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Crash test for the restricted three-body problem
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The restricted three-body problem serves to investigate the chaotic behavior of a small body under the
gravitational influence of two heavy primary bodies. We analyze numerically the phase space mixing of
bounded motion, escape, and crash in this simple moddtlmioti) celestial mechanics. The presented
extensive numerical analysis reveals a high degree of complexity. We extend the recently presented findings for
the Copenhagen case of equal main masses to the general case of different primary body masses. Collisions of
the small body onto the primaries are comparatively frequent, and their probability displays a scale-free
dependence on the size of the primaries as shown for the Copenhagen case. Interpreting the crash as leaking in
phase space the results are related to both chaotic scattering and the theory of leaking Hamiltonian systems.
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|. INTRODUCTION Il. THE MODEL

We investigate théplanar circulay restricted three-body

model in celestial mechanics. It was first considered by Eule roblem. Two primary bodies move on different circles with
' y he same Kepler frequenjcyabout their common center of

(1772 and Jacobi1836 and has attracted much attention ravity (the origir) assumed to be fixed and a test bod
until today. Extensive investigations, analytical and numeri—%oveg in the nge lar{see Fig. 1 y
cal, are reported in the famous works of Szebehiib] and In the inertial frar%e of refergjénce the RTBP has a time-
Hénon[6-12. Major parts of the standard reference of the ;o™ 1 Santial v Xy 0=~/ 11(0) = (1= ) [1o(0)
RTBP deal with finding, describing, and classifying periodic P P TAA KT KITT2

orbits. However, the applications are ubiquitous. We mentiorWhereM:ml/(ml+n\2)’ andry(t)r(t) are the distances to

only deterministic chaok13], relativistic dynamicg 14,15, the respective primaries. The time dependence of the poten-

quantum mechanickl], and chemica[17,18 and astro- tial is _usuglly eliminated using a corotating frame wherein
physical issue$19-21]. One reason for the diversity of ap- the primaries rest.l Inzthe; corotatln% coordlnzatezsysé’s@n
plications may be the simplicity and cosmological relevance_f“/rl_z(l_ZM?/rZ_E(X +y%) where r{=(x+u)+y*, r3=(x
of the problem. It has been studied to investigate the stability 1 +#)°+Y*, is the corresponding potential that Jacobi intro-
of (extrasolar(subsystemg 22,23, (chaos assistedsteroid ducgd first. Hence, it is called Jac_obrs potential. The qua-
capture[24], and the dynamics of two massive black holesdratic term results from the centrifugal ford&eq=(x,y),
orbited by a suri25]. Although much simpler than the gen- Whereas the Coriolis forcEc,=2(y,-X) gives no contribu-
eral three-body problem the RTBP is nonintegrable andion to the potentialE=3(x>+Yy?)+V,is conserved antlp to
serves as a paradigm for classical chgld. the factor—2) has been known historically as Jacobi’s inte-
For the Copenhagen case of equal main masges gralC=-2E. Note that the energy in the inertial syst&pis
=1/2) we recently presented a partition of orbits into classeghe sum ofE and the angular momentuin
of various kinds of regular motion, chaotic motion, escape, E —E+L (1)
and crash(see Ref[26]). Therein we focused our attention " '
mainly on retrograde orbits. Here we focus on both retrodt is widely believed thak is the only(independentintegral
grade and direct orbits in the investigation of the phase spacef the systen{28]. The scaled equations of motion for the
projection onto the configuration space. In addition, we extest body in the corotating frame read
tend the analysis to different values of the mass ratio
. . . . X+ X=1+pu
The paper is organized as follows. In the next section we X=2y+x-(1-pw)— -u 3
introduce the RTBP. Section Il briefly reviews the classifi- r I
cation scheme previously introduced in Rdf26,27. The
scheme is important for the diagrams that represent the sub- c_ o Ny Y
stantial numerical results in the present article. In Sec. IV the y=-2y-Q1 ’“)ri ’“rg' 2
phase space mixing of the projection onto the configuration . . ) .
space is discussed for the Copenhagen problem. Section Note that in Eq(2) the radius variables are no longer explic-
extends the discussion to relevant values of the mass ratigy time dependent. In addition the equations of moti@h
w#1/2. In Sec. VI we focus on théx,E) plane (energy ~ are invariant under the symmetry operatdn(x,y,t) — (X,
versus positionfor different values ofu. An analysis of the
dependence of the total area of crash on the primary sizes'The distance between the two primaries is scaled to unity and a
follows in Sec. VII. Finally, we summarize our findings in time unit is related to the unit angular velocity of the primaries so
the conclusions. that one rotation corresponds tar 2ime units.

The restricted three-body problefRTBP) is a simple
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Y position and extent of chaos in terms of Poincaré sections
being completéin the sense of Dullin and Wittgl29]). With
polar coordinate$r, ¢) in the center of mas&COM) system

of the corotating frame the conditior=0 defines a two-

Test body dimensional surface of section in the surfaceconst, with
° two disjoint parts¢)<0 and ¢>0. Each of these two parts
Mass 2 has a unigue projection onto the configuration space, i.e., the
: o 3 1 5 (x,y) pIar_1e. Figure 2 displays these projections for bgth
Mass 1 ™ <0, and¢>0, at two different energy levels.
In common representations of Poincaré sections the color

codes indicate single orbits. In the Poincaré sections pre-
sented here each pixel is given a color according to the orbit
type We call these diagramerbit type diagrams(OTDs).

The orbit types are classified into bounded motion of a few
kinds, unbounded motion, and collision orbits.

FIG. 1. (Color onling Schematic picture of the restricted three- A. Bounded motion

body problem. For chaotic systems with configuration space extending to
] infinity it is a formidable task to distinguish bounded from
-y, ~t). For the Copenhagen caée=1/2) there is another ynbounded motion for specific initial conditions. Here we
special symmetr": (x,y,t) — (=X, =Y, t). These two are the yse a practical definition of bounded motion: We call an orbit
only known (independentsymmetries of the equations of hounded if the test body stays confined fgfe,inside the
motion (2). system’s disk with radiu&s.emand center coinciding with
the COM origin. This implies that the higher the values of
timeout 2N Reysiem the more adequate the statemeatinded
Due to Jacobi’s integral the motion is restricted to three-motion becomes. In the limity,eou— % the definition be-
dimensional surfaceB=const in phase space. We study thecomes the precise description of bounded motion in a disk of

Ill. ORBIT TYPE DIAGRAMS
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FIG. 2. (Color online Orbit type diagram$OTDs) for two different energy levels, and for both parﬁKO and ¢>0 of the surface of
sectionr=0. The(x,y) plane in a corotating frame of reference for the Copenhagen(Ba$ for u=1/2) is shown. Regions of bounded
motion and collision are shown beside the OTDs. The color of a point represents the orbit type of a test body which has been launched with

pericenter position &, y) for the energy leveE (see orbit class legend belgvTop: OTD and its decomposition Et=—1.375 for¢< 0 (a),
and for{;s> 0 (b). Bounded motion is indicated by the gray scdleslorg of classes 1a—4. Whifélack (red)] points indicate a collision with
mass 1(2). Escape orbits are colored bla@tksc,,z0) to gray (blue) (tescaps 10 000. Bottom: Decompositions fde=-1.828:(c) <0, (d)
¢>0. Positions of the primaries are indicated ig (m2). Radii of the primariegnot shown RmaS§2: 104
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Outside the system’s disk: escape orbit
assumed

(Crash possible)

Inside the system’s disk:
bounded motion assumed

FIG. 4. (Color onling Schematic picture of the orbit classifica-
tion. We call the motion bounded if the test body stays confined for
a given time, satimeous iNSide the system’s disk with radius
Rsystem If the test body leaves the disk the integration is aborted and
the motion is assumed to be unbounded. We call the corresponding
trajectory an escape orbit. Finally, if during the integration a crash
with one of the main masses occurs we call the trajectory a crash
orbit.

first main mass and the right to those around the second

primary body. In Fig. 3 we show example orbits for 12
FIG. 3. Symbol sequences for the orbit examples: Class laglasses that we termed la—4. A precise description of the

(LLL...; 000...); 1b, (RRR...; 000...); 1c, (ROLLL...; 000...).  classes has been given earlia7].

Class 2a,(000...; LLL...); 2b (000...; RRR...); 2c, (000...;

ROLLL...). Class 3afLLL...; LLL...); 3b, (RRR...; RRR...); 3c,

(LOOLLOOL...; ORROORRO..); 3d, (ROORROOR..; OLLOOLLO...);

B. Unbounded motion (escape orbits)

3e,(ROLLL...; ROLLL...). Class 4/(000...; 000...). It is important If the test body leaves the system’s digkith radius
to know that the orbits need not be periodic to have the same symRsysten) @t @ tiMetescape< timeous WE Say that the test body has
bol sequences. left the system and stop the numerical integration. These

points in the OTDs are colored from dark gréylue) (cor-
radius Rgysem Unfortunately, the higher the values of theseresponding to a small value 6fscqpd to light gray (blue) (a
two parameters, the longer the numerical integration takesigh value Oftegcaps.
In this article, we cho0Sgmequ= 10 000 andRgysien=10. Itis One should keep in mind that the Kepler problem exhibits
important to know that a lower value .o, SMMOOths the ellipses for all starting positions in the configuration space
fractal border of bounded regioh&7]. Our symbolic orbit  (x,y) for some energy level. Thus, our definition is inappro-
classification for bounded motion is suitable for an automatigriate for orbits that never enter thener region, sayy <1,
identification of the orbit types. The classification differs being only slightly disturbed Kepler ellipses. But here we
from the standard scheme introduced by Stromgren and execus our attention on the dynamics of the motion in the
tended by Hénofsee, e.g., Hagihaf&0] for a detailed dis- inner region. Furthermore, thinking of a real solar system
cussion. We emphasize the distinction between regular mowhich possesses more disturbing bodies, the definition is
tion (including small scale chaos and quasiperiodic motion physically motivated.
on the one side and strongly chaotic mot{mot hindered by
Kolmogorov-Arnol'd-Moser orbits[13]) on the other. Our C. Collision
classification is based on an automatic detectiorx aixis ) i i ) i
passages of the test body. Two consecusivexis passages A crash with the first primary body of radidgnass simply
define ahalf rotation with respect to the fixed positions of 0ccurs when the test body, being a point mass, crosses the
the primaries. We name a half rotation counterclockwisedisk with radiusRnass around mass 1. In the OTDs these
around one(of the two primaries by “L,” a half rotation ~points are colored white. A collision with the second primary
clockwise by “R,” and effectively no rotation is labeled by body (with radiusRyss) is defined analogously but colored
zero “0.” For example, a quasiperiodic clockwise osmtely  gray (red). Figure 4 displays a schematic picture of the orbit
around the second center is described by the two symbadallassification.
sequences$000...; RRR) (cf. class 2b in Fig. B Note that In order to keep things simple we assume the simple re-
the left slot of the bracket refers to revolutions around thdation
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FIG. 5. (Color onling Orbit type diagrams for different values of the mass ratiat the respective Trojan energy levésV;(u), and
for ¢< 0. Regions of bounded motion and collision are shown beside the OTDs. The color of a point represents the orbit type of a test body
which has been launched with pericenter positiolixay) (see orbit class legend belpwa) OTD and its decomposition fqe=1/3 atE
=V4(1/3)=-1.388. Bounded motion is indicated by the gray scé&tetors of classes 1a—4. Whitélack (red] points indicate a collision
with mass 1(2). Escape orbits are colored blatkscapa0) to gray (blue) (tescaps 10 000. Radii of the primariegnot shown Ruasg
=104, Rmas%:Rmasg(Zu)1/3:O.874>< 104 [see text around Eq(3)]. (b) Decompositions foru=1/5 at E=V1(1/5)=-1.420, Riass
=0.737xX 10" (c) Decompositions fou=1/11 atE:VT(l/ll):—1.458,Rma5§:0.567>< 1074, (d) Decompositions fog.=1/82.3(value for
the earth-moon systenat E:VT(1/82.3:—1.494,Rmas§:0.290>< 107%. Positions of the primaries are indicated o (m2).

Rmass = Rmasg X (2u)3 (3)  white (black) represent the start positions where the test body
eventually crashes with the first primary body. Due to the
between the radii of the primaries. First, E§) guarantees rotating primaries theserash basinswvind out as spirals in
Rmass =Rmass for ©=1/2, andsecond, it mimics the assump- the outer regions of the diagram. But there also appear crash
tion that the radius of a celestial body is proportional to thebasins in the immediate neighborhood of the origin. Strik-
cubic root of its mass. If not stated otherwise we choose her#gly, the area of crash basins is several orders of magnitude
Rmas§:10_4 corresponding roughly to thescaled relations ~ greater than the ftotal size qf the main body disks. In this
of the sun-jupiter system whege~1/1000. representative Poincaré section, the phase space emerges as a
close mix of crash basins, regions of bounded motion, and
escape basins. In the OTD f@>0 at the Trojan energy
level E=-1.375, escape dominates the configuration space.
Figure 2 shows OTDs for the Copenhagen casel/2.  The total size of regions of bounded motion is less for
The(x,y) plane(in the corotating frame of referenctr the >0 than for$<0. This can be understood in terms of Eq.
surface of section=0 with respect to the origif0,0) fortwo  (1). The energy in the inertial systei®, is higher forL
different energy levels is shown. The diagrams in Fig. 2 expositive than for negative values bf
hibit the symmetryX' because it is also respected by the |y Fig. 2(c) we depict the(x,y) plane for $<0 at E=
section condition. , -1.828. There is an inaccessible regi@gmay) in the plane
Figure 2a) shows the OTD decomposition for both  because the energy is smaller than the Trojan energy. The
<0 and >0 at energyE=-1.375 in comparison. For  inaccessible area separates two regions. In the outer region
=1/2 theenergy levelE=-1.375 represents the so-called there is a(partly visible) ring of bounded motiorfC) which
Trojan energyV (u)=—(3/2)+(u(1-u)/2) corresponding separates regions of escape orbits. In the inner zone the test
to the maxima of Jacobi’'s potential. Thus, the test body hadody is confined. The regiomsandB indicate stable motion
access to the fullx,y) plane. around the individual primaries. These regions are sur-
The main regionA of bounded motion around mass 1 rounded by a chaotic mix of areas of crash orbits with re-
consists of a central region, surrounded by(&ive small and ~ spect to the first and the second primary bodies. In Fid) 2
one tiny islands. For each region of regular motion there isthe OTD for the conditionp> 0 is shown. In addition to the
a resonance, i.e., a periodic orbit at its center. The regions imain regions of bounded motioA and B, there are four

IV. THE (x,y) PLANE FOR THE COPENHAGEN CASE
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FIG. 6. (Color onling Orbit type diagrams for different values of the mass ratiat the respective Trojan energy lev@s V1(w), and
for ¢> 0. Regions of bounded motion and collision are shown beside the OTDs. The color of a point represents the orbit type of a test body
which has been launched with pericenter positiofixay) (see orbit class legend belpwa) OTD and its decomposition fqe=1/3 atE
=V1(1/3)=-1.388. Bounded motion is indicated by the gray scé&tetors of classes 1a—4. Whitélack (red] points indicate a collision
with mass 1(2). Escape orbits are colored blafscqps0) to gray (blue) (tescape 10 000. (b) Decompositions fou=1/5 atE=V(1/5)
=-1.420.(c) Decompositions fou=1/11 atE=V(1/11)=-1.458.(d) Decompositions fopu=1/82.3(value for the earth-moon systeat
E=V(1/82.3=-1.494. Positions of the primaries are indicatednfy (m2). Radii of the primaries, see legend of Fig. 5, according to Eq.
3.

main regions of stable type-3a trajectorigsay (violet)]. with the first Lagrangian point,; as for the Copenhagen
The OTDs in Fig. 2 possess both smo@tionfractal and  case. The diagrams exhibit no longer the symmgiry

fractal regions of the boundaries which separate the regions In Fig. 5@) the main part of bounded motioh is frag-
of escape orbits and the crash basins. In the conteleatd ~ mented. Due to the smaller mass(2=1/3) the region of
ing Hamiltonian systems the boundaries are classified to bstability with respect to mass B, is smaller than the total
of type Il [31-33. Here, the leakages are defined by thesize of bounded motion around mass 1. Inthgy) plane for
crash conditions and the escape condition, resulting in three=1/5, Fig. 5b), the regionA resembles a section of a
exit modes Due to the complexity of the boundaries it is torus. The central holsurvivesfor all ratios u<1/5, [see
difficult to predict whether the test particle.g., an asteroid Figs. 8c) and §d)], even though too small to be visible in
or a satellit hits a primary body or leaves theolay sys- Fig- 5(d). Note that in the limit.—0 the (x,y) plane be-
tem. comes symmetric to the axis.

Note that the OTDs differ only slightly from those ob- b gro[m F'g(' 50?))] Kb) Fig. 5d) crash or(ljthe seconlqk plr'm_"l’_‘rr]y
tained using a suitably defined escape velocity condition,ﬁ_yk_gray rel ! ecfor?]es moLeban_ mo_r?] uniikely. (;’;
e.g., r>[2/(r-1)]2, rather than the escape condition shrinking total size of the crash basins with respect to the
~R, used here. As a consequence, the occurrence less .heavy_r.nam body 2 |s.mostlly d_qe to its decrgasmg mass,

ystem ==+ ; L : nd in addition but with minor significance, due its decreas-
escape basmE_coIo_red solid dark graj(blue)]_ IS not an artl- ing radiusRy,.. In Fig. 5c) the crash basins of the first pri-
fact of the arbitrarily chosen escape condition. mary body(white and black separate bounded motid#)
from the bulk regions where escape dominates. For a smaller
V. THE (x,y) PLANE FOR pu<1/2 value of the mass ratin=1/82.3, Fig. %d), the central crash

So far we have discussddnd partly reviewenthe dy- basin region arou_nA separates bounded mlotion sof type 1b
namics of the Copenhagen case of the RTBP. In this sectiofio™ Stable motion of type la. Fop<3(1-v23/27
we extend our investigations to the case for 1/2. 20_.0385._. the_RTBP exhlb_lts stable trajectories around the
Trojan points, i.e., the maxima &f;. In Figs. 8d) and &d)
the corresponding regions of stabilitf) are colored gray
(orangse.
Figure 5 shows OTDs for various values of the mass ratio  Another observation is that statistically escape orbits need

wu, and for ¢<<0. For u#1/2 the origin does not coincide more time to leave the system the smaller the mass ratio.

A. Retrograde passage through extremal distances
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FIG. 7. (Color onling Orbit type diagrams for théx, E) plane for the Copenhagen case 1/2 (a), and foru=1/3(b). Poincaré section,
y=x=0,y>0. The symbold ; , 3represent th& positions of the corresponding Lagrange points %dl; , 9 are their potential values. In
addition, the energy levels for the correspondirgy) diagrams are highlighted. The smaller panels show the decomposition into bounded
motion and crash orbits of the corresponding OTD. Crash onto primary 1, black; crash onto primary @edraRadii of the second
primary body according to Ed3) for Rma5§:1Cf4 (see also legend of Fig)5

Hence the crash basiigray (blue)] are lighter the smaller B. Direct passage through extremal distances

w- The increasing size of regions of bounded motidme In Fig. 6 we depict OTDs for the same values of the mass
smallerw) indicates an increasing tendency toward boundEdfatio 1 as before but for£;5>0 passages. Strikingly, escape
ness of the test body the greater the first mass, i.e., th §

smaller Fominates the(x,y) plane (cf. Fig. 5. The escape basins
M. . :
The smallerz the closer the position of mass 1 wanders[blaCk (dark blue] represent orbits that leave the system af

to the origin. Because the test body is launched perpendict?r a short transient time corresponding to small values of
larly to the }adius vector. i.6i=0. crash onto mass 1 be- LfescapeAs mentioned before, this can be understood in terms

comes rarer for small values @f than for bigger values. of Eq. (1). The greater the radiusthe greater the energy in

o P - the inertial system. Thus, in contrast to the OTDs ¢ox 0,
strikingly, |_n Figs. %d) an_d Gd) (u=1/82.9, crash onto there appears a border between possible nonescaping orbits
mass 1(white and bla.c)( d.lsappears completely for both [(ight) gray (blug] and a region of escape onljplack.
>0 and(up to the white ring for ¢<0. Consequently, the black region represents orbits that move

In this paragraph we focused on the phase space projegn the corotating systemspiraling out of the system with-
tion onto the configuration space f@r< 0 excluding a major out entering the inner region.
part of direct motion in the inertial frame of reference. How-
ever, in the context of celestial mechanics it is more natural
to investigate satellites that corotate with the primaries, i.e.,
¢in>0, implying for simple corotating stable orbig#gs> 0 (in The diagrams for théx,y) plane provide information on
the corotating frame the phase space mixing for only a fixed energy and for orbits

VI. THE (x,E) PLANE
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FIG. 8. (Color onling Orbit type diagrams for théx, E) plane foru=1/11(top) and 1/3(bottom. Poincaré sectiory=x=0,y>0. Radii
of the primariesRyase 1074 The symbolsl , 5 represent thex positions of the corresponding Lagrange points &fd.; , 9 are their
potential values. In addition, the energy levels for the correspongding diagrams are highlighted. The smaller panels show the decom-
position into bounded motion and crash orbits of the corresponding OTD. Crash onto primary 1, black; crash onto primar¢ré) gray
Radii of the second primary body according to Eg). for Rmas§=10_4 (see also legend of Fig)5

that transverse the surface of section either directly or retrodashed line indicates the energy leetVy(u) for x>0
gradely. For the Copenhagen problem Hénon considered whereas the fat solid line fd&=V(u) represents the part for
plane that provides information about regions of stability andx< 0 (cf. Figs. 2-9.

regions of escape orbits using the sectioha Poincaré sec- In the region between the potential values of the first two
tion) y=x=0, y>0, i.e., the test body starts on theaxis,  Lagrange points/, , the test body is confined. The region
parallel to they axis, and in the positivg direction. Thus, in shows many tiny islands of regular motion plus a chaotic
contrast to the section discussed before, only orbits withnix of areas of crash orbitef. OTDs forE=-1.828 in Fig.
pericenters on the axis are included. But then the ener§y  2). From chaos theory we expect indeed an infinite number
is used as ordinate. In the,E) plane the corresponding of islands of(stablé quasiperiodic(or small scale chaotic
orbits transverse thg axis in both directions, retrogradely motion.

(for x<<0) and directly(for x>0). In Fig. 7 the(x,E) plane Due to the symmetr’ for u=1/2 crash onto mass 1
for the Copenhagen ca%e) and «=1/3 (b) are displayed. and mass 2 is equally frequent. Far<1/2 symmetrys.’

The energyE=-C/2 increases downward anddecreases vanishes. Thus the potential valued.atandLg, i.e.,V,, and
from the left to the right. In théx,E) diagrams the energy VL, ho more coincide. As a consequence between the energy
levels for the correspondingx,y) planes that we depict in levelsV,, andV/, the test body can pags, but notLs. In
Figs. 2, 5, and 6 are also displayed. For the respective masgg y) OTDs for the regionV, <E<V, _ this results in a
ratios u the line(x<0,E) in the (x, E) diagram is equivalent  ¢_shaned inaccessible regionzwhich is %pen on the right hand
to the line(x<0,y=0) in the (x,y) OTD for the energy level  gjge (not shown.

E and ¢<0. Vice versa, forp>0 the lines(x>0,E) in the Figure 9 displays théx,E) plane foru=1/82.3. The eye-
(x,E) plane andx>0,y=0) in the (x,y) OTD at energyE  catching white bandéB) represent orbits that practically im-
are also equivalent. In the respectivgE) diagrams the fat mediately collide with the first primary body. Fer— 0 the
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FIG. 9. (Color onling Orbit type diagrams for théx, E) plane foru=1/82.3(earth-moon systemPoincaré sectiony=x=0,y>0. The
symbolsL, , srepresent tha& positions of the corresponding Lagrange points ¥, , o are their potential values. In addition, the energy
levels for the correspondingk,y) diagrams are highlighted. The smaller panels show the decomposition into bounded motion and crash
orbits of the corresponding OTD. Crash onto primary 1, black; crash onto primary 2,(gdy Radii of the primariesRmanlU“,
Rimass=0.290X 104,

bands become a smooth curve which represents all orbitsecome smoother for a decreasing mass ratio. This can be
with vanishing angular momentum in the inertial systemunderstood if we recall thai=0 is an integrable cagbeing
[13]. Kepler's problem of the RTBP. A stronger magnification of
As seen in the previous section for decreasinthe area  the occurring small-scale chaos is needed to visualize the
of crash orbits with respect to mass 2 shriésmpare Figs. fractal boundaries in the neighborhood of the integrable case.
7-9), the area representing bounded motion around the firsjye refer to the literature for a more detailed discussion of
primary (classes 1la—-lgrows, whereas the size of regions of Hj's case . — 0 where, in contrast to here, the moon is the
bounded motion around the second primary decreas§gst hody in a scaled limiting case of the sun-earth potential
(classes 2a—2c [10-13,34,3%

On the one hand, for the investigated range and resolu- A detailed discussion of théx,E) ; ;
. : ,E) planes incorporating
g?nb’othﬁ dg;_Dns]Jfgr:hﬁ]);’ i)mp;ﬁne FgrS]StT]SeS (t)ktlﬁerrn(r)];en:jsl?r?:s bifurcations of periodic orbits, etc., will be presented else-
u ! G- v%/gere[%].

boundaries between bounded motion and escape appear

FIG. 10. (Color onling Extension of the crash basifghite and grayred] for different radii of the primary bodies. Orbit type diagrams
for the (x,y) plane foru=1/2, 1/3, andu=1/11 at diferent energy levels are shown. Surface of section conditie, Radii of the
primaries(from left to right: Ry, 1075 10735 1025 1072 1015 1071 Radii of the second primary body according to Eg). Top: u
=1/2, E=-0.1, <0, x,y=-5.0,...,5.0. Middle: u=1/3, E=-0.6, >0, x=0.5,...,1.9, y=-0.4,...,1.1. Bottom:x=1/11, E=0.1, ¢
<0, x,y=-1.0,...,1.0. See Fig. 9 for the color legend.
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onto mass 2 versus the mass radR,\,sl. The total area of
crash orbits follows approximately a power law over several
orders of magnitudeA, s~ R* with a=0.5.

In [26] we derived an approximation for the power law
behaviorA,,.{R) ~ R? with the exponenp=1/2. Thescale-
free behavior is slightly better reproduced ## 0 than for
¢>0. For big values oRMl the curves obtained from nu-
merical calculations deviate from the theoretical result due to
finite size effects. Note that one obtains similar graphs for
the total area of crash onto mass 1, ila_.gRMl), or the sum
A1+2(RM1), for various ranges, and values of energy level and
mass ratio(not shown).

In the following we briefly review the analytical calcula-
tion. The RTBP can b&oughly) approximated by the Kepler
problem when the test body is close to one primary body
(just before a crash occyrsand in addition, when the rota-
tion of the primaries is neglected. Using Ed) from Ke-
pler’s ellipse formula we obtain

1 2rr
E=- F\ T )
ratrp ry+r,

p

wherer, denotes the perihelion amg the aphelion distance.
Solving Eq.(4) for r, yields

o
L

log 10(area) in arb. units

o
I

0_
5 4 3 2 1 E+r2  \ri+2Er?+2r
: ro(ry) =—ry— B P — 5
log, ,(radius) = == 5)

FIG. 11. (Color onling Log-log plot of the total size of crash Acpllision occurs when the te_st body intersects the disk with
onto mass 2 in théx,y) plane for various ranges and for various 2diusR around the Kepler singularityr,<R. Thus, forR
values ofu and energy levels in arbitrary units versus the primary <1 the area of crash orbits can be approximated by
body radiusRy,=10"°,...,10°%. Data are presented for both parts Acrasr(R_)QZWra(O) [ra(o)_ra(R)]-ﬂJt for r,<1 Eq. (5 IS
of the section =0, i.e., <0 (symbols in blackand ¢>0 (sym-  approximated by ,(rp)~-1/E+ V2ry/E?. Hence, we obtain
bols in gray. x=1/2 (crossel 1/3 (boxes, 1/5 (circles, 1/11 @ power lawAg,¢(R) ~R? with the exponenB=1/2.
(diamond$. Gray (red) line, theoretical lawAq s~ RY2. Ranges:
energy levelsu=1/2, $<0, x,y=-5.0,...,5.0,E=-0.1; ¢>0: x
=-0.75,..0.75y=-0.4,...,0.35, E=-0.5; ©=1/3, ¢$<0, X,y= In conclusion, the orbit type diagrams that we presented
-2.0,...,2.0, E=0.0, ¢>0, x=-0.5,...,0.9y=-0.4,...,0.3, E= in this article provide detailed information about the extent
-0.6; u=1/5 $<0, x,y=-2.0,...,2.0, E=0.25; $>0, x= and position of bounded, unbounded, and crash orbits. We
-0.5,...,1.0y=-0.4,...,0.35, E=-0.75; u=1/11, $<0, x,y= _have numencally calculated more than 10 000 QTDs.where
10,..,1.0, E=0.1: $>0, x,y=-03,..,40.2, E=-05. The N each diagram from about 32 000 up to 10° trajectories
curves are arbitrarily normalized. were evaluated. The extensive numerical analysis extends
known behavior in the RTBP. In contrast to our own previous
published studie§26,27] the numerical results presented
here are based on the DK@rift-kick-drift) leapfrog sym-
plectic integrator of sixth order developed by Yosh[&F].

After testing various other integrators we consider this one as
pne of the most efficient for the RTBP if applied for extended
hase space with a time step function corresponding to a

VIIl. CONCLUSIONS

VII. SCALING LAW FOR THE CRASH BASINS

In the previous sections for a given mass ratio the radii o
the primaries were arbitrarily fixed. In earlier investigations
[26,27] we found a power law dependence of the total size o

crash basins on the primaries’ radii for different OTD plane ogarithmic Hamiltonianji.e.. the casey=1 in Ref.[38]. As

and mass ratios. We now extend the analysis to(¥)g) i
. . I . a consequence we could improve both the accuracy and the
plane for the mass ratios discussed so far in this article. Fur- . X ;
: i S computation speed. We have validated our numerics by
thermore, the pargy>0 for the section condition=0 is  mqnitoring the energy deviation frof during the integra-
|pcludeq in the an.aIySIS and compe-lred with the resylts fOkion, taking various step sizes, and choosing different inte-
¢<0. Figure 10 displays OTDs at fixed energy Ry, in-  gration parameters and ranges for comparison. Although the
creasing from 10 to 107! for three different values of the integration procedure disregards the system’s symmetries,
mass ratio. they are reproduced in the individual diagrams. Finally,
For different mass ratios and energy levels Fig. 11 show®oundary pixels in the presented OTDs were checked with
in a log-log plot the dependence of the total area of craslincreased accuracy.
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It is important to know that the Poincaré sections dis-Jefferys(u=1/3) [41]. Compared with the literature our re-
cussed for the phase space projection onto the configuratiasults reveal a high degree of complexity that could not be
space are not arbitrary but compléte the sense of Dullin  accomplished in earlier days of computer power.
and Wittek[29]). Every trajectory must intersect the surface  On the one hand the crash basins as part of the diagrams
of section. ) are more widely extended than one would naively expect. On

If crash is interpreted as akagein phase space the the other hand the power law behavior compares with that

findings are examples of leaking Hamiltonian systems,ng in the Copenhagen problem. The results showgor

[33,39,4Q. From that part of chaotic scattering theory it fol- 15 how comparatively small primaries affect regions of
lrz\giso rﬁza;ftgscgggg?girtf?eg?évsvgr?tndtngitgzzg dtl’gisgls tﬁgd ﬂ&?ash orbits. Moreover, for various mass ratios we found a
invariant manifolds better the smaller the leakagee., the power law dependence of the total size of crash on the pri-

primary disks. In that way the crash basins are connected tc{<nary radii. This result agrees with a calculation based on
the foliation of phase space. In 1988 Bleleral. [31] pro- epler's ellipse formula that approximately predicts the

. : BB i _
posed the RTBP as an interesting application for a Ieaking?\;m%el.rkelatlo?lAﬁ? hR hW'th B 1/2 [2|6]' Howevelr, Wg
Hamiltonian system. After discussing the Copenhagen prob:- ould like to highlight that quantitatively a power law be-

' avior with exponent 1/2 is better reproduced the less the

lem in this contex{26] we have now extended the analysis . .
S corresponding OTD possesses bounded motion.
to the RTBP for values of the mass ratio different frun Finally, the high degree of complexity in the diagrams

=1/2. Asexpected from our findings and predictions of oth- suggests that the long term prediction in comparable celestial
ers[32], the boundaries between regions of crash and escape 99 9 P P

. . Systems may become a formidable task.
orbits emerge as so-called type Il boundaries.

Due to the extended primaries the model is more appli-
cable to realistic situations of celestial body problems than
the pure RTBP. We analyzed the model for relevant mass
ratios as the earth-moon systém=1/82.3, and for values | warmly acknowledge P. H. Richter for the careful read-
investigated by Darwin(u=1/11), Moulton (u=1/5), and ing of the manuscript and T. Tél for fruitful discussions.
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