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We study the amplification of information transfer in excitable systems. We show that excitable systems
residing in a steady state near a bifurcation point to complex oscillatory behavior incorporate several frequen-
cies that can be exploited for a resonant amplification of information transfer. In particular, for excitable
neurons that reside in a steady state near a bifurcation point to elliptic bursting oscillations, we show that in
addition to the resonant frequency of damped oscillations around the stable focus, another frequency exists that
resonantly enhances large amplitude bursts and thus amplifies the information transfer in the system. This
additional frequency cannot be found by the local stability analysis and has never been used for amplifying the
information transfer in a system. The results obtained for elliptic bursting oscillations can be generalized also
to other complex oscillators, such as parabolic or square-wave bursters. Additionally, the biological importance
of presented results in the field of neuroscience is outlined.
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I. INTRODUCTION

Responses of excitable systems to external perturbations
are of key importance for understanding mechanisms of sig-
nal transduction in a broad variety of natural as well as arti-
ficial systems. Particularly in biological systems, it is of spe-
cial importance to understand the response of a given system
to an external signal since thereon often relies proper func-
tioning of the whole organism. For example, external signals
that assure signal transduction and information processing
are very important for normal functioning of a single cell as
well as coupled cells in the tissuef1g.

In order to guarantee low energy consumption and hence
optimal functioning, external signals acting upon an excit-
able system are usually weak. This seems contradictory,
since in order to assure reliable signal transduction and in-
formation processing, external signals also have to act very
convincingly. While studying this apparent contradiction,
scientists have encountered a fascinating phenomenon
termed stochastic resonancef2g. The main virtue of stochas-
tic resonance is the exploitation of noisy perturbations for
constructive purposes, in particular by enhancing weak ex-
ternal signals, thereby assuring enhanced information trans-
fer in the system. This constructive role of noise was initially
encountered in bistable systemsf3g, and later confirmed
theoretically as well as experimentally in a broad variety of
physicalf2,4,5g and biological systemsf6–12g.

Recently, stochastic resonance effects have been studied
intensely in excitable systems that reside in a steady state
very close to the oscillatory regimef13–21g. These excitable
steady states are especially relevant in nature, where it is
often the case that quiescence has to be abruptly replaced by

oscillatory behavior upon detection of a weak external
stimuli. Mathematically, this is feasible when the system
with oscillatory states is waiting in an excitable steady state
that is very close to the bifurcation point.

Functioning of neurons, for example, is often described as
a continuous switching between a quiescent and an oscilla-
tory state that are separated by a bifurcation pointf22g. For
special types of bifurcation points the system can be easily,
i.e., already with a weak external signal, forced from the
quiescent to the oscillatory state, which is the intuitive defi-
nition of excitability f22,23g. Excitable neurons in a quies-
cent state often express damped or sustained small-amplitude
oscillations of membrane potential. This dynamical property
makes neurons especially sensitive to external signals with a
particular frequency and/or amplitude, and hence promotes
diversity in response of the system with respect to the ap-
plied forcing f24g. These diversities arise due to the occur-
rence of classical resonance between the system and the ex-
ternal signal. The fact that excitable systems are more
sensitive to some external signals than others has motivated
several studies, in particular analyzing the possibilities of
amplifying the stochastic resonance effects, thus assuring an
enhanced noise-induced information transfer in the system
f25–28g.

The basic idea behind the amplification of stochastic reso-
nance is to combine the stochastic resonance with classical
resonance effects. For bistable systems, Gammaitoniet al.
f25g introduced an open-loop control scheme that permits the
enhancement or suppression of the spectral response to
threshold-crossing events by injection of an additional peri-
odic signal. The amplification of stochastic resonance effects
in bistable systems was coined as the “control of stochastic
resonance”f25g. Excitable systems near a bifurcation point
to the oscillatory regime were also studied under the influ-
ence of periodic perturbations. The amplitude and/or fre-
quency of the external periodic perturbation were taken as
variable parameters while looking for an optimal interplay
between classical resonance effects and noise-induced re-
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sponses of the system that would in turn lead to the maximal
amplification of information transfer. It has been shown, for
example, that an optimal amplitude of a high-frequency pe-
riodic forcing can resonantly enhance the response of an ex-
citable system to a low-frequency signalf28g. Thereby, the
resonance-like behavior of the system with respect to the
amplitude of the high frequency forcing, i.e., vibrational
resonance was exploited. A conceptually similar phenom-
enon was observed with respect to the variable frequency of
a high-frequency periodic forcing. Parmanandaet al. f26g
have shown that an optimal frequency of a high-frequency
periodic forcing can also resonantly amplify information
transfer in the system. The optimal frequency of the external
forcing corresponds to the frequency of damped oscillations
around the steady state, i.e., the stable focus, of the excitable
autonomous system. This is directly linked to the fact that
the excitable system is in resonance with the external signal
that has the same frequency as the damped small-amplitude
oscillations around the stable focus. The latter frequency can
be easily estimated from the imaginary part of eigenvalues of
the flow dynamics linearized around the steady state
f24,26,29,30g.

An extension of this basic concept was recently proposed
in f27g, where it was shown that the effect of stochastic
resonance can also be amplified by the addition of a high-
frequency signal if the latter is in resonance with the so-
called Canard oscillations of the system. The Canard effect
relates to a specific behavior of the system at the bifurcation
point to the oscillatory regime. The main feature of this phe-
nomenon is that a very small change in the bifurcation pa-
rameter leads to a large difference in the behavior of the
systemf31–33g. Thus, amplitudes and frequencies of oscil-
lations in this small parameter range change abruptly. The
high frequency of these oscillations is in the context of
Volkov et al. f27g used for aim-oriented amplification of
noise-induced information transfer in the system, i.e., the
so-called Canard-enhanced stochastic resonance.

In this paper, we further complement the existing mecha-
nisms that can be exploited for amplifying the information
transfer in excitable systems. In addition to the local stability
analysis of the autonomous system, which gives an insight
into the possible resonant frequencies characteristic for the
phase space in the vicinity of the steady state, we are inter-
ested in the global characteristics of the phase space. This is
of particular importance for excitable steady states close to
bifurcation points that lead to complex oscillatory behavior,
which is often characterized with several different intrinsic
frequencies. Since the excitable steady state is very close to
the bifurcation point, and hence to the oscillatory states, the
phase space around the excitable state must have very similar
characteristics as the phase space beyond the bifurcation
point, assuming, of course, that the transition through the
bifurcation is smooth, i.e., no catastrophes occurf22g. Al-
though the local stability analysis of the excitable state re-
veals only one characteristic frequency, which is the one of
the stable focus, the system may indeed posses several other
“global-resonant” frequencies that can also be used for the
amplification of the information transfer. We demonstrate
how these additional resonant frequencies can be determined
by calculating the Fourier coefficientsf34g of noise-induced

oscillations under the influence of subthreshold periodic
forcing.

For a mathematical model of an excitable neuronf35g, we
prove the existence of additional resonant frequencies for a
steady state near a bifurcation point to elliptic bursting be-
havior, which is one of several possible bursting types
f22,36,37g. More precisely, there are two resonant frequen-
cies in our system; one matching the frequency of damped
oscillations around the steady statesstable focusd, and the
second that resonantly enhances large amplitude bursts.
While the external signal with the first frequency resonantly
helps to lower the threshold for neuron firing, the second
frequency plays a crucial role in maintaining a well-
expressed bursting phase of oscillations. The latter effect is
of key importance for bursting oscillations, since well-
expressed bursts of action potential are vital for increased
reliability of synaptic transmissionf38g, and may also pro-
vide effective mechanisms for selective communication be-
tween neuronsf39,40g. The results obtained here for elliptic
bursting oscillations may be of even greater importance also
for other bursting types, such as parabolic or square-wave
bursting, were the oscillatory convergence to the rest state is,
due to a different bifurcation structuref22g, not inherently
present in the system, and thus only the “global-resonant”
frequencies determined as described below, may be exploited
for the amplification of information transfer in the system.

The paper is structured as follows. Section II is devoted to
the description of the mathematical model and its main char-
acteristics. In Sec. III we point out similarities between the
noise-induced oscillations from the steady state and the au-
tonomous oscillatory behavior, whereas in Sec. IV the main
results are presented. In Sec. V we summarize the results and
outline the biological importance of our findings.

II. MODEL

We study a mathematical model of an idealized nerve
membrane model, which was formulated by FitzHugh and

FIG. 1. Bifurcation diagram of the autonomous mathematical
model. In dependence on parameterq, the characteristic valuessxcd
of variable xstd are presented: stablessolid lined and unstable
sdashed lined foci, maxima, and minima of unstablesdotted linesd
and stablesdotsd periodic solutions. The arrow marks the reference
statesRSd. For further details and parameter values see text.
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Rinzel in 1976 and later extensively studied inf35g. The
evolution of the FitzHugh-RinzelsFHRd model is governed
by the differential equations

dx

dt
= x − x3/3 − y + z+ q, s1d

dy

dt
= dsx + a − byd, s2d

dz

dt
= «s− x + c − dzd. s3d

For parameter valuesa=0.7, b=0.8, c=−0.9, d=1, d=0.08,
and «=0.0001, the system has a Hopf bifurcation atq
=0.2637. Forq,0.2637 the system is quiescent whereas for
q.0.2637 the system exhibits elliptic bursting oscillations
that transient to simple spikelike oscillations asq is further
enlarged. The bifurcation diagram of the system is presented
in Fig. 1, where the characteristic valuessxcd of variablexstd
fsee Eq.s1dg are depicted in dependence on the parameterq.
Stable and unstable foci are presented by solid and dashed
lines, respectively, whereas dotted lines indicate maxima,

and minima of unstable limit cycles. For stable periodic so-
lutions, maxima and minima ofxstd are depicted by dots. To
point out the complexity of bursting oscillations forq
.0.2637, in addition to the main maxima and minima be-
longing to large amplitude spikes, also maxima and minima
of small amplitude oscillations that appear in the bursting
pattern are presented. The arrow atq=0.25 marks the excit-
able steady state, which is taken as the reference statesRSd
for our analyses in the subsequent sections.

To reveal the main characteristics of elliptic bursting os-
cillations, we consider autonomous oscillations of the system
at q=0.33, which are presented in Fig. 2sad. The 2D projec-
tion of the corresponding attractor in the phase space, to-
gether with the bifurcation diagram obtained according to the
fast-slow subsystem method proposed by Rinzelf35g, is pre-
sented in Fig. 2sbd. The virtue of the fast-slow subsystem
method is to extract the fast changing variables of the system
and then use the slow changing variables as bifurcation pa-
rameters. The fast changing variables of the FHR model
were identified to bexstd andystd, whereas the slow chang-
ing variable iszstd. Hence, we can reduce the 3D system
(xstd ,ystd ,zstd) to a 2D system(xstd ,ystd) and use the vari-
ablezstd as the bifurcation parameter. The bifurcation analy-

FIG. 2. Analysis of autonomous bursting oscillations atq=0.33:sad time course of variablex; sbd 2D projection of the attractor and the
corresponding bifurcation diagram. Solidsdashedd lines represent stablesunstabled foci, whereas dottedsdashed–dottedd lines represent
stablesunstabled periodic solutions. Up-triangles denote the fold limit cycle bifurcation and the circle denotes the subcritical Hopf bifurcation
sHBd; scd separately shown large amplitude spikes during the bursting phase; andsdd small-amplitude oscillations during the slow passage
phase.
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sis was carried out with the software packageAUTO97 f41g. It
can be well observed that the transition to repetitive spiking
occurs via a subcritical Hopf bifurcationsHBd and the tran-
sition to the quiescent state occurs via a fold limit cycle
bifurcation, which is the characteristic bifurcation structure
of elliptic bursting oscillationsf22,35g. Noteworthy, the os-
cillatory state is characterized by the slow passage effect
f37,42,43g, which manifests as a delayed transition of the
trajectory to the upper stable periodic branch after the sub-
critical Hopf bifurcation is exceeded. The most interesting
feature of the system, however, that is of particular relevance
for this study is the inherent presence of two high frequen-
cies in the system; namely the frequency of large amplitude
spikes during the bursting phasefFig. 2scdg and the fre-
quency of small-amplitude oscillations during the slow pas-
sage phasefFig. 2sddg. The angular frequency of large am-
plitude spikes matches the frequency of stable periodic
branchesva=0.126 s−1, whereas the angular frequency of
small-amplitude oscillations matches the frequency of stable/
unstable foci in the 2D bifurcation diagram, which can be
obtained from the complex conjugate eigenvalues at the HB
sl1,2= ±0.275 i ⇒vb=0.275 s−1d.

While for different values of the parameterq.0.2637
oscillations differ considerably in their main frequency at
which successive bursting phases occur, frequenciesva and
vb remain constant, as shown in Fig. 3. Moreover, the fre-
quencyvb of small-amplitude oscillations in the oscillatory
regime atq.0.2637 is also characteristic for damped oscil-
lations around the stable foci forq,0.2637. This indicates
that the phase space topology varies only little whileq passes
through the Hopf bifurcation, which means that the phase
space atq,0.2637 has very similar topological properties as
the phase space atq.0.2637. Therefore, we hypothesize
that also the frequency of large amplitude spikes,va, is in-
herently incorporated in the phase space already atq
,0.2637 sdotted line in Fig. 3d, as the so-called “global-
resonant” frequency of unstable periodic orbitssUPOsd,

which can be observed if the system is externally perturbed
from the excitable reference state. The existence of these
UPOs, however, cannot be determined by the local stability
analysis. Nevertheless, their presence can be justified by con-
sidering the fact that the bifurcation responsible for the onset
of bursting oscillation is noncatastrophic, and thus the phase
space varies smoothly not just locally around the steady
state, but also globally. Therefore, if the phase space topol-
ogy is indeed very similar for all values ofq around the
bifurcation point, it is reasonable to expect that an external
forcing with the “global-resonant” frequency of UPOs would
elicit a resonant response of the system. In the following, we
confirm this reasoning by studying solely noise-induced os-
cillations from the RS, and show that both frequenciessva

and vbd can indeed be exploited for the amplification of
information transfer in the system.

III. NOISE-INDUCED OSCILLATIONS

The Gaussian noise,zstd, with the variances is applied to
the excitable RS by addingzstd as an additional term to Eq.
s1d. For zstd=0 the system remains quiescent, whereas if the
noise variance is set large enough, the system exhibits noise-
induced bursting oscillations. Thus, the initially quiescent
system atq=0.25 can be excited solely by noise ifs is
chosen large enough. The time course of purely noise-
induced oscillations and the corresponding fast-Fourier
transformsFFTd are shown in Figs. 4sad and 4sbd, respec-
tively. It can be well observed that the noise-induced oscil-
lations are characterized by three well-expressed angular
frequenciessv0, v1, and v2d, namely the predominant fre-
quency of the main bursting patternsv0<4.9310−3 s−1d, the
frequency of large amplitude spikes during the bursting
phasesv1<0.13 s−1d, and the frequency of small amplitude
oscillations that emerge between successive bursting phases
and corresponds to the frequency of damped oscillations
around the stable focus atq=0.25sv2<0.26 s−1d. While the
low interburst frequencyv0 depends significantly on the
noise intensity, i.e., increases/decreases with increasing/
decreasings, both high frequencies remain virtually unaf-
fected by varyings. As hypothesized above, both high fre-
quencies in the noise-driven system are very similar to those
found in the deterministic oscillatory statessv1<va and
v2<vbd, which confirms the above prediction that the phase
space at the RS has very similar topological properties as the
phase space beyond the Hopf bifurcationsq.0.2637d. Thus,
the phase space around the excitable reference statessee Fig.
1d indeed incorporates UPOs with two high frequenciessv1
andv2d that may potentially be exploited for the oscillatory
amplification of information transfer in the system.

IV. AMPLIFICATION OF INFORMATION TRANSFER

The oscillatory amplification of noise-induced informa-
tion transfer can occur when the system is, in addition to
noise and the low-frequency information-carrying signal,
driven with a high-frequency periodic signal with frequency
Q that matches some intrinsic frequencysvd that is incorpo-
rated in the system. Only those frequenciesQ that are close

FIG. 3. Frequency of large amplitude spikesva sthick solid lined
and small-amplitude oscillationsvb sthin solid lined in dependence
on the parameterq. The dotted line indicates hypothesized values of
va, whereas the vertical dashed line marks the reference statesRSd.
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to some intrinsic frequency of the system, i.e.,Q<v, can
successfully evoke a resonant response and in turn lead to the
amplification of information transfer. To study the oscillatory
amplification of information transfer, we add an additional
term Sstd to Eq. s1d, while Eqs. s2d and s3d remain un-
changed. The additional termSstd added to Eq.s1d is defined
as

Sstd = zstd + k sinsVtd + L sinsQtd, s4d

wherezstd is the Gaussian noise with variances, k sinsVtd
is the information carrying low-frequency signal, and
L sinsQtd is the high-frequency signal responsible for the
oscillatory amplification of the information transfer. In all
subsequent calculations,k andL are set small enough so that
if s=0, the system remains quiescent. Figure 4 shows that
the RS of the noise-driven FHR model incorporates two high
frequenciessv 1 and v 2d that may potentially be exploited
for the oscillatory amplification of information transfer by
settingQ=Q1<v1 or Q=Q2<v2 in Eq. s4d.

In order to determine these two frequenciessQ1 andQ2d
more precisely, we systematically investigate responses of
the system to a high-frequency sinusoidal forcing in the pres-
ence of noise. To this purpose we setk=0, andL=0.01 in
Eq. s4d, whereas the frequency of the sinusoidal forcingQ

and the noise variances are varied. Note, that in this case
the amplitude of the sinusoidal forcingL is also set small
enough so that the system does not express large amplitude
bursting oscillations without the addition of noise. To evalu-
ate responses of the periodically driven noisy system in de-
pendence onQ, we calculate the Fourier coefficientsQ. The
Fourier coefficients tell precisely how much information in
the signal is transported with a particular forcing frequency
f2g. Noteworthy, the Fourier coefficients are proportional to
the ssquare of thed spectral power amplificationsSPAd f45g,
which is often used as a measure for stochastic resonance.
Here, the Fourier coefficientsQ are calculated according to
the equationsf34g:

Qsin =
Q

2np
E

0

2pn/Q

2xstdsinsQtddt, s5d

Qcos=
Q

2np
E

0

2pn/Q

2xstdcossQtddt, s6d

Q = ÎQsin + Qcos. s7d

We calculate the Fourier coefficientsQ in dependence on
the frequencyQ for various noise intensitiess. Results pre-
sented in Fig. 5 are in excellent agreement with the results
presented in Figs. 3 and 4, and enable us to precisely deter-
mine both frequencies that are inherently present in the sys-
tem at the RS. The first peak atQ1=0.131 s−1 corresponds to
the frequency of large amplitude spikes during the bursting
phase, whereas the second peak atQ2=0.256 s−1 corre-
sponds to the frequency of small-amplitude oscillations that
emerge between successive bursting phases, also called the
frequency of the oscillatory convergence to the rest state.

It remains to verify if both frequenciessQ1 andQ2d assure
the amplification of information transfer with respect to the
low-frequency information carrying signalk sinsVtd, which
has been excluded from the calculationssk=0d until now. To
this purpose we calculate the Fourier coefficientsQ with

FIG. 4. Analysis of noise-induced oscillations from the RS for
s=0.05: sad time course of variablex; sbd the corresponding fast-
Fourier transform.

FIG. 5. Fourier coefficients for the periodically drivensk
=0,L=0.01d FHR model from the RS under the influence of dif-
ferent noise intensities.
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respect to the information carrying frequencyV, but consider
only large amplitude spikes as possible information carriers,
whereas the small-amplitude oscillations between successive
bursting phases are replaced by the steady state value of the
autonomous system at the RS. The threshold for large ampli-
tude spikes is set tox=0.0. Thereby, we achieve that if no
noise is added to the system the Fourier coefficients are zero,
since no information transport occurs. Noteworthy, an iden-
tical approach has already been used by Volkovet al. f27g.

First, we calculate the Fourier coefficientsQ for frequen-
cies aroundQ2=0.256 s−1 to verify if an enhanced informa-
tion transport, i.e., amplified stochastic resonance, can be
obtained near this resonant frequency. To this purpose we set
V=3.14310−3 s−1, k=0.005 and L=0.01 in Eq. s4d,
whereasQ is varied aroundQ2. The results are presented in
Fig. 6. It can be well observed thatQ2 indeed warranties an
enhanced information transport in the system at frequency
V=3.14310−3 s−1 already at low noise intensities. On the
other hand, any other frequency aroundQ2 does not have the
same effect even at higher noise intensities. Thus, we con-
clude that the addition of a periodic forcing with the resonant
frequencyQ2 indeed amplifies the stochastic resonance, and
thus guarantees an enhanced information transfer in the ex-
amined system.

Next, let us examine if the resonant frequencyQ1
=0.131 s−1, termed above as the “global-resonant” fre-
quency, also assures an amplified information transfer in the
system. To this purpose we calculate the Fourier coefficients
Q according to Eqs.s5d–s7d by taking V=3.14310−3 s−1,
k=0.005, andL=0.02, in Eq.s4d. Note, that the amplitude of
the high-frequency sinusoidal signalL can be set larger than
in the previous casesL=0.01d, sinceQ1 is not in resonance
with the frequency of the oscillatory convergence to the rest
state, and thus doesn’t amplify the rest state as much as the
sinusoidal forcing with frequencyQ2. The obtained results
for variousQ aroundQ1 are presented in Fig. 7. It is evident
that the resonant frequencyQ1=0.131 s−1, corresponding to
the frequency of large amplitude spikes during the bursting
phase, similarly as the frequency of the convergence to the

rest stateQ2, also assures an enhanced information transport
in the system at frequencyV=3.14310−3 s−1 already at low
noise intensities. Finally, we may conclude that both frequen-
cies that are inherently present in the system at the RS assure
the amplification of stochastic resonance effects, and thus
guarantee an enhanced information transport in the system.

Despite the relative well-expressed resemblance of the re-
sults presented in Figs. 6 and 7, the mechanism behind the
amplification of information transfer in the system is quite
different for both resonance frequencies. The reason for this
difference lies in the origin of the resonant frequenciesQ1
andQ2 in the system. WhileQ1 represents the frequency of
large amplitude spikes during the bursting phase,Q2 repre-
sents the frequency of small amplitude oscillations between
successive bursting phases. Therefore, the inclusion of an
additional sinusoidal forcing with the frequencyQ2 reso-
nantly sfar more than any other frequency aroundQ2d ampli-
fies the steady state and thus lowers the threshold, whereas
the inclusion of an additional sinusoidal forcing with the
frequencyQ1 does not have the same effect. It is still true, of
course, thatQ1 excites the steady state of the system and thus
lowers the threshold, but not in a resonant manner, i.e., not
more than any other frequency aroundQ1 used for the cal-
culations presented in Fig. 7. Hence, the oscillatory amplifi-
cation of information transfer presented in Fig. 7 requires a
different reasoning than the one presented in Fig. 6.

We emphasize, that the oscillatory amplification of infor-
mation transfer withQ1 sets into action after the first noise-
induced bursting phases in the system emerge. Only then, the
sinusoidal signal withQ1 is able to resonantlysfar more than
any other frequency aroundQ1d enhance the initially noise-
induced bursting phase and thereby assure an enhanced in-
formation transport in the system. This explanation can be
well corroborated by studying time courses of noise-induced
oscillations under the influence of a subthreshold bichro-
matic signalfEq. s4dg, as presented in Fig. 8. It can be well
observed that the steady state in Fig. 8sad sQ=Q2,L=0.01d
is more excited than the one in Fig. 8sbd sQ=Q1,L=0.02d,
despite the fact that the amplitude of the high-frequency sig-

FIG. 6. Fourier coefficients calculated with respect to the
information-carrying frequencyV=3.14310−3 s−1 sk=0.005d un-
der the influence of a high-frequency periodic forcingsQ>Q2,L
=0.01d in dependence on the noise intensity.

FIG. 7. Fourier coefficients calculated with respect to the
information-carrying frequencyV=3.14310−3 s−1 sk=0.005d un-
der the influence of a high-frequency periodic forcingsQ>Q1,L
=0.02d in dependence on the noise intensity.
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nal was two times larger in the later case. Consequently,
bursting phases in Fig. 8sad occur more frequently, i.e., al-
most at all maxima ofk sinsVtd, than in Fig. 8sbd, but are,
however, far less pronounced than in the case of resonant
enhancement withQ=Q1.

Furthermore, it is important to point out that oscillations
in Fig. 8sbd resemble the deterministic ones presented in Fig.
2sad much better than the oscillations in Fig. 8sad. Thus, it
may be concluded that the oscillations with resonantly en-
hanced bursting phasessQ=Q1d are more likely to fulfill
their established biological role, which is increase the reli-
ability of synaptic transmissionf38g as well as provide ef-
fective mechanisms for selective communication between
neuronsf39,40g.

V. SUMMARY

In the paper, a new mechanism for amplifying the infor-
mation transfer in excitable systems close to bifurcation
points that lead to complex oscillatory behavior is presented.
We show that, under the assumption of a smooth, i.e., non-
catastrophic, transition through the bifurcation point from the
quiescent to the oscillatory regime, the phase space at the
excitable steady state has very similar characteristic as at the

oscillatory states beyond the bifurcation. Therefore, such ex-
citable systems incorporate several intrinsic frequencies that
can be exploited for the amplification of information transfer.
In particular, for an excitable steady state close to elliptic
bursting behavior, we show that the phase space is charac-
terized by two high frequencies that are both suitable for the
amplification of information transfer. While the frequency of
damped small-amplitude oscillations around the stable focus
can be determined by the local stability analysis, and was
already used before for the amplification of stochastic reso-
nance f26g, the second frequency is characteristic for the
global phase space, and thus cannot be determined by the
local stability analysis. Instead, the second frequency, conve-
niently termed as the “global-resonant” frequency due to its
inherent presence in the global phase space as opposed to the
frequency of damped oscillations existing in the local vicin-
ity of the steady state, can be precisely extracted from the
quiescent system by calculating the Fourier coefficients of
noise-driven oscillations under the influence of a variable
high-frequency forcing. We show that this “global-resonant”
frequency can be exploited for the amplification of informa-
tion transfer in the system just as successfully as the fre-
quency of damped oscillations around the steady state.

It should be emphasized, that such “global-resonant” fre-
quencies might be particular important also for other com-
plex oscillators, such as parabolic or square-wave bursters.
There, the quiescent state of the system is not a stable focus,
but a stable node. Consequently, such systems do not possess
damped small-amplitude oscillations around the steady state,
whose frequency could be revealed by the local stability
analysis. Hence, the “global-resonant” frequencies are in this
case the only remaining candidates available to elicit a reso-
nant response of the system, and in turn amplify the infor-
mation transfer.

Another important aspect of the presented results is the
fact that the amplification of information transfer with the
“global-resonant” frequency of large amplitude spikes seems
to produce biologically more relevant oscillations than the
previously known mechanismf26g. In particular, the reso-
nant enhancement of the bursting phase manifests in an in-
creased number of spikes during a particular bursting phase,
as well as a better-pronounced predominant frequency be-
tween consecutive spikes. Indeed, it was recently argued that
the postsynaptic response of neurons could depend signifi-
cantly on the frequency content of the burst, due to the ex-
istence of a frequency preference at the synaptic as well as
cellular level. Since different neurons possess different reso-
nant frequencies, the same burst can be resonant for one cell
and not resonant for another, thereby eliciting responses se-
lectively in one cell but not the other. Hence, the number of
spikes in a burst as well as its frequency content might be
crucial, either for assuring selective communication between
neuronsf39,40g, or for the constructive contribution to syn-
chronization and neuronal processingf1,44,46g. Our theoret-
ical findings fully confirm the above described reasoning and
hopefully outline some possibilities for further experimental
work, especially in the field of neuroscience, where bursting
oscillations were found to be of special importance.

FIG. 8. Bursting oscillations induced from the RS fors=0.03,
under the influence of a subthreshold bichromatic signal:sad time
course of variablex for Q=Q2 and L=0.01; sbd time course of
variable x for Q=Q1 and L=0.02. In both casesV=3.14
310−3 s−1 andk=0.005.
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