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Dynamical real-space renormalization group calculations with a highly connected clustering
scheme on disordered networks
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We have defined a type of clustering scheme preserving the connectivity of the nodes in a network, ignored
by the conventional Migdal-Kadanoff bond moving process. In high dimensions, our clustering scheme per-
forms better for correlation length and dynamical critical exponents than the conventional Migdal-Kadanoff
bond moving scheme. In two and three dimensions we find the dynamical critical exponents for the kinetic
Ising model to bez=2.13 andz=2.09, respectively, at the pure Ising fixed point. These values are in very good
agreement with recent Monte Carlo results. We investigate the phase diagram and the critical behavior of
randomly bond diluted lattices id=2 and 3 in the light of this transformation. We also provide exact
correlation exponent and dynamical critical exponent values on hierarchical lattices with power-law and Pois-
sonian degree distributions.
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[. INTRODUCTION space integrals for the appropriate renormalized verfices
teraction$ to decide whether they are relevant or irrelevant
We have generalized the dynamical real-space renormajq1].
ization group (RSRQG calculations for the kinetic Ising The reason why the MK approach fails to provide a rea-
model[1] to dilute lattices with arbitrary number of nearest sonable approximation to the critical behavior of
neighbors, motivated by an interest in the relaxation behaviog-dimensional hypercubic lattices in largeis twofold. The
of networks[2] with power-law and Poisson degree distribu- first is because it increasingly underestimates the contribu-
tions. We propose a different clustering scheme which imtjon from the loops in thed-dimensional Euclidean lattice
proves, but does not completely fix, the problematic behavioand this effect leads to more and more inaccurate results for
at high dimensions of the RSRG. This scheme yields veryarge dimensions. The second, and again topological, reason
accurate dynamical exponents in two and three dimensiongor the divergence of MK results from those on Euclidean
We first computed the dynamical critical exponeint the  hypercubic lattices is the nonuniform connectivity of the un-
Migdal-Kadanoff bond moving schemié,4] on networks  derlying “hierarchical lattice,” on which the MK scheme for
with arbitrarily high, but uniform, connectivity and found, as RSRG is realized as an exact transformafitia, 13 (see Fig.
have other$5,6], thatz gradually converges to unity, as the 3). We turn this feature to an advantage in investigating the
spatial dimension of the system becomes very ldfged  dynamical behavior of the Ising model on networks with
=12, z-1=10°%) and the correlation length exponent con- power-law degree distributions.
verges tor=1 (see Figs. 1 and)2This is in contrast to the
expected mean-field values p£0.5 andz=2 above the up- 1
per critical dimension. The dynamic RSRG calculation thus 1.8
yields neither a sharp crossover above the upper critical di-
mension,d.=4, nor the correct mean-field/F) behavior in
the high-dimension limit. We have observed that a static
RSRG calculation with Migdal-KadanoffMK) bond moving
scheme also converges to the same limits, but it does so fror  , , | 2
above, whereas the dynamical RSRG calculation does s\
from below (see Fig. 2
The pathalogical behavior of RSRG in high dimensions, 1.2
at low temperatures, has been remarked upon by several al

1.6 4

thors[7,8]. To our knowledge, no RSRG scheme of bond- 1 “—_

moving, cluster, or majority rule type is able to display the 1.0+ e
sharp crossover to MF critical exponents at the upper critical I EEEEEEE—SSS
dimension of the system under consideratiercept for the 2 4 6 8 10 12
so-called “hierarchical” Hamiltoniang]). It should be re- d

membered that the upper critical dimension has been identi-

fied in the context of the momentum-space renormalization FIG. 1. The dynamical critical exponeatversus dimension
group in the manner of Wilson and KodlitO], where it can  obtained via the conventional Migdal-Kadanoff bond moving
be obtained from simple power counting in momentum-scheme, with scale factor=2. For larged, z converges to 1.
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FIG. 2. The correlation critical exponemtversus dimensioinl :
via the conventional Migdal-Kadanoff bond moving scheme, with :
scale factor 2. It can be seen thatonverges to 1 for largd.

It is no surprise that the conventional MK bond moving
scheme should not yield faithful results at high dimensions, :
since the whole strategy hefd] is to deform the lattice in
such a way that the neighborhood of the spins to be deci-
g];ri?; Slﬁcr':‘l‘bg;]ogs élgﬁeaézzcﬂyﬁﬂﬁ?ﬂgﬁ Tﬁént;g? ntSriber FIG. 3. (Color onling A comparison of the conventional MK

) bond moving and our clustering scheme, &r2 and\=2. (a) A

of bpnds connecting spin palirs is conserved under this Ops?quare lattice, with nested unit cells of linear sizes 1 and 2. The
eratlo_n, the numbe_r of loops is noF, and the topology of the‘corner spins,” which will survive the decimation procedure, are
resulting network is Compl_etely differerFigs. 3a)-3(c)] shown in black. The spin at the center is connected to four different
We have found a way to improve the performance of theyeighnors, and there are four loofs plaquetteks (b) The result of
RSRG approach in relation thdimensional hypercubic lat-  pond moving. The reddashed bonds have been moved vertically,
tices by defining a type of cluster which retains the interconthe orangelight grey) bonds horizontally. The spin at the center is
nectivity of the moved sping=ig. 3(d)]. These improvements disconnectedit just contributes a triviakgT In 2 term to the free
do not remove, of course, the Griffiths singularities and probenergy, and there is now just one loofc) The central spin has
lems with non-Gibbsian measures, €f¢,13]. These come been “split” into two and moved together with the red and orange
from the diverging connectivity at an infinite number of ver- bonds, so that the number of distinct interacting spin pairs is con-
tices of the hierachical lattice, obtained by replacing eactserved. This method yields a renormalization group transformation
bond iteratively with the clusters seen spanning the edges ofhich is equivalent, to leading order, to that in céise (d) Beyond
the bond-moved unit cell in Figs(& and 3d). just “splitting” the spin at the center of the square and moving it
We were able to obtain a convergence, with two digittogether with the red and orange bonds, the connectivity between
accuracy, tor=0.63 for high dimensionalityd>13), a re-  this central spin and its neighbors has been preserved. In this case,
sult which is at least smaller than 1 but still larger than thethe number of distinct pairs of interacting spins is not conserved,
correct MF resul(#MF=0.5 (see Fig. 4 Likewise, the dy- but the number of loops is. The “hierarchical lattices” on which the

namical critical exponent in this scheme converges to théenormalization group transformations considered here are exact,
value 1.6 for dimensions=11 (Fig. 5. These results are are obtained by iteratively replacing each bonddnor (d) with the

summarized in Table I. The clustering scheme for the RSR#}:hole clust_er connecting the_ tvv_o corner spins. Shown here is only
. : . e case without any bond dilution.
also performs very well in low dimensiorable Il). The

dynamical exponent calculated within our schemedie? is  one approaches the separatrix, or critical line, from above,
z=2.13 and ford=3 is z=2.09, to be compared with the best but the approximation breaks down in the ordered phase and
simulation result§14-20, which give values between 2.11 for low temperatures in the disordered phase. In both two
and 2.24 ford=2 and between 2.01 and 2.11 b3 (Table  and three dimensions we were able to compute the RG flows
). on the disordered side of the separatrix and on the separatrix
Going over to the dynamical critical behavior for bond- itself, and thereby determine the phase diagrams. In two di-
diluted lattices, we first applied the dynamic RSRG tech-mensions we find a disorder fixed point, which is unstable
nigue to the bond-diluted kinetic Ising system in two andand which we interpret as a tricritical point, since there the
three dimensions. The approximation we used to computeecond-order phase transition line gives way to a first-order
the configuration averages is in fact exact for annealed rartransition line. The pure Ising fixed point is stable and deter-
domness. The approximate transformations for the dilutioormines the exponents along the second-order transition line.
parametemp and the coupling constant are well behaved adn three dimensions, no disordered critical fixed point is
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12_' TABLE 1. Our results for dynamical critical exponemtand

1 . correlation critical exponent with respect to space dimensidrat
114 E————Te the pure Ising fixed point.
) —e— dynamic RG
1.0 d z Vdynamic Vstatic
0.9 2 2.13 0.49 1.15
Al [ e 3 2.09 0.51 0.82
- \ 4 1.99 0.54 0.72
0.7 SSee 5 1.88 0.57 0.68
] TSR
Bif P ATt ——a—a—a 6 1.77 0.59 0.65
' /./-/° 7 1.70 0.61 0.64
054 —° 8 1.65 0.62 0.64
2 4 6 8 10 12 1s 11 1.60 0.63 0.63
d

static RSRG calculation for, while the dynamic calculation
yields a positiver. These results have to be interpreted in the
context of the still ongoing debate on the criteria for the
stability of the pure-system critical behavior. The rather ex-
tensive literature on the Harris criterid25] has been re-
Bently reviewed by Janke and Weid@b]. It has been shown
by various author§22,27,2§ that the Harris criterion, which
equates the crossover exponent for randomngsto the

FIG. 4. The correlation critical exponemtversus dimensioinl
obtained by our clustering schemeconverges to 0.63 for large
(to be compared with Fig.)2See Table I.

found. The critical line is depressed to zero temperature at
concentratiomp,>p°, wherep’ is the percolation fixed point.
The flow along the critical line is to the pure Ising fixed point
atp=1, and thus the critical exponents along the critical line ure systemu, is simply not applicable on hierarchical lat-
are the same as the pure Ising exponents, also in three djzag and various alternative criteria, such as the “wandering
mensions. Computing the effective critical exponents alongy, ,nent[27] for correlations in the nonperiodic variations
the cr|t!cal line, we _f|nd th_azeff varies nonmonotonically as the number of bonds incident on lattice poififse degree
a function ofp, within the intervalgd2.01,2.2§ for d=2 and ¢ the node, have been proposed. The calculation of this
[2.09,2.69 for d=3 (see Fig. 6. . ... _exponent for our present RSRG scheme goes beyond the
_Our scheme as well as the conventlona! eqUIIIbr'umscope of this paper and will be considered in a separate pub-
Migdal-Kadanoff RSRGsee also Ref§21,22) fails to pre- lication.
dict the crossover to a disorder critical fixed point tbr 3, The paper is organized as follows. In the next section we

both dem_onstrated by means of finit_e-size_ scaling argumenig, up the dynamical RSRG calculations for bond-diluted
[23] applied to large Monte Carlo simulatiofi4] and ex-  \hercupic lattices, and introduce a clustering scheme on

fpegt?d or;]the basis of the Harrl_?. cnr:er[(%]. The va_Iue r\:"e which we will implement it. The last section includes our
k:n or tl_e purle §yst(23m_sépep| 'g_ eat expongntnfa t ﬁ results and a discussion of the relevance of our results to
yperscaling relation 2ee=dv in d=3 is negative for the o hiform lattices with power-law and Poissonian degree
distributions.

22-
214 ", Il. DYNAMICAL RSRG CALCULATIONS
| \ FOR BOND-DILUTED HYPERCUBIC LATTICES
2.0 In order to investigate the effect of the underlying lattice
1 \ of arbitrarily high degree on dynamical behavior of an inter-
1.81 acting system residing on this lattice, we consider an Ising
| . . . .
N 1 model on the nodes of a hypercubic latticedoflimensions,
1.8
TABLE II. The fixed points and the critical exponents dis 2
1.7 \- andd=3. The first value op shows the pure Ising fixed point; the
~ second one shows the percolation fixed point for each dimemssion
1.6 4 [ S—
é 4.] (IB T é 1|0 1|2 d p K Vp Vdynamic Qdynamic z
d 2 1 0.27 - 0.49 1.03 2.13
0.5 0.82 1.43 0.48 1.04 2.16
FIG. 5. The dynamical critical exponemtversus dimension 3 1 0.12 - 0.51 0.46 2.09
obtained by our clustering schenzconverges to 1.6 for large(to 0.16 - 1.01 - - -

be compared with Fig.)1 See Table I.
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TABLE lll. Comparison of our results with the known values
coming from different approaches. Here dynamical RSRG calcula-
tions are written as DRSRG and Monte Carlo studies are denotec

by MC.
d Reference Method z
2 Present work DRSRG 2.13
Stauffer[14] MC 2.18
Nightingale and Bloté¢15] MC 2.17
Li et al.[16] MC 2.13
Lauritsen and Itd17] MC 2.13+0.02
Miilker et al.[18] MC 2.21+0.03
Droz and Malaspinags] DRSRG 1.85
3 Present work DRSRG 2.09
Ito et al.[19] MC 2.06
Stauffer[14] MC 2.04
Lauritsen and 1td17] MC 2.04+0.03
Miilker et al.[18] MC 2.08+0.03
Ito [20] MC 2 06+0.02 FIG.f?.dwlg ?Zen;:_ralize.the Inﬁtation (Z)f Slfrzhlﬂt“i al.[1] to _th:e
= imension r . rner spin” on
Droz et al. [6] DRSRG 1.45 \(/:ve;lsi::ahc\)/veaconcoentrate (ias ZSn(?tedyg;, erjldeon thee Coc;igi?lalslgtticg
6 Present work DRSRG L7 (without bond moving its jth-neighbor spin in théth direction is
Droz and Malaspinafs] DRSRG 1.02 denoted byy}”, wherei=1,2,...,T in the counterclockwise direc-

tion. ThUSa'g) and ag) are, respectively, the first and second nearest
neighbors ofay, in theith direction. The coupling constadf) is

which will be subjected to bond dilution to yield a disordered also shown.

network with a Poisson degree distribution.

The Hamiltonian of the system is given b
y g y In a d-dimensional hypercubic lattice, the number of nearest

H=- Yoo, (1) neighbors of a spin i§0:2d_on the pure _Iattice. _
TR In order to be able to derive the equation of motion for the
magnetization of a given spin—sayy;—we would like to
where J; is the interaction between two nearest-neighborintroduce some notation and relabel the spins in its neighbor-
spins ando; is the spin variable which can take the valueshood in a systematic way. This is shown in Fig. 7, where we
+1 and—1. The sum is taken over all nearest-neighbor pairsdenote thejth neighbor in theith lattice direction as;r}'),
with i=1,...,T’y. The interaction constant between the spins

2.70 e __ oo and ag) is denoted bny). All the coupling constants are
z'gg‘ o e _ independently and identically distributed—e.g.,
.oU 4 . —u— d=2| ' ) )
255/ el POY) = paldl) - J) + (1 - p)s2Y). (2
2.50 0
2.45] .
240 N A. Equation of motion for the magnetization
2.35]
% 230 . Using Glauber dynamic§29] we may write down the
N 225] s SN equation of motion for the magnetizatiom= (o) and get
2.20 o :
2.15. f '\3\. d S i
2.10] e, S d_tmo(t) =-my(t) +\ tan 21 Ki'ay |/, 3
2,05 i=
2,00 / (i) — pq@ — -1
where K}'=BJ;" and B=(kgT)™". Here the brackets --)

02 03 04 05 06 07 08 09 10 denote both the thermal expectation value and the configu-
ration average over the bond randomness.

The strategy is now to expand the function appearing in-
FIG. 6. The effective dynamical critical exponezgy versus the ~ Sid€ the brackets in Ed3) in terms of spin products. The
bond occupation probabilitp, obtained by our clustering scheme. first term is linear in the spins. To be able to proceed further,
The intervals along the axis sampled by more points correspond W€ have to make the crucial approximation of taking the

to the intervals around the fixed point or to the end points of thethermal averages over the spio$ and the configurational

validity of the RG transformation. averages over the bond‘sg) independently of each other.
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This amounts to making a mean field or effective medium o
type of approximation, neglecting the fluctuations in the (1+s)mys]=a(p,K)> m. (9)
bond configurations neighboring different spins. Moreover, i=1

since the thermal averages are implicitly calculated with re-
spect to some average interaction strength, this represents an
annealed approximation to the original quenched problem.
These simplifications were also made by Droz and ) ) ) )
Malaspinag6,21]. The assumption is that the difference be- In thls subsection we will motivate and g:onstruct a type of
tween the annealed and quenched averages and the depgpsterlng sch_eme,_whlch preserves the_ mterconn_ectlwty of
tures from the effective medium approximation will be the nodes which will be eventually decimatesee Fig. 3
higher-order effects, and not contribute to the scaling behay/Ve Will then obtain the equations of motion for the magne-
ior of the equation of motion to leading order. tizations of the corner spins on these clusters. .

Since the numbeF of connected nearest neighbors of any First we would like to make more explicit our claim that

lattice point on this disordered lattice will be distributed ac-Migdal-Kadanoff bond moving drastically underestimates
cording to the number of loops in the system in high dimensions. Mak-

ing a change of variables tp=tanH3J), we may write the
o Iy e static RG transform for the cluster shown spanning an edge
PN =2 N (1-p"p "= To-n), (4  of the MK bond-moved lattice in Fig.(8), for d dimensions,
n=0 and with arbitrary rescaling factar as

B. Clustering scheme

we get
Ny*

d FO FO_ 1 y, = 1 + (N _ 1)y2)\’ (10)
(1 + _>Wb(t) =X ( )pr(l -p)'oTar(K) . , _ _

dt rm -1 whereN=\%"1, The “rule of thumb” leading to this equation
T, is as follows[31]: in the numerator appears ti parallel

x> m(i)+g(p K,1) (5) paths connecting two sites of the cluster which will not be

=t o decimatedcorner spins These paths contribuge, wherex

W) - ) . is the number of links along the one-dimensional chains of
with m;”=(o;’) andK= gJ. Herear(K) is the coefficient of  spins connecting the corner spins. The second term in the
the first-order term coming from the expansion of the hyperdenominator counts the number of loops in the cluster, with
bolic tangent in terms of products of spin variables, for ay®* corresponding to the product g& around one complete
particular realization of the disorder in which the spighas  loop. It can easily be checked numerically that for ladye
I' nearest neighbors. These coefficients are given by the fixed point of this equationy” will become very small
N compared to unity, in which case the second term in the
ar(K) = 1 s (F)(F — 2n)tani (T - 2n)K],  (6) denominator can be neglected. The approximate fixed-point
T rat-t<= ’ equation then yieldg" =1/NY*V, The RG eigenvalue then
) becomes A= dy'/dy|,»=\, and one trivially obtainsv
whereny,, takes valued'/2 for evenI” or (I'=1)/2 inthe  =|n\/In A=1 for larged. Thus, to be able to escape this
case of oddl". Note that the coefficient of the term corre- trivial result, one should modify the RG procedure in such a
sponding to products of even numbers of spins in the expanyay that contributions from the linear parts of the graph do
sion of(tanr(EiFKg)ag))) is identically zero, for any value of not completely dominate the loops.
I'. Thus the other term in Eq5), g(p,K,t), comes from With this in mind, let us return to the modified bond mov-
three-spin and higher-order-spin products. It is possible, inng scheme which we proposed in the Introduction and Fig.
principle, to include higher correlations, at the expense oB(d). Note that each unit cell of thd-dimensional lattice
going to coupled equations of motid80] for higher-spin  contributes tod such clusters, which, under coarse graining
moments, but this is not the route we have taken here. Nei.e., decimation of the “middle spins” and rescalingo to
glecting third-order and higher-spin correlations and defininghe renormalized bonds in the direction of the basis vectors.
the coefficient of the single-spin expectation value in theClearly, for thed-dimensional hypercubic lattice without di-
presence of bond randomneasp,K), via lution, one has to further specify the clusters connecting the
Yo corner spins which remain after the decimation step.(;/j\)/e will
0o~ _ base our construction on the clue provided by Fi¢d),3
a(p.K) = gl ( r-1 >pr(1 ~p' o ar(K), (7} Wwhere we see that the pair of middle spins in the cluster for
h d=2 are connected to each other. At the risk of overestimat-
we see that we can write the equation of motion for theing the number of loops at higher dimensions, we propose

magnetization at a given site as that after bond moving, all thdl=2%"* middle spins within
Iy each cluster be completely interconnected as shown in Fig. 8.
d i We will implement the transformation for the scaling param-
= = (i)
(1 * dt)"b(t) —a(p,K)gl M ®)  etern=2. Ford=2 andd=3, the number of loops incorpo-
rated into thed clusters exactly accounts for the number of
Taking the Laplace transform of E(B) we obtain loops contained in the original unit cell—namely, 4 and 36.
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T,
(i) om FO, -1 ’ 7
T ypK) =2 | 5" @ -p) o an (K).
\ o\ -1
r'=1
(13
If we write down the equation of motion for the expectation
i) value of the corner spins, we obtain
o o
0 2 g Ty N
(1 +—)mo(t) =A(p,K) 2 > (), (14)
dt i=1 j=1
) whereA(p,K) comes from the configuration average:
- (i) Toc
o v (Toe =1 1 Lol
ApK) =2 | 5 e a-p)eeap (K). (19)
FIG. 8. (Color online The cluster in our scheme which will, in r'=1
the coarse-grained lattice far=2, go to the bond connecting the
“corner spin” og to its nearest neighbor in thih direction—
namely,ag). The intermediat¢’middle”) spins to be decimated will C. Obtaining the dynamical RSRG equations

be denoted byr\’, j=1,...,N=29"1 from now on. We postulate ; h L imi
that all the “middle” spins are connected to each other to estimate Now we are ready to perform the decimation by eliminat-

better the number of different paths, or loops, contributing to the"d the middle spins. The aim is to rewrite the equation of
spin correlations. motion for the corner spins in terms of theith neighbors.
In our case, with\=2, this means obtaining the equation of

Thus, we will adopt the convention that in the bond-movedmotion form, in terms of themg)'s. For this purpose we will

lattice, in theit(?) direction,i=1,..., ', between the comer yrite down the equations for the expectation values of the
spins op and o', there exists a cluster containid=A""t  miggle spins(vr}”)’s in theith direction and sum over The
gg?géemsgig? genoted byrj , with j=1,2,...,N, as illus- right-hand side contains only terms tiy and mg). We find
We should mention here that one could start with the clus- g N
ters depicted in Fig. 8, wittN middle spins, and proceed to M _ i
construct a hierarchical lattice by successively replacing each | 1+ ;= (N=1)¥p.K) 2 (m") = Ny(p,K)[mg + my].
bond with such a clustead infinitum[12,13,31. (We can =1
always define an effective dimension vi%®2'=N.) The re- (16)
sults of the RG transformation which we will effect here will
be exact on this hierarchical lattice, and so will the exponent¥hus we obtain the equation of motion for the magnetiza-
which we obtain for the pure and the diluted cases. tions of the middle spins in thigh direction, in terms of the
When we introduce bond randomness, the bonds appeagorer spin magnetizations, and my. If we multiply the
ing in the cluster in Fig. 8 will, of course, be present or equation of motior(14) for my by [1+d/dt-(N-1)¥(p,K)],
absent with probabilitiep and(1—-p). The corner spins may \ye obtain
have a maximum numbdr, .=I'oN of nearest neighbors at
this stage. The maximum number of nearest neighbors the
middle spins may have 8, ,=N+1. The distribution of the {1 +—-(N- 1)y(p,K)] (1 +
number of nearest neighbors is thus given by dt

d
d_t> m(t)

Ty N

d )
=A(p.K)> [1 tym(N- 1>y(p,K)}2 ().
i=1

F;nax !
PI") =2 ( 'r‘]“ax>(1 = p)"pI eI = (U= 1)), =

"0 17
where I}, is T'g for the corner spins and’, ,, for the  Using Eq.(16) we get
middle spins.
The equation of motion for the expectation value of the d d
jth middle spin in thedth direction now becomes 1 At (N=1)y(p,K) [{ 1+ dt My(t)
d) | . ; r
1+— [(a)y = y(p,K) [ mp+ md) + X (a) |, (12 : :
( ar) (™ =P )[”‘0 F 2| 12 = A(PK) S Nop, K)[m + ] (18
i=1

wheremg)zwg)) and y(p,K) comes from the configuration
average given by and
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d\? d independent fronK. Thus, the fixed-point value for the oc-
CRT (N=Dy(p,K)| 1+ pm cupation probability satisfies
NEA(DLK) o K)] o p =f(p). (25)
oAPK)¥(P.K) Mo Note that this implies that at each stage of the decimation,
Iy the distribution of the bond strengths is replaced by a distri-
= NA(p,K) y(p,K) >, md. (19) _butlon of the |n|'f|val bmziry form, Eg(Z), Wlth-the renormal-
i=1 ized parameterp and K [32]. This may hide from view

Since by assumption we are near the critical line, not Onl)fertam features of the random fixed point associated with the

are all the magnetizations small, but the time derivatives aréuIITc::stpbugon [thi?h d ical RG t f tion Ko
also small due to critical slowing down. Keeping only up to. € fixed point ot the dynamica ranstormation ¥or

linear order in the time derivativg4] to be able finally to is found from
compare with Eq(8), we obtain, a(p’ ,K)=R(p’, K", (26)

wherep’, found from Eq.(25), should be substituted. We can

{[1 —(N=1)¥(p,K) = N[oA(p,K) ¥(p,K)] evaluate the correlation critical exponenfrom

d ~ ~
+[2-(N- 1>y<p,K>]d—t}mo(t) CLY I [&R(p'K) ga@’K)] .
Fo dK p*'K* &K &K p*,K*
= NA(P,K) ¥ (p,K) X my). (20) @7
= and the dynamical critical exponenis given by
Now let us write this equation in a familiar form %
—(N=- - =\ (28)
1o 2-(N-DypK)  d sl
1= ¥(p,K)[N-1+NIoA(p,K)]dt
r
E mg)- (21 Ill. RESULTS AND DISCUSSION

T 1-4(p.K)[N-1+NTA(P,K)] =

Taking the Laplace transform we get In the foregoing we have presented the generalized dy-

namical RSRG framework for the kinetic Ising model on

{1 2-(N-1)y(p,K) } (<] dilutedd-dimensional lattices with a random number of near-
o _ S(MplS est neighbors, motivated by an interest in the scaling behav-
1=¥(p,K)IN=1+NFoA(p.K)] ior of relaxation times on random networks.
NA(p,K) y(p,K) g @ 22 For the case with no bond dilution, we calculated the
T1- AP K)IN= 1 +NT AP, K)] = my". correlation length critical exponemtand dynamical critical

exponentz with our new scheme of clustering ia-

We see that the equation of moti@B2) is in the same dimensional hypercubic lattices and found thatonverges
form as Eq.(9). We identify the second term in the curly to 0.63 andz converges to 1.6 for larget values as shown in
brackets as the renormalized Laplace vari@bl€he coeffi-  Figs. 4 and 5. The numerical values are given in Table I. We
cient in front of the summation appearing on the right-handsubmit that these results are qualitatively better than those

side we identify as the coefficien ,R , expressed in terms obtained bY the conventional MigdaI-Kadanoff bond moying
fy . K), exp scheme, Figs. 1 and 2. Here, just as for the conventional

of the renormalized variables, K. We thus obtain the RG  \jigdal-kadanoff bond moving scheme, these results for the

equation for the time from critical point and the correlation exponent found from the
3 2-(N-1)¢p,K) dynamical RSRG scheme differ from those found directly
s" 1= AP K)[N=1+NAPDK)] (23)  from the fixed point of a static RSRG transformation. We
S 7P, AP, report the results for the correlation length exponegy. in
and the implicit RG transformation fd¢ from Table I.
Our scheme yields dynamical critical exponent valaes
a®.K) = NA(p, K) 1(p.K) — R(p.K), =2.13 andz=2.09 in two and three dimensions, as well as
1-y(p,K)[N-1+NI'A(p,K)] the percolation exponemt,. We report our results in Table I1.

(24)  We see that the agreement between the known valug, of
=4/3 in two dimensions is about as good as the result in
wherea(p,K) is given by Eq(7). The transformation for the three dimensions, with the best Monte Carlo values being
renormalized occupation probabilify is found by calculat-  reported aw,=0.88[33]. The values of the dynamical criti-
ing the probabilityf(p) of an unbroken path from the spiry  cal exponents are in very good agreement with recent Monte
to ag> through the cluster in théth direction and is thus Carlo results, as summarized in Table IIl.

026130-7



D. BALCAN AND A. ERZAN PHYSICAL REVIEW E 71, 026130(2009

79 T—o andp=1, T=0. The flow on the separatrix itself is to
T T the pure Ising fixed point indicated bl on thep=1 line.
Note that the line of fixed points of the equatiaip,K")
=R(p,K") extending to the right of(p",K") and coming
down to zero ap, is not a phase boundary, although it lies
close to the separatrix fgy=p" and passes through an un-
stable fixed point atp”,K"). Forp<p’, we find that in both
regions IlIl and 1V, the flows are to the attractive disordered
fixed point atp=0, T—o. The line connecting the unstable
fixed point atp'=0.5, (K')™1=1.22, indicated by * in the
: , figure, to the percolation fixed pointp*,0) is therefore a
—0 2 first-order phase transition line, separating a region with fi-
T g nite magnetization from one with zero magnetization. This
01_0 08 o8 07 =-026 ol ojfl 03 oz 01 ooP suggests that the unstable fixed paipt,K") is a tricritical
point (TCP), with a first-order phase boundary connecting
p* [ this point to the percolation fixed poimpf =0.5 atT=0. We
_ . have checked that along the separatrix, from the unstable
FIG. 9. (Color onling The phase diagrank™=kgT/J vVersus, disorder fixed point to the pure Ising fixed point, the magne-
for d=2. There is an unstable fixed point@t=0.5, (K')™=1.22,  {j;ati0n is zero[We have also checked that the mean-field-
indicated by * in the figure. The line of points extending to the right type equation for the equilibrium order parametgg which
of the ungtable fixeq point is explained.in the t.ext. The ﬂow. from one may obtain from Eq3) by setting all the magnetizations
;eg'or(] v _'r“f‘)tct’ tk;ﬁ hlgh-terln[tJ_eratfgrpgo f'.xid*pg;n.t' Th?s :heolllne to be the same and interpreting the brackets as purely con-
rom (p , O the percolation Tixea poingp , IS a Tirst-oraer . . . T .
phase transition line. The critical behavior on the phase boundarglﬁgrﬁ] ttlgrnv:IV?/\r/ﬁ%‘%[?l,ege“)/(ese?t;:lec\;/(z)i?l?e-o(;??P:ep(r)l?dssr tr?a?zimg?elrn
extending from * to the pure Ising fixed point & at p=1 is o ' _ P P
determined by the latter point. critical exponent3=0.5] The value_s Oquyngmic andz at the
TCP are 0.48 and 2.16, respective{§imilar unexpected

For the bond-diluted case, we first computed the RG flowdeatures have arisen in other phase diagrams obtained via
for d=2 andd=3 (see Figs. 9 and 10Due to the high- RSRG treatments of systems with random boi84§.)
temperature approximation made in the determination of the For d=3 the dynamical RG results far gives, viaa=2
RG transformations, these flows are well defined on the dis-d¥: once again a positive value far (although the static
ordered side of the separatrix and also for temperatures le$§Sult is negative, as can be readily computed from the val-
than, but close to, the transition temperatures, but not in the€S in Table ). However, we now find that there is
whole ordered region. Nevertheless, their examination is cruvhich the RG relatiora(p”,K")=R(p",K") is satisfied. Ex-

—
—
=

cial to obtain the phase diagrams correctly. amining the flow diagram in Fig. 10, we see t*hat the phase
For d=2, we find that the regions | and Il flow, respec- Separation line comes down =0 at somep.>p’', preclud-

tively, to the disordered and ordered fixed pointspatl,  ing such a fixed point. The flow in regions I and Il is respec-

tively, to the disordered and ordered fixed points, while on

22574 the separatrix it is once more to the pure Ising fixed point.

For very low temperatures, nepg, the details of the phase
boundary are not available, due to the same difficulty as we
encountered fod=2.

Since Monte Carlo simulations are plagued by crossover

20.0

17.5

v el effects along critical lines, we also computed effective criti-
cal exponentgy; along the critical line. For each givem
K-1 10.04 along this line, we solved for p-dependent fixed point df
o2 under the transformation in Eq24) which now becomes
sol a(f(p),K")=R(p,K"). We then substitutp andK"(p) in Eq.

(23) and evaluateze from (S/s), =M. We find that for
d=2, z first increases from 2.13 gi=1 until 2.25 atp

O
1 S .- I - =0.75 and then decreases to 2.0Jpats shown in Fig. 6.
10 09 08 07 06 05 04 03 [02 \ 0.1 For d=3 the dependence gmis again nonmonotonic, start-
p b p* ing from 2.09 atp=1, increasing to 2.69 gi=0.4 and de-
° creasing to 2.54 g, (see Fig. 6.
FIG. 10. (Color onling The phase diagrank 1=kgT/J versus The calculation of the dynamical critical exponemtor

p, for d=3. There is no fixed point other than the pure Ising one forthe bond-(or site) diluted quenched random Ising model is
nonzero temperatures. Thus the critical behavior of the system igurrently the subject of numerical studies. Recent Monte
determined by the pure Ising fixed point for finife Note that the ~ Carlo simulations for the dynamical critical exponentor
phase boundary comes down to zero temperature at a concentratitiie bond-diluted and quenched random Ising model have
pe Which is greater than the percolation fixed poit only yielded an effective exponent; varying between 0.59
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to 0.27 along the critical linE35]. These values are markedly networks[2], respectively. We have already mentioned that
lower than the values found here. the vertices on hierarchical lattices have a nonuniform num-

For d=4, considering either the static or the dynamicber of nearest neighborg, In fact, for the undiluted case,
values of the correlation length exponent in Table |, we findour hierarchical lattice is a scale-free network with a power-
a negative specific heat exponent from the hyperscaling rdaw degree distributionn(k) ~k™”, where y=1+In2+(N
lation «=2-dv. This suggests, although not conclusively —1)/2]/In N andN is the number of “middle spins” in Fig. 8.
[26], that on all these lattices, the pure Ising fixed point will We may now construct random hierarchical lattices by ran-
be attractive within this approach. Under dilution, the critical domly diluting each bond, with a uniform bond occupation
behavior of the second-order phase boundary will be detefprobability p. This yields, for smalp, the asymptotic degree
mined by the pure Ising fixed point. In Table I, we also distribution=<exgd—(1-p)k]/k! which is Poissonian. Thus, in
display the dynamical critical exponentat the pure Ising the limit of smallp and with respect to its degree distribu-
fixed point for these values af. tion, the diluted hierarchical lattice is indistinguishable from

It should be recalled that the exponents we have reporteghe classical random network of Erddés and Ref36]. We
so far areexacton hierarchical latticef12,13,3] generated  thus conclude that our results also extend to scale-free and
by the cluster shown in Fig. 8. From the discussion abovegandom networks.
we conclude that for effective dimensialg;= 4, pure Ising
behavior will be observed on the critical line for>0 and
p>p(d) on these hierarchical lattices.

We would like to end with a remark regarding the con-  A.E. would like to gratefully acknowledge partial support
nection of the present calculation to scale-free and randorfrom the Turkish Academy of Sciences.
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