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Amplification of information transfer in excitable systems that reside in a steady state near a
bifurcation point to complex oscillatory behavior
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We study the amplification of information transfer in excitable systems. We show that excitable systems
residing in a steady state near a bifurcation point to complex oscillatory behavior incorporate several frequen-
cies that can be exploited for a resonant amplification of information transfer. In particular, for excitable
neurons that reside in a steady state near a bifurcation point to elliptic bursting oscillations, we show that in
addition to the resonant frequency of damped oscillations around the stable focus, another frequency exists that
resonantly enhances large amplitude bursts and thus amplifies the information transfer in the system. This
additional frequency cannot be found by the local stability analysis and has never been used for amplifying the
information transfer in a system. The results obtained for elliptic bursting oscillations can be generalized also
to other complex oscillators, such as parabolic or square-wave bursters. Additionally, the biological importance
of presented results in the field of neuroscience is outlined.
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I. INTRODUCTION oscillatory behavior upon detection of a weak external

stimuli. Mathematically, this is feasible when the system

Responges of excitable systems tp external perturbaﬂqrwith oscillatory states is waiting in an excitable steady state
are of key importance for understanding mechanisms of si that is very close to the bifurcation point

?a_l tlranstductlolr; mt_a t?rolad_ Vir'ﬁ‘ty of r|1aturtal as ‘_’;’Gf'” afs arti-" eynctioning of neurons, for example, is often described as
IClal Systems. Farticularly in biological Syslems, 1t 1S of Spe-5 ¢qntinyous switching between a quiescent and an oscilla-

cial importance to understand the response of a given syste{Hry state that are separated by a bifurcation pai. For

to an external signal since thereon often relies proper f“ncépecial types of bifurcation points the system can be easily,

tioning of the whole organism. For example, external signal§ o " 5iready with a weak external signal, forced from the
that assure signal transduction and information processingiescent to the oscillatory state, which is the intuitive defi-
are very important for normal functioning of a single cell aSpition of excitability [22,23. Excitable neurons in a quies-

weIII as dcoupled cells in tlhe tissui]. . 4 hencSEnt state often express damped or sustained small-amplitude
n 0: fer to.gu_arantee °W|e’?er9>|’ con;umonn and NenCqcijations of membrane potential. This dynamical property
optimal functioning, external signals acting upon an excit-y s neyrons especially sensitive to external signals with a

able system are usually weak. This seems COntrad'Cto.r)f)articular frequency and/or amplitude, and hence promotes

since in order to assure reliable signal transduction and 'ndiversity in response of the system with respect to the ap-
formation processing, external signals also have to act ver

o i . . - ¥Iied forcing[24]. These diversities arise due to the occur-
co_nvmcmgly. While studying this apparent contradiction, yonce of classical resonance between the system and the ex-
scientists have encountered a fascinating phenomen

d hasti Th e ¢ h %Rrnal signal. The fact that excitable systems are more
t_erme stoc as_tlc resonar{@._ € main viriue o StO_C 35" sensitive to some external signals than others has motivated
tic resonance is the exploitation of noisy perturbations for,

; ! icular b hanci K several studies, in particular analyzing the possibilities of
constructive purposes, In particular by enhancing weak ex; o jiqing the stochastic resonance effects, thus assuring an

te”.‘a' signals, therel_)y assuring_ enhanced ir.n‘ormatic.)n. rangnhanced noise-induced information transfer in the system
fer in the system. This constructive role of noise was initially 25-2§

encountered in bistable systeri8], and later confirmed ™ rpo'hagic idea behind the amplification of stochastic reso-
theoretically as well as experimentally in a broad variety of,ce is to combine the stochastic resonance with classical
physical[2,4,5 and biological systemfs-12. resonance effects. For bistable systems, Gammaébiail.

. Recent!y, stO(_:hasUc resonance eﬁegts h_ave been studi 95] introduced an open-loop control scheme that permits the
intensely in excitable systems that reside in a steady sta hancement or suppression of the spectral response to

very close to the oscillatory regini@3-21. These excitable y, o50|d-crossing events by injection of an additional peri-
steady states are especially relevant in nature, where it iSyic 5ignal. The amplification of stochastic resonance effects
often the case that quiescence has to be abruptly replaced Ry yiqiapie systems was coined as the “control of stochastic
resonance(25]. Excitable systems near a bifurcation point
to the oscillatory regime were also studied under the influ-
*Corresponding author. Present address: University of Mariborence of periodic perturbations. The amplitude and/or fre-
Department of Physics, Faculty of Education, Koro3ka cesta 160guency of the external periodic perturbation were taken as
SI-2000 Maribor, Slovenia Electronic address: matjaz.perc@univariable parameters while looking for an optimal interplay
mb.si between classical resonance effects and noise-induced re-
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sponses of the system that would in turn lead to the maximal 5 ]
amplification of information transfer. It has been shown, for ]
example, that an optimal amplitude of a high-frequency pe- 1.5
riodic forcing can resonantly enhance the response of an ex 104
citable system to a low-frequency sigri@i8]. Thereby, the o
resonance-like behavior of the system with respect to the 0.5
amplitude of the high frequency forcing, i.e., vibrational 1
resonance was exploited. A conceptually similar phenom-y° 0'0'_
enon was observed with respect to the variable frequency 0 g5
a high-frequency periodic forcing. Parmananetaal. [26] .
have shown that an optimal frequency of a high-frequency  -1-01
periodic forcing can also resonantly amplify information 15
transfer in the system. The optimal frequency of the external ]
forcing corresponds to the frequency of damped oscillations  -2.0 4
around the steady state, i.e., the stable focus, of the excitabl 251 ' . . . .
autonomous system. This is directly linked to the fact that 0.1 0.2 03 0.4 05 06 07
the excitable system is in resonance with the external signa q
that has the same frequency as the damped small-amplitude
oscillations around the stable focus. The latter frequency can FIG. 1. Bifurcation diagram of the autonomous mathematical
be easily estimated from the imaginary part of eigenvalues ofmodel. In dependence on paramedethe characteristic valuds)
the flow dynamics linearized around the steady statef variable x(t) are presented: stablésolid line) and unstable
[24,26,29,30( (dashed ling foci, maxima, and minima of unstableotted line$

An extension of this basic Concept was recenﬂy proposeénd stable(d0t9 periodic solutions. The arrow marks the reference
in [27], where it was shown that the effect of stochasticstate(RS). For further details and parameter values see text.
resonance can al_so be amp||f_|ed_ by the add|t|or! of a hlghE)SCiIIations under the influence of subthreshold periodic
frequency signal if the latter is in resonance with the So'forcing.
called Canard oscillations of the system. The Canard effect £, 53 mathematical model of an excitable neu®sl, we

relates to a specific behavior of the system at the bifurcationoye the existence of additional resonant frequencies for a
point to the oscillatory regime. The main feature of this phe-steady state near a bifurcation point to elliptic bursting be-
nomenon is that a very small change in the bifurcation pahavior, which is one of several possible bursting types
rameter leads to a large difference in the behavior of th§22 36,37. More precisely, there are two resonant frequen-
system[31-33. Thus, amplitudes and frequencies of oscil- cies in our system; one matching the frequency of damped
lations in this small parameter range change abruptly. Thescillations around the steady stdtdable focug and the
high frequency of these oscillations is in the context ofsecond that resonantly enhances large amplitude bursts.
Volkov et al. [27] used for aim-oriented amplification of While the external signal with the first frequency resonantly
noise-induced information transfer in the system, i.e., théelps to lower the threshold for neuron firing, the second
so-called Canard-enhanced stochastic resonance. frequency plays a crucial role in maintaining a well-

In this paper, we further complement the existing mecha€xpressed bursting phase of oscillations. The latter effect is
nisms that can be exploited for amplifying the information ©f key importance for bursting oscillations, since well-
transfer in excitable systems. In addition to the local stabilityeXPressed bursts of action potential are vital for increased
analysis of the autonomous system, which gives an insighliability of synaptic transmissiof88], and may also pro-
into the possible resonant frequencies characteristic for thyde effective mechanisms for selective communication be-
phase space in the vicinity of the steady state, we are intefe€N neurong39,40. The results obtained here for elliptic
ested in the global characteristics of the phase space. This éjrrsottqugrosslrlé?itrl\%nfy[)nea}sy ts);icor]: Z\;ega%;%%tﬁ’é Ig:pSc;Lae?r(e::eV\?alsz
g{ftﬁ)s:g[[?grl]a;(m?soE[thaargncliatgrtsxtf:rigllixStoese::Ciiﬁ/ats(t)?;eseﬂg\?ﬁ) rt ursting, were the o;cnlato_ry convergence to the rest state is,

7 ; g . ~ "= due to a different bifurcation structuf@2], not inherently
which is often characterized with several different intrinsic

f ies. Si h bl d ; | resent in the system, and thus only the “global-resonant”
requencies. Since the excitable steady state Is very close iy, ,encies determined as described below, may be exploited

the bifurcation point, and hence to the oscillatory states, thgyr the amplification of information transfer in the system.
phase space around the excitable state must have very similar The paper is structured as follows. Section Il is devoted to
characteristics as the phase space beyond the bifurcatigRe description of the mathematical model and its main char-
point, assuming, of course, that the transition through theycteristics. In Sec. Ill we point out similarities between the
bifurcation is smooth, i.e., no catastrophes oc@g]. Al-  noise-induced oscillations from the steady state and the au-
though the local stability analysis of the excitable state retonomous oscillatory behavior, whereas in Sec. IV the main
veals only one characteristic frequency, which is the one ofesults are presented. In Sec. V we summarize the results and
the stable focus, the system may indeed posses several otlertline the biological importance of our findings.
“global-resonant” frequencies that can also be used for the

amplification of the information transfer. We demonstrate Il. MODEL

how these additional resonant frequencies can be determined We study a mathematical model of an idealized nerve
by calculating the Fourier coefficienf84] of noise-induced membrane model, which was formulated by FitzHugh and
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FIG. 2. Analysis of autonomous bursting oscillationgjat0.33:(a) time course of variable; (b) 2D projection of the attractor and the
corresponding bifurcation diagram. Sol{dashedl lines represent stabl@instablg¢ foci, whereas dotteddashed—dottedliines represent
stable(unstablé periodic solutions. Up-triangles denote the fold limit cycle bifurcation and the circle denotes the subcritical Hopf bifurcation
(HB); (c) separately shown large amplitude spikes during the bursting phasé¢asiahall-amplitude oscillations during the slow passage

phase.

Rinzel in 1976 and later extensively studied [iB5]. The
evolution of the FitzHugh-RinzelFHR) model is governed
by the differential equations

d

d—)t(:x—x3/3—y+z+q, (1)
d
5 = dx+a-by), 2
d
d—f=s(—x+c—dz). (3)

For parameter values=0.7,b=0.8,c=-0.9,d=1, §=0.08,
and £=0.0001, the system has a Hopf bifurcation ct

and minima of unstable limit cycles. For stable periodic so-
lutions, maxima and minima of(t) are depicted by dots. To
point out the complexity of bursting oscillations fay
>0.2637, in addition to the main maxima and minima be-
longing to large amplitude spikes, also maxima and minima
of small amplitude oscillations that appear in the bursting
pattern are presented. The arrowgat0.25 marks the excit-
able steady state, which is taken as the reference G8e

for our analyses in the subsequent sections.

To reveal the main characteristics of elliptic bursting os-
cillations, we consider autonomous oscillations of the system
at g=0.33, which are presented in FigaR The 2D projec-
tion of the corresponding attractor in the phase space, to-
gether with the bifurcation diagram obtained according to the
fast-slow subsystem method proposed by Rih36], is pre-

=0.2637. Fory< 0.2637 the system is quiescent whereas forsented in Fig. @). The virtue of the fast-slow subsystem
q>0.2637 the system exhibits elliptic bursting oscillationsmethod is to extract the fast changing variables of the system

that transient to simple spikelike oscillations @ss further

and then use the slow changing variables as bifurcation pa-

enlarged. The bifurcation diagram of the system is presentetmeters. The fast changing variables of the FHR model

in Fig. 1, where the characteristic values) of variablex(t)

were identified to be(t) andy(t), whereas the slow chang-

[see Eq(1)] are depicted in dependence on the parangter ing variable isz(t). Hence, we can reduce the 3D system
Stable and unstable foci are presented by solid and dashéx(t),y(t),z(t)) to a 2D systen(x(t),y(t)) and use the vari-
lines, respectively, whereas dotted lines indicate maximaablez(t) as the bifurcation parameter. The bifurcation analy-
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0.35 which can be observed if the system is externally perturbed
. from the excitable reference state. The existence of these
0.30 RS UPOs, however, cannot be determined by the local stability
: analysis. Nevertheless, their presence can be justified by con-
0.25 : sidering the fact that the bifurcation responsible for the onset
— ! of bursting oscillation is noncatastrophic, and thus the phase
® ! space varies smoothly not just locally around the steady
g 0.2041 ! state, but also globally. Therefore, if the phase space topol-
s | ogy is indeed very similar for all values af around the
0.15 I bifurcation point, it is reasonable to expect that an external
........... Loos forcing with the “global-resonant” frequency of UPOs would
0.10- E elicit a resonant response of the system. In the following, we
' confirm this reasoning by studying solely noise-induced os-
cillations from the RS, and show that both frequendies
006 ————7F——T 77T T and wg) can indeed be exploited for the amplification of
0.21 0.24 0.27 0.30 0.33 0.36 0.39 0.42 0.45 information transfer in the system.
FIG. 3. Frequency of large amplitude spikes (thick solid line I1l. NOISE-INDUCED OSCILLATIONS

and small-amplitude oscillations, (thin solid line) in dependence . . . . . .
on the parametar. The dotted line indicates hypothesized values of ~ 1he Gaussian noisg(t), with the variancer is applied to
w,, whereas the vertical dashed line marks the reference@sje  the excitable RS by addingt) as an additional term to Eq.
(1). For £(t)=0 the system remains quiescent, whereas if the
sis was carried out with the software packageo97 [41]. It noise variance is set large enough, the system exhibits noise-
can be well observed that the transition to repetitive spikinghduced bursting oscillations. Thus, the initially quiescent
occurs via a subcritical Hopf bifurcatiofiiB) and the tran-  System atq=0.25 can be excited solely by noise df is
sition to the quiescent state occurs via a fold limit cyclechosen large enough. The time course of purely noise-
bifurcation, which is the characteristic bifurcation structureinduced oscillations and the corresponding fast-Fourier
of elliptic bursting oscillationg22,35. Noteworthy, the os- transform(FFT) are shown in Figs. @ and 4b), respec-
cillatory state is characterized by the slow passage effedively. It can be well observed that the noise-induced oscil-
[37,42,43, which manifests as a delayed transition of thelations are characterized by three well-expressed angular
trajectory to the upper stable periodic branch after the subfrequencies(wo, @;, and ), namely the predominant fre-
critical Hopf bifurcation is exceeded. The most interestingduency of the main bursting pattef@, ~4.9x 107 s™), the
feature of the system, however, that is of particular relevanc&equency of large amplitude spikes during the bursting
for this study is the inherent presence of two high frequenphase(w;~0.13 s%), and the frequency of small amplitude
cies in the system; namely the frequency of large amplitude@scillations that emerge between successive bursting phases
spikes during the bursting pha$€ig. 2(c)] and the fre- and corresponds to the frequency of damped oscillations
quency of small-amplitude oscillations during the slow pas-around the stable focus gt0.25(w,~0.26 s?). While the
sage phaséFig. 2(d)]. The angular frequency of large am- low interburst frequencyw, depends significantly on the
plitude spikes matches the frequency of stable periodimoise intensity, i.e., increases/decreases with increasing/
branchesw,=0.126 s!, whereas the angular frequency of decreasingr, both high frequencies remain virtually unaf-
small-amplitude oscillations matches the frequency of stablefected by varyingo. As hypothesized above, both high fre-
unstable foci in the 2D bifurcation diagram, which can bequencies in the noise-driven system are very similar to those
obtained from the complex conjugate eigenvalues at the HBound in the deterministic oscillatory statés;~ w, and
(N ,=%0.275i0 wz=0.275 sY). w,~ wp), Which confirms the above prediction that the phase
While for different values of the parametgr>0.2637 space at the RS has very similar topological properties as the
oscillations differ considerably in their main frequency atphase space beyond the Hopf bifurcatign-0.2637. Thus,
which successive bursting phases occur, frequengjeand  the phase space around the excitable reference(ste-ig.
wg remain constant, as shown in Fig. 3. Moreover, the fre-1) indeed incorporates UPOs with two high frequencies
quencywg of small-amplitude oscillations in the oscillatory and w,) that may potentially be exploited for the oscillatory
regime atq>0.2637 is also characteristic for damped oscil-amplification of information transfer in the system.
lations around the stable foci fay<<0.2637. This indicates
that the phase space topol_ogy var_ies only little whifgasses IV. AMPLIEICATION OF INFORMATION TRANSFER
through the Hopf bifurcation, which means that the phase
space at|< 0.2637 has very similar topological properties as  The oscillatory amplification of noise-induced informa-
the phase space at>0.2637. Therefore, we hypothesize tion transfer can occur when the system is, in addition to
that also the frequency of large amplitude spikes, is in-  noise and the low-frequency information-carrying signal,
herently incorporated in the phase space alreadygat driven with a high-frequency periodic signal with frequency
<0.2637 (dotted line in Fig. 3 as the so-called “global- © that matches some intrinsic frequeri@y) that is incorpo-
resonant” frequency of unstable periodic orbitdPOs, rated in the system. Only those frequendieshat are close
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FIG. 5. Fourier coefficients for the periodically drivefx
0.014 =0,A=0.0) FHR model from the RS under the influence of dif-
ferent noise intensities.

0.012
- 0.010 and the noise variance are varied. Note, that in this case
L 0.008 the amplitude of the sinusoidal forcing is also set small
0.006 enough so that the system does not express large amplitude
' bursting oscillations without the addition of noise. To evalu-
0.004 ate responses of the periodically driven noisy system in de-
0.002 pendence o), we calculate the Fourier coefficiers The
Fourier coefficients tell precisely how much information in
°-°°?,_bo 0.05 010 015 020 025 0.30 0.35 0.40 the signal is transported with a particular forcing frequency
o(s") [2]. Noteworthy, the Fourier coefficients are proportional to

the (square of thespectral power amplificatiofSPA) [45],
FIG. 4. Analysis of noise-induced oscillations from the RS for which is often used as a measure for stochastic resonance.
0=0.05: (a) time course of variable; (b) the corresponding fast- Here, the Fourier coefficient® are calculated according to

Fourier transform. the equation$34]:
e 27n/®

to some intrinsic frequency of the system, i.©.==w, can Qqin= —j 2x(t)sin(Ot)dt, (5)
successfully evoke a resonant response and in turn lead to the 2nm Jo
amplification of information transfer. To study the oscillatory
amplification of information transfer, we add an additional 2m/®
term S(t) to Eq. (1), while Egs.(2) and (3) remain un- Qcos= ﬂf 2x(t)codBt)dt, (6)
changed. The additional ter8{t) added to Eq(1) is defined 0
as _—

. . Q= VQsin* Qcos (7)

S(t) = £(t) + « sin(Qt) + A sin(Ot), (4)

We calculate the Fourier coefficien@sin dependence on
where{(t) is the Gaussian noise with variance « sin(Qt)  the frequency® for various noise intensities. Results pre-
is the information carrying low-frequency signal, and sented in Fig. 5 are in excellent agreement with the results
A sin(®t) is the high-frequency signal responsible for thepresented in Figs. 3 and 4, and enable us to precisely deter-
oscillatory amplification of the information transfer. In all mine both frequencies that are inherently present in the sys-
subsequent calculationsandA are set small enough so that tem at the RS. The first peak @;=0.131 s corresponds to
if =0, the system remains quiescent. Figure 4 shows thahe frequency of large amplitude spikes during the bursting
the RS of the noise-driven FHR model incorporates two higtphase, whereas the second peak®gt=0.256 S! corre-
frequencieSw ; and w ,) that may potentially be exploited sponds to the frequency of small-amplitude oscillations that
for the oscillatory amplification of information transfer by emerge between successive bursting phases, also called the
setting®=0,= w; or O=0,= w, in Eq. (4). frequency of the oscillatory convergence to the rest state.

In order to determine these two frequenci€g and ©,) It remains to verify if both frequenci€®, and®,) assure
more precisely, we systematically investigate responses dhe amplification of information transfer with respect to the
the system to a high-frequency sinusoidal forcing in the prestow-frequency information carrying signal sin(Qt), which
ence of noise. To this purpose we 36t0, andA=0.01 in  has been excluded from the calculatigrs:0) until now. To
Eqg. (4), whereas the frequency of the sinusoidal forcidg this purpose we calculate the Fourier coefficie@swith
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FIG. 6. Fourier coefficients calculated with respect to the FIG. 7. Fourier coefficients calculated with respect to the
information-carrying frequenc$2=3.14x 103 s™1 (x=0.009 un- information-carrying frequencf2=3.14x 103 s (x=0.009 un-
der the influence of a high-frequency periodic forcify=0,, A der the influence of a high-frequency periodic forcif@=0,A
=0.0) in dependence on the noise intensity. =0.02 in dependence on the noise intensity.

respect to the information carrying frequerfybut consider  rest stated,, also assures an enhanced information transport
only large amplitude spikes as possible information carriersin the system at frequend=3.14x 102 s™* already at low
whereas the small-amplitude oscillations between successiv@ise intensities. Finally, we may conclude that both frequen-
bursting phases are replaced by the steady state value of thes that are inherently present in the system at the RS assure
autonomous system at the RS. The threshold for large amplthe amplification of stochastic resonance effects, and thus
tude spikes is set ta=0.0. Thereby, we achieve that if no guarantee an enhanced information transport in the system.
noise is added to the system the Fourier coefficients are zero, Despite the relative well-expressed resemblance of the re-
since no information transport occurs. Noteworthy, an idensults presented in Figs. 6 and 7, the mechanism behind the
tical approach has already been used by Volkoal. [27]. amplification of information transfer in the system is quite
First, we calculate the Fourier coefficier@sfor frequen-  different for both resonance frequencies. The reason for this
cies aroundd,=0.256 s* to verify if an enhanced informa- difference lies in the origin of the resonant frequendi®s
tion transport, i.e., amplified stochastic resonance, can band®, in the system. Whilé, represents the frequency of
obtained near this resonant frequency. To this purpose we sktrge amplitude spikes during the bursting pha3e repre-
0=3.14x103s?, k=0.005 and A=0.01 in Egq. (4), sents the frequency of small amplitude oscillations between
whereadd is varied aroundd,. The results are presented in successive bursting phases. Therefore, the inclusion of an
Fig. 6. It can be well observed thé, indeed warranties an additional sinusoidal forcing with the frequendy, reso-
enhanced information transport in the system at frequencpantly (far more than any other frequency aroufig) ampli-
(1=3.14x1072s! already at low noise intensities. On the fies the steady state and thus lowers the threshold, whereas
other hand, any other frequency aroudgldoes not have the the inclusion of an additional sinusoidal forcing with the
same effect even at higher noise intensities. Thus, we corirequency®; does not have the same effect. It is still true, of
clude that the addition of a periodic forcing with the resonantcourse, tha®, excites the steady state of the system and thus
frequency®, indeed amplifies the stochastic resonance, andbwers the threshold, but not in a resonant manner, i.e., not
thus guarantees an enhanced information transfer in the exiore than any other frequency aroufd used for the cal-
amined system. culations presented in Fig. 7. Hence, the oscillatory amplifi-
Next, let us examine if the resonant frequen@)y  cation of information transfer presented in Fig. 7 requires a
=0.131 5%, termed above as the “global-resonant” fre- different reasoning than the one presented in Fig. 6.
guency, also assures an amplified information transfer in the We emphasize, that the oscillatory amplification of infor-
system. To this purpose we calculate the Fourier coefficientgation transfer with®, sets into action after the first noise-
Q according to Eqs(5)—<7) by taking 2=3.14x103 s}, induced bursting phases in the system emerge. Only then, the
x=0.005, and\=0.02, in Eq.4). Note, that the amplitude of sinusoidal signal witl®, is able to resonantl{far more than
the high-frequency sinusoidal signalcan be set larger than any other frequency arour@,) enhance the initially noise-
in the previous caséA =0.01), since®; is not in resonance induced bursting phase and thereby assure an enhanced in-
with the frequency of the oscillatory convergence to the resformation transport in the system. This explanation can be
state, and thus doesn’t amplify the rest state as much as thveell corroborated by studying time courses of noise-induced
sinusoidal forcing with frequenc$,. The obtained results oscillations under the influence of a subthreshold bichro-
for various® around®, are presented in Fig. 7. It is evident matic signal[Eq. (4)], as presented in Fig. 8. It can be well
that the resonant frequen€y,=0.131 s?, corresponding to  observed that the steady state in Figgl§®=0,,A=0.01)
the frequency of large amplitude spikes during the burstinds more excited than the one in Figb3 (#=0,,A=0.02,
phase, similarly as the frequency of the convergence to thdespite the fact that the amplitude of the high-frequency sig-
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oscillatory states beyond the bifurcation. Therefore, such ex-
citable systems incorporate several intrinsic frequencies that
can be exploited for the amplification of information transfer.
0.15 In particular, for an excitable steady state close to elliptic
bursting behavior, we show that the phase space is charac-
terized by two high frequencies that are both suitable for the
S amplification of information transfer. While the frequency of
damped small-amplitude oscillations around the stable focus
0.05 can be determined by the local stability analysis, and was
already used before for the amplification of stochastic reso-
nance[26], the second frequency is characteristic for the
global phase space, and thus cannot be determined by the
local stability analysis. Instead, the second frequency, conve-
niently termed as the “global-resonant” frequency due to its
inherent presence in the global phase space as opposed to the

0.20

0.10

M ™ T N TN A 0,00
18000 21000 24000 27000 30000
t(s)

(b)

0.20 L oo .
frequency of damped oscillations existing in the local vicin-
ity of the steady state, can be precisely extracted from the

0.15 quiescent system by calculating the Fourier coefficients of
noise-driven oscillations under the influence of a variable
0.10 high-frequency forcing. We show that this “global-resonant”
X frequency can be exploited for the amplification of informa-
tion transfer in the system just as successfully as the fre-
0.05 quency of damped oscillations around the steady state.
It should be emphasized, that such “global-resonant” fre-
A 0.00 quencies might be particular important also for other com-
18000 21000 24000 27000 30000 plex oscillator_s, such as parabolic or square-wave bursters.
t(s) There, the quiescent state of the system is not a stable focus,

but a stable node. Consequently, such systems do not possess
FIG. 8. Bursting oscillations induced from the RS f9+0.03, damped small-amplitude oscillations around the steady state,
under the influence of a subthreshold bichromatic sigf@ltime  whose frequency could be revealed by the local stability
course of variablex for ®=0, and A=0.01; (b) time course of  analysis. Hence, the “global-resonant” frequencies are in this
variable x for ®=0; and A=0.02. In both cases)=3.14  case the only remaining candidates available to elicit a reso-
x10°° st and k=0.005. nant response of the system, and in turn amplify the infor-
mation transfer.
nal was two times larger in the later case. Consequently, Another important aspect of the presented results is the
bursting phases in Fig.(& occur more frequently, i.e., al- fact that the amplification of information transfer with the
most at all maxima of sin(Qt), than in Fig. 8b), but are, “global-resonant” frequency of large amplitude spikes seems
however, far less pronounced than in the case of resonat® produce biologically more relevant oscillations than the
enhancement witl® =0 ;. previously known mechanisi26]. In particular, the reso-
Furthermore, it is important to point out that oscillations nant enhancement of the bursting phase manifests in an in-
in Fig. 8b) resemble the deterministic ones presented in Figcreased number of spikes during a particular bursting phase,
2(a) much better than the oscillations in Figi@8 Thus, it as well as a better-pronounced predominant frequency be-
may be concluded that the oscillations with resonantly entween consecutive spikes. Indeed, it was recently argued that
hanced bursting phasé®=0,) are more likely to fulfil  the postsynaptic response of neurons could depend signifi-
their established biological role, which is increase the relicantly on the frequency content of the burst, due to the ex-
ability of synaptic transmissiof38] as well as provide ef- istence of a frequency preference at the synaptic as well as
fective mechanisms for selective communication betweegellular level. Since different neurons possess different reso-
neurong 39,40. nant frequencies, the same burst can be resonant for one cell
and not resonant for another, thereby eliciting responses se-
V. SUMMARY lectively in one cell but not the other. Hence, the number of
spikes in a burst as well as its frequency content might be
In the paper, a new mechanism for amplifying the infor-crucial, either for assuring selective communication between
mation transfer in excitable systems close to bifurcatiomeurong 39,40, or for the constructive contribution to syn-
points that lead to complex oscillatory behavior is presentedchronization and neuronal processiig44,44. Our theoret-
We show that, under the assumption of a smooth, i.e., noneal findings fully confirm the above described reasoning and
catastrophic, transition through the bifurcation point from thehopefully outline some possibilities for further experimental
quiescent to the oscillatory regime, the phase space at theork, especially in the field of neuroscience, where bursting
excitable steady state has very similar characteristic as at thescillations were found to be of special importance.
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