples. In the secondervational ARL) noise into the previously obtained data set.
example, we still set parametar0.390 95 in Eq(2). How-  The global optimal embedding dimension is found torbe
ever, to obtain the pseudoperiodic time series, we first gen=4. The results of surrogate tests based on the new algorithm
erate a data set by adding Gaussian white noise with thand the PPS algorithm are shown in parieJsand(d) of Fig.
standard deviation of 0.15% to tbkecomponent at each in- 4, respectively, from which we can see that, surrogate tests
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based on both algorithms can detect the chaos in the timiae observational noise levels to 10%, for the pseudoperiodic
series. Again we can claim the time series is chaotic with dme series we can still obtain the expected results, i.e., we
confidence level up to 96% for the two-sided test. cannot reject our null hypothesis. However, for the chaotic
We have also investigated examples under different obsetime series, we will falsely accept our null hypothesis due to
vational noise levelgbut keep the same dynamical noise if the correlation dimension of the original time series margin-
they have. For example, if we reduce the AR observa- ally falling within the dimension distribution of the surro-
tional noise levels to 3% in the above four examples, we cagates. The reason of false acceptance might be that, under
obtain the same results as we have reported. If we increadarge noise levels, the correlation dimension is not sensitive

FIG. 4. (a) Chaotic time series with both dy-
namical and observational noisdb) state space
Xi+n VS X; of the chaotic time series from the
Rossler system witm=16; (c) surrogate test for
the chaotic time series based on our algorithm;
the meaning of the lines and the asterisks is the

-4
0 2000400060008000
(c) (d)

2.25 1.90 same as that in panét) of Fig. 1; (d) surrogate
§ g?g _ﬁs 5 }ggh‘ "'52'@% % % test for the chaotic time series based on the PPS
g <. ol 2 1.0UF * k% algorithm; the meaning of the lines and the aster-
E ggg E%# &%&M# E };g *;%%K& * *fk*k isks is the same as that in parfe] of Fig. 1.
8 2'00,55‘ * **?%1;- § 165, *y LMERT,
$ 195 AT T10kon Hhoet *s
E * g " * Rk
8 1.90 8 1551 * *

1.85 1.50 * *
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enough to detect the structure changes of the chaotic tim the surrogate test, our calculation of the correlation dimen-
series. For such cases, we will have to look for more powsions is also based on the GKA. The results are indicated in
erful discriminating statisticf23]. panel(d) of Fig. 5, from which we can see that the mean
correlation dimension of the ECG data falls within the dis-
tribution of the correlation dimensions of the surrogates,

therefore we cannot reject our null hypothesis. Hence the

As an example of application, we employ the surrogatecca record is possibly periodic. Moreover, there is no evi-
test based on our algorithm to investigate whether a humagaence of chaos.

electrocardiogram{ECG) record (with 8975 data poinjsis
likely to be chaotic. The ECG record was obtained by mea-
suring from a resting healthy subjet22 years old in a
shielded room at the sampling rate of 1 kHz. The ECG To summarize, by imposing a few constraints on the noise
record indicated in paned) of Fig. 5 looks very regular and process, we devise a simple but effective way to produce
even possibly periodic, but we need a quantitative approacburrogates for pseudoperiodic orbits. The main idea of this
to verify the periodicity. Here we choose the surrogate teshlgorithm is that a linear combination of any two segments
technique. Using the false nearest neighbor criterion, the gloof the same periodic orbit will generate another periodic or-
bal optimal embedding dimension is chosennat5. The  hit. By properly choosing the temporal translation between
background noise is mainly from the measurement instruthe two segments, under the same noise level we can obtain
ments; usually it is a blend of white and correlated noise. Bystatistically the same correlation dimensions of the pseudo-
observing the linear second order correlation function of thﬁperiodic orbit and its surrogates. Choosing the temporal
ECG data, we let the temporal translation be within the intranslation is a crucial issue for our algorithm, which in prin-
terval[100, 15Q (large enough to decorrelate the noise com-ciple shall guarantee the decorrelation between the noise
ponents, where there exists an integer temporal translatiorcomponents and preserve the noise level. Another important
to make the correlation function almost be zero. Then byissue is to select a proper discriminating statistic which helps
uniformly drawing values fronj—0.8,-0.§U[0.6,0.9 for  determine whether to reject the null hypothesis. The correla-
coefficienta in Eq. (1) (8=11-a?), we generate 100 surro- tion dimension is a suitable discriminating statistic in this
gates. For demonstration, we plot in paf®lone surrogate case. It is possible there are other suitable discriminating
generated from Eq1) with coefficienta=8=1/y2. We can statistics; we will leave the problem of finding such statistics
see that the surrogate is different from the original ECG datdor future study.

in that there appear more spikes in the surrogate. However, The surrogate test technique based on our algorithm can
as we can also find, the surrogate indicates the similar regue utilized to distinguish between chaotic and pseudoperi-
larity to that in the original data, which implies that the sur- odic time series. Initially, the PPS algorithm was proposed to
rogate preserves the potential periodicity in the original datagenerate surrogates for a pseudoperiodic orbit driven by dy-
as we expectalthough in a different patteynWith regards  namical noise, but sometimes surrogate tests based on this

B. An application

IV. CONCLUSION
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algorithm will falsely reject the null hypothesis if the time the concrete procedures of the surrogate test for pseudoperi-
series is also contaminated by colored observational nois@dicity are demonstrated through four simulation examples.
As a complement to the PPS algorithm, our algorithm deal#\s an application in practice, we also employ the surrogate
well with observational noise, but it might fail for large dy- technique based on our algorithm to investigate whether a
namical noise. However, due to the convenience in compuhuman ECG record is possible to be chaotic.

tation, we suggest to adopt surrogate test based on our algo-
rithm as the first step for pseudoperiodicity detection. If we
can reject the null hypothesis of our algorithm, then we shall
use the PPS algorithm for further tests. If we can reject the This research was supported by Hong Kong University
null hypotheses of both the algorithms, then the time serie&Grants Council Competitive Earmarked Research Grant
under investigation is very likely to be chaotic. In this paper,(CERG No. PolyU 5235/03E.
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