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The restricted three-body problem serves to investigate the chaotic behavior of a small body under the
gravitational influence of two heavy primary bodies. We analyze numerically the phase space mixing of
bounded motion, escape, and crash in this simple model ofschaoticd celestial mechanics. The presented
extensive numerical analysis reveals a high degree of complexity. We extend the recently presented findings for
the Copenhagen case of equal main masses to the general case of different primary body masses. Collisions of
the small body onto the primaries are comparatively frequent, and their probability displays a scale-free
dependence on the size of the primaries as shown for the Copenhagen case. Interpreting the crash as leaking in
phase space the results are related to both chaotic scattering and the theory of leaking Hamiltonian systems.
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I. INTRODUCTION

The restricted three-body problemsRTBPd is a simple
model in celestial mechanics. It was first considered by Euler
s1772d and Jacobis1836d and has attracted much attention
until today. Extensive investigations, analytical and numeri-
cal, are reported in the famous works of Szebehelyf1–5g and
Hénonf6–12g. Major parts of the standard reference of the
RTBP deal with finding, describing, and classifying periodic
orbits. However, the applications are ubiquitous. We mention
only deterministic chaosf13g, relativistic dynamicsf14,15g,
quantum mechanicsf16g, and chemicalf17,18g and astro-
physical issuesf19–21g. One reason for the diversity of ap-
plications may be the simplicity and cosmological relevance
of the problem. It has been studied to investigate the stability
of sextradsolarssubdsystemsf22,23g, schaos assistedd asteroid
capturef24g, and the dynamics of two massive black holes
orbited by a sunf25g. Although much simpler than the gen-
eral three-body problem the RTBP is nonintegrable and
serves as a paradigm for classical chaosf13g.

For the Copenhagen case of equal main massessm
=1/2d we recently presented a partition of orbits into classes
of various kinds of regular motion, chaotic motion, escape,
and crashssee Ref.f26gd. Therein we focused our attention
mainly on retrograde orbits. Here we focus on both retro-
grade and direct orbits in the investigation of the phase space
projection onto the configuration space. In addition, we ex-
tend the analysis to different values of the mass ratiom.

The paper is organized as follows. In the next section we
introduce the RTBP. Section III briefly reviews the classifi-
cation scheme previously introduced in Refs.f26,27g. The
scheme is important for the diagrams that represent the sub-
stantial numerical results in the present article. In Sec. IV the
phase space mixing of the projection onto the configuration
space is discussed for the Copenhagen problem. Section V
extends the discussion to relevant values of the mass ratio
mÞ1/2. In Sec. VI we focus on thesx,Ed plane senergy
versus positiond for different values ofm. An analysis of the
dependence of the total area of crash on the primary sizes
follows in Sec. VII. Finally, we summarize our findings in
the conclusions.

II. THE MODEL

We investigate thesplanar circulard restricted three-body
problem. Two primary bodies move on different circles with
the same Kepler frequency1 about their common center of
gravity sthe origind assumed to be fixed and a test body
moves in the same planessee Fig. 1d.

In the inertial frame of reference the RTBP has a time-
dependent potential Vmsx,y,td=−m / r1std−s1−md / r2std
where m=m1/ sm1+m2d, and r1std,r2std are the distances to
the respective primaries. The time dependence of the poten-
tial is usually eliminated using a corotating frame wherein
the primaries rest. In the corotating coordinate systemVJ=
−m / r1−s1−md / r2− 1

2sx2+y2d where r1
2=sx+md2+y2, r2

2=sx
−1+md2+y2, is the corresponding potential that Jacobi intro-
duced first. Hence, it is called Jacobi’s potential. The qua-
dratic term results from the centrifugal forceFcen=sx,yd,
whereas the Coriolis forceFCor=2sẏ,−ẋd gives no contribu-
tion to the potential.E= 1

2sẋ2+ ẏ2d+VJ is conserved andsup to
the factor22d has been known historically as Jacobi’s inte-
gral C=−2E. Note that the energy in the inertial systemEin is
the sum ofE and the angular momentumL:

Ein = E + L. s1d

It is widely believed thatE is the onlysindependentd integral
of the systemf28g. The scaled equations of motion for the
test body in the corotating frame read

ẍ = 2ẏ + x − s1 − md
x + m

r1
3 − m

x − 1 +m

r2
3 ,

ÿ = − 2ẋ + y − s1 − md
y

r1
3 − m

y

r2
3 . s2d

Note that in Eq.s2d the radius variables are no longer explic-
itly time dependent. In addition the equations of motions2d
are invariant under the symmetry operationS : sx,y,td→ sx,

1The distance between the two primaries is scaled to unity and a
time unit is related to the unit angular velocity of the primaries so
that one rotation corresponds to 2p time units.
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−y,−td. For the Copenhagen casesm=1/2d there is another
special symmetryS8 : sx,y,td→ s−x,−y,td. These two are the
only known sindependentd symmetries of the equations of
motion s2d.

III. ORBIT TYPE DIAGRAMS

Due to Jacobi’s integral the motion is restricted to three-
dimensional surfacesE=const in phase space. We study the

position and extent of chaos in terms of Poincaré sections
being completesin the sense of Dullin and Wittekf29gd. With
polar coordinatessr ,fd in the center of masssCOMd system
of the corotating frame the conditionṙ =0 defines a two-
dimensional surface of section in the surfaceE=const, with
two disjoint partsḟ,0 andḟ.0. Each of these two parts
has a unique projection onto the configuration space, i.e., the
sx,yd plane. Figure 2 displays these projections for bothḟ

,0, andḟ.0, at two different energy levels.
In common representations of Poincaré sections the color

codes indicate single orbits. In the Poincaré sections pre-
sented here each pixel is given a color according to the orbit
type. We call these diagramsorbit type diagramssOTDsd.
The orbit types are classified into bounded motion of a few
kinds, unbounded motion, and collision orbits.

A. Bounded motion

For chaotic systems with configuration space extending to
infinity it is a formidable task to distinguish bounded from
unbounded motion for specific initial conditions. Here we
use a practical definition of bounded motion: We call an orbit
bounded if the test body stays confined forttimeout inside the
system’s disk with radiusRsystemand center coinciding with
the COM origin. This implies that the higher the values of
ttimeout andRsystem, the more adequate the statementbounded
motion becomes. In the limitttimeout→` the definition be-
comes the precise description of bounded motion in a disk of

FIG. 1. sColor onlined Schematic picture of the restricted three-
body problem.

FIG. 2. sColor onlined Orbit type diagramssOTDsd for two different energy levels, and for both partsḟ,0 andḟ.0 of the surface of
sectionṙ =0. Thesx,yd plane in a corotating frame of reference for the Copenhagen casesRTBP form=1/2d is shown. Regions of bounded
motion and collision are shown beside the OTDs. The color of a point represents the orbit type of a test body which has been launched with
pericenter position atsx,yd for the energy levelE ssee orbit class legend belowd. Top: OTD and its decomposition atE=−1.375 forḟ,0 sad,
and forḟ.0 sbd. Bounded motion is indicated by the gray scalesscolorsd of classes 1a–4. Whitefblacksreddg points indicate a collision with
mass 1s2d. Escape orbits are colored blackstescape=0d to graysblued stescape=10 000d. Bottom: Decompositions forE=−1.828:scd ḟ,0, sdd
ḟ.0. Positions of the primaries are indicated bym1 sm2d. Radii of the primariessnot shownd Rmass1,2

=10−4.
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radiusRsystem. Unfortunately, the higher the values of these
two parameters, the longer the numerical integration takes.
In this article, we choosettimeout=10 000 andRsystem=10. It is
important to know that a lower value ofttimeout smooths the
fractal border of bounded regionsf27g. Our symbolic orbit
classification for bounded motion is suitable for an automatic
identification of the orbit types. The classification differs
from the standard scheme introduced by Strömgren and ex-
tended by Hénonssee, e.g., Hagiharaf30g for a detailed dis-
cussiond. We emphasize the distinction between regular mo-
tion sincluding small scale chaos and quasiperiodic motiond
on the one side and strongly chaotic motionsnot hindered by
Kolmogorov-Arnol’d-Moser orbitsf13gd on the other. Our
classification is based on an automatic detection ofx axis
passages of the test body. Two consecutivex axis passages
define ahalf rotation with respect to the fixed positions of
the primaries. We name a half rotation counterclockwise
around onesof the twod primaries by “L,” a half rotation
clockwise by “R,” and effectively no rotation is labeled by
zero “0.” For example, a quasiperiodic clockwise orbitsolely
around the second center is described by the two symbol
sequencess000…; RRRd scf. class 2b in Fig. 3d. Note that
the left slot of the bracket refers to revolutions around the

first main mass and the right to those around the second
primary body. In Fig. 3 we show example orbits for 12
classes that we termed 1a–4. A precise description of the
classes has been given earlierf27g.

B. Unbounded motion (escape orbits)

If the test body leaves the system’s diskswith radius
Rsystemd at a timetescape, ttimeout, we say that the test body has
left the system and stop the numerical integration. These
points in the OTDs are colored from dark graysblued scor-
responding to a small value oftescaped to light gray sblued sa
high value oftescaped.

One should keep in mind that the Kepler problem exhibits
ellipses for all starting positions in the configuration space
sx,yd for some energy level. Thus, our definition is inappro-
priate for orbits that never enter theinner region, say,r &1,
being only slightly disturbed Kepler ellipses. But here we
focus our attention on the dynamics of the motion in the
inner region. Furthermore, thinking of a real solar system
which possesses more disturbing bodies, the definition is
physically motivated.

C. Collision

A crash with the first primary body of radiusRmass1
simply

occurs when the test body, being a point mass, crosses the
disk with radiusRmass1

around mass 1. In the OTDs these
points are colored white. A collision with the second primary
body swith radiusRmass2

d is defined analogously but colored
gray sredd. Figure 4 displays a schematic picture of the orbit
classification.

In order to keep things simple we assume the simple re-
lation

FIG. 3. Symbol sequences for the orbit examples: Class 1a,
sLLL …; 000…d; 1b, sRRR…; 000…d; 1c, sR0LLL…; 000…d.
Class 2a, s000…; LLL …d; 2b s000…; RRR…d; 2c, s000…;
R0LLL…d. Class 3a,sLLL …; LLL …d; 3b, sRRR…; RRR…d; 3c,
sL00LL00L…; 0RR00RR0…d; 3d, sR00RR00R…; 0LL00LL0…d;
3e, sR0LLL…; R0LLL…d. Class 4,s000…; 000…d. It is important
to know that the orbits need not be periodic to have the same sym-
bol sequences.

FIG. 4. sColor onlined Schematic picture of the orbit classifica-
tion. We call the motion bounded if the test body stays confined for
a given time, sayttimeout, inside the system’s disk with radius
Rsystem. If the test body leaves the disk the integration is aborted and
the motion is assumed to be unbounded. We call the corresponding
trajectory an escape orbit. Finally, if during the integration a crash
with one of the main masses occurs we call the trajectory a crash
orbit.
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Rmass2
= Rmass1

3 s2md1/3 s3d

between the radii of the primaries. First, Eq.s3d guarantees
Rmass2

=Rmass1
for m=1/2, andsecond, it mimics the assump-

tion that the radius of a celestial body is proportional to the
cubic root of its mass. If not stated otherwise we choose here
Rmass1

=10−4 corresponding roughly to thesscaledd relations
of the sun-jupiter system wherem<1/1000.

IV. THE „x ,y… PLANE FOR THE COPENHAGEN CASE

Figure 2 shows OTDs for the Copenhagen casem=1/2.
The sx,yd planesin the corotating frame of referenced for the
surface of sectionṙ =0 with respect to the origins0,0d for two
different energy levels is shown. The diagrams in Fig. 2 ex-
hibit the symmetryS8 because it is also respected by the
section condition.

Figure 2sad shows the OTD decomposition for bothḟ
,0 and ḟ.0 at energyE=−1.375 in comparison. Form
=1/2 the energy levelE=−1.375 represents the so-called
Trojan energyVTsmd=−s3/2d+sms1−md /2d corresponding
to the maxima of Jacobi’s potential. Thus, the test body has
access to the fullsx,yd plane.

The main regionA of bounded motion around mass 1
consists of a central region, surrounded by sixsfive small and
one tinyd islands. For each region of regular motion there is
a resonance, i.e., a periodic orbit at its center. The regions in

white sblackd represent the start positions where the test body
eventually crashes with the first primary body. Due to the
rotating primaries thesecrash basinswind out as spirals in
the outer regions of the diagram. But there also appear crash
basins in the immediate neighborhood of the origin. Strik-
ingly, the area of crash basins is several orders of magnitude
greater than the total size of the main body disks. In this
representative Poincaré section, the phase space emerges as a
close mix of crash basins, regions of bounded motion, and
escape basins. In the OTD forḟ.0 at the Trojan energy
level E=−1.375, escape dominates the configuration space.
The total size of regions of bounded motion is less forḟ

.0 than forḟ,0. This can be understood in terms of Eq.
s1d. The energy in the inertial systemEin is higher for L
positive than for negative values ofL.

In Fig. 2scd we depict thesx,yd plane for ḟ,0 at E=
−1.828. There is an inaccessible regionsgrayd in the plane
because the energy is smaller than the Trojan energy. The
inaccessible area separates two regions. In the outer region
there is aspartly visibled ring of bounded motionsCd which
separates regions of escape orbits. In the inner zone the test
body is confined. The regionsA andB indicate stable motion
around the individual primaries. These regions are sur-
rounded by a chaotic mix of areas of crash orbits with re-
spect to the first and the second primary bodies. In Fig. 2sdd
the OTD for the conditionḟ.0 is shown. In addition to the
main regions of bounded motionA and B, there are four

FIG. 5. sColor onlined Orbit type diagrams for different values of the mass ratiom at the respective Trojan energy levelsE=VTsmd, and
for ḟ,0. Regions of bounded motion and collision are shown beside the OTDs. The color of a point represents the orbit type of a test body
which has been launched with pericenter position atsx,yd ssee orbit class legend belowd. sad OTD and its decomposition form=1/3 atE
=VTs1/3d=−1.388. Bounded motion is indicated by the gray scalesscolorsd of classes 1a–4. Whitefblack sreddg points indicate a collision
with mass 1s2d. Escape orbits are colored blackstescape=0d to gray sblued stescape=10 000d. Radii of the primariessnot shownd Rmass1
=10−4, Rmass2

=Rmass1
s2md1/3=0.874310−4 fsee text around Eq.s3dg. sbd Decompositions form=1/5 at E=VTs1/5d=−1.420, Rmass2

=0.737310−4. scd Decompositions form=1/11 atE=VTs1/11d=−1.458,Rmass2
=0.567310−4. sdd Decompositions form=1/82.3svalue for

the earth-moon systemd at E=VTs1/82.3d=−1.494,Rmass2
=0.290310−4. Positions of the primaries are indicated bym1 sm2d.
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main regions of stable type-3a trajectoriesfgray svioletdg.
The OTDs in Fig. 2 possess both smoothsnonfractald and

fractal regions of the boundaries which separate the regions
of escape orbits and the crash basins. In the context ofleak-
ing Hamiltonian systems the boundaries are classified to be
of type II f31–33g. Here, the leakages are defined by the
crash conditions and the escape condition, resulting in three
exit modes. Due to the complexity of the boundaries it is
difficult to predict whether the test particlese.g., an asteroid
or a satellited hits a primary body or leaves thessolard sys-
tem.

Note that the OTDs differ only slightly from those ob-
tained using a suitably defined escape velocity condition,
e.g., ṙ . f2/sr −1dg1/2, rather than the escape conditionr
.Rsystem used here. As a consequence, the occurrence of
escape basinsfcolored solid dark graysbluedg is not an arti-
fact of the arbitrarily chosen escape condition.

V. THE „x ,y… PLANE FOR m,1/2

So far we have discussedsand partly reviewedd the dy-
namics of the Copenhagen case of the RTBP. In this section
we extend our investigations to the case form,1/2.

A. Retrograde passage through extremal distances

Figure 5 shows OTDs for various values of the mass ratio
m, and for ḟ,0. For mÞ1/2 the origin does not coincide

with the first Lagrangian pointL1 as for the Copenhagen
case. The diagrams exhibit no longer the symmetryS8.

In Fig. 5sad the main part of bounded motionA is frag-
mented. Due to the smaller mass 2sm=1/3d the region of
stability with respect to mass 2,B, is smaller than the total
size of bounded motion around mass 1. In thesx,yd plane for
m=1/5, Fig. 5sbd, the regionA resembles a section of a
torus. The central holesurvivesfor all ratios m,1/5, fsee
Figs. 5scd and 5sddg, even though too small to be visible in
Fig. 5sdd. Note that in the limitm→0 the sx,yd plane be-
comes symmetric to thex axis.

From Fig. 5sad to Fig. 5sdd crash on the second primary
body fgray sreddg becomes more and more unlikely. The
shrinking total size of the crash basins with respect to the
less heavy main body 2 is mostly due to its decreasing mass,
and in addition but with minor significance, due its decreas-
ing radiusRM2

. In Fig. 5scd the crash basins of the first pri-
mary bodyswhite and blackd separate bounded motionsAd
from the bulk regions where escape dominates. For a smaller
value of the mass ratiom=1/82.3, Fig. 5sdd, the central crash
basin region aroundA separates bounded motion of type 1b
from stable motion of type 1a. Form,

1
2s1−Î23/27d

<0.0385… the RTBP exhibits stable trajectories around the
Trojan points, i.e., the maxima ofVJ. In Figs. 5sdd and 6sdd
the corresponding regions of stabilitysTd are colored gray
soranged.

Another observation is that statistically escape orbits need
more time to leave the system the smaller the mass ratio.

FIG. 6. sColor onlined Orbit type diagrams for different values of the mass ratiom at the respective Trojan energy levelsE=VTsmd, and
for ḟ.0. Regions of bounded motion and collision are shown beside the OTDs. The color of a point represents the orbit type of a test body
which has been launched with pericenter position atsx,yd ssee orbit class legend belowd. sad OTD and its decomposition form=1/3 atE
=VTs1/3d=−1.388. Bounded motion is indicated by the gray scalesscolorsd of classes 1a–4. Whitefblack sreddg points indicate a collision
with mass 1s2d. Escape orbits are colored blackstescape=0d to gray sblued stescape=10 000d. sbd Decompositions form=1/5 atE=VTs1/5d
=−1.420.scd Decompositions form=1/11 atE=VTs1/11d=−1.458.sdd Decompositions form=1/82.3svalue for the earth-moon systemd at
E=VTs1/82.3d=−1.494. Positions of the primaries are indicated bym1 sm2d. Radii of the primaries, see legend of Fig. 5, according to Eq.
s3d.
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Hence the crash basinsfgray sbluedg are lighter the smaller
m. The increasing size of regions of bounded motionsthe
smallermd indicates an increasing tendency toward bounded-
ness of the test body the greater the first mass, i.e., the
smallerm.

The smallerm the closer the position of mass 1 wanders
to the origin. Because the test body is launched perpendicu-
larly to the radius vector, i.e.,ṙ =0, crash onto mass 1 be-
comes rarer for small values ofm than for bigger values.
Strikingly, in Figs. 5sdd and 6sdd sm=1/82.3d, crash onto

mass 1swhite and blackd disappears completely for bothḟ
.0 andsup to the white ringd for ḟ,0.

In this paragraph we focused on the phase space projec-
tion onto the configuration space forḟ,0 excluding a major
part of direct motion in the inertial frame of reference. How-
ever, in the context of celestial mechanics it is more natural
to investigate satellites that corotate with the primaries, i.e.,
ḟin.0, implying for simple corotating stable orbitsḟ.0 sin
the corotating framed.

B. Direct passage through extremal distances

In Fig. 6 we depict OTDs for the same values of the mass
ratio m as before but forḟ.0 passages. Strikingly, escape
dominates thesx,yd plane scf. Fig. 5d. The escape basins
fblack sdark bluedg represent orbits that leave the system af-
ter a short transient time corresponding to small values of
tescape. As mentioned before, this can be understood in terms
of Eq. s1d. The greater the radiusr the greater the energy in
the inertial system. Thus, in contrast to the OTDs forḟ,0,
there appears a border between possible nonescaping orbits
fslightd gray sbluedg and a region of escape onlysblackd.
Consequently, the black region represents orbits that move
sin the corotating systemd, spiraling out of the system with-
out entering the inner region.

VI. THE „x ,E… PLANE

The diagrams for thesx,yd plane provide information on
the phase space mixing for only a fixed energy and for orbits

FIG. 7. sColor onlined Orbit type diagrams for thesx,Ed plane for the Copenhagen casem=1/2 sad, and form=1/3 sbd. Poincaré section,
y= ẋ=0, ẏ.0. The symbolsL1,2,3 represent thex positions of the corresponding Lagrange points andVJsL1,2,3d are their potential values. In
addition, the energy levels for the correspondingsx,yd diagrams are highlighted. The smaller panels show the decomposition into bounded
motion and crash orbits of the corresponding OTD. Crash onto primary 1, black; crash onto primary 2, graysredd. Radii of the second
primary body according to Eq.s3d for Rmass1

=10−4 ssee also legend of Fig. 5d.
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that transverse the surface of section either directly or retro-
gradely. For the Copenhagen problem Hénon considered a
plane that provides information about regions of stability and
regions of escape orbits using the sectionsof a Poincaré sec-
tiond y= ẋ=0, ẏ.0, i.e., the test body starts on thex axis,
parallel to they axis, and in the positivey direction. Thus, in
contrast to the section discussed before, only orbits with
pericenters on thex axis are included. But then the energyE
is used as ordinate. In thesx,Ed plane the corresponding
orbits transverse thex axis in both directions, retrogradely
sfor x,0d and directlysfor x.0d. In Fig. 7 thesx,Ed plane
for the Copenhagen casesad and m=1/3 sbd are displayed.
The energyE=−C/2 increases downward andx decreases
from the left to the right. In thesx,Ed diagrams the energy
levels for the correspondingsx,yd planes that we depict in
Figs. 2, 5, and 6 are also displayed. For the respective mass
ratiosm the linesx,0,Ed in the sx,Ed diagram is equivalent
to the linesx,0,y=0d in the sx,yd OTD for the energy level

E andḟ,0. Vice versa, forḟ.0 the linessx.0,Ed in the
sx,Ed plane andsx.0,y=0d in the sx,yd OTD at energyE
are also equivalent. In the respectivesx,Ed diagrams the fat

dashed line indicates the energy levelE=VTsmd for x.0
whereas the fat solid line forE=VTsmd represents the part for
x,0 scf. Figs. 2–9d.

In the region between the potential values of the first two
Lagrange pointsVL1,2

the test body is confined. The region
shows many tiny islands of regular motion plus a chaotic
mix of areas of crash orbitsscf. OTDs forE=−1.828 in Fig.
2d. From chaos theory we expect indeed an infinite number
of islands ofsstabled quasiperiodicsor small scale chaoticd
motion.

Due to the symmetryS8 for m=1/2 crash onto mass 1
and mass 2 is equally frequent. Form,1/2 symmetryS8
vanishes. Thus the potential values atL2 andL3, i.e.,VL2

and
VL3

, no more coincide. As a consequence between the energy
levelsVL2

andVL3
the test body can passL2, but notL3. In

sx,yd OTDs for the regionVL2
øEøVL3

this results in a
C-shaped inaccessible region which is open on the right hand
side snot shownd.

Figure 9 displays thesx,Ed plane form=1/82.3. The eye-
catching white bandssBd represent orbits that practically im-
mediately collide with the first primary body. Form→0 the

FIG. 8. sColor onlined Orbit type diagrams for thesx,Ed plane form=1/11stopd and 1/3sbottomd. Poincaré section,y= ẋ=0, ẏ.0. Radii
of the primaries,Rmass=10−4. The symbolsL1,2,3 represent thex positions of the corresponding Lagrange points andVJsL1,2,3d are their
potential values. In addition, the energy levels for the correspondingsx,yd diagrams are highlighted. The smaller panels show the decom-
position into bounded motion and crash orbits of the corresponding OTD. Crash onto primary 1, black; crash onto primary 2, graysredd.
Radii of the second primary body according to Eq.s3d for Rmass1

=10−4 ssee also legend of Fig. 5d.
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bands become a smooth curve which represents all orbits
with vanishing angular momentum in the inertial system
f13g.

As seen in the previous section for decreasingm the area
of crash orbits with respect to mass 2 shrinksscompare Figs.
7–9d, the area representing bounded motion around the first
primarysclasses 1a–1cd grows, whereas the size of regions of
bounded motion around the second primary decreases
sclasses 2a–2cd.

On the one hand, for the investigated range and resolu-
tion, the OTDs for thesx,Ed plane possess the more islands
of bounded motion the smallerm. On the other hand the
boundaries between bounded motion and escape appear to

become smoother for a decreasing mass ratio. This can be
understood if we recall thatm=0 is an integrable casesbeing
Kepler’s problemd of the RTBP. A stronger magnification of
the occurring small-scale chaos is needed to visualize the
fractal boundaries in the neighborhood of the integrable case.
We refer to the literature for a more detailed discussion of
Hill’s casem→0 where, in contrast to here, the moon is the
test body in a scaled limiting case of the sun-earth potential
f10–13,34,35g.

A detailed discussion of thesx,Ed planes incorporating
bifurcations of periodic orbits, etc., will be presented else-
wheref36g.

FIG. 10. sColor onlined Extension of the crash basinsfwhite and graysreddg for different radii of the primary bodies. Orbit type diagrams
for the sx,yd plane form=1/2, 1/3, andm=1/11 at different energy levels are shown. Surface of section condition,ṙ =0. Radii of the
primariessfrom left to rightd: RM1

10−5; 10−3.5, 10−2.5, 10−2, 10−1.5, 10−1. Radii of the second primary body according to Eq.s3d. Top: m

=1/2, E=−0.1, ḟ,0, x,y=−5.0,… ,5.0. Middle: m=1/3, E=−0.6, ḟ.0, x=0.5,… ,1.9, y=−0.4,… ,1.1. Bottom:m=1/11, E=0.1, ḟ
,0, x,y=−1.0,… ,1.0. See Fig. 9 for the color legend.

FIG. 9. sColor onlined Orbit type diagrams for thesx,Ed plane form=1/82.3searth-moon systemd. Poincaré section,y= ẋ=0, ẏ.0. The
symbolsL1,2,3 represent thex positions of the corresponding Lagrange points andVJsL1,2,3d are their potential values. In addition, the energy
levels for the correspondingsx,yd diagrams are highlighted. The smaller panels show the decomposition into bounded motion and crash
orbits of the corresponding OTD. Crash onto primary 1, black; crash onto primary 2, graysredd. Radii of the primaries,Rmass1

=10−4,
Rmass2

=0.290310−4.
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VII. SCALING LAW FOR THE CRASH BASINS

In the previous sections for a given mass ratio the radii of
the primaries were arbitrarily fixed. In earlier investigations
f26,27g we found a power law dependence of the total size of
crash basins on the primaries’ radii for different OTD planes
and mass ratios. We now extend the analysis to thesx,yd
plane for the mass ratios discussed so far in this article. Fur-
thermore, the partḟ.0 for the section conditionṙ =0 is
included in the analysis and compared with the results for
ḟ,0. Figure 10 displays OTDs at fixed energy forRM1

in-
creasing from 10−5 to 10−1 for three different values of the
mass ratio.

For different mass ratios and energy levels Fig. 11 shows
in a log-log plot the dependence of the total area of crash

onto mass 2 versus the mass radiusRM1
. The total area of

crash orbits follows approximately a power law over several
orders of magnitude:Acrash,Ra with a<0.5.

In f26g we derived an approximation for the power law
behaviorAcrashsRd,Rb with the exponentb=1/2. Thescale-

free behavior is slightly better reproduced forḟ,0 than for
ḟ.0. For big values ofRM1

the curves obtained from nu-
merical calculations deviate from the theoretical result due to
finite size effects. Note that one obtains similar graphs for
the total area of crash onto mass 1, i.e.,A1sRM1

d, or the sum
A1+2sRM1

d, for various ranges, and values of energy level and
mass ratiosnot shownd.

In the following we briefly review the analytical calcula-
tion. The RTBP can besroughlyd approximated by the Kepler
problem when the test body is close to one primary body
sjust before a crash occursd, and in addition, when the rota-
tion of the primaries is neglected. Using Eq.s1d from Ke-
pler’s ellipse formula we obtain

E = −
1

ra + rp
7Î 2rpra

rp + ra
, s4d

whererp denotes the perihelion andra the aphelion distance.
Solving Eq.s4d for ra yields

rasrpd = − rp −
E + rp

2

E2 − 2rp
−

Îrp
4 + 2Erp

2 + 2rp

E2 − 2rp
. s5d

A collision occurs when the test body intersects the disk with
radiusR around the Kepler singularity:rpøR. Thus, forR
!1 the area of crash orbits can be approximated by
AcrashsRd<2pras0d fras0d−rasRdg. But for rp!1 Eq. s5d is
approximated byrasrpd<−1/E+Î2rp/E2. Hence, we obtain
a power lawAcrashsRd,Rb with the exponentb=1/2.

VIII. CONCLUSIONS

In conclusion, the orbit type diagrams that we presented
in this article provide detailed information about the extent
and position of bounded, unbounded, and crash orbits. We
have numerically calculated more than 10 000 OTDs where
in each diagram from about 32 000 up to 13106 trajectories
were evaluated. The extensive numerical analysis extends
known behavior in the RTBP. In contrast to our own previous
published studiesf26,27g the numerical results presented
here are based on the DKDsdrift-kick-drift d leapfrog sym-
plectic integrator of sixth order developed by Yoshidaf37g.
After testing various other integrators we consider this one as
one of the most efficient for the RTBP if applied for extended
phase space with a time step function corresponding to a
logarithmic Hamiltonian,i.e., the caseg=1 in Ref. f38g. As
a consequence we could improve both the accuracy and the
computation speed. We have validated our numerics by
monitoring the energy deviation fromE during the integra-
tion, taking various step sizes, and choosing different inte-
gration parameters and ranges for comparison. Although the
integration procedure disregards the system’s symmetries,
they are reproduced in the individual diagrams. Finally,
boundary pixels in the presented OTDs were checked with
increased accuracy.

FIG. 11. sColor onlined Log-log plot of the total size of crash
onto mass 2 in thesx,yd plane for various ranges and for various
values ofm and energy levels in arbitrary units versus the primary
body radiusRM1

=10−5,… ,10−1. Data are presented for both parts

of the sectionṙ =0, i.e., ḟ,0 ssymbols in blackd and ḟ.0 ssym-
bols in grayd. m=1/2 scrossesd, 1 /3 sboxesd, 1 /5 scirclesd, 1 /11
sdiamondsd. Gray sredd line, theoretical law,Acrash,R1/2. Ranges:
energy levels,m=1/2, ḟ,0, x,y=−5.0,… ,5.0, E=−0.1; ḟ.0: x

=−0.75,…0.75,y=−0.4,… ,0.35, E=−0.5; m=1/3, ḟ,0, x,y=
−2.0,… ,2.0, E=0.0, ḟ.0, x=−0.5,… ,0.9,y=−0.4,… ,0.3, E=
−0.6; m=1/5, ḟ,0, x,y=−2.0,… ,2.0, E=0.25; ḟ.0, x=
−0.5,… ,1.0,y=−0.4,… ,0.35, E=−0.75; m=1/11, ḟ,0, x,y=
−1.0,… ,1.0, E=0.1; ḟ.0, x,y=−0.3,… , +0.2, E=−0.5. The
curves are arbitrarily normalized.

CRASH TEST FOR THE RESTRICTED THREE-BODY PROBLEM PHYSICAL REVIEW E71, 026227s2005d

026227-9



It is important to know that the Poincaré sections dis-
cussed for the phase space projection onto the configuration
space are not arbitrary but completesin the sense of Dullin
and Wittekf29gd. Every trajectory must intersect the surface
of section.

If crash is interpreted as aleakage in phase space the
findings are examples of leaking Hamiltonian systems
f33,39,40g. From that part of chaotic scattering theory it fol-
lows that the boundaries between the crash basins and the
regions of escape orbits represent thechaotic saddlesi.e., the
invariant manifoldsd better the smaller the leakagesi.e., the
primary disksd. In that way the crash basins are connected to
the foliation of phase space. In 1988 Bleheret al. f31g pro-
posed the RTBP as an interesting application for a leaking
Hamiltonian system. After discussing the Copenhagen prob-
lem in this contextf26g we have now extended the analysis
to the RTBP for values of the mass ratio different fromm
=1/2. Asexpected from our findings and predictions of oth-
ersf32g, the boundaries between regions of crash and escape
orbits emerge as so-called type II boundaries.

Due to the extended primaries the model is more appli-
cable to realistic situations of celestial body problems than
the pure RTBP. We analyzed the model for relevant mass
ratios as the earth-moon systemsm=1/82.3d, and for values
investigated by Darwinsm=1/11d, Moulton sm=1/5d, and

Jefferyssm=1/3d f41g. Compared with the literature our re-
sults reveal a high degree of complexity that could not be
accomplished in earlier days of computer power.

On the one hand the crash basins as part of the diagrams
are more widely extended than one would naively expect. On
the other hand the power law behavior compares with that
found in the Copenhagen problem. The results show form
,1/2 how comparatively small primaries affect regions of
crash orbits. Moreover, for various mass ratios we found a
power law dependence of the total size of crash on the pri-
mary radii. This result agrees with a calculation based on
Kepler’s ellipse formula that approximately predicts the
simple relationAsRd,Rb with b=1/2 f26g. However, we
would like to highlight that quantitatively a power law be-
havior with exponent 1/2 is better reproduced the less the
corresponding OTD possesses bounded motion.

Finally, the high degree of complexity in the diagrams
suggests that the long term prediction in comparable celestial
systems may become a formidable task.
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