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In this paper a different algorithm is proposed to produce surrogates for pseudoperiodic time series. By
imposing a few constraints on the noise components of pseudoperiodic data sets, we devise an effective method
to generate surrogates. Unlike other algorithms, this method properly copes with pseudoperiodic orbits con-
taminated with linear colored observational noise. We will demonstrate the ability of this algorithm to distin-
guish chaotic orbits from pseudoperiodic orbits through simulation data sets from the Rössler system. As an
example of application of this algorithm, we will also employ it to investigate a human electrocardiogram
record.
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I. INTRODUCTION

Surrogate testsf1g are examples of Monte Carlo hypoth-
esis testsf2g. Taking the surrogate test of nonlinearity in a
time seriesf1g as an example, we first need to adopt a null
hypothesis, which usually supposes the time series is gener-
ated by a linear stochastic process and potentially filtered by
a nonlinear filterf3g. Based on this null hypothesis, a large
number of data setsssurrogatesd are to be produced from the
original time series, which keeps the linearity of the original
time series but destroys all other structures. We then calcu-
late some nonlinear statisticssdiscriminating statisticsd, for
example, correlation dimension, of both the original time
series and the surrogates. If the discriminating statistic of the
original time series deviates from those of the surrogates, we
can reject the null hypothesis we proposed and claim that the
original time series is deterministic with certain confidence
level sdepending on how many surrogates we have gener-
ated, to be shown laterd. In general, to apply the surrogate
technique to test if a time series possesses the propertyP in
which we are interested, we first select a null hypothesis,
which assumes that the time series instead has a propertyQ
opposite toP. We then devise a corresponding algorithm to
produce surrogates from the observed data set. In principle,
these surrogates shall preserve the potential propertyQ while
destroying all others. The next step is to choose a suitable
discriminating statistic, which shall be an invariant measure
for both the surrogates and the original time series if the null
hypothesis is true. Hence if the discriminating statistic of the
original time series distinctly deviates from the distribution
of the discriminating statistic of the surrogates, the null hy-
pothesis is unlikely to be true, or in other words, the time
series is much more likely to possess the propertyP thanQ.
In this way, we can assess the statistical significance of our
calculations through the surrogate test technique even when
we have only a very limited amount of observations. Such
assessments are important because in many practical situa-
tions statistical fluctuations are inevitable due to the presence
of noise, hence the surrogate test is a proper tool to evaluate

the reliability of our results in a statistical sense.
In this paper, we are focused on discussing the algorithm

to generate surrogates for pseudoperiodic time series. By
pseudoperiodic time series we mean a representative of a
periodic orbit perturbed by dynamical noise, or contaminated
by observational noise, or with the combination of both
noises, whose states within one cycle are largely independent
of those within previous cycles given a cycle length. Note
that in our discussions we will always assume we have de-
tected that the time series are produced from nonlinear de-
terministic systems, but they are also possibly contaminated
by some noises. As we know, if an irregular time series
comes from a nonlinear deterministic system, it shall be ei-
ther chaotic or pseudoperiodic in most cases. In some situa-
tions, it might be important for us to discriminate between
pseudoperiodicity and chaos. However, since chaotic and
pseudoperiodic time series often look similar, we might not
be able to distinguish them from each other only through
visual inspections; quantitative techniques are needed instead
at this time. One choice is to apply the direct test techniques.
For instance, we can calculate some characteristic statistics
of the time series, such as the Lyapunov exponent and the
correlation dimension. However, a direct test usually will not
give out the confidence level. If we find the Lyapunov expo-
nent of a time series is, for example, 0.01, it may be difficult
for us to tell whether the time series is chaotic or the time
series is pseudoperiodic, but the presence of noise causes the
Lyapunov exponent to be slightly larger than zero. As an
alternative choice, we suggest one utilizes the surrogate test
rather than the direct test, which can provide us the confi-
dence level by calculating a large number of surrogates.
Through the surrogate tests, if we could exclude the possi-
bility that the time series is pseudoperiodic, then the time
series is more likely to be chaotic. This is the essential idea
to apply our algorithm to distinguish chaos from pseudo-
periodicity, as to be shown in Sec. III.

First let us briefly review some of the algorithms to gen-
erate surrogates for pseudoperiodic time series. Initially, to
generate surrogates for pseudoperiodic time series, Theiler
f4g proposed the cycle shuffling algorithm. The idea is to
divide the whole data set into some segments and let each
segment contain exactly an integer number of cycles. The
surrogates are obtained by randomly shuffling these seg-*Electronic address: enxdluo@eie.polyu.edu.hk
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ments, which will preserve the intracycle dynamics but de-
stroy the intercycle ones by randomizing the temporal se-
quence of the individual cycles. The difficulty in applying
this algorithm is that it requires preknowledge of the precise
periodicity, otherwise shuffling the individual cycles might
lead to spurious resultsf5g.

Recently, with the development of the cyclic theory of
chaosf6g, many authors have shown interest in searching
unstable periodic orbitssUPOsd in noisy data sets from cha-
otic dynamical systems. The algorithms proposed in Ref.f7g
essentially deal with the unstable fixed points of the UPOs.
But as observed, the presence of noise will reduce the statis-
tical significance of these algorithms. One remedy is to in-
troduce the surrogate test for reliability assessments, e.g.,
Dolan et al. f7g claimed that the randomly shuffling surro-
gate algorithm f1g together with the simple recurrence
method f7g correctly tests the appropriate null hypothesis.
Essentially, this approach is very similar to the cycle shuf-
fling algorithm described previously. The simple recurrence
algorithm is equivalent to applying a Poincaré map on the
continuous dynamical systems and then studying only the
data points falling on the cross-section plane, hence one does
not need to consider the intracycle dynamics and no knowl-
edge of the periodicity is required, while randomly shuffling
these data points exactly aims to randomize the temporal
sequence of the cycles. However, one potential problem of
this algorithm is that it might generate spuriously high sta-
tistical significance due to the correlation between the cycles
f8g.

Later, Smallet al. f9g proposed the pseudoperiodic surro-
gatesPPSd algorithm from another viewpoint. They first ap-
ply the time delay embedding reconstructionf9g to the origi-
nal data set, then utilize a method based on local linear
modeling techniques to produce surrogate data which ap-
proximate the behavior of the underlying dynamical system.
As the authors pointed out, this algorithm works well even
with very large dynamical noise, but it may incorrectly reject
the null hypothesis if the intercycles of the pseudoperiodic
orbit have a linear stochastic dependence induced by colored
additive observational noisef10g.

In this paper we propose a surrogate algorithm for con-
tinuous dynamical systems, which properly copes with linear
stochastic dependence between the cycles of the pseudoperi-
odic orbits. The null hypothesis to be tested is that the sta-
tionary data set is pseudoperiodic with noise components
which aresapproximatelyd identically distributed and uncor-
related for sufficiently large temporal translations. Note that
the constraints of the noise components in our null hypoth-
esis are stronger than that of Theiler’s algorithm, which re-
quires the noise distribution only periodically depends on the
phase of the signal. However, under our hypothesis, we can
produce the surrogates in a simple way through the algorithm
to be described below. In addition, a large scope of noise
processes often encountered in practical situations, including
sbut not limited tod linear colored additive observational
noise described by the autoregressive moving average
sARMA d sp,qd model f11g, match the above constraints.

The remainder of this paper is organized as follows. In
Sec. II we will introduce our algorithm to generate pseudo-
periodic surrogates, while in Sec. III we will apply this al-

gorithm to simulation data sets from the Rössler system,
which demonstrates the ability of the surrogate test based on
this algorithm to distinguish chaotic orbits from pseudoperi-
odic ones. As one of the applications, we will use this surro-
gate technique to investigate whether a human electrocardio-
gram sECGd record is possibly presentative of a chaotic
dynamical system. Finally, in Sec. IV, we will have a sum-
mary of the whole communication.

II. A DIFFERENT ALGORITHM TO GENERATE
PSEUDOPERIODIC SURROGATES

Let hxiji=1
N be a data set withN observationssthe formhxij

is adopted instead for convenience when causing no confu-
siond, wherexi means the observation measured at timeti
= iDts with Dts denoting the sampling time. We assumehxiji=1

N

is stationary and can be decomposed into the deterministic
components and the noise components, which are approxi-
mately independent of each other. Similar to the surrogate
test idea of time shifting to desynchronize two data setsf12g,
we assume the noise componentssapproximatelyd follow an
identical distribution and are uncorrelated for sufficiently
large temporal translationssor time shiftsd. According to the
null hypothesis we proposed in the previous section, if the
deterministic components are periodic, then we can write a
data pointxi asxi =pi +ni, wherepi andni denote the periodic
component and the noise component, respectively. In many
cases, we can setEspid=Esnid=0 whereE is the expectation
operator. Sincehpij are roughly independent ofhnij, we have
the autocovariance varsxid=varspid+varsnid. Let

yi
t = axi + bxi+t = sapi + bpi+td + sani + bni+td s1d

with i =1,2,… ,N−t, where coefficientsa andb satisfya2

+b2=1 and the parametert is the temporal translation be-
tween subsetshxiji=1

N−t and hxi+tji=1
N−t, then the autocovariance

function varsyi
td=varsapi +bpi+td+varsani +bni+td. Now let

us consider the noise components. Ift is sufficiently large,
under our hypothesis,ni and ni+t are uncorrelated. We also
note thathnij and hni+tj are drawn fromsapproximatelyd the
same distribution, we have varsani +bni+td=varsnid. For the
deterministic component, if we require the translationt to
satisfy covspi ,pi+td=0, then varsapi +bpi+td=varspid. Hence
by choosing a suitable temporal translation, the noise levels
of hyi

tj, defined byfvarsani +bni+td /varsyi
tdg1/2, will be the

same as that ofhxiji=1
N , i.e., fvarsnid /varsxidg1/2. The reason to

preserve the noise level is that the presence of noise will
affect the calculation of the correlation dimension, hence we
would like to let the surrogates and the original time series
sroughlyd have the same noise level in order to make the
results more conceivable.

The above deduction leads to the central idea of our sur-
rogate algorithm. From Eq.s1d, we note that ifhpij is peri-
odic, the nonconstant deterministic componentshapi

+bpi+tj shall also be periodic. In addition,hxiji=1
N and hyi

tj
shall have the same noise level if a suitable translationt is
selected. Therefore by randomizing the coefficienta or b,
we can generate many data setshyi

tj as the surrogates of
hxiji=1

N . Note thathpij andhapi +bpi+tj have the same degree
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of freedom; if both of them are periodic, their correlation
dimensionsf13g will theoretically be the same. Now let us
consider the noise components. Although the noise compo-
nentshani +bni+tj may have a different distribution from that
of hnij, the noise level is preserved after the transform in Eq.
s1d. As Diks f14g has reported, the Gaussian kernel algorithm
sGKAd can reasonably estimate the correlation dimensions of
noisy data sets with different noise distributions. This implies
that, under the same noise level, the correlation dimensions
of hxiji=1

N and hyi
tj, calculated by the GKA, shall statistically

be the same ifhxiji=1
N and hyi

tj are both pseudoperiodicsand
satisfy the constraints we imposedd. In contrast, if hpij is
chaotic, its linear combination,hapi +bpi+tj, may have a new
dynamical structure with a different correlation dimension
from that of hpij, hence by adopting the correlation dimen-
sion as the discriminating statistic we might detect this dif-
ference.

We shall also note that, for an unstable periodic orbit,
even a small dynamical noise might drive the resultant orbit
far away from the original position after a sufficiently long
time, and the pseudoperiodicity might be broken. In such
situations, our algorithm might fail to work. Nevertheless,
we suggest to apply our algorithm as the first step in a
pseudoperiodicity test, which is computationally fast and in
principle deals well with a large scope of observational noise
scomparatively, the PPS algorithm will sometimes fail for
colored observational noised. If we can reject the null hy-
pothesis proposed previously, the time series in test is possi-
bly chaotic or pseudoperiodic perturbed by dynamical noise.
Then we can adopt the PPS algorithm for further tests, which
works well even under a large amount of dynamical noise. If
the corresponding null hypothesis, i.e., the time series is
pseudoperiodic perturbed by dynamical noise, can be re-
jected again, then we may claim the time series is very likely
to be chaotic.

We now consider several computational issues in our al-
gorithms. As described in Eq.s1d, to generate the surrogates
hyi

tj, we select two subsets ofhxiji=1
N , hxiji=1

N−t and hxi+tji=1
N−t,

multiply them by the coefficientsa andb, respectively, and
then add them together. We shall emphasize that choosing
the temporal translationt is a crucial issue for our algorithm.
From one aspect, we require the translationt to satisfy the
condition covspi ,pi+td=0. The reason is that we want to keep
the noise level for the original time series and the surrogates.
In addition, we want the deterministic componentshapij to
be orthogonal tohbpi+tj for arbitrary coefficientsa and b,
otherwise the projection ofhapij onto hbpi+tj might counter-
act hbpi+tj under some situations, for example, ifpi <−pi+t

anda=b, the deterministic componentshapi +bpi+tj will al-
most vanish while the noise componentshani +bni+tj re-
main. Hence the correlation dimensions calculated are actu-
ally those of the noise components instead of the
deterministic components, which will certainly cause the
false rejection of the null hypothesis. From another aspect,
we requiret to be sufficiently large to guarantee the decor-
relation between the noise components. However, we expect
hxiji=1

N−t and hxi+tji=1
N−t shall have at least some overlaps to

make use of the information of the whole data sethxiji=1
N ,

which meanst shall not exceedN/2. In addition, it is rec-

ommended the length of a data set shall not be too short in
order to appropriately calculate its correlation dimension
f15g, which also impliest shall not be too large.

From Eq. s1d we see that the surrogates are generated
from two segmentshxiji=1

N−t and hxi+tji=1
N−t of the original time

series hxiji=1
N . We want segmentshxiji=1

N−t and hxi+tji=1
N−t to

equivalently affect the generation of the surrogates, therefore
we would like to let maxsua /bud=maxsub /aud , minsua /bud
=minsub /aud and Prsua /buù1d.Prsub /auù1d, where
maxs·d , mins·d, and Prs·d denote the maximal function, the
minimal function, and the probability function, respectively.
But note that the coefficient ratioa /b sor b /ad shall not be
too large or too small, otherwisehyi

tj will be very close to
hxiji=1

N−t or hxi+tji=1
N−t, which will lead to approximately the

same correlation dimensions ofhxiji=1
N and hyi

tj regardless of
the dynamical behavior ofhxiji=1

N , and thus decrease the dis-
criminating power of the correlation dimension. In our cal-
culations we leta be uniformly drawn from the interval
f−0.8,−0.6gø f0.6,0.8g and b=Î1−a2, which satisfies our
requirements and provides moderate values for the ratioa /b.

III. SURROGATE TEST TO DISTINGUISH BETWEEN
CHAOTIC AND PSEUDOPERIODIC TIME SERIES

In this section, through four examples from the Rössler
system, we demonstrate the ability of a surrogate test based
on our algorithm to discriminate chaotic orbits from pseudo-
periodic ones. As an application, we will also employ the
surrogate technique to investigate whether a recorded human
electrocardiogramsECGd data set is possibly chaotic.

A. Examples

The equations of the Rössler system are given by

5ẋ = − y − z,

ẏ = x + ay,

ż= b + zsx − cd.
6 s2d

with the initial conditionsxs0d=ys0d=zs0d=0.1. We choose
parametersb=2, c=4, and the sampling timeDts=0.1 time
units. For each example, the system is to be integrated
10 000 times and the first 1000 data points are discarded to
avoid including transient states.

In the first example, we set a parametera=0.390 95. The
Rössler system exhibits limit cycle behavior of period 6. To
obtain pseudoperiodic time series, we introduce 5% observa-
tional noise into the periodic time series. Although Gaussian
white observational noise is the most common choice in this
situation, in order to demonstrate the ability of our surrogate
algorithm to deal with colored noise, we will instead adopt
the noise generated from the autoregressivesARd s1d process
f11g ji+1=0.8ji +ei with the variablee following the normal
Gaussian distributionNs0,1d, which is the more difficult
case due to the correlation between noise components. How-
ever, one shall note that Gaussian white noise and other col-
ored noises satisfying the constraints in our null hypothesis,
for example, those modeled by the ARMAsp,qd processes,
in principle can be dealt with in the same way. For conven-

SURROGATE TEST TO DISTINGUISH BETWEEN… PHYSICAL REVIEW E 71, 026230s2005d

026230-3



ience of observation and comparison, we plot the time
series and the corresponding attractor in two dimensional
state spacesor embedding spaced in panelssad andsbd of Fig.
1, respectively.

To produce surrogate data, first we shall choose a suitable
temporal translation. Since it is impractical to separate noise
from signal completely, in general it is difficult to estimate
the correlation decay time between noise components. For-
tunately, to decorrelate noise components, all temporal trans-
lations are equivalent as long as they are large enough. In
addition, in many real situations, it is often possible to ob-
serve the background noise and thus estimate the decay time.
In our example, we think the ARs1d noise to be uncorrelated
when the temporal translation is larger than 50sin units of
the sampling timeDtsd. As another requirement, temporal
translation satisfying covspi ,pi+td=0 is desired. In practice,
of course, this requirement is generally impractical due to the
digitization and quantization in sampling process. Recall
the discussion in the previous section, by lettingEspid
=0 and a2+b2=1, we have varsapi +bpi+td=varspid
+2ab covspi ,pi+td. The function covspi ,pi+tdÞ0 means we
do not preserve the noise level. However, under the null
hypothesis of pseudoperiodicity, there shall always be some
temporal translations to make covspi ,pi+td,0, hence the
noise level will not deviate from the original one too much.
Besides, according to Eq.s1d, we generate the surrogates by
uniformly drawing coefficienta from the interval f−0.8,
−0.6gø f0.6,0.8g sb=Î1−a2 is always kept positived, the
noise level of the surrogates will fluctuate around that of the
original one due to the alternative signs of productab.
Therefore covspi ,pi+tdÞ0 will only cause some fluctuations
when calculating the correlation dimension because of the
fluctuations of noise level, however, generally such fluctua-
tions will not affect our conclusion if we can select a tempo-
ral translationt to let covspi ,pi+td,0. Since we have as-
sumed the noise components are roughly independent of the
deterministic components, then covsxi ,xi+td=covspi ,pi+td for
a large enough temporal translationsto decorrelate noise
componentsd, therefore in all of the examples, in order to let
covspi ,pi+td,0, we can equivalently require covsxi ,xi+td
,0. In the first example, there are many temporal transla-
tions satisfying the two constraints discussed above, i.e.,t

.50 and covsxi ,xi+td,0. To pick a value from all these
candidates, we first select an intervalf100, 150g, then search
the temporal translation which makes the absolute value
ucovsxi ,xi+tdu be the minimumsmost close to zerod among all
translations 100øtø150. One shall note that the choice of
the intervalf100, 150g is arbitrary, except that we have to
make sure that the lower bound of the interval is larger than
50, and there exists temporal translations to let covsxi ,xi+td
,0 within the interval. After selecting the temporal transla-
tion, by randomizing the coefficienta we will generate 100
surrogates according to Eq.s1d.

In order to calculate the correlation dimension, we adopt
the time delay embedding reconstructionf9g to recover the
underlying system from the scalar time series. Two param-
eters, i.e., embedding dimension and time delay, shall be
properly chosen to apply this technique. Throughout this pa-
per, we will use the false nearest neighbor criterionf16g to
determine the global optimal embedding dimension. Using
the program inTISEAN packagef17g, the embedding dimen-
sionm of the original time series is selected at 4, which is the
minimal value to make the fraction of false nearest neighbors
be zero. To choose a suitable time delay, we will use the
algorithm of redundancy and irrelevance tradeoff exponent
sRITEd proposed in Ref.f18g. This algorithm selects the time
delay by searching the optimal tradeoff between redundancy
sdue to too small time delayd and irrelevancesdue to too
large time delayd. As demonstrated, the RITE algorithm can
select equivalently suitable time delays compared to the av-
erage mutual informationsAMI d criterion f19g, however, its
implementation is much simpler and the computational cost
is fairly low. Therefore in the case of large data sets, adopt-
ing the RITE algorithm can facilitate our calculations. In the
first example we generate 100 surrogates, and for each sur-
rogate we keep the embedding dimensionm=4 and use the
RITE algorithm to choose the suitable time delay for time
delay reconstruction.

We will follow Diks’s methodf14g to calculate the corre-
lation dimension, which is more robust against noise by ex-
tending the hard kernel functionsor the Heaviside functiond
f13g in the calculation of correlation integral to the general
kernel functions. In his discussions, Diks adopted the Gauss-
ian kernel function, hence this method is called Gaussian
kernel algorithmsGKAd. Here we will use the GKA imple-

FIG. 1. sad Pseudoperiodic time series contaminated by observational noise;sbd state spacexi+n vs xi of the pseudoperiodic time series
from the Rössler system withn=16; scd surrogate test for the pseudoperiodic time series based on our algorithm. The abscissa is the indices
of 100 surrogates and the ordinate is the corresponding correlation dimensions. The middle line is the mean correlation dimension of the
original time series calculated 100 times using the Gaussian kernel algorithmsGKAd, the upper and lower lines denote the correlation
dimensions twice the standard deviation away from the mean value and the asterisks indicate the correlation dimensions of 100 surrogates.
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mented in Ref.f20g to calculate the correlation dimensions,
which further enhances the computational speed. Note that to
speed up the calculation, only 2000 data points are used as
the reference points for the GKA. There are some statistical
fluctuations even for the same data set when calculating its
correlation dimension, therefore for the original time series,
we will calculate 100 times to estimate the mean correlation
dimension and the standard deviation. As shown in panelscd
of Fig. 1, there are three lines parallel to the abscissa. The
middle line denotes the estimation of the mean correlation
dimension of the original time series, while the upper and
lower lines indicate the positions twice the standard devia-
tion away from the mean value. For the surrogates, however,
we will calculate their correlation dimensions only once to
save time. The results are illustrated as the asterisks in panel
scd of Fig. 1.

After the calculation of the correlation dimensions, we
need to inspect whether the result is consistent with our null
hypothesis. Here we use the ranking criterionf21g to deter-
mine whether the null hypothesis shall be rejected or not.
The idea of this criterion is that, suppose the discriminating
statistic of the original data set isQ0, and those ofNS surro-
gates are hQ1,Q2, … ,QNS

j. Rank the statistics
hQ0,Q1, … ,QNS

j in the increasing order and denote the rank
of Q0 by r0, if the data set is consistent with the hypothesis
si.e., no evidence to rejectd, r0 can have an equal possibility
be any integer value between 1 andNS+1. However, if the
hypothesis is false,Q0 might deviate from the surrogate dis-
tribution hQ1,Q2, … ,QNS

j, i.e, Q0 will be the smallest or
largest amonghQ0,Q1, … ,QNS

j, hence we can reject the null
hypothesis ifr0=1 or NS+1, the probability of a false rejec-
tion is 1/sNS+1d for one-sided tests and 2/sNS+1d for two-
sided tests.

For the first example, from panelscd of Fig. 1 we can see
that the mean correlation dimension of the original time
series falls within the dimension distribution of the surro-
gates, therefore we cannot reject the null hypothesis as we
expect, which means the original time series is possibly
pseudoperiodicf22g.

Now let us examine the other examples. In the second
example, we still set parametera=0.390 95 in Eq.s2d. How-
ever, to obtain the pseudoperiodic time series, we first gen-
erate a data set by adding Gaussian white noise with the
standard deviation of 0.15% to thex component at each in-

tegration step, which simulates the system perturbed by
additive dynamical noise, and then introduce 5% observa-
tional ARs1d noise into the previously obtained data set. The
global optimal embedding dimension is chosen atm=4. Note
in all of the four examples, we will generate 100 surrogates,
and parameter choices for surrogate generation will be the
same, i.e., we let the temporal translation be selected from
f100, 150g and coefficienta be uniformly drawn from
f−0.8,−0.6gø f0.6,0.8gsb=Î1−a2d. For the second ex-
ample, the correlation dimensions of the original time
series and the surrogates are shown in panelscd of Fig. 2.
Under the ranking criterion, once again we cannot reject our
null hypothesis. Therefore the time series is possibly pseudo-
periodic, which is consistent with our knowledge.

In the third example, we change parametera of Eq. s2d to
be 0.395. The Rössler system exhibits chaotic behavior. We
integrate Eq.s2d to obtain a time series and then introduce
5% observational ARs1d noise. The optimal embedding di-
mensionm is selected atm=5. From panelscd of Fig. 3, we
find that the mean correlation dimension of the original time
series deviates from the distribution of the surrogate dimen-
sions. Using the ranking criterion, we can reject our null
hypothesis. In order to exclude the possibility that the time
series is generated from an unstable period orbit perturbed by
dynamical noise, we also apply the PPS algorithm for further
testing. From the PPS algorithm we generate 100 surrogates,
and then use the GKA to calculate their correlation dimen-
sions. The results are shown in panelsdd of Fig. 3; as we can
see, the mean correlation dimension of the original time
series also falls outside the distribution of the surrogate di-
mensions, therefore we can reject the null hypothesis again.
After the two surrogate tests for pseudoperiodicity, we can
claim the time series is chaotic with a confidence level up to
96% s98%398%d for the two-sided test.

The final example to be demonstrated is a chaotic time
series also from the Rössler system. To generate the time
series, we keep parametera=0.395. Similar to the way in the
second example, we add Gaussian white noise with the stan-
dard deviation of 0.15% to thex component at each integra-
tion step as the dynamical noise, and then introduce 5% ob-
servational ARs1d noise into the previously obtained data set.
The global optimal embedding dimension is found to bem
=4. The results of surrogate tests based on the new algorithm
and the PPS algorithm are shown in panelsscd andsdd of Fig.
4, respectively, from which we can see that, surrogate tests

FIG. 2. sad Pseudoperiodic time series with both observational noise and dynamical noise;sbd state spacexi+n vs xi of the pseudoperiodic
time series from the Rössler system withn=16; scd surrogate test for the pseudoperiodic time series based on our algorithm. The meaning
of the lines and the asterisks is the same as that in panelscd of Fig. 1.
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based on both algorithms can detect the chaos in the time
series. Again we can claim the time series is chaotic with a
confidence level up to 96% for the two-sided test.

We have also investigated examples under different obser-
vational noise levelssbut keep the same dynamical noise if
they haved. For example, if we reduce the ARs1d observa-
tional noise levels to 3% in the above four examples, we can
obtain the same results as we have reported. If we increase

the observational noise levels to 10%, for the pseudoperiodic
time series we can still obtain the expected results, i.e., we
cannot reject our null hypothesis. However, for the chaotic
time series, we will falsely accept our null hypothesis due to
the correlation dimension of the original time series margin-
ally falling within the dimension distribution of the surro-
gates. The reason of false acceptance might be that, under
large noise levels, the correlation dimension is not sensitive

FIG. 3. sad Chaotic time series contaminated
by observational noise;sbd state spacexi+n vs xi

of the chaotic time series from the Rössler system
with n=16; scd surrogate test for the chaotic time
series based on our algorithm; the meaning of the
lines and the curve is the same as that in panelscd
of Fig. 1; sdd surrogate test for the chaotic time
series based on the PPS algorithm; the meaning
of the lines and the asterisks is the same as that in
panelscd of Fig. 1.

FIG. 4. sad Chaotic time series with both dy-
namical and observational noises;sbd state space
xi+n vs xi of the chaotic time series from the
Rössler system withn=16; scd surrogate test for
the chaotic time series based on our algorithm;
the meaning of the lines and the asterisks is the
same as that in panelscd of Fig. 1; sdd surrogate
test for the chaotic time series based on the PPS
algorithm; the meaning of the lines and the aster-
isks is the same as that in panelscd of Fig. 1.
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enough to detect the structure changes of the chaotic time
series. For such cases, we will have to look for more pow-
erful discriminating statisticsf23g.

B. An application

As an example of application, we employ the surrogate
test based on our algorithm to investigate whether a human
electrocardiogramsECGd record swith 8975 data pointsd is
likely to be chaotic. The ECG record was obtained by mea-
suring from a resting healthy subjects22 years oldd in a
shielded room at the sampling rate of 1 kHz. The ECG
record indicated in panelsad of Fig. 5 looks very regular and
even possibly periodic, but we need a quantitative approach
to verify the periodicity. Here we choose the surrogate test
technique. Using the false nearest neighbor criterion, the glo-
bal optimal embedding dimension is chosen atm=5. The
background noise is mainly from the measurement instru-
ments; usually it is a blend of white and correlated noise. By
observing the linear second order correlation function of the
ECG data, we let the temporal translation be within the in-
terval f100, 150g slarge enough to decorrelate the noise com-
ponentsd, where there exists an integer temporal translation
to make the correlation function almost be zero. Then by
uniformly drawing values fromf−0.8,−0.6gø f0.6,0.8g for
coefficienta in Eq. s1d sb=Î1−a2d, we generate 100 surro-
gates. For demonstration, we plot in panelscd one surrogate
generated from Eq.s1d with coefficienta=b=1/Î2. We can
see that the surrogate is different from the original ECG data
in that there appear more spikes in the surrogate. However,
as we can also find, the surrogate indicates the similar regu-
larity to that in the original data, which implies that the sur-
rogate preserves the potential periodicity in the original data
as we expectsalthough in a different patternd. With regards

to the surrogate test, our calculation of the correlation dimen-
sions is also based on the GKA. The results are indicated in
panel sdd of Fig. 5, from which we can see that the mean
correlation dimension of the ECG data falls within the dis-
tribution of the correlation dimensions of the surrogates,
therefore we cannot reject our null hypothesis. Hence the
ECG record is possibly periodic. Moreover, there is no evi-
dence of chaos.

IV. CONCLUSION

To summarize, by imposing a few constraints on the noise
process, we devise a simple but effective way to produce
surrogates for pseudoperiodic orbits. The main idea of this
algorithm is that a linear combination of any two segments
of the same periodic orbit will generate another periodic or-
bit. By properly choosing the temporal translation between
the two segments, under the same noise level we can obtain
statistically the same correlation dimensions of the pseudo-
periodic orbit and its surrogates. Choosing the temporal
translation is a crucial issue for our algorithm, which in prin-
ciple shall guarantee the decorrelation between the noise
components and preserve the noise level. Another important
issue is to select a proper discriminating statistic which helps
determine whether to reject the null hypothesis. The correla-
tion dimension is a suitable discriminating statistic in this
case. It is possible there are other suitable discriminating
statistics; we will leave the problem of finding such statistics
for future study.

The surrogate test technique based on our algorithm can
be utilized to distinguish between chaotic and pseudoperi-
odic time series. Initially, the PPS algorithm was proposed to
generate surrogates for a pseudoperiodic orbit driven by dy-
namical noise, but sometimes surrogate tests based on this

FIG. 5. sad Time series of a human electrocar-
diogramsECGd record;sbd state spacexi+n vs xi

of the ECG record withn=23; scd a surrogate
data generated from our algorithm with coeffi-
cient a=b=1/Î2 fcf. Eq. s1dg; sdd surrogate test
for the ECG record based on our algorithm; the
meaning of the lines and the asterisks is the same
as that in panelscd of Fig. 1.
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algorithm will falsely reject the null hypothesis if the time
series is also contaminated by colored observational noise.
As a complement to the PPS algorithm, our algorithm deals
well with observational noise, but it might fail for large dy-
namical noise. However, due to the convenience in compu-
tation, we suggest to adopt surrogate test based on our algo-
rithm as the first step for pseudoperiodicity detection. If we
can reject the null hypothesis of our algorithm, then we shall
use the PPS algorithm for further tests. If we can reject the
null hypotheses of both the algorithms, then the time series
under investigation is very likely to be chaotic. In this paper,

the concrete procedures of the surrogate test for pseudoperi-
odicity are demonstrated through four simulation examples.
As an application in practice, we also employ the surrogate
technique based on our algorithm to investigate whether a
human ECG record is possible to be chaotic.
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