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We have defined a type of clustering scheme preserving the connectivity of the nodes in a network, ignored
by the conventional Migdal-Kadanoff bond moving process. In high dimensions, our clustering scheme per-
forms better for correlation length and dynamical critical exponents than the conventional Migdal-Kadanoff
bond moving scheme. In two and three dimensions we find the dynamical critical exponents for the kinetic
Ising model to bez=2.13 andz=2.09, respectively, at the pure Ising fixed point. These values are in very good
agreement with recent Monte Carlo results. We investigate the phase diagram and the critical behavior of
randomly bond diluted lattices ind=2 and 3 in the light of this transformation. We also provide exact
correlation exponent and dynamical critical exponent values on hierarchical lattices with power-law and Pois-
sonian degree distributions.

DOI: 10.1103/PhysRevE.71.026130 PACS numberssd: 05.50.1q, 64.60.2i

I. INTRODUCTION

We have generalized the dynamical real-space renormal-
ization group sRSRGd calculations for the kinetic Ising
model f1g to dilute lattices with arbitrary number of nearest
neighbors, motivated by an interest in the relaxation behavior
of networksf2g with power-law and Poisson degree distribu-
tions. We propose a different clustering scheme which im-
proves, but does not completely fix, the problematic behavior
at high dimensions of the RSRG. This scheme yields very
accurate dynamical exponents in two and three dimensions.

We first computed the dynamical critical exponentz in the
Migdal-Kadanoff bond moving schemef3,4g on networks
with arbitrarily high, but uniform, connectivity and found, as
have othersf5,6g, thatz gradually converges to unity, as the
spatial dimension of the system becomes very largesfor d
=12, z−1=10−5d and the correlation length exponent con-
verges ton=1 ssee Figs. 1 and 2d. This is in contrast to the
expected mean-field values ofn=0.5 andz=2 above the up-
per critical dimension. The dynamic RSRG calculation thus
yields neither a sharp crossover above the upper critical di-
mension,dc=4, nor the correct mean-fieldsMFd behavior in
the high-dimension limit. We have observed that a static
RSRG calculation with Migdal-KadanoffsMK d bond moving
scheme also converges to the same limits, but it does so from
above, whereas the dynamical RSRG calculation does so
from below ssee Fig. 2d.

The pathalogical behavior of RSRG in high dimensions,
at low temperatures, has been remarked upon by several au-
thors f7,8g. To our knowledge, no RSRG scheme of bond-
moving, cluster, or majority rule type is able to display the
sharp crossover to MF critical exponents at the upper critical
dimension of the system under considerationsexcept for the
so-called “hierarchical” Hamiltoniansf9gd. It should be re-
membered that the upper critical dimension has been identi-
fied in the context of the momentum-space renormalization
group in the manner of Wilson and Kogutf10g, where it can
be obtained from simple power counting in momentum-

space integrals for the appropriate renormalized verticessin-
teractionsd to decide whether they are relevant or irrelevant
f11g.

The reason why the MK approach fails to provide a rea-
sonable approximation to the critical behavior of
d-dimensional hypercubic lattices in larged is twofold. The
first is because it increasingly underestimates the contribu-
tion from the loops in thed-dimensional Euclidean lattice
and this effect leads to more and more inaccurate results for
large dimensions. The second, and again topological, reason
for the divergence of MK results from those on Euclidean
hypercubic lattices is the nonuniform connectivity of the un-
derlying “hierarchical lattice,” on which the MK scheme for
RSRG is realized as an exact transformationf12,13g ssee Fig.
3d. We turn this feature to an advantage in investigating the
dynamical behavior of the Ising model on networks with
power-law degree distributions.

FIG. 1. The dynamical critical exponentz versus dimensiond
obtained via the conventional Migdal-Kadanoff bond moving
scheme, with scale factorl=2. For larged, z converges to 1.
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It is no surprise that the conventional MK bond moving
scheme should not yield faithful results at high dimensions,
since the whole strategy heref4g is to deform the lattice in
such a way that the neighborhood of the spins to be deci-
mated locally looks like aone-dimensionalchain and the
partial sums can be done exactly. Although the total number
of bonds connecting spin pairs is conserved under this op-
eration, the number of loops is not, and the topology of the
resulting network is completely differentfFigs. 3sad–3scdg
We have found a way to improve the performance of the
RSRG approach in relation tod-dimensional hypercubic lat-
tices by defining a type of cluster which retains the intercon-
nectivity of the moved spinsfFig. 3sddg. These improvements
do not remove, of course, the Griffiths singularities and prob-
lems with non-Gibbsian measures, etc.f7,13g. These come
from the diverging connectivity at an infinite number of ver-
tices of the hierachical lattice, obtained by replacing each
bond iteratively with the clusters seen spanning the edges of
the bond-moved unit cell in Figs. 3scd and 3sdd.

We were able to obtain a convergence, with two digit
accuracy, ton=0.63 for high dimensionalitysd.13d, a re-
sult which is at least smaller than 1 but still larger than the
correct MF resultsnMF=0.5d ssee Fig. 4d. Likewise, the dy-
namical critical exponent in this scheme converges to the
value 1.6 for dimensionsdù11 sFig. 5d. These results are
summarized in Table I. The clustering scheme for the RSRG
also performs very well in low dimensionssTable IId. The
dynamical exponent calculated within our scheme ford=2 is
z=2.13 and ford=3 is z=2.09, to be compared with the best
simulation resultsf14–20g, which give values between 2.11
and 2.24 ford=2 and between 2.01 and 2.11 ford=3 sTable
III d.

Going over to the dynamical critical behavior for bond-
diluted lattices, we first applied the dynamic RSRG tech-
nique to the bond-diluted kinetic Ising system in two and
three dimensions. The approximation we used to compute
the configuration averages is in fact exact for annealed ran-
domness. The approximate transformations for the dilution
parameterp and the coupling constant are well behaved as

one approaches the separatrix, or critical line, from above,
but the approximation breaks down in the ordered phase and
for low temperatures in the disordered phase. In both two
and three dimensions we were able to compute the RG flows
on the disordered side of the separatrix and on the separatrix
itself, and thereby determine the phase diagrams. In two di-
mensions we find a disorder fixed point, which is unstable
and which we interpret as a tricritical point, since there the
second-order phase transition line gives way to a first-order
transition line. The pure Ising fixed point is stable and deter-
mines the exponents along the second-order transition line.
In three dimensions, no disordered critical fixed point is

FIG. 2. The correlation critical exponentn versus dimensiond
via the conventional Migdal-Kadanoff bond moving scheme, with
scale factor 2. It can be seen thatn converges to 1 for larged.

FIG. 3. sColor onlined A comparison of the conventional MK
bond moving and our clustering scheme, ford=2 andl=2. sad A
square lattice, with nested unit cells of linear sizes 1 and 2. The
“corner spins,” which will survive the decimation procedure, are
shown in black. The spin at the center is connected to four different
neighbors, and there are four loopssor plaquettesd. sbd The result of
bond moving. The redsdashedd bonds have been moved vertically,
the orangeslight greyd bonds horizontally. The spin at the center is
disconnectedsit just contributes a trivialkBT ln 2 term to the free
energyd, and there is now just one loop.scd The central spin has
been “split” into two and moved together with the red and orange
bonds, so that the number of distinct interacting spin pairs is con-
served. This method yields a renormalization group transformation
which is equivalent, to leading order, to that in casesbd. sdd Beyond
just “splitting” the spin at the center of the square and moving it
together with the red and orange bonds, the connectivity between
this central spin and its neighbors has been preserved. In this case,
the number of distinct pairs of interacting spins is not conserved,
but the number of loops is. The “hierarchical lattices” on which the
renormalization group transformations considered here are exact,
are obtained by iteratively replacing each bond inscd or sdd with the
whole cluster connecting the two corner spins. Shown here is only
the case without any bond dilution.

D. BALCAN AND A. ERZAN PHYSICAL REVIEW E 71, 026130s2005d

026130-2



found. The critical line is depressed to zero temperature at a
concentrationpe.p* , wherep* is the percolation fixed point.
The flow along the critical line is to the pure Ising fixed point
at p=1, and thus the critical exponents along the critical line
are the same as the pure Ising exponents, also in three di-
mensions. Computing the effective critical exponents along
the critical line, we find thatzeff varies nonmonotonically as
a function ofp, within the intervalsf2.01,2.25g for d=2 and
f2.09,2.69g for d=3 ssee Fig. 6d.

Our scheme as well as the conventional equilibrium
Migdal-Kadanoff RSRGssee also Refs.f21,22gd fails to pre-
dict the crossover to a disorder critical fixed point ford=3,
both demonstrated by means of finite-size scaling arguments
f23g applied to large Monte Carlo simulationsf24g and ex-
pected on the basis of the Harris criterionf25g. The value we
find for the pure system specific heat exponenta via the
hyperscaling relation 2−a=dn in d=3 is negative for the

static RSRG calculation forn, while the dynamic calculation
yields a positivea. These results have to be interpreted in the
context of the still ongoing debate on the criteria for the
stability of the pure-system critical behavior. The rather ex-
tensive literature on the Harris criterionf25g has been re-
cently reviewed by Janke and Weigelf26g. It has been shown
by various authorsf22,27,28g that the Harris criterion, which
equates the crossover exponent for randomnessf, to the
pure systema, is simply not applicable on hierarchical lat-
tices, and various alternative criteria, such as the “wandering
exponent”f27g for correlations in the nonperiodic variations
in the number of bonds incident on lattice pointssthe degree
of the noded, have been proposed. The calculation of this
exponent for our present RSRG scheme goes beyond the
scope of this paper and will be considered in a separate pub-
lication.

The paper is organized as follows. In the next section we
set up the dynamical RSRG calculations for bond-diluted
hypercubic lattices, and introduce a clustering scheme on
which we will implement it. The last section includes our
results and a discussion of the relevance of our results to
nonuniform lattices with power-law and Poissonian degree
distributions.

II. DYNAMICAL RSRG CALCULATIONS
FOR BOND-DILUTED HYPERCUBIC LATTICES

In order to investigate the effect of the underlying lattice
of arbitrarily high degree on dynamical behavior of an inter-
acting system residing on this lattice, we consider an Ising
model on the nodes of a hypercubic lattice ofd dimensions,

FIG. 4. The correlation critical exponentn versus dimensiond
obtained by our clustering scheme.n converges to 0.63 for larged
sto be compared with Fig. 2d. See Table I.

FIG. 5. The dynamical critical exponentz versus dimensiond
obtained by our clustering scheme.z converges to 1.6 for larged sto
be compared with Fig. 1d. See Table I.

TABLE I. Our results for dynamical critical exponentz and
correlation critical exponentn with respect to space dimensiond at
the pure Ising fixed point.

d z ndynamic nstatic

2 2.13 0.49 1.15

3 2.09 0.51 0.82

4 1.99 0.54 0.72

5 1.88 0.57 0.68

6 1.77 0.59 0.65

7 1.70 0.61 0.64

8 1.65 0.62 0.64

11 1.60 0.63 0.63

TABLE II. The fixed points and the critical exponents ind=2
andd=3. The first value ofp shows the pure Ising fixed point; the
second one shows the percolation fixed point for each dimensiond.

d p K* np ndynamic adynamic z

2 1 0.27 - 0.49 1.03 2.13

0.5 0.82 1.43 0.48 1.04 2.16

3 1 0.12 - 0.51 0.46 2.09

0.16 - 1.01 - - -
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which will be subjected to bond dilution to yield a disordered
network with a Poisson degree distribution.

The Hamiltonian of the system is given by

H = − o
kij l

Jijsis j , s1d

where Jij is the interaction between two nearest-neighbor
spins andsi is the spin variable which can take the values
11 and21. The sum is taken over all nearest-neighbor pairs.

In a d-dimensional hypercubic lattice, the number of nearest
neighbors of a spin isG0=2d on the pure lattice.

In order to be able to derive the equation of motion for the
magnetization of a given spin—say,s0—we would like to
introduce some notation and relabel the spins in its neighbor-
hood in a systematic way. This is shown in Fig. 7, where we
denote thej th neighbor in theith lattice direction ass j

sid,
with i =1,… ,G0. The interaction constant between the spins
s0 ands1

sid is denoted byJ1
sid. All the coupling constants are

independently and identically distributed—e.g.,

PsJ1
sidd = pdsJ1

sid − Jd + s1 − pddsJ1
sidd. s2d

A. Equation of motion for the magnetization

Using Glauber dynamicsf29g we may write down the
equation of motion for the magnetizationm0;ks0l and get

d

dt
m0std = − m0std +KtanhSo

i=1

G0

K1
sids1

sidDL , s3d

where K1
sid;bJ1

sid and b;skBTd−1. Here the bracketsk¯l
denote both the thermal expectation value and the configu-
ration average over the bond randomness.

The strategy is now to expand the function appearing in-
side the brackets in Eq.s3d in terms of spin products. The
first term is linear in the spins. To be able to proceed further,
we have to make the crucial approximation of taking the
thermal averages over the spinss1

sid and the configurational
averages over the bondsK1

sid independently of each other.

TABLE III. Comparison of our results with the known values
coming from different approaches. Here dynamical RSRG calcula-
tions are written as DRSRG and Monte Carlo studies are denoted
by MC.

d Reference Method z

2 Present work DRSRG 2.13

Staufferf14g MC 2.18

Nightingale and Blötef15g MC 2.17

Li et al. f16g MC 2.13

Lauritsen and Itof17g MC 2.13±0.02

Mülker et al. f18g MC 2.21±0.03

Droz and Malaspinasf6g DRSRG 1.85

3 Present work DRSRG 2.09

Ito et al. f19g MC 2.06

Staufferf14g MC 2.04

Lauritsen and Itof17g MC 2.04±0.03

Mülker et al. f18g MC 2.08±0.03

Ito f20g MC 2.06±0.02

Droz et al. f6g DRSRG 1.45

6 Present work DRSRG 1.77

Droz and Malaspinasf6g DRSRG 1.02

FIG. 6. The effective dynamical critical exponentzeff versus the
bond occupation probabilityp, obtained by our clustering scheme.
The intervals along thep axis sampled by more points correspond
to the intervals around the fixed point or to the end points of the
validity of the RG transformation.

FIG. 7. We generalize the notation of Suzukiet al. f1g to the
case of ad=G0/2 dimensional hypercube. The“corner spin” on
which we concentrate is denoted bys0, and on the original lattice
swithout bond movingd its j th-neighbor spin in theith direction is
denoted bys j

sid, wherei =1,2,… ,G0 in the counterclockwise direc-

tion. Thuss1
sid ands2

sid are, respectively, the first and second nearest
neighbors ofs0, in the ith direction. The coupling constantJ1

sid is
also shown.
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This amounts to making a mean field or effective medium
type of approximation, neglecting the fluctuations in the
bond configurations neighboring different spins. Moreover,
since the thermal averages are implicitly calculated with re-
spect to some average interaction strength, this represents an
annealed approximation to the original quenched problem.
These simplifications were also made by Droz and
Malaspinasf6,21g. The assumption is that the difference be-
tween the annealed and quenched averages and the depar-
tures from the effective medium approximation will be
higher-order effects, and not contribute to the scaling behav-
ior of the equation of motion to leading order.

Since the numberG of connected nearest neighbors of any
lattice point on this disordered lattice will be distributed ac-
cording to

PsGd = o
n=0

G0 SG0

n
Ds1 − pdnpG0−nd„G − sG0 − nd…, s4d

we get

S1 +
d

dt
Dm0std = Fo

G=1

G0 SG0 − 1

G − 1
DpGs1 − pdG0−GaGsKdG

3 o
i=1

G0

m1
sid + gsp,K,td, s5d

with m1
sid;ks1

sidl andK;bJ. HereaGsKd is the coefficient of
the first-order term coming from the expansion of the hyper-
bolic tangent in terms of products of spin variables, for a
particular realization of the disorder in which the spins0 has
G nearest neighbors. These coefficients are given by

aGsKd =
1

G2G−1 o
n=0

nmaxSG

n
DsG − 2ndtanhfsG − 2ndKg, s6d

wherenmax takes valuesG /2 for evenG or sG−1d /2 in the
case of oddG. Note that the coefficient of the term corre-
sponding to products of even numbers of spins in the expan-
sion of ktanhsoi

GK1
sids1

siddl is identically zero, for any value of
G. Thus the other term in Eq.s5d, gsp,K ,td, comes from
three-spin and higher-order-spin products. It is possible, in
principle, to include higher correlations, at the expense of
going to coupled equations of motionf30g for higher-spin
moments, but this is not the route we have taken here. Ne-
glecting third-order and higher-spin correlations and defining
the coefficient of the single-spin expectation value in the
presence of bond randomness,asp,Kd, via

asp,Kd = o
G=1

G0 SG0 − 1

G − 1
DpGs1 − pdG0−GaGsKd, s7d

we see that we can write the equation of motion for the
magnetization at a given site as

S1 +
d

dt
Dm0std = asp,Kdo

i=1

G0

m1
sid. s8d

Taking the Laplace transform of Eq.s8d we obtain

s1 + sdm0fsg = asp,Kdo
i=1

G0

m1
sid. s9d

B. Clustering scheme

In this subsection we will motivate and construct a type of
clustering scheme, which preserves the interconnectivity of
the nodes which will be eventually decimatedssee Fig. 3d.
We will then obtain the equations of motion for the magne-
tizations of the corner spins on these clusters.

First we would like to make more explicit our claim that
Migdal-Kadanoff bond moving drastically underestimates
the number of loops in the system in high dimensions. Mak-
ing a change of variables toy=tanhsbJd, we may write the
static RG transform for the cluster shown spanning an edge
of the MK bond-moved lattice in Fig. 3scd, for d dimensions,
and with arbitrary rescaling factorl as

y8 =
Nyl

1 + sN − 1dy2l , s10d

whereN=ld−1. The “rule of thumb” leading to this equation
is as followsf31g: in the numerator appears theN parallel
paths connecting two sites of the cluster which will not be
decimatedscorner spinsd. These paths contributeyl, wherel
is the number of links along the one-dimensional chains of
spins connecting the corner spins. The second term in the
denominator counts the number of loops in the cluster, with
y2l corresponding to the product ofy’s around one complete
loop. It can easily be checked numerically that for larged,
the fixed point of this equation,y* will become very small
compared to unity, in which case the second term in the
denominator can be neglected. The approximate fixed-point
equation then yieldsy* =1/N1/sl−1d. The RG eigenvalue then
becomes L;udy8 /dyuy* =l, and one trivially obtainsn
=ln l / ln L=1 for large d. Thus, to be able to escape this
trivial result, one should modify the RG procedure in such a
way that contributions from the linear parts of the graph do
not completely dominate the loops.

With this in mind, let us return to the modified bond mov-
ing scheme which we proposed in the Introduction and Fig.
3sdd. Note that each unit cell of thed-dimensional lattice
contributes tod such clusters, which, under coarse graining
si.e., decimation of the “middle spins” and rescalingd, go to
the renormalized bonds in the direction of the basis vectors.
Clearly, for thed-dimensional hypercubic lattice without di-
lution, one has to further specify the clusters connecting the
corner spins which remain after the decimation step. We will
base our construction on the clue provided by Fig. 3sdd,
where we see that the pair of middle spins in the cluster for
d=2 are connected to each other. At the risk of overestimat-
ing the number of loops at higher dimensions, we propose
that after bond moving, all theN=2d−1 middle spins within
each cluster be completely interconnected as shown in Fig. 8.
We will implement the transformation for the scaling param-
eter l=2. For d=2 andd=3, the number of loops incorpo-
rated into thed clusters exactly accounts for the number of
loops contained in the original unit cell—namely, 4 and 36.
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Thus, we will adopt the convention that in the bond-moved
lattice, in theith direction, i =1,… ,G0, between the corner
spins s0 and s2

sid, there exists a cluster containingN=ld−1

middle spins denoted byp j
sid, with j =1,2,… ,N, as illus-

trated in Fig. 8.
We should mention here that one could start with the clus-

ters depicted in Fig. 8, withN middle spins, and proceed to
construct a hierarchical lattice by successively replacing each
bond with such a cluster,ad infinitum f12,13,31g. sWe can
always define an effective dimension via 2deff−1=N.d The re-
sults of the RG transformation which we will effect here will
be exact on this hierarchical lattice, and so will the exponents
which we obtain for the pure and the diluted cases.

When we introduce bond randomness, the bonds appear-
ing in the cluster in Fig. 8 will, of course, be present or
absent with probabilitiesp ands1−pd. The corner spins may
have a maximum numberG0,c=G0N of nearest neighbors at
this stage. The maximum number of nearest neighbors the
middle spins may have isG0,m=N+1. The distribution of the
number of nearest neighbors is thus given by

PsG8d = o
n=0

Gmax8 SGmax8

n
Ds1 − pdnpGmax8 −nd„G8 − sGmax8 − nd…,

s11d

where Gmax8 is G0,c for the corner spins andG0,m for the
middle spins.

The equation of motion for the expectation value of the
j th middle spin in theith direction now becomes

S1 +
d

dt
Dkp j

sidl = gsp,KdFm0 + m2
sid + o

kÞ j

kpk
sidlG , s12d

wherem2
sid;ks2

sidl andgsp,Kd comes from the configuration
average given by

gsp,Kd = o
G8=1

G0,m SG0,m − 1

G8 − 1
DpG8s1 − pdG0,m−G8aG8sKd.

s13d

If we write down the equation of motion for the expectation
value of the corner spins, we obtain

S1 +
d

dt
Dm0std = Asp,Kdo

i=1

G0

o
j=1

N

kp j
sidl, s14d

whereAsp,Kd comes from the configuration average:

Asp,Kd = o
G8=1

G0,c SG0,c − 1

G8 − 1
DpG8s1 − pdG0,c−G8aG8sKd. s15d

C. Obtaining the dynamical RSRG equations

Now we are ready to perform the decimation by eliminat-
ing the middle spins. The aim is to rewrite the equation of
motion for the corner spins in terms of theirlth neighbors.
In our case, withl=2, this means obtaining the equation of
motion form0 in terms of them2

sid’s. For this purpose we will
write down the equations for the expectation values of the
middle spinskp j

sidl’s in the ith direction and sum overi. The
right-hand side contains only terms inm0 andm2

sid. We find

F1 +
d

dt
− sN − 1dgsp,KdGo

j=1

N

kp j
sidl = Ngsp,Kdfm0 + m2

sidg .

s16d

Thus we obtain the equation of motion for the magnetiza-
tions of the middle spins in theith direction, in terms of the
corner spin magnetizationsm0 and m2

sid. If we multiply the
equation of motions14d for m0 by f1+d/dt−sN−1dgsp,Kdg,
we obtain

F1 +
d

dt
− sN − 1dgsp,KdGS1 +

d

dt
Dm0std

= Asp,Kdo
i=1

G0 F1 +
d

dt
− sN − 1dgsp,KdGo

j=1

N

kp j
sidl.

s17d

Using Eq.s16d we get

F1 +
d

dt
− sN − 1dgsp,KdGS1 +

d

dt
Dm0std

= Asp,Kdo
i=1

G0

Ngsp,Kdfm0 + m2
sidg s18d

and

FIG. 8. sColor onlined The cluster in our scheme which will, in
the coarse-grained lattice forl=2, go to the bond connecting the
“corner spin” s0 to its nearest neighbor in theith direction—
namely,s2

sid. The intermediates“middle”d spins to be decimated will
be denoted byp j

sid, j =1,… ,N=2d−1, from now on. We postulate
that all the “middle” spins are connected to each other to estimate
better the number of different paths, or loops, contributing to the
spin correlations.
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FS1 +
d

dt
D2

− sN − 1dgsp,KdS1 +
d

dt
D

− NG0Asp,Kdgsp,KdGm0std

= NAsp,Kdgsp,Kdo
i=1

G0

m2
sid. s19d

Since by assumption we are near the critical line, not only
are all the magnetizations small, but the time derivatives are
also small due to critical slowing down. Keeping only up to
linear order in the time derivativesf1g to be able finally to
compare with Eq.s8d, we obtain,

Hf1 − sN − 1dgsp,Kd − NG0Asp,Kdgsp,Kdg

+ f2 − sN − 1dgsp,Kdg
d

dt
Jm0std

= NAsp,Kdgsp,Kdo
i=1

G0

m2
sid. s20d

Now let us write this equation in a familiar form

H1 +
2 − sN − 1dgsp,Kd

1 − gsp,KdfN − 1 +NG0Asp,Kdg
d

dt
Jm0

=
NAsp,Kdgsp,Kd

1 − gsp,KdfN − 1 +NG0Asp,Kdgoi=1

G0

m2
sid. s21d

Taking the Laplace transform we get

H1 +
2 − sN − 1dgsp,Kd

1 − gsp,KdfN − 1 +NG0Asp,Kdg
sJm0fsg

=
NAsp,Kdgsp,Kd

1 − gsp,KdfN − 1 +NG0Asp,Kdgoi=1

G0

m2
sid. s22d

We see that the equation of motions22d is in the same
form as Eq.s9d. We identify the second term in the curly
brackets as the renormalized Laplace variables̃. The coeffi-
cient in front of the summation appearing on the right-hand

side we identify as the coefficientasp̃,K̃d, expressed in terms

of the renormalized variablesp̃, K̃. We thus obtain the RG
equation for the time from

s̃

s
=

2 − sN − 1dgsp,Kd
1 − gsp,KdfN − 1 +NG0Asp,Kdg

s23d

and the implicit RG transformation forK from

asp̃,K̃d =
NAsp,Kdgsp,Kd

1 − gsp,KdfN − 1 +NG0Asp,Kdg
; Rsp,Kd,

s24d

whereasp,Kd is given by Eq.s7d. The transformation for the
renormalized occupation probabilityp̃ is found by calculat-
ing the probabilityfspd of an unbroken path from the spins0

to s2
sid through the cluster in theith direction and is thus

independent fromK. Thus, the fixed-point value for the oc-
cupation probability satisfies

p* = fsp*d. s25d

Note that this implies that at each stage of the decimation,
the distribution of the bond strengths is replaced by a distri-
bution of the initial binary form, Eq.s2d, with the renormal-

ized parametersp̃ and K̃ f32g. This may hide from view
certain features of the random fixed point associated with the
full distribution f22,23g.

The fixed point of the dynamical RG transformation forK
is found from

asp* ,K*d = Rsp* ,K*d, s26d

wherep* , found from Eq.s25d, should be substituted. We can
evaluate the correlation critical exponentn from

UdK̃

dK
U

p* ,K*
= UF ]Rsp,Kd

]K Y ]asp̃,K̃d

]K̃
GU

p* ,K*

= l−n,

s27d

and the dynamical critical exponentz is given by

U s̃

s
U

p* ,K*
= lz. s28d

III. RESULTS AND DISCUSSION

In the foregoing we have presented the generalized dy-
namical RSRG framework for the kinetic Ising model on
dilutedd-dimensional lattices with a random number of near-
est neighbors, motivated by an interest in the scaling behav-
ior of relaxation times on random networks.

For the case with no bond dilution, we calculated the
correlation length critical exponentn and dynamical critical
exponent z with our new scheme of clustering ind-
dimensional hypercubic lattices and found thatn converges
to 0.63 andz converges to 1.6 for larged values as shown in
Figs. 4 and 5. The numerical values are given in Table I. We
submit that these results are qualitatively better than those
obtained by the conventional Migdal-Kadanoff bond moving
scheme, Figs. 1 and 2. Here, just as for the conventional
Migdal-Kadanoff bond moving scheme, these results for the
critical point and the correlation exponent found from the
dynamical RSRG scheme differ from those found directly
from the fixed point of a static RSRG transformation. We
report the results for the correlation length exponentnstatic in
Table I.

Our scheme yields dynamical critical exponent valuesz
=2.13 andz=2.09 in two and three dimensions, as well as
the percolation exponentnp. We report our results in Table II.
We see that the agreement between the known value ofnp
=4/3 in two dimensions is about as good as the result in
three dimensions, with the best Monte Carlo values being
reported asnp=0.88 f33g. The values of the dynamical criti-
cal exponents are in very good agreement with recent Monte
Carlo results, as summarized in Table III.
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For the bond-diluted case, we first computed the RG flows
for d=2 and d=3 ssee Figs. 9 and 10d. Due to the high-
temperature approximation made in the determination of the
RG transformations, these flows are well defined on the dis-
ordered side of the separatrix and also for temperatures less
than, but close to, the transition temperatures, but not in the
whole ordered region. Nevertheless, their examination is cru-
cial to obtain the phase diagrams correctly.

For d=2, we find that the regions I and II flow, respec-
tively, to the disordered and ordered fixed points atp=1,

T→` andp=1, T=0. The flow on the separatrix itself is to
the pure Ising fixed point indicated byTc on thep=1 line.
Note that the line of fixed points of the equationasp̃,K*d
=Rsp,K*d extending to the right ofsp* ,K*d and coming
down to zero atpe is not a phase boundary, although it lies
close to the separatrix forpùp* and passes through an un-
stable fixed point atsp* ,K*d. For p,p* , we find that in both
regions III and IV, the flows are to the attractive disordered
fixed point atp=0, T→`. The line connecting the unstable
fixed point at p* =0.5, sK*d−1=1.22, indicated by * in the
figure, to the percolation fixed point,sp* ,0d is therefore a
first-order phase transition line, separating a region with fi-
nite magnetization from one with zero magnetization. This
suggests that the unstable fixed pointsp* ,K*d is a tricritical
point sTCPd, with a first-order phase boundary connecting
this point to the percolation fixed pointp* =0.5 atT=0. We
have checked that along the separatrix, from the unstable
disorder fixed point to the pure Ising fixed point, the magne-
tization is zero.fWe have also checked that the mean-field-
type equation for the equilibrium order parameterm0, which
one may obtain from Eq.s3d by setting all the magnetizations
to be the same and interpreting the brackets as purely con-
figuration averages, gives a second-order phase transition in
this interval, with the expected value of the order parameter
critical exponentb=0.5.g The values ofndynamic andz at the
TCP are 0.48 and 2.16, respectively.sSimilar unexpected
features have arisen in other phase diagrams obtained via
RSRG treatments of systems with random bondsf34g.d

For d=3 the dynamical RG results forn gives, viaa=2
−dn, once again a positive value fora salthough the static
result is negative, as can be readily computed from the val-
ues in Table Id. However, we now find that there is noK
which the RG relationasp* ,K*d=Rsp* ,K*d is satisfied. Ex-
amining the flow diagram in Fig. 10, we see that the phase
separation line comes down toT=0 at somepe.p* , preclud-
ing such a fixed point. The flow in regions I and II is respec-
tively, to the disordered and ordered fixed points, while on
the separatrix it is once more to the pure Ising fixed point.
For very low temperatures, nearpe, the details of the phase
boundary are not available, due to the same difficulty as we
encountered ford=2.

Since Monte Carlo simulations are plagued by crossover
effects along critical lines, we also computed effective criti-
cal exponentszeff along the critical line. For each givenp
along this line, we solved for ap-dependent fixed point ofK
under the transformation in Eq.s24d which now becomes
a(fspd ,K*)=Rsp,K*d. We then substitutep andK*spd in Eq.
s23d and evaluatezeff from ss̃/sdp,K* =lzeff. We find that for
d=2, zeff first increases from 2.13 atp=1 until 2.25 atp
=0.75 and then decreases to 2.01 atpe as shown in Fig. 6.
For d=3 the dependence onp is again nonmonotonic, start-
ing from 2.09 atp=1, increasing to 2.69 atp=0.4 and de-
creasing to 2.54 atpe ssee Fig. 6d.

The calculation of the dynamical critical exponentz for
the bond-sor site-d diluted quenched random Ising model is
currently the subject of numerical studies. Recent Monte
Carlo simulations for the dynamical critical exponentz for
the bond-diluted and quenched random Ising model have
only yielded an effective exponentzeff varying between 0.59

FIG. 9. sColor onlined The phase diagram,K−1=kBT/J versusp,
for d=2. There is an unstable fixed point atp* =0.5, sK*d−1=1.22,
indicated by * in the figure. The line of points extending to the right
of the unstable fixed point is explained in the text. The flow from
region IV is to the high-temperature,p=0 fixed point. Thus the line
from sp* ,T*d to the percolation fixed point,sp* ,0d is a first-order
phase transition line. The critical behavior on the phase boundary
extending from * to the pure Ising fixed point atTc at p=1 is
determined by the latter point.

FIG. 10. sColor onlined The phase diagram,K−1=kBT/J versus
p, for d=3. There is no fixed point other than the pure Ising one for
nonzero temperatures. Thus the critical behavior of the system is
determined by the pure Ising fixed point for finiteT. Note that the
phase boundary comes down to zero temperature at a concentration
pe which is greater than the percolation fixed pointp* .
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to 0.27 along the critical linef35g. These values are markedly
lower than the values found here.

For dù4, considering either the static or the dynamic
values of the correlation length exponent in Table I, we find
a negative specific heat exponent from the hyperscaling re-
lation a=2−dn. This suggests, although not conclusively
f26g, that on all these lattices, the pure Ising fixed point will
be attractive within this approach. Under dilution, the critical
behavior of the second-order phase boundary will be deter-
mined by the pure Ising fixed point. In Table I, we also
display the dynamical critical exponentz at the pure Ising
fixed point for these values ofd.

It should be recalled that the exponents we have reported
so far areexacton hierarchical latticesf12,13,31g generated
by the cluster shown in Fig. 8. From the discussion above,
we conclude that for effective dimensiondeffù4, pure Ising
behavior will be observed on the critical line forT.0 and
p.pesdd on these hierarchical lattices.

We would like to end with a remark regarding the con-
nection of the present calculation to scale-free and random

networksf2g, respectively. We have already mentioned that
the vertices on hierarchical lattices have a nonuniform num-
ber of nearest neighbors,k. In fact, for the undiluted case,
our hierarchical lattice is a scale-free network with a power-
law degree distributionnskd,k−g, where g=1+lnf2+sN
−1d /2g / ln N andN is the number of “middle spins” in Fig. 8.
We may now construct random hierarchical lattices by ran-
domly diluting each bond, with a uniform bond occupation
probability p. This yields, for smallp, the asymptotic degree
distribution~expf−s1−pdkg /k! which is Poissonian. Thus, in
the limit of small p and with respect to its degree distribu-
tion, the diluted hierarchical lattice is indistinguishable from
the classical random network of Erdös and Renyif36g. We
thus conclude that our results also extend to scale-free and
random networks.
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