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Self-similar variational perturbation theory for critical exponents
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We extend field theoretic variational perturbation theory by self-similar approximation theory, which greatly
accelerates convergence. This is illustrated by recalculating the critical expone®@Npsymmetric ¢*
theory. From only three-loop perturbation expansions ire 4limensions, we obtaianalytic resultsfor the
exponents, which are close to those derived recently from ordinary field-theoretic variational perturbational
theory to seventh order. In particular, the specific-heat exponent is found to be in good agreement with
best-measured exponemt=—0.0127 of the specific-heat peak in superfluid helium, found in a satellite experi-
ment. In addition, our analytic expressions reproduce also the exactly knownNalgavior of the

exponents.
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I. INTRODUCTION approximation theory{9-13]. This method also exhibits a

) ) . fast convergence, which has been demonstrated for a variety
The precise calculation of critical exponents of phaseyt problems in quantum mechanics, statistical physics, and
transitions is an important theoretical task. On the one hangyathematical financésee the review-type papefs4,15).
these exponents provide us with basic information on therhe aim of the present joint paper is to combine the two

behavior of thermodynamic quantities in the vicinity of criti- 955r0aches. The combination is expected to have the fastest
cal points. On the other hand, such calculations require th@onvergence available so far.

development of new mathematical techniques to master the |, sec. 11 we give a brief reminder of the basic formulas

resummation problem of divergent perturbation expansiongy fie|d-theoretic variational perturbation theory, which will
(see, e.g[1,2]). The comparison of the calculated exponentspe ysed as a basis for a further acceleration of the conver-
with experiment serves as a test for the validity and accuracyence via self-similar approximation theory to be reviewed
of the mathematical methods. in Sec. IIl. In Sec. IV, we develop the combination of the two
Recently, a powerful method has been developed by ong,ethods, which is then applied in Sec. V to calculate the

of the authors calledield-theoretic variational perturbation  critical exponents of th©(N)-symmetrice? field theory.
theory [3-5], which converts divergent weak-coupling into

convergent strong-coupling expansions. This method pre-

sents a more powerful alternative to the previously used Il. FROM WEAK TO STRONG COUPLING

method of Padé-Borel resummation. The improvement ) » ) )

comes from an efficient use of the knowledge on the ap- Ph'yS|caI quantltles of' mtgrest are usually derived fror_n

proach of the strong-coupling limit, characterized by thetheories as divergent series in powers of some bare coupling

Wegner exponents. Higher accuracy has been amply dem- constantgg. Thes_e_ provide us with reliable results only for

onstrated by calculating the critical exponefitst, 6, in par- ~ Very smallgg. Critical phenomena, however, take place at

ticular by predicting the most accurately known exponentnfinitely large gg in comparison with the mass, the inverse

a~-0.0127[5] of the specific-heat peak in superfluid he- Ie_ngth scale of the fluctuatlorﬁ$]. In order to overcome th|§

lium, found in a satellite experiment with a temperature resodifficulty, one has to reorganize the divergent weak-coupling

lution of nanoKelvin. series into a convergent strong-coupling expansion. Such a
An important feature of any resummation method is thereorganiz_ation is provided by the field-th_eoret_ic va_riational

convergence of the renormalized sequence of approximantRerturbation theory3-5,8, briefly summarized in this sec-

This can be studied by considering the analytic properties offon to recall the principal formulas needed in what follows.

the sought function with respect to coupling and by involv-  Consider a real functiori(gg) of a realgg, whose limit

ing the corresponding dispersion relatidis7]. The field-  f(°2) we want to find from a divergent weak-coupling expan-

theoretic variational perturbation theory was shown to posSion up to ordet.,

sess an exponentially fast convergensee the detailed

roof in [8]).
P In an independent development, the other of the authors "(ge) = 2 fags (05— 0), @
has set up a general resummation scheme cabéfesimilar =0

L

with L=1,2,3,...enumerating the maximally available or-

der. Our aim is to find the behavior ¢fgg) at gg— . The
*Email address: kleinert@physik.fu-berlin.de expansion coefficients grow factorially with so that the
"Email address: yukalov@thsund.jinr.ru series(1) could make sense only for very smaj.
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Field-theoretic variational perturbation theory is based onr— 1 asgg— ¢ since, as we shall see, the optinsas finite.
the introduction in Eq(1) of a variational parameteéf by  This allows us to calculate from E7) as a finite approxi-

the identical replacement mantF(e,s,q). In what follows, we limit ourselves to the
1-K2 approximants of third order, since then all calculations can
9— 98 o 1= , 2) _be done analytically. The first three approximants are explic-
(K" +9ggr) '3 itly

whereq is a parameter related to the critical Wegner expo-
nents w, which in the renormalization-group approach to
critical phenomena governs the approach to scaling. The pa- @ @
rameterq in this paper corresponds /2 in the original F?(e0,5,0) = F(=,5,0) + gfys+ 5, 9)
work [3]. After the replacement, the seri€d is reexpanded

in powers ofgg at fixedr, and at the end is again replaced 1

by (1-K?)/gs. This procedure introduces an artificial depen-  F(%,5,0) =F?(e,s,q) + EQ(l +0q)fys+2qf,s" + f35°.
dence on the dummy paramete€which is fixed by search-

ing for a plateau irK which becomes flatter and flatter for (10
increasing order. The plateau is horizontal only for the cor- ¢ optimal values®=sM)(«0) are found either by ex-
rect choice ofg, and this condition will determine the Weg- romization

ner coefficientw [16].

FW(0,5,q) = fo + 35, (8)

In the upcoming calculations, we shall work with a I 1)
slightly different but completely equivalent replacement &_sF (,8,0) 0 =0, (11
s=8
S o . .
=g (= (3)  or, when the latter has no real solutions, from the turning
(1-ggr) Os points

whereo is defined as a function afg,

(92
EZF(L)(OO,s,q) =0. (12)

s=s(b)

1/q
o= o'(gB)El—<gi) . (4)

B

Following the rules of field theoretic variational perturbation To second order, there exists an extremum at

theory, we have to form the functions f
. $?=-(1 +q)j. (13
FL(ge.s.0) = f“(m) (5) ?

9ef To third order, there can be two possibilities. There is an
to be calculated with the prescription that the tergfs optimal extremums=s® at one of the roots of the cubic
=g"/(1-ggr)" in the truncated serie€l) are reexpanded equation
systematically in powers ofjg up to g'é‘”. After this, we 1
replace agaim— o/gg and optimize the resulting function in 3.2+ 2(1 + 20)f-s+ —(1 +0)(2 + ). = 0 14
the variational parametex Using the binomial expansion S+l 2A)fs+o(1+a2+ah (14

L and a turning point at
1-oP=3 CB-o)™ P
m=0 f
SI=-(1+ 2q)372. (15)
o T'(p+1) © ’
™ I(m+D)C(p-m+1)’ Usually, conditiong11) and(12) yield optimal values o&®
) o alternatively for odd and even ordets respectively(see
we obtain explicitly [1,3-6,8,18), and this will be the case in the upcoming ap-
L L-n plications of this paper.
FO(gg,s,0) = > >, CM(= o)™ 8. ) After determinings'™, we obtain the optimized approxi-
n=0 m=0 mants
This must be optimized irs, yielding an order—depeEdent FLoP o ) = FM)(e0,s1), ) . (16)
function sY(gs) and an associated oP(gg) =1
-[sM(gg)/gg]™. To second order, this is

Note that Eqs(2) and (3) are identities and not directly
related to the functions appearing in the Symanzik-type
transformationg17], in spite of a certain similarity.

Our aim is to find the behavior of Eq7) in the strong-
coupling limit gg—c. From Egs.(3) we observe that and to third order, witts® of Eq. (15) (see Ref[4]),

2

f
F@%P(o0,q) = fo— (1 +0)2-, (17
af,

026131-2



SELF-SIMILAR VARIATIONAL PERTURBATION ... PHYSICAL REVIEW E 71, 026131(2009

fif, Il. SELF-SIMILAR APPROXIMATION THEORY
F&P(o0,q) = fo— (L+Q)(L +29)(2+Q) =
6f3 Self-similar approximation theofy9—13] is based on con-

2f3 structing a sequence of optimized approximants, which con-
+(1+ 2q)3—22. (18) tain instead of a variational parametetril function. The
2713 general idea of deriving convergent sequences of optimized

For each approximariiL6), we must also specify the pa- a@pproximants with the help of trial control functions has
rameterq. If the Wegner exponent were known from other been suggested if20]. The first step in the optimization
sources, we could use this. Otherwise we must determine Rrocedure is reminiscent of the Euler-Lagrange variational
order by Order, which y|e|ds an_dependent resuq:q(l-), SO method. But while the latter is a Slng|e-Step prOCEC[IZI‘E,

that the final approximants will be the optimized perturbation theory runs via a sequence of bet-
oot . . ter and better approximants.
F(Lopt= F(LiopYer g(L)), (19 In the last section, we have shown how to calculate a

sequence of trial function&(gg,s,q)} by field-theoretic
variational perturbation theorjsee Eq.(7)]. From theses
andqg can be determined as functionsgyf by optimization.
In self-similar approximation theory9-13], the approxi-
mants of different order are considered as a flow on the

The determination off proceeds as follows. If we ex-
pect the functionf(gg) to be finite in the strong-coupling
limit, which is the case for the critical exponents, then the
logarithmic derivative, to be referred to agBafunction[1],

dlog f(gg) manifold of approximants, in which ordér of the approxi-
B(ge) = dloggs (200 mation plays the role of a discretized pseudotime. In this
interpretation, the sequence of approximations behaves like a
must tend to zero fogg— o B(«)=0. From the expansion dynamical system. The higher approximations will be ob-

(1), it is straightforward to derive tained by improving the entire control functiorss”(gg),
L even if we are only interested in the strong-coupling value
BY(gs) = >, BR. (21) f(e0), for which the previous method required only an opti-
=0 mal parametes™) (), Thus we have to perform the optimi-

zation procedure for alyjz beforegoing to the limitgg— .
Instead of Eqs(11) and(12), we have to solve the full ex-
tremality condition

Depending on whethdf, is nonzero or zero, the coefficients
Bn, up to third order, are given either by

f f, _f
=0, ==, =2—=--=, 22 d
A (2 ~FU(gs50 =0 (27)
S s=s(b(gg)
Bs= —é _ 1_22 +33 (fo % 0), (23 and, if this has no real solution, the turning point condition
fo fo fo 2
- —FY(gg,s, =0, 28
or by equations 92 (9s:5.9) Uigy (28)
f fy f3 : - : :
Bo=1, PBi= 2 Bo= 23— —g (24)  to find the lowest approximation for the trial functiog$’
fa fu fi =sb(gg). More explicitly, we could also record the param-
s eterq at which the optimization is done in the arguments and
f fof f i i (L) .
Ba= 2-32243% (f=0). (25) write the solution as'~(gg,q). But we shall refrain from

B ff f% f, doing so to avoid cluttering the notation. For the same reason
we shall omit, for a while, the argumeqtin F(,s,q).

Starting from the trial functions™(gg), we construct an
approximation following the general scheme developed in
[9-15]. We define the reonomic functi@b:gg)(qb) by the
reonomic constraint

Now we treat the expansion8"(gg) in the same way as
beforef™(gg). We form the approximant8-°P{ec, q) simi-
lar to the way of deriving Eq(16). This is setB™°P{x, q)
equal to zero to ensurg(«)=0 in each approximation. This
determines the proper parametgrsg™. For instance,

BoB3 F(gs.s"(ap) = ¢, (29)
q(Z)ZZ\/;—%Z—l. (26)

whereF® is the lowest nontrivial function in the sequence

o . . FUL. Now further define an entire sequence of functions
Note that the logarithmic derivative for determining’ F) .

can be formed from any function afg with a constant y() = f O (), sV (g(4))), (30)
strong-coupling limit[19], i.e., from any critical exponent,

not just from the functionf(gg) we want to resum at the with the initial term y®Y(¢)=¢. The set of all functions
moment. Usually, the functiom(gg) relating g to the  yM(¢) for L=1,2,3,...constitutes a spac® Cy"(¢,q)
renormalized coupling constagg is most convenient, since called approximation spaceThe pseudotime evolution in
it is known to highest order. this space forms a group of self-similarity transformations,
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Yy () = yO(yP(g)). (31)  Thus Eq.(40) will be used to obtain the highest approximant.

o . A more refined mathematical foundation for the usage of
The property of self-similarity31) guarantees the existence Egs.(39) and (40) is given in Refs[22,23.
of a fixed pointy" =y™" [14,15, which has the property ’

y =y ). (32 IV. COMBINING SELF-SIMILAR AND VARIATIONAL

More explicitly, the fixed point satisfies THEORIES

L = L gLy = FL* (gL sL(glby), L=1. Let us now be explicit and improve the convergence of
y (G5") (9 (G")) the sequencgfM°P% of variational perturbation theory de-

(33 rived in Egs.(16)—(19) by self-similar approximation theory
It defines the desired self-similar approximant to obtain a new sequendé"}. The improvement is most
L L L drastic at the initial stages of the procedure, wheR3, so
=7 (ge) = F™ (ge(¢),5™(gs(#))). (34) that we shall restrict ourselves to these low orders. An addi-

In order to find the fixed point, we define a pseudoveloc-tional advantage is that all formulas up to third order can be

ity of the approximation sequence by the finite difference derived analyti_cally. _
Recall that, in contrast to Sec. Il, we do not consider from

vH(p) = F- g (4).sP(9) - TP(g5)(¢),sV (). the beginning the limit ofjz— =, but retain the fullgg de-
(35)  pendence of the function),

If the {yV} with discreteL=0,1,2,...were a flow function FY(gg,s,q) = fo+ 1S, (41)
{y"} of a continuous timé=0, it would follow a time evo-
lution equation F@(gg,s,q) = FY(gg,s,q) + qf o5+ f,&, (42)
Jd

YD =00 (). (36) L
_ F2(g,5,0) = F?(ge,5,0) + 5a(1 + )f10%s + 2qT0°
The integral form of the latter can be presented as the evo-

lution integral + 1583, (43
L
Jy _do  _ E (37)  Which reduce to Eqg(8)~(10) for gg— = since thens— 1.
o vP(ga) L For arbitrarygg, we must optimizé=") in s. Sinces depends

on s via the relation(4), we may look for the extremum in

If the parameteq is unknown, it must be determined from a the twos and o while satisfying the condition

simultaneous treatment of th@ function (20). In this case,

we determine a sequence of optimal parametgrs™)", do o-1
leading to the self-similar approximants P e (44)
" (ge) = F"(gs, 8" (98), ). (38)

o - If this is done with the functiofF"), we obtain an optimal
For the purpose of determining critical exponents, we argunction s(gg). From this we calculate the approximant
only interested inf(gg) at gg— < and go to the limit of Eq.
(38), yielding F(LoP{(gs,q) = F"(gs,s"(gs). 0). (45)

fO" = lim Y (gg). (39

-, To lowest orderL=1, an optimal function usually does not

o . . exist. In this case, we shall use the next higher existing
The self-similar approximart39) replaces the previous op- s?(gg) to define the lowest approximant. In principle we
timized approximan{(19) of field-theoretic variational per- could, of course, form an entire off-diagonal matrix of varia-

turbation theory. o tional functions,
From the definition of the pseudovelocit$5), it follows
that for the calculation of thé&-order self-similar approxi- F(L,L’)(gB 9 =FY(gs S(L')(gB) ). (46)

mantf", we need to know.+1 orders of the expansion in

Eq. (). If L is the last available order, we shall use as anof which the functiong16) in Sec. Il are only diagonal ele-
(L+1)st approximation the average of the previous ones, ments,

fLrDr = %(f&—l)* £ Ly (40) FHoP{eo,g) = F(-H(e0,q). 47

The optimal functiors'?(gg) is determined by the extre-

This approximation is expected to be reliable if the approxi—ma"ty condition(27), which amounts to the equation
mants tend to the limik — o in an alternating fashion, once

from above and once from below. This is retpriori en- (1+q)f0(gg) + 2f,5=0. (48
sured, but happens in many examples. In the series for the
critical exponents to be treated here, this seems to be tru&rom this, we obtain the variational expression
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1 —
FE9gp,0) = F22(0a.0) = fo  fus® + 1 1fs®2

(49)

In addition, we determine a lowest approximant with a first-

order trial functions™(gg) =s?(gg),
FP{gg,q) = F"?(gg,q) = fo + ;52 (50

The third-order trial functions®(gg) is given by the
extremum-point conditiori27), which yields

1
S+ +q)f102 + 2(1 + 20)f,08% + 3,89 = 0.

(51)

If Eq. (51) has no real solution, we apply the turning point
condition (28) and solve

(1+a)(2+)fio(0—1) +2(1 + 29)f, 8% (0 - 1 +qo)

+6f30s¥2=0. (52

We now construct the approximation cascade following

the rules of Sec. lll. Accordingly, we setV=F® y®@
=F®@, andy”=FU for L= 2. Therefore, the reonomic con-
straint (29) reads fy+f;5=¢, which defines the reonomic
function ggl)(qS) through the relation

_
s?2(gg(e)) = d)f—lo.

The first-order pseudovelocity as defined in E8f) is v
=F@D-fF@®D which reads explicitly

(53)

v P(,0) = Ay(d - )2, (54
with
_ (1-9f,
b %

Using the evolution integral37), we find from self-similar
approximant(33) the expression

F22(gg,q) - fo
1 ‘Al[F(Z’Z)(QB’Q) —fol’

whereF@2 of Eq. (45) is given by Eq.(49). In the strong-
coupling limit gg— <o, this reduces to

_(1+g)?f
(5-a)%f,

Let us now determine the value of the parametefol-
lowing the procedure described at the end of Sec. Il, but wit

FO"(gg,q) = fo + (56)

F" (,0) = fo (57)

the difference that now we construct the self-similar approxi-

mants for the expansiai21) of the 8 function, which will be
denoted byB"“"(gg,q). These have the same form as
FL*(gg,q), except that the expansion coefficiefitsare re-
placed byp,. The parameterg™" are defined by the bound-
ary condition

B (0,g™") = 0.

To first order, the result is

(58)

PHYSICAL REVIEW E 71, 026131(2009

g0 = VBoB4B1+ 5BBy) =
BL+ BoB2
Substituting this into Eq.(56), we obtain fV"(gg)
=F®*(gg,q?"), in agreement with E(34). The final result
is given by Eq.(39), that is, by the valug®"={1"(cx),
The second-order velocity35) is v@=F32-F22

(59

where

2
FB.2 (g, 6) = F22(gy.q) + MS(ZB,

(1+q)fy
(60)
which is valid for anygg, in particular in the limitgg— oo,
where
2 (f,f; 1-q
FG2(ce,q) = fo— (1 + 3—1(3— ) 61
(0,q)=fo-(1+0) at,\ 222 1+q (61)
The explicit form of the velocity® is now
v2(g,q) = Ay - fo)?, (62
where
1+q)f,f3—2qf3
AZE( Q)134QZ 63)
(1+9g)f]
From the evolution integral37), we find here
, F22(gg,q) - f
F®" (g,) = fo + (9.9 o (64)

V1-A[F22(gg,q) - fo]*

The valueq®” follows from the strong-coupling condition
(58), which leads to the equation

(1+9®")*(B3B1Bs — 28385 + B1) + 2(1 +d?")*B3p3

- 16653 =0.
Inserting the appropriate solutia®” into Eq.(64), we ob-
tain f@"(gg) =F@"(gg,q?"). And the limiting value(39) is
f@"=§@" (), If only three orders of the expansidf) are

available, therf®®” is defined by Eq(40), as explained at the
end of Sec. lll.

(65)

V. APPLICATION TO CRITICAL EXPONENTS

The above theory will now be applied to evaluate the
divergent perturbation expansions of the critical exponents of
the O(N)-symmetrice* field in 4—e dimensions. The expan-
sions are power series in the bare coupling paranugtes:®,

hereu is some mass parameter to majg u€ dimension-
ess. They can be found up to six loops in the textbjddkin
this field-theoretic context, the parametgin the transfor-
mation(3) is directly related to the Wegner exponenf24],
which characterizes the strong-coupling behavior of the
renormalized coupling

w

9(0e) = g(=) — constx —  (ggluc — ).  (66)

wle

B
The relation is
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(67)

w=€q.

In the sequel, we shall sgi=1. The starting point is the

PHYSICAL REVIEW E 71, 026131(2009

3(e+ ped)

(2)opt —
g N + 8 7

(78)

expansior1] for the renormalized coupling constant, which according to Eq(19). The first-order self-similar approxi-

we shall limit to gé for simplicity,
OR(0p) = g + Co05 + Ca0 + C408, (68)
wheregg— 0 and the coefficients are
N+8 (N+8)2 3N+14
- l C3 = + i
3e 9¢? 6e

COZO, C]_:l, Cr=

_ _(N+8° 4(N+8)(3N+14

AT 278 27€
33N2+ 922N + 2960 + 2427N + 88)£(3)
- 648¢ » (69

with {(z) being the Riemann zeta function. The logarithmic

derivative of Eq.(68) yields theg function

dlog g(gs)
dloggs

with the coefficients

B3 (ge) = =1+B10s+ B0z + Baga, (70)

Bi=Ca B2=2c3-C5 B3=C5-3cCa+3c,. (71)

In second-order variational perturbation theory, we hafe
given by Eq.(26), which yields

q(z) =2\V1+pe-1, (72)
where the notation
3(3N+ 14)
=— 73
P (N +8)? 73

is used. The first-order self-similar approximat” is de-
fined in Eq.(59), resulting in

o+ = JA+PIO+5p9 - 1
2 +pe '

(74)

The corresponding Wegner exponents are

€

PG
2y1+pe-1

(75)

in the variational perturbation theory, and

oD = (2+Ppe)e
V(1 +pe)(9 +5pe) — 1

(76)

in the self-similar approximation theory.
The second-order optimized approximant

3(1+0q)%
GPPY oo, ) = —————, 77
0="\78 (77
corresponding to the renormalized couplit@8), with the
paramete(72), becomes

mant

3(1+0)%
(5-0)(N+8)’

with gV* from Eq.(74), results ing;=G;(,qY"), as in Eq.
(39). It turns out that, because of the equality

(1+q™")?
5-(q)? L Pe
the valuesg®" and g@°Pt coincide. Howeverg?”, follow-
ing from Eq.(64), is different fromg®°Pt
We now turn to the perturbation expansions of the critical
exponentss andy. Other exponents need not be treated since
they can be found from the above using well-known scaling
relations(see, e.g.[1,25,26). We begin withv™1, for which
we use the expansidi] up to g3,

G\ (e, ) = (79

(80)

v = o+ f1g5 + f,05 + 303, (81)
with the coefficients
fo=2, f1=- N+2, 2:N_+2<N_+8+§>, (82
3 9 € 2
2
. ngsz 4(N; 87, 2(19N€+ 122 e 37)] |
(83)

Following the above procedure, we get the optimized strong-
coupling value

(N+2)e

12" —p (1 4+ D€
v A+ N T 16+59)

(84)
which, forq@ from Eq.(72), gives the variational perturba-
tion resulty1(2oPt=3,~12P{ 0 g2 |ts self-similar improve-
ment reads

e 21 +)*(N+2)e
M (0,q) =2 — ) 85
W= SN 1645y D
After insertingg™”" from Eq. (74), we obtain
LU — o 2(N+2)(1 +pe)e (86)
2(N+8) +5¢

Again, it turns out that (D" =120t byt =12 £ 3)opt
with v™1@" defined by Eq(49).

Finally, we resum the perturbation expansion for the criti-
cal exponenty=v(2-7), which reads in the forn1]

Y(ge) = fo+ f10s + f205 + 303,
with the coefficients

N+2 N+2[2(N+8) }
= , == +4-N ,
6 36

(87

fo=1, f
€

(88)
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N+2| 8(N+8)2 4(106+N - 2N?) 1
fa= +

432 € €

+194 +N(2N + 17)} . (89)

Here we find the optimized approximant

(L+@)*(N+2)e
(2)0pY( o @) =
7oe.0) YN r@d-ng 0

and the self-similar approximant

(N+2)(1+pe)e
2(N+8)+(4-N)e

(D% =

(91)

Again /" coincides with the variational perturbation result
YAoPt= 12055 (@) whereasy®” does not equap3oP.

By construction, the self-similar approximart$)* ob-
tained from the evolution integraB0) possess the same
expansion, up to the given order as the optimized approx-
imantf(LoPt of variational perturbation theory. This is evident
from expression$56) and(64). For the variational perturba-
tion results, on the other hand, it was shown in Refs.
[4-6,19 that all expansions in powers efcoincide with the
expansions derived in the renormalization-group approach to
critical phenomendl]. As a consequence, also the presently
derived self-similar approximantE"” possess the exaet
expansions. This can easily be verified by an explicit calcu- 0.12
lation.

It is interesting to compare the ll/expansions with the
self-similar approximants for largéd. These expansions for
the critical exponents, v, y, and 5 are presented in Fig. 1,
where they are compared with our self-similar approximants
as well as with the results of the sixth-order variational per-
turbation theonj 1], and with those of Padé-Borel resumma-
tions[27,28. Our third-order results have the same accuracy
as those of sixth or higher orders, obtained by other resum-
mation techniques. In the limikl— oo, our exponents coin-
cide with the known exact values

FIG. 1. Solid curves show our third-order approximations to
,v,v,7n. Short-dashed is second-, long-dashed curve is third-order
approximation. Thin dots show sixth-order approximation of the
D-4 1 > D+2 textbook[1], fat dots the extrapolations to infinite order. The dash-
a=——0:FV B=Z, y=——7, 6= . (92 dotted lines in the second and third figures are interpolations to the
2 D-2 D-2 Padé-Borel resummations [#7,28 (wherew was not calculated
Their data forzn scatter too much to be represented in this way—
1 they are indicated by small circles in the fourth figure. The dotted
=——, 7=0, w=4-D, (93) curves show 1IN expansions of all four quantities. Note that our
D-2 results lie closer to these than those of S.A. Antonenko and A.l.
Sokolov. The solidy curve was calculated in the textbofk] (see

whereD is dimensionality. . -
. . Fig. 20.2. The exact largdN limits are wn==4-D, vn=e=1/(D
Critical exponents for finiteN have been calculated by _3) VN—2=2/(D—2) andgnN_ 0. The (;’:act values”;‘:_z ;re

Padé-Borel fesummation meth.ods based on.si>§- and SeVeN- =1/2, y-p=1, andy-_,=0 for all D.

loop expansions i =3 dimensiong29-37 or in five-loop

expansions in D=4-¢ dimensions [33-36. In Refs.

[30-32,36, Borel-Leroy transformation has been used, com- . . o
bined with a conformal mapping. Different variants of the A list of our results from the third-order self-similar im-
optimized perturbation theor20] have been useB7-44. provements of variational perturbation theory for the critical
Self-similar exponential approximants were given[#l].  €xponents is given in Table I. The exponentsy, andw are
Computer simulations, based on the Monte Carlo latticecalculated directly from their series, as is explained in the
studies, were presented [42]. The available results have text. The other listed exponents are obtained from the scaling
been reviewed in Ref$1,43,44. relations

14
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TABLE I. Third-order critical exponents of self-similar variational perturbation results of this paper obtained from three-loop expansions
in 4-¢ dimensions. Results are compared with the six-Ifop N> 3) exponents and seven-loop exponeffits N=0,1,2,3 calculated in
three dimensions in Refg3-5] and listed in the textbooKL]. We also show the exponents obtained by Padé-Borel resummation if2Blef.
as well as earlier resultgll cited in Notes and Referengedhey refer to six-loop expansions D=3 dimensiong29-32, or to five-loop
expansions ire=4-D [34,35. The numbers in parentheses indicate the highest calculated approxifsatiemth order foN=0,1,2,3 and
sixth order forN>3) from which the final results were obtained by extrapolation to infinite order. The critical couplirage different for
calculations in 4« and three dimensions due to different normalizations.

N O y ” v @ B o (wg)
-2 0.758+0.037 1 0 1/2 2B/2 (D-2)/4 0.831+0.077
0 0.578+0.021 1.161+0.004 0.028+0.005 0.588+0.001 0.235+0.001 0.311+0.001 0.812+0.055
1.1611.159 0.0311+0.001 0.5886.58649 0.234 0.81(0.773 [5]
1.1681.159 0.0250.0209 0.5920.589 0.8100.7737 [1]
1.402 1.160 0.034 0.589 0.231 0.305 [27,28
1.421+£0.004 1.161+0.003 0.026+0.026 0.588+0.001 0.236+0.004 0.302+0.004 0.794+0.06[29]
1.421+£0.008 1.1615+0.002 0.027+0.004 0.5880+0.0015 0.3020+0.0015 0.80+0.0430-32
1.160£0.004 0.031+0.003 0.5885+0.0025 0.3025+0.0025 0.82+0.04 [36]
1 0.510+ 1.238+0.004 0.037+0.009 0.630+0.008 0.109+0.012 0.327+0.004 0.808+0.046
1.2411.236  0.0347+0.001 0.6310.6270 0.107 0.8080.772 [5]
1.2411.235  0.0300.0254  0.6300.627 0.8050.7729 [1]
1.419 1.239 0.038 0.631 0.107 0.327 0.781 [27,2§
1.416+0.0015 1.241+0.004 0.031+0.011 0.630+£0.002 0.110+0.008 0.324+0.06 0.788+0.00329]
1.416+0.004 1.2410+0.0020 0.031+0.004 0.6300%0.0015 0.3250+0.0015 0.79+0.0330-37
0.035+0.002 0.628+0.001 0.80+0.02 [33-35
1.1239+0.004 0.037+£0.003 0.6305+0.0025 0.3265+0.0025 0.81+0.04 [36]
2 0.454+0.012 1.310+0.019 0.045+0.012 0.671+£0.018 -0.0124+0.0270 0.343+0.009 0.807+0.038
1.3181.306 0.0356+0.001 0.6718.6652 -0.0129 0.800.772 [5]
1.3181.306 0.0320.0279 0.6700.665 0.8000.7731 [1]
1.408 1.315 0.039 0.670 -0.010 0.348 0.780 [27,28
1.406+0.005 1.316+0.009 0.032+0.015 0.669+0.003 -0.007+0.009 0.346+0.009 0.78+0.01 [29]
1.406+£0.004 1.3160%£0.0025 0.033+0.004 0.6690%+0.0020 0.3455+0.002 0.78+0.02530-32
0.037+0.002 0.665+0.001 0.79+0.02 [33-3§
1.315+0.007 0.040+0.003 0.671+0.005 0.3485+0.0035 0.80+£0.04 [36]
3 0.407+£0.010 1.378%0.037 0.052+0.015 0.709+0.030 -0.126£0.045 0.359+0.013 0.807+0.031
1.3901.374 0.0350+0.0005 0.7072.7004 -0.122 0.7970.779 [5]
1.3871.372 0.0320.0289 0.7050.700 0.7970.7759 [1]
1.392 1.386 0.038 0.706 -0.117 0.366 0.780 [27,28
1.392+0.009 1.390+£0.01 0.031+0.022 0.705+0.005 -0.115+£0.015 0.362 0.78+0.02 [29]
1.391+£0.004 1.386+0.004 0.033+0.004 0.705+0.003 0.3645+0.0025 0.78+0.02[30-32
0.037+0.002 0.79%£0.02 0.79£0.02 [33-35
1.390+0.010 0.040+£0.003 0.710+0.007 0.368+0.004 0.79+0.04 [36]
4  0.368£0.008 1.442+0.056 0.057+0.018 0.744+0.043 -0.232+£0.064 0.374+0.018 0.809+0.026
1.4511.433 0.0310.0289 0.73710.732 0.7950.780 [1]
1.375 1.449 0.036 0.738 -0.213 0.382 0.783 [27,2§
5 0.335£0.007 1.501+0.076 0.060+0.019 0.776+0.055 -0.328+£0.082 0.388+0.022 0.812+0.022
1.5111.487 0.029%0.0283 0.7670.760 0.7950.785 [1]
1.357 1.506 0.034 0.766 -0.297 0.396 0.788 [27,2§
6 0.306£0.006 1.554+0.095 0.062+0.020 0.804+0.066 -0.414+0.099 0.399+0.025 0.814 407D
1.5581.535 0.02760.0273 0.7900.785 0.7970.792 [1]
1.339 1.556 0.031 0.790 -0.370 0.407 0.793 [27,28
7 0.282+0.005 1.601+0.112 0.062+0.020 0.829+0.075 -0.489+0.0113 0.409+0.028 0.818+0.016
1.5991.57% 0.02620.0260 0.8100.807 0.8020.800 [1]
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TABLE I. (Continued)
N O Y 7 v @ B o (wg)
1.321 1.599 0.029 0.811 -0.434 0.417 0.800 [27,28
8 0.261+0.004 1.643+0.127 0.061+0.019 0.851+0.083 -0.553+0.125 0.416+0.030 0.821+0.014
1.6381.612 0.02470.0246 0.8290.825 0.8100.808 [1]
1.305 1.637 0.027 0.830 -0.489 0.426 0.808 [27,28
9 0.243+0.004 1.680+0.140 0.059+0.019 0.869+0.089 -0.608+0.134  0.422+0.032 0.825+0.012
1.6801.643 0.02330.0233 0.8500.84) 0.81710.815 [1]
1.289 1.669 0.025 0.845 -0.536 0.433 0.815 [27,28
10 0.226+0.003 1.713+0.150 0.057+0.017 0.884+0.093 -0.654+0.140  0.426+0.032 0.828+0.010
1.7131.670 0.02160.0220 0.8660.859 0.8240.822 [1]
1.275 1.697 0.024 0.859 -0.576 0.440 0.822 [27,28
12 0.199+0.003 1.765+0.163 0.054+0.015 0.908+0.098 .0726+£0.147 0.480+0.032 0.836+0.007
1.7631.716 0.01930.0199 0.8900.877 0.8380.835 [1]
1.249 1.743 0.021 0.881 -0.643 0.450 0.836 [27,28
14 0.178+0.002 1.804+0.170 0.048+0.012 0.925+0.099 -0.777+£0.148 0.486+0.031 0.843+0.006
1.7951.750 0.01690.0179 0.9050.8949 0.8510.849 [1]
1.227 1.779 0.019 0.898 -0.693 0.457 0.849 [27,28
16 0.160+0.002 1.833+0.172 0.042+0.010 0.938+0.097 -0.814+0.146 0.490+0.030 0.850+0.004
1.8221.779 0.01520.0162 0.9180.90% 0.8620.860 [1]
1.208 1.807 0.017 0.911 -0.732 0.463 0.861 [27,28
18 0.146+0.001 1.856+0.171  0.038+0.008 0.946+0.095 -0.840+0.142 0.492+-0.028 0.856+0.003
1.8451.803 0.01480.0137 0.9290.918 0.8730.869 [1]
1.191 1.829 0.015 0.921 -0.764 0.468 0.871 [27,2§
20 0.134+0.001 1.873+0.168 0.033+0.006  0.953+0.091 -0.861+0.137  0.493+0.026 0.862+0.002
1.8641.822 0.012%0.0135 0.9380.927 0.8830.878 [1]
1.177 1.847 0.014 0.930 -0.789 0.471 0.880 [27,2§
24 0.114+0.001 1.898+0.158 0.027+0.004  0.963+0.084 -0.889+0.126  0.429+0.023 0.873+0.001
1.8901.850 0.01060.0116 0.9500.939 0.9000.899 [1]
1.154 1.874 0.012 0.942 -0.827 0.477 0.896 [27,28
28 0.100+0.001 1.915+0.148 0.023+0.002  0.969+0.077 -0.907+0.116  0.427+0.021 0.882+0.000
1.9091.871) 0.009232 0.9590.949 0.9130.906 [1]
(0.01010
1.136 1.893 0.010 0.951 -0.854 0.481 0.909 [27,28
o0 0 2/(D-2) 0 1/(D-2) (D-4)/(D-2) 1/2 4-D

[1]. Comparing the results, we see that our third-order self-
similar approximants yield the values for the critical expo-
nents, which are close to those derived by other resummation

) . . techniques of sixth or seventh order. In the limiting cases of
The error bars are defined by the difference betwiehand  N=-2 andN=c«, our results coincide with the known exact

D", Our results are compared with those of the field-values of the critical exponents.
theoretic variational perturbation theory based on six-loop The critical exponents obtained by our method from

a=2-1D, BZ%(D—2+7]), y=v(2-7. (94

(for N>3) and seven-loogfor N=0,1,2,3 expansions cal-
culated in three dimensions in Ref8-5] and listed in the

three-loop perturbation expansions are all in good agreement
with all experiments. Unfortunately, most of them are not

book[1]. We also show the exponents recently obtained bysufficiently accurate to distinguish between different theoret-
Padé-Borel resummation28], as well as earlier results ical approaches. The most accurately known experiment is

[29-36, based on six-loop expansions DF3 dimensions
[29-32 and on five-loop expansions D=4-¢ dimensions

the measurement of the specific heat of liquid helium with
nanoKelvin temperature resolution near the lambda point,

[33-36. The numbers in parentheses indicate the highesivhich were performed in a satellite orbiting around the Earth

calculated approximatiotseventh order fon=0,1,2,3 and

[45,46. The specific-heat exponent initially extracted from

sixth order forN>3), from which the effective extrapola- the data in[45] was a=-0.01056+0.0004. This differed
tions to infinite order were obtained as described in the booklightly from the result of seven-loop variational perturbation
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theory obtained from three-dimensionaf theory, which  This, however, requires the usage of more complicated nu-
yielded «=-0.0129+0.00065]. However, a recently per- merical calculations, which would be outside the scope of

formed reanalysis of the data in Ref46] found @  the present paper. Here we would like to emphasize that the
=-0.0127+0.0003, thus confirming with great precision theacceleration of convergence can be achieved already at the
theoretical result of Ref5]. Our present resulz=-0.0124  very beginning of the resummation procedure, where the

obtained in third-order self-similar-improved variational per- analytical treatment is still admissible.

turbation theory is again in perfect agreement with the latest | conclusion, we have developed a method for resum-

experimental _result_. This is_quite _remarkable since the ﬁvef‘ning divergent perturbation expansions. It combines field-

loop calculations in 4= dimensions gave the value heqretical variational perturbation theory with self-similar

:_0'013f[41]'.Tp's |II|ustra;tef) t?e act:ﬁeleratéontgf thelé:onv?r— approximation theory, and accelerates greatly the conver-
gence of variational perturbation theory by the Sell-simiialyqonce of gjther method by itself. The acceleration is espe-

improvement developed in this paper. Note that calculating & . i ) s
small value ofw is a rather complicated task, so that the error lally useful if qnly low-order expansions are avallaple due
to the complexity of the problem. Up to third order, all re-

bars fora are usually quite large, which is also the case in ) !
o y4a 9 sults are found analytically. The method was illustrated by

our calculations, where the error bar is about 100%.0f . - : ’
The main concern of this paper has been to demonstraedliculating the critical exponents whose third-order approxi-

how the acceleration of the convergence can be achieved ))ants are found to be close to the sixth- or seventh-order
combining two methods, each of which provides sufficiently@PProximants of other resummation techniques. The specific-
fast convergence. For thé-component field theory, with not ~ heat critical exponent for N=2 is found to be in perfect
too large N, our third-order results are close to those ofagreement with the most accurately measured experimental
higher orders in other resummation techniques. Under th®alue of a for superfluid helium.

order, we mean the number of loops involved in the deriva-

tion of the series, employed in further resummation. Our

results forw and » at intermediatéN ~5-50 deviate slightly ACKNOWLEDGMENTS
from those obtained in extrapolating the sixth-order approxi-
mation in the booK1]. However, these values of are less One of the authorgV.l.Y.) is grateful to A. Pelster and

physically interesting than the loweN values, where our E.P. Yukalova for discussions and to the Deutsche
results practically coincide with the sixth-order onfgld. Forschungsgemeinschaft for financial support at the Freie
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