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We derive a dynamic field theory for a kinetically constrained model, based on the Fredrickson-Andersen
model, which we expect to describe the properties of an Arrheniussstrongd supercooled liquid at the coarse-
grained level. We study this field theory using the renormalization group. For mesoscopic length and time
scales, and for space dimensiondù2, the behavior of the model is governed by a zero-temperature dynamical
critical point in the directed percolation universality class. We argue that ind=1 its behavior is that of compact
directed percolation. We perform detailed numerical simulations of the corresponding Fredrickson-Andersen
model on the lattice in various dimensions, and find reasonable quantitative agreement with the field theory
predictions.
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I. INTRODUCTION

The discovery that supercooled liquids, whose structures
are essentially homogeneous and featureless, are dynami-
cally highly heterogeneous is arguably the most important
recent development in the long-standing problem of the glass
transition f1–3g. Dynamic heterogeneity has been observed
both experimentally in deeply supercooled liquidsf4g, and in
numerical simulations of mildly supercooled liquidsf5,6g. In
addition, dynamic heterogeneity has been observed experi-
mentally in colloidal suspensionsf7g. For recent reviews see
f8–11g.

Understanding dynamic heterogeneity is a crucial step to-
ward understanding the glass transition. Dynamic heteroge-
neity implies that the slow dynamics of glass formers is
dominated by spatial fluctuations, a feature discarded from
the start in homogeneous approaches like mode coupling
theoriesf12g or other mean-field treatmentsf13g; see, how-
ever, f14–17g. Moreover, the absence of growing structural
length scales has been the main obstacle to the application to
supercooled liquids of many of the tools used so successfully
to analyze conventional phase transitions. The existence of
dynamic heterogeneity, however, implies that the increase in
time scales as the glass transition is approached is associated
with growing length scales of dynamically, not statically,
correlated regions of spacef18g sRefs.f19,20g offer alterna-
tive thermodynamic viewpointsd. This suggests that super-
cooled liquids might display universal dynamical scaling, by
analogy with conventional dynamical critical phenomena.
This scaling behavior could then be studied by standard
renormalization groupsRGd techniques. This is the issue we
address in detail in this paper, which is a follow-up to our
recent Letterf21g.

Our starting point is the coarse-grained real-space de-
scription of glass formers developed inf18,22,23g which
places dynamic heterogeneity at its core. It is a mesoscopic
approach, based on two observations. First, at low tempera-
ture very few particles in a supercooled liquid are mobile,
and these mobility excitations are localized in space; and
second, mobile regions of the liquid are needed to allow

neighboring regions to themselves become mobile. This sec-
ond observation is the concept of dynamic facilitation
f24–27g. This picture of supercooled liquids can be straight-
forwardly cast as a dynamical field theory and its scaling
behavior determined via the RG. We find that, generically,
scaling properties are governed by a zero-temperature critical
point. We study in detail the simplest case, that of isotropic
dynamic facilitation, which we expect to model an Arrhen-
ius, or strong, glass former. We show that its low-
temperature dynamics is controlled by a zero-temperature
critical point, which for dimensionsdù2 is that of directed
percolationsDPd f28g. We argue that ind=1 the model be-
longs to the universality class of compact directed percola-
tion sCDPd f28g. Our theoretical predictions compare favor-
ably with our results from numerical simulations of the
Fredrickson-AndersensFAd modelf25g, the lattice model on
which the field theory is based.

This paper is organized as follows. We derive a field theo-
retic description of a generic system possessing constrained
dynamics in Sec. II, and we discuss in Sec. III the physical
interpretation of the field theory for the special case of an
isotropically constrained model. In Sec. IV we study this
field theory fordù2 using the RG, and in Sec. V we discuss
the special case ofd=1. In Sec. VI we compare the theoret-
ical predictions to simulations of the FA model in various
dimensions. Section VII contains a summary of our results
and conclusions.

II. DERIVATION OF THE FIELD THEORY

We build an effective model for glass formers as follows
f22g. We coarse-grain a supercooled fluid ind spatial dimen-
sions into cells of linear size of the order of the static corre-
lation length, as given by the pair correlation function. We
assign to each cell a scalar mobilityni, whose value is cho-
sen by further coarse-graining the system over a microscopic
time scale. Mobile regions carry a free energy cost, and when
mobility is low we do not expect interactions between cells
to be important. Adopting a thermal language, we expect
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static equilibrium to be determined by a noninteracting
Hamiltonianf27g,

H = o
i=1

N

ni . s1d

At low mobility, the distinction between single and multiple
occupancy is probably unimportant, and we assume the latter
case for technical simplicity. The question of whether the
field theories for versions of a system with singles“fermi-
onic”d or multiple s“bosonic”d occupancies lie in the same
universality class is unresolvedf29g, but if the distinction
matters it is likely to matter more ind=1 than in higher
dimensions. We shall ignore this subtlety.

We define the dynamics of the mobility field by a master
equation,

]tPsn,td = o
i

Cisnd L̂iPsn,td, s2d

wherePsn,td is the probability that the system has configu-
ration n;hnij at time t. Equations2d shows clearly the two
ingredients of our model. The first, the existence of local

quanta of mobility, is encoded by the local operatorsL̂i. For
nonconserved dynamics we choose these to describe creation
and destruction of mobility at sitei,

L̂iPsni,td = gsni + 1dPsni + 1,td + rPsni − 1,td

− sgni + rdPsni,td, s3d

where the dependence ofP on cells other thani has been
suppressed. The rates for mobility destructiong and creation
r are chosen so that Eq.s2d obeys detailed balance with
respect to Eq.s1d at low temperature. This means that the
stationary solution of the master equation must equal the
Gibbs distribution. Equations1d gives rise to the Gibbs dis-
tribution Peqsnd=pis1−e−1/Tde−ni/T, whereas the master equa-
tion s2d has the stationary solution

Psn,t → `d = p
i

e−r/gS r

g
Dni 1

ni!
. s4d

Equations4d will reduce toPeqsnd providedr /g=e−1/T and
T!1. Thus detailed balance with respect to Eq.s1d holds
only at low temperature, and we will hereafter assume that
T!1. For convenience we writer /g<c, where c;knil;
angle bracketsk¯l denote an equilibrium, or thermal, aver-
age. The thermal concentration of excitationsc is the control
parameter of the model.

The second ingredient of our model is the kinetic con-
straintCishnjd, which must suppress the dynamics of celli if
surrounded by immobile regions. It cannot depend onni it-
self if Eq. s2d is to satisfy detailed balance. To reflect the
local nature of dynamic facilitation we allowCi to depend
only on the nearest neighbors ofi f27g and require thatCi is
small when local mobility is scarce.

One can derive the large time and length scale behavior of
the model defined by Eqs.s1d–s3d from an analysis of the
corresponding field theory. The technique to recast the mas-
ter equations3d as a field theory is standardf30,31g. One

introduces a set of bosonic creation and annihilation opera-
tors for each sitei, ai

† and ai, satisfying fai
†,ajg=di j , and

defines a set of statesunl=sa†dnu0l, such that

ai
†unil = uni + 1l, aiunil = niuni − 1l. s5d

The vacuum ketu0l is defined byau0l=0. One passes to a
Fock space via a state vector

uCstdl ; o
hnij

Psn,tdp
i

ai
†niu0l. s6d

The master equations3d then assumes the form of a Euclid-
ean Schrödinger equation,

]tuCstdl = − ĤuCstdl, s7d

with Ĥ=oiĈishaj
†ajjdĤi

s0d. The unconstrained pieceĤi
s0d reads

Ĥi
s0d = − gsai − ai

†aid − rsai
† − 1d, s8d

which describes the creation and destruction of bosonic ex-

citations with ratesr andg. The evolution operatore−Ĥt can
then be represented as a coherent state path integral weighted
by the dynamical actionf31g

Sffi
!,fi,t0g = o

i
E

0

t0

dtffi
!]tfi + Hisf!,fdg, s9d

where we have suppressed boundary terms coming from the
system’s initial state vector. The fieldsfi

!std andfistd are the
complex surrogates ofai

† andai, respectively, but must now
be treated as independent fields and not complex conjugates.
The HamiltonianHi has the same functional form ass8d with
the bosonic operators replaced by the complex fields. At the
level of the first moment we haveknil=kfil, and so we may
regardfi as a complex mobility field. Higher moments ofni
and fi are not so simply related, however: for example,
kni

2l=kfi
2l+kfil f32g. The last step in the passage to a field

theory is to take the continuum limit, according tooi
→a−deddx, fistd→adfsx ,td, and fi

!std→f!sx ,td, wherea
is the lattice parameter.

The definition of the model is completed by specifying
the functional form of the kinetic constraint. The simplest
nontrivial form is an isotropic facilitation functionCi =o jnj,
where the sum is over nearest neighbors of sitei. With this
choice we expect our model to be in the same universality
class as the one-spin facilitated Fredrickson-Andersen model
in d dimensionsf25,27g. Different choices for the operators

Ĥs0d andC lead to field theoretical versions of more compli-

cated facilitated models. A diffusiveĤs0d, for example, would
correspond to a constrained lattice gas like that of Kob and
Andersenf27,33g; an asymmetricC to the East modelf27,34g
and its generalizationsf22g.

In the continuum limit the isotropic constraint reads

o
j

f j
!f j < s2d + a2¹2 + ¯dfi

!fi , s10d

where the ellipsis denotes higher-order gradient terms irrel-
evant in the RG sense in the long time and wavelength limit.
Terms linear in the spatial gradient vanish because the con-
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straint is isotropic. Consequently, the dynamics of the model
is nearly diffusive, perturbed by fluctuations in low dimen-
sions.

To derive the dynamic action it is convenient to make a
linear shift of the response field,f!→1+f f31g, in the
Hamiltonian. This is done for the following reason. Expec-
tation values in this formalism are given by bykAl
=ksuAuCstdl, where uCstdl=e−ĤtuCs0dl and ksu
;k0uexpsoiaid f31,32g. The projection stateksu is introduced
because the usual quantum mechanical expression
kCstduAuCstdl is bilinear in the probabilityP. If one wishes
to apply Wick’s theorem, one must commute the factor
expsoiaid to the right hand side of the bracket; the conse-
quent shiftf!→1+f in the Hamiltonian follows from the
identity eafsa†,ad= fs1+a†,adea, and corresponds to a
change of integration variables. It therefore does not change
the properties of the system under renormalization. However,
it can obscure important symmetries of the model in ques-
tion, and so should be made with caref31g.

The dynamic action now follows from Eqs.s8d, s9d, and
s10d, suitably shifted, and reads

Sff,f,t0g =E ddxE
0

t0

dtffs]t − D0¹
2 − r0df + ffsl0

s1d

+ n0
s1d¹2df + ffsl0

s2d + n0
s2d¹2dff

− ffsv0 + s0¹
2dfg. s11d

We have definedl0
s1,2d;2dadg, r0=v0;2dr, n0

s1,2d;gad+2,
ands0;a2r. We writeD0;s0 to emphasize the emergence
of a diffusive term, although in the unshifted model there is
no purely diffusive process. We have omitted higher-order
gradient terms, and suppressed boundary contributions com-
ing from initial and projection states. Equations11d is the
starting point for our RG analysis.

III. PHYSICAL INTERPRETATION OF THE ACTION

Equations11d has the form of an action for a single spe-
cies branching and coagulation diffusion-limited reaction
f28,35g with additional momentum-dependent terms. We can
see how this action governs the behavior of the model by
dropping all but the most relevant terms from the action to
give ssee Sec. IVd

S =E ddx dt fs]t − D0¹
2 − r0df

+E ddx dt sl0ff2 − v0f2fd. s12d

For brevity we shall occasionally writel0;l0
s1d; l0

s2d will
always be shown with its superscript label. The first term in
Eq. s12d is the bare propagator of the theory, the renormal-
ized version of which corresponds to the probability that two
sites separated in space and time are connected by an unbro-
ken chain of mobile sitesf28g. The second and third terms
are the vertices corresponding to coagulation and branching
interactions, respectively. In the usual wayf36g one associ-

ates with each term in the action a diagram, as in Fig. 1.
The physical processes corresponding to the terms in Eq.

s12d or the diagrams in Fig. 1 can be seen in numerical
simulations. In Fig. 2 we show a typical space-time trajec-
tory f18g for the FA model in 1+1 dimensions. The wander-
ing of excitation lines corresponds to the diffusion of isolated
defects. Diffusion appears in the propagator as a result of the
shift f!→1+f applied to the termf!¹2f!f, which enters
Eq. s9d. This term corresponds to nearest-neighbour facili-
tated mobility creation with rate proportional toc, and so
diffusion in our model results from facilitated creation
sbranchingd, followed by facilitated destructionscoagula-

tiond: h↑0”→
c

↑ ↑→
1

0” ↑ j,cf¹2f.
Branching and coagulation events can be clearly identi-

fied: one of the latter is enlarged in the lower left of the
figure. These events correspond to fluctuations. In low di-
mensions, where fluctuations are important, branching and
coagulation events renormalize the bare propagator of the
theory, meaning that excitation lines joining two sites are
dressed by bubbles. In low dimensions one must therefore
resort to the RG in order to account for fluctuation effects in
a controlled way.

IV. RG ANALYSIS OF THE ACTION

A. Langevin equation of motion

By making stationary variations of the actions11d with
respect to the response fieldf, dS /df=0, we obtain the
Langevin equation of motion for the fieldf:

FIG. 1. Elements of the simplified actions12d. From left to
right: branching and coagulation vertices, and diffusive propagator.
Time runs from left to right. These processes appear in the space-
time trajectories of simulations of the lattice FA model in Fig. 2.

FIG. 2. A space-time trajectory for the FA model in 1+1 dimen-
sions; time runs horizontally from left to right; space vertically.
Mobile sites are black. The events corresponding to the diagrams in
Fig. 1 can be clearly seen. The wandering of the excitation lines
corresponds to ; branching and coagulation events act to renormal-
ize the excitation lines. In the lower left a coagulation event is
shown enlarged.
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]tfstd = D0¹
2f + r0f − l0f2 + hsx,td, s13d

where the noiseh satisfieskhsx,tdl=0, and

khsx,tdhsx8,t8dl = 2sv0f − l0
s2df2ddsx − x8ddst − t8d.

s14d

We neglect diffusive noise. The noise-noise correlators14d
describes stochastic fluctuations of the mobility fieldf, and
comes from the coefficient of the terms in the action qua-
dratic in f. We see that Eq.s14d describes a competition
between mobility correlations and anticorrelations, induced
by branching and coagulation, respectively. If, for example, a
branching event occurs, a particle will find itself with more
nearest neighbors than one would expect from a mean-field
argument. In the long-time and -wavelength limit, fordù2,
we show below that the second term in Eq.s14d is irrelevant,
and may be dropped. Equationss13d ands14d then constitute
the well-known Langevin equation for DPf28g, albeit with a
positive definite mass term.

The mean-field approximation consists of dropping the
noise and diffusion terms from Eq.s13d. The resulting equa-
tion possesses a dynamic critical point atc~ r0=0, or T=0.
For T.0, in the nonequilibrium regime, the densityf ap-
proaches its thermal expectation valuec=r /g exponentially
quickly. At T=0 the decay becomes algebraic,fst→`d
,sl0td−1. Whether at equilibrium or not, the mean-field
equation admits the critical exponentsni=1 andb=1. The
former describes the growth of time scalesji near criticality,
via ji ,c−ni; the latter is the order parameter exponent, de-
fined as the long-time scaling of the density in terms of the
control parameter,nst→`d,cb. By restoring the diffusive
term, the spatial exponentn'= 1

2, defined analogously toni,
may be identified.

In the following section we show that fluctuations alter
these predictions in low dimensions, by virtue of endowing
space and time scale exponents with small dimension-
dependent corrections. The exponentb, however, remains
unchanged. We argue that because our model possesses de-
tailed balance, which ensures thatkfst→`dl;kfl=c, b
must be equal to unity. This may also be inferred from the
invariance of the unshifted action under the transformation
sf ,f!d→ scf! ,c−1fd, and the consequent Ward identity
f37g.

B. Dimensional analysis

We identify the upper critical dimension of the model via
dimensional analysisf36,38g. We rescale space according to
x→xr1/2, in order to remove the temperature dependence
from the diffusion coefficient. Note that this rescaling is not
valid at c=0. The actions11d then reads as before, with
rescaled parametersl0

s1,2d;2dadr−d/2g, r0=v0;2dr, s0

;a2, and n0
s1,2d;gr−1−d/2ad+2. We show some of the dia-

grams corresponding to these couplings in Fig. 3sad.
To perform a scaling analysis, we identify the effective

couplings emerging from the action. These follow from the
structure of the diagram shown in Fig. 3sbd, and are

x0 ;
v0l0

s1d

D0
2 , y0 ;

s0l0
s1d

D0
2 , z0 ;

v0n0
s1d

D0
2 , u0 ;

s0n0
s1d

D0
2 .

s15d

The factors ofD0 come from the explicit evaluation of the
integrals associated with the diagrams. Tos15d we addg0

;l0
s2d /D0 and h0;n0

s2d /D0, which couple to four-point ver-
tices; see Fig. 3. Dimensional analysis reveals that the upper
critical dimension is 4, at which the most relevant coupling,
x0, is marginal. Renormalization effects must therefore be
taken into account ford,4. Above d=4 the classical
sfluctuation-freed predictions apply. Other couplings become
relevant belowd=2, and we shall therefore restrict our
analysis to 2ødø4. Dimensiond=1 is treated separately in
Sec. V.

C. DP fixed point

We employ the usual field theoretic renormalization group
schemef36,37g, using dimensional regularization ind=4−e
dimensions to identify the unphysical ultravioletsuv, short
time and distanced poles of the vertex functionsGsN,Nd of the
theory. The vertex functionsGsN,Nd consist of all one-particle-
irreducible diagrams withN outgoing andN incoming am-
putated lines. Their uv poles result from exchanging a lattice
model, which is regularized at short distances, for a con-
tinuum field theory, which is not. But by invoking universal-
ity, which says that the behavior of a system approaching
criticality is governed by a small number of relevant param-
eters, we recognize that the uv poles correspond to irrelevant
microscopic degrees of freedom. By removing these poles
we both render our theory finite, and, via scale invariance
and dimensional analysis, infer its physically important in-
frared sir, large time and distanced scaling f38g. We shall
work to one-loop order, and use dimensional regularization
and minimal subtractionf36g.

We introduce the following renormalized counterparts of
the fields and couplings appearing in Eq.s11d:

FIG. 3. Vertices corresponding to terms in the actions11d. sad
From left to right, diagrams corresponding to the vertices −l0

s1d, v0,
−l0

s2d, andn0
s1dq1

2. The dot denotes a momentum dependenceq1
2 on

one of the incoming legs.sbd The structure of the lowest-order
corrections to the propagator, showing how the effective couplings
emerge. The coupling shown here isx. Similar diagrams with dots
on right, left, and both vertices correspond to propagator renormal-
ization controlled by the couplingsy, z, and u, respectively.scd
Diagrams renormalizing the couplingx. Because these diagrams are
symmetric with respect to incoming and outgoing momenta and
frequencies, the contribution from each is doubled. Note thatsbd
also contributes to the renormalization ofx, via the renormalization
of D.
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fR = Zf
−1f, fR = f, ls1d = Zf

2Zll0
s1dmd−2,

v = ZfZvv0m−2, r = ZfZrsr0 − r0cdm−2,

D = ZfZDD0,

wherer0c is the additive counterterm introduced to cure the
quadratic divergence of the vertex functionGs1,1d. We have
introduced an arbitrary momentum scalem in order to render
the couplings dimensionless, and have chosen to allocate di-
mensions to the fields according toffg=1,ffg=md. The pre-
dictions of the theory must be independent of this allocation.

We define the multiplicative renormalization factorsZ as
follows. From the propagator couplings, we fix mass, field,
and diffusion constant renormalization via

u]ivGR
s1,1dsv,qduNP = 1,

u]q2GR
s1,1dsv,qduNP = D,

− GR
s1,1ds0,0d = rm2, s16d

while for the couplings comprisingx0 we impose the condi-
tions

ls1d = U1

2
GR

s1,2dsv,qdU
NP

md−2,

v = − U1

2
GR

s2,1dsv,qdU
NP

m−2. s17d

The subscript “NP” stands for “normalization point,” and is
the value of the external momentum scale at which we evalu-
ate the vertex functions. It can be chosen for convenience,
provided that it lies outside the ir-singular region; we take
the normalization point assiv ,q2,rd=s2Dm2,0 ,0d. Note that
this choice corresponds to the system at criticality, which for
finite T is an approximation. For nonzeroT one must retain
the mass term in the propagator. This leads to the emergence
of an effective coupling that flows logarithmically to zero,
signaling a crossover to a massive, classical fixed point. We
will discuss this case in Sec. IV E.

We first assume that for 2,dø4 the couplings other than
x0 are irrelevant, and hence the actions11d reduces to that of
DP swe shall callx the “DP coupling”d. We shall find that
those couplings which are marginal ind=2 at the classical
fixed point are rendered irrelevant at the DP fixed point.
Hence we expect to see DP scaling for 2ødø4. We find, to
one-loop order, the well-knownZ factorsf28g,

Zf = 1 +
Ad

4e
x0m−e, ZD = 1 −

Ad

8e
x0m−e,

Zr = 1 −
Ad

2e
x0m−e, Zls1d = 1 −

Ad

e
x0m−e,

Zv = 1 −
Ad

e
x0m−e, s18d

whereAd;4s4pd−d/2Gs3−d/2d. Note that the cubic vertices
renormalize identically as a consequence of a Ward identity.
The renormalization factor associated withx=ls1dv /D2

is therefore Zx=ZfZls1dZvZD
−2=1−s3Ad/2edx0m−e+Ose2d.

Insofar as one can ignore the propagator mass, the rescaled
coupling x→Adx=AdZxx0m−e changes with the observation
scalem according to

bx ; m
]x

]m
= xS− e +

3

2
xD . s19d

If we parametrize the change in the observation scale bym
→ms,d=m,, we can solves19d for xs,d:

xs,d =
x!

sx!/xs1d − 1d,e + 1
. s20d

Thusx→x!;2e /3 as,→0, becausee.0. Since,<1 and
,!1 correspond, respectively, to microscopic and macro-
scopic length and time scales,x! is an ir-stable fixed point.
At this fixed point the critical exponents of the theory are
independent of its microscopic parameters, and so are “uni-
versal.” We therefore expect the model to display scaling
behavior independent of its microscopic details for very low
temperatures. This scaling behavior belongs to the universal-
ity class of directed percolation.

Having assumed the non-DP couplings in the action are
irrelevant for 2,dø4, we shall now justify this assumption.
These couplings are indeed irrelevant at the classical fixed
point, as one can verify from Eq.s11d by dimensional analy-
sis. We find that they remain irrelevant at the DP fixed point.
Further, those couplingssy,z,gd which are marginal ind
=2 at the classical fixed point are rendered irrelevant at the
DP fixed point. Hence we expect to see DP scaling ind=2,
also. Defining a renormalization scheme in a similar manner
to before,

ls2d = Zf
2Zls2dl0

s2dmd−2, s = ZfZss0,

ns1d = Zf
2n0

s1dZns1dmd, ns2d = Zf
2Zns2dn0

s2dmd, s21d

where

ls2d = U1

4
GR

s2,2dsq,vdU
NP

md−2,

s = u]q2GR
s2,1dsq,vduNP,

ns1d = u]q2GR
s1,2dsq,vduNPmd,

ns2d = u]q2GR
s2,2dsq,vduNPmd, s22d

we find to one-loop order

Zns1d = Zs = 1 −
2Ad

e
x0m−e,
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Zls2d = 1 −
Ad

e
x0m−e. s23d

The corrections to the Gaussian scaling dimensions of these
couplings may then be calculated. The correction to the
Gaussian eigenvalue ofg;ls2d /D is determined byZg
=ZfZls2dZD

−1=1−5x0m−e / s8ed. So gg
!;um]m lnsg/g0dux=x!=d

−2+5e /12. Thusg is less relevant at the DP fixed point than
at the Gaussian fixed point, and fordù2 may safely be
ignored. So too mayh. In a similar way we find thatgy

!

=gz
!=d−2+5e /3, and gu

!=d+7e /3, all of which are irrel-
evant fordù2 at the DP fixed point. Thus for 2ødø4 the
scaling properties of the model near criticality are those of
DP.

The critical exponents of the model then follow from
standard argumentsf28,36g. They are, toOsed, sn'

DP,ni
DPd

=s1/2+e /16,1+e /12d. The temporal exponent appropriate
for comparing these predictions with numerical simulations
is 1+ni. The additional factor of unity arises because the
microscopic time scale associated with the system goes itself
as ,c. The nontrivial value ofb, bDP=1−e /6, cannot be
observed for a model such as ours which eventually equili-
brates, as discussed above.

D. Critical temperature

In general, systems in the DP universality class, such as
directed bond percolation in 1+1 dimensions, exhibit a con-
tinuous phase transition from an active to an absorbing state
at some finite valuepcÞ0 of their control parameterp. Our
model, for whichp=c, displays no such transition. One can
justify this difference on physical grounds, as follows. If we
interpret the mobilityni as the concentration of a chemical
reactantA, then the kinetically constrained model we study
for d.2 corresponds to a chemical reaction involving diffu-
sion sA+0”↔0” +Ad, branchingsA+0”→A+Ad, and coagula-
tion sA+A→A+0”d. Recall that the diffusive process arises
from the mechanism of mobility creation facilitated by a
nearest-neighbor site, and is made manifest only following a
shift of the response field. DP corresponds to these three

processes plus self-destructionA+0”→
s0

0” +0” . It is self-
destruction that permits other systems in the DP universality
class to undergo a phase transition at a finite value of the
control parameter. Self-destruction gives rise to a second-
quantized operator

Hsd= − s0sai − ai
†aid, s24d

which, following a shift of the response field, results in a
term in the action of the forms0ff. Thus the mean-field
critical point becomespc=s0. Near criticality,pc is increased
above its mean-field value by fluctuations. This occurs be-
cause the DP noise-noise correlator is positive, and so coagu-
lation is enhanced by the branching process: each particle
finds itself with more neighbors with which it may coagulate
than one would expect from a mean-field approximation.
This enhanced coagulation enters the term that renormalizes
the mass, effectively enhancing self-destruction relative to
branching, and shifting the critical percolation threshold up-
ward.

Now self-destruction is excluded by any dynamical rule
preventing mobility destruction unless facilitated by a near-
est neighbor. Moreover, no such process can be generated
under renormalization from only branching and coagulation
processes whose respective rates are fixed by detailed bal-
ance. Hence we expect one-spin facilitated models in general
to have a critical point at zero temperature.

This argument may be made explicit for the model we
study. By imposing the condition for criticality 0=Gs1,1d sv
=0,q=0,r0=r0cd, we find that, to one-loop order,

r0c =
sl0v0/D0dÑdLd−2

1 − sl0v0/D0
2dNdLd−4 . s25d

Here, for convenience, we have imposed an explicit wave-
vector cutoffL; the additive correction to the mass is for-
mally equal to zero in dimensional regularization, and yet the
physical shift of the critical temperature must be independent
of the regularization scheme usedf38g. We have introduced
Nds2pd−dsd−4d−1Sd, whereSd;2pd/2/Gsd/2d is the surface

area of ad-dimensional hypersphere, andÑd;sd−4dNd/ sd
−2d. We also use the unscaled variables of the actions11d, in
which D0~c.

From Eq.s25d we see that the critical bare mass changes
sign asT→0 from above. Ostensibly the critical temperature
is then negative; physically, of course, it is zero. This is a
consequence of the vanishing of fluctuations in the limit of
zero temperature, which may be inferred from the vanishing
in that limit of the branching vertex in the action. The diffu-
sion term arises from nearest-neighbor facilitated branching,
and so must also vanish in this limit. Thus there is no
fluctuation-induced shift of the critical temperature which
remainsTc=0.

This is as we expect, if the field theory is a faithful rep-
resentation of the original master equation. The master equa-
tion satisfies detailed balance at all temperatures, which
means that it cannot admit an absorbing state: an absorbing
state breaks detailed balance because it is a state that may be
entered, but not left. Nonetheless, it is necessary to verify, as
in Eq. s25d, that there exists no finite-temperature absorbing
state under coarse-graining of the master equation. The FA
model, upon which the field theory is based, is known to
have a critical point at zero temperaturef27g.

E. Crossover to classical behavior

For anyT.0 the mass parameterr0~c will be nonzero.
Under renormalization, as discussed above, it will eventually
become large, rendering our approximation of criticality in-
correct. The system will thus for very large time and length
scales exhibit classical scaling properties, with the associated
simple exponents.

We can quantify the emergence of the classical theory by
retaining the mass term in the propagatorf31g. If we write
s; r /D, we find that

d ln xs,d
d ln,

= − e + 3
2gs,d, s26d
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d ln ss,d
d ln,

= − 2 + 3
8gs,d, s27d

wheregs,d;xs,df1+ss,dgd/2−2 is an effective coupling. For
small s, x would in the ir limit approach the directed perco-
lation fixed point. Buts does not remain small, flowing as
ss,d,,−2+Osed. If we introduce the scaled masss;f1
+ss1d−1,2+Osedg−1, we find that in the large mass limits→1
we obtain a logarithmically diminishing coupling,

gs,d , gs1dH1 +
3

16
s4 + ddgs1dln , + ¯J−1

. s28d

The vanishing of the effective coupling signals the reemer-
gence of a classical theory: becauseg couples to diagrams
renormalizing the propagator, its logarithmic vanishing re-
sults in a logarithmic crossover to classical exponents.

Thus we should see DP scaling provided that temperatures
are small enough and time and length scales are not too
large. The crossover temperature will be system dependent,
because the prefactors of the flowing couplings are nonuni-
versal. For larger temperature or large enough length and
time scales we expect to see a logarithmic crossover to a
classical theory. This is characterized, in the nonequilibrium
regime, by exponential decay to the steady state, and in gen-
eral by classical scaling behavior.

V. DIMENSION d=1 AND CDP

For d=1 DP scaling no longer holds. This is signaled in
the field theory by the relevance of some of the non-DP
couplings betweend=2 and 1, and the resulting profusion of
uncontrollable singularitiesf36g. In this section we argue that
in d=1 systems with single-spin isotropic facilitation, such
as the FA model, belong instead to the universality class of
compact directed percolationf28g.

Consider the FA model ind=1. The elementary order pa-
rameter of this model is the mobility fieldnistd. Figure 4sleft
paneld shows a portion of an equilibrium trajectory atT
=0.3. The connection between the FA model and CDP is

made apparent by considering instead the corresponding per-
sistence fieldPistd, i.e., the field which takes valuePistd=0 if
site i has flipped by timet, andPistd=1 otherwise. The cor-
responding trajectory ofPistd in our example is shown in
Fig. 4 sright paneld.

Clearly, while the dynamics ofnistd is reversible, that of
Pistd is not. A related observation is that the clusters gener-
ated by the evolution ofPistd are compact, as seen in Fig. 4.
The control parameter is againc, with c=0 corresponding to
the transition between an active phase in whichPistd even-
tually becomes unity throughout the whole system, and an
inactive phase, in which it does not. As before, the exponents
ni and n' determine the scaling of times,sDtd,c−ni swith
D<cd, and lengths,j,c−n'. Two further exponents deter-
mine the asymptotic values ofkPistdl. To extract these expo-
nents it is convenient to define thetransiencefunction Tistd
;1−Pistd: starting from an initial finite seed,kTist→`dl
,cb, with the dynamics running in the forward time direc-
tion; starting from a completely full lattice,kTist→−`dl
,cb8, with the dynamics running backward in time. Note
that bÞb8 due to the irreversibility ofTistd for Pistdg.

The domains ofTistd spread only through diffusion of
mobility excitations and interactions play no role. In this
sense, the scaling behavior ofTistd should be that of freely
diffusing domain walls, and coalescing domains. Examples
of systems that behave similarly are the zero-temperature
Ising chain under Glauber dynamicsf28g and the reaction-
diffusion systemA+A→0” f28,39g. These indeed belong to
the CDP universality class.

CDP has the following exponentsf28g:

ni
CDP= 2, n'

CDP= 1, bCDP= 0, b8CDP= 1. s29d

These are precisely the values of the exponents of the FA
model ind=1. The time and length exponents areni

FA=2 and
n'

FA=1, giving the dynamic exponentzFA;ni
FA/n'

FA=2
f18,27g. Each site of a lattice which initially contains at least
one excitation will eventually flip, and thusTist→`d=1 for
all i, independently ofc. We therefore havebFA=0, which is
a consequence of ergodicity in the active phase. Conversely,
if one takes a final state with allTi =1, and runs time back-
ward, the state att→−` will have a density of excitations,
and therefore ofTi, equal toc. This is a consequence of
detailed balance. Henceb8FA=1=b8CDP.

We propose a field theoretic justification for this behavior
as follows. The Langevin equation of motion forf is given
by Eqs.s13d and s14d. At and aboved=2 the term inls2d is
irrelevant at the DP fixed point and may be dropped, leaving
us with the DP Langevin equationf28g. In d=1, however, at
the DP fixed pointsassuming it existsd, we have from our
previous results the anomalous dimensions of the couplings
appearing in the noise correlator:

gls2d
! = d − 2 +e/3, gv

! = 0. s30d

We have calculated these dimensions using the prescription
ffg=ffg=md/2, appropriate when the cubic vertices are con-
sidered independently. We see thatls2d andv are both mar-
ginal in d=1. This is, we stress, a crude approximation, be-

FIG. 4. FA model ind=1. The left panel shows an equilibrium
trajectory for the mobility fieldnistd at T=0.3 swindow size isL
=2503Dt=5000d. The right panel shows the corresponding trajec-
tory of the persistence fieldPistd; black sites denote those which
have been or are mobile, and so satisfyPistd=0. The clusters gen-
erated by the dynamics of thePistd are compact, and their scaling
properties are those of CDP.
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cause the calculation of the anomalous dimensions assumes
the irrelevance ofls2d. But it does suggest that here this
assumption is inconsistent. Assuming that we can trust these
exponents, there should then exist a fixed point controlled by
ls2d, at whichv is irrelevant. Assuming this is so, and assum-
ing further that the system can access this fixed point, this
would leave the only vertices in the effective theoryff2 and
sffd2, which allow no propagator renormalization. Hence
z=2 exactly. For this theory the beta function is calculable to
all orders, since perturbation theory inl0

s2d gives us a geo-
metric seriesf39g. We then have a new fixed point, at which
there exists a renormalized value ofls1d corresponding to an
infinite value of its bare counterpartl0

s1d. Thusl0
s1df2@ r0f,

giving the effective theory

]tfstd = D0¹
2f − l0

s1df2 + iÎl0
s2dhsx,td. s31d

This is the Langevin equation for the CDP universality class
f39g. We stress that this argument is conjecture only. A more
rigorous analysis of the field theory would be required in
order to justify this claim.

VI. SIMULATIONS OF THE d=3 FA MODEL

The one-spin facilitated FA modelf25,27g is the lattice
model upon which the field theory of the previous sections is
based. In this section we report the results of our large scale
numerical simulations of the equilibrium dynamics of the FA
model in dimensiond=3, and compare these results to the
predictions of the field theory. While the one-dimensional FA
model has been extensively studied by numerical simulations
f27g, we are not aware of any detailed numerical study for
d.1.

We consider the FA model on a cubic lattice with periodic
boundary conditions. The model is defined by the Hamil-
tonian s1d, and the isotropic dynamical rule

ni = 0 �
Cis1−cd

Cic

ni = 1. s32d

The kinetic constraint isCi =1−pk j ,ils1−njd, wherek j , il de-
notes nearest-neighbor pairs. We perform Monte Carlo simu-
lations of this model for several temperatures in the range
T[ f0.09,5.0g. We use the continuous time algorithmf40g,
which is well suited to this problem. The dynamical slow-
down in this model is accompanied by the growth of a dy-
namic correlation length, and hence we must account for
possible finite size effects. For instance, atT=0.09 it was
necessarysand perhaps even then not sufficient; see belowd
to use system sizes as large asN=1603.

A. Global dynamics

We first consider the spatially averaged dynamics. This
may be probed via the mean persistence function,

Pstd =K 1

N
o

i

PistdL , s33d

wherePistd is the single site persistence function at timet,
which takes value 1 if sitei has not flipped up to timet, and

value 0 otherwise. Figure 5 shows, as expected, that the dy-
namics slows down markedly when temperature is decreased
below To<1.0, which marks the onset of slow dynamics in
this modelf23,41g.

We extract the mean relaxation time,tsTd, via the usual
relation Pstd=e−1. The temperature dependence oft is
shown in Fig. 6, where various fits are also included. The
high-temperature behavior is well described by a naive
mean-field approximationf23g,

tMF , c−1. s34d

This behavior breaks down belowTo, where fluctuation-
dominated dynamics becomes important. From our field
theoretic arguments we expect that in the nontrivial scaling
regime

t , c−D, D = 1 +ni < 2.1, s35d

where the numerical value is the DP estimate in three dimen-
sionsf28g. Fitting our data with the formt,c−D we find

FIG. 5. Persistence functionPstd for the d=3 FA model. From
left to right: T=5.0, 1.5, 1.0, 0.6, 0.4, 0.25, 0.17, 0.13, 0.106, and
0.09.

FIG. 6. Arrhenius plot of the mean relaxation time in thed=3
FA model. The DP exponent fits the data, while the classical expo-
nent does not.
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D = 2.095 ± 0.01, s36d

as shown in Fig. 6. We include for comparison a fit using the
Gaussian value of the exponent,D=2, which is inconsistent
with our data.

We show in Fig. 7 the results for similar simulations of
the FA model in dimensionsd from 1 to 6, together with the
relevant DP exponent toOse2d, as tabulated in Ref.f28g. We
note that these results are consistent also with numerical
simulations of systems in the DP universality classf28g. Our
numerics also show that one-spin facilitated FA models dis-
play, in all dimensions, Arrhenius behavior. They are thus
coarse-grained models for strong glass formers, as expected
f22g.

In summary, Fig. 7 strongly supports the RG prediction
that the FA model exhibits nonclassical scaling in low di-
mensions, consistent with DP behavior fordù2, and CDP
behavior ind=1.

B. Distribution of relaxation times

The mean relaxation timetsTd captures only in part the
relaxation behavior of the model. We consider in this subsec-

tion the distribution of relaxation times,pstd, related to the
mean persistence function viaf23g

Pstd =E
t

`

dt8pst8d. s37d

These distributions are shown in Fig. 8.
A careful study of the functionsPstd andpstd reveals the

following structure. At very large times, the persistence de-
cays to 0 in a purely exponential manner,Pst@td
,exps−t /td. This is not the case ind=1, where asymptoti-
cally the decay is described by a stretched exponential
with stretching exponentb=1/2. That stretched exponen-
tial behavior is not seen ind=3 is consistent with the fact
that strong glass formers display an almost exponential
relaxation patternf2g.

Using tsTd as a unique fitting parameter does not allow a
satisfactory description of the whole decay of the persistence
function; see Fig. 9. This figure shows that there exists an
“additional short-time process,” in the language of glass tran-
sition dynamical studies.

Indeed, we find that fitting our data with the expression

pstd , t−a expS−
t

t
D , s38d

wherea andt are free parameters, describes the distributions
reasonably well over several decades; see Fig. 8.

FIG. 7. Dimensionality dependence of the time exponentD=1
+ni of the FA model, from numerical simulations in dimensionsd
=1 to 6sfilled squaresd. The full line is thee2 expansion prediction.
The values of the exponents agree within error bars with those for
DP for all d.1, and CDP ford=1. The upper critical dimension of
the FA model isdc

FA=dc
DP=4.

FIG. 8. Distribution of relaxation timesssymbolsd and fits to Eq.
s38d sfull linesd for temperaturesT=1.0, 0.4, 0.25, 0.17, 0.13, 0.12,
0.106, 0.095, and 0.09sfrom left to rightd.

FIG. 9. Top: The fit of the persistence function with a simple
exponential reveals an additional short-time process. Bottom: This
is also true in Fourier space, where the additional process looks like
a high-frequency wing.
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Often, data in the supercooled liquid literature are pre-
sented in the frequency domain, because many decades can
be accessed via, e.g., dielectric spectroscopyf42g. Following
this convention, we present frequency data obtained from the
distribution of time scales via

Psvd =E
−`

`

p(lnstd)
1

1 + ivt
d ln t. s39d

Interestingly, the short-time power law behaviorpstd, t−a

observed in the distributions of time scales is also apparent
in the frequency space as an “additional process” on the
high-frequency flank of thea relaxation,P9svd,v−1+a; see
Fig. 9. In this figure, the full lines correspond to fits of the
main peak with a simple exponential, as discussed above.

This feature is reminiscent of the “high-frequency wing”
discussed at length in the dielectric spectroscopy literature
f42g. The wing is usually oberved in fragile glass formers;
unfortunately, no dielectric data are available for strong glass
formers f43g. Other techniques, such as photon correlation
spectroscopy, hint at the presence of an additional process in
strong glass formers similar to that observed in Fig. 9f44g.
More experimental studies of the dynamics of strong glass
formers would be needed to confirm and quantify this simi-
larity.

C. Dynamic heterogeneity

The growth of time scales in the FA model,t,c−D, is
accompanied by growing spatial correlations,j,c−n', as the
system approaches its critical point atT=0. These correla-
tions are purely dynamical in origin, and give rise to dy-
namic heterogeneityf4–11,18,45g. Figure 10 illustrates this
phenomenon in the FA model. We quantify the local dynam-
ics via the persistence functionPistd. For a given temperature
we run the dynamics for a timet!, such thatPst!d=1/2,
meaning that half of the sites have flipped at least once. We
color white persistentsimmobiled spins, for whichPist!d=1,
and black transientscurrently or previously mobiled spins,
for which Pist!d=0. Figure 10 shows the persistence function
for the d=3 FA model at different temperatures. Clearly, the
dynamics is heterogeneous, and the spatial correlations of the
local dynamics grow asT is decreased. The “critical” nature
of dynamic clusters is apparent: the pictures are reminiscent
of the spatial fluctuations of an order parameter close to a
continuous phase transition, such as the magnetization of an
Ising model near criticality. In our case, the order parameter
is a dynamic object, the persistence function, and the critical
fluctuations are purely dynamical in originf46g.

We now quantify these observations. We can measure spa-
tial correlations of the local dynamics via a spatial correlator
of the persistence function,

Csr,t,Td =
1

Nfstdoi
fkPistdPi+rstdl − P2stdg , s40d

where the functionfstd=Pstd−P2std in the denominator en-
sures the normalizationCsr =0,t ,Td=1. Alternatively, one
can take the Fourier transform of Eq.s40d, giving the corre-
sponding structure factor of the dynamic heterogeneity,

Ssq,t,Td =
1

Nfstdok,l
fkPkstdPlstdl − P2stdgeiqsk−ld.

Finally, the zero-wave-vector limit ofSsq,td defines a dy-
namic susceptibilityxst ,Td=Ssq=0,t ,Td, which can be re-
written as the normalized variance of thesunaveragedd per-
sistence functionpstd;N−1oiPistd:

xst,Td =
N

fstd
fkp2stdl − kpstdl2g. s41d

Figure 11 shows the time dependence of the susceptibility
s41d for various temperatures. The behavior ofx is similar to
that observed in atomistic simulations of supercooled liquids
in generalf5g, and strong liquids in particularf6g. The sus-
ceptibility develops at low temperature a peak whose ampli-
tude increases, and whose position shifts to larger times asT
decreases. As expected, the location of the peak scales with
the relaxation timetsTd, indicating that dynamical trajecto-
ries are maximally heterogeneous whent<tsTd.

In Fig. 12 we show the correlatorCsr ,t ,Td and the struc-
ture factor Ssq,t ,Td for different temperatures and fixed
times t=tsTd where dynamic heterogeneity is maximal.
These correlation functions clearly confirm the impression
given by Fig. 10, that a dynamic length scale associated with
spatial correlations of mobility develops and grows asT de-
creases. Note that at the lowest temperatures the structure
factor does not reach a plateau at lowq. This is because the
system size we use, although very largesN=1603d, is not
sufficiently so to allow us to probe the regimeqj!1. The
necessary system sizes are simply too large to simulate on
such long time scales. As a consequence we do not access the
whole spatial decay of the correlators shown in Fig. 12stopd
for the two lowest temperatures, and so we slightly underes-
timate the dynamic susceptibility in the manner described in
Ref. f46g.

We can extract numerically the value of the dynamic
length scalejsTd at each temperature. To do so, we study in
detail the shape of the correlation functions shown in Fig. 12.
As for standard critical phenomena, we find that the dynamic
structure factor can be rescaled according to

Ssq,t,Td , xst,TdSsqjd, s42d

where the scaling functionSsxd behaves as

Ssx → 0d , const, s43d

Ssx → `d , x2−h. s44d

Both the susceptibilityx and the dynamic length scalej
estimated at timet=t behave as power laws of the defect
concentration,

x , c−g, j , c−n'. s45d

These relations imply that the exponentsg andn' should be
numerically accessible by adjusting their values so that a plot
of cgS versusqc−n' is independent of temperature. We show
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such a plot in Fig. 13, and we find that the valuesg<0.97
andn'<0.5 lead to a good collapse of the data. The expo-
nent g can be independently and more directly estimated
from Fig. 11 by measuring the height of the maximum of the

FIG. 10. Spatial distribution of the local persistence at timet!

such thatPst!d=1/2 si.e., 50% of sites, shown in black, have
flipped by timet!d. From top to bottom,T=1.0 sad, 0.2 sbd and 0.12
scd, for system sizeN=803. The appearance of dynamic critical
fluctuations whenT→0 is evident.

FIG. 11. Time dependence of the dynamic susceptibilitys41d at
different temperatures. From left to rightT=1.0, 0.6, 0.4, 0.3, 0.25,
0.2, 0.17, 0.15, 0.13, 0.12, 0.106, 0.095, and 0.09. The horizontal
dotted line denotes the infinite time valuexst→`d=1; the diagonal
dotted line denotes the power-law fitxst ,Td,t0.46.

FIG. 12. The spatial correlation function of dynamic heteroge-
neity in realstop paneld and Fouriersbottom paneld spaces reveals
the growth of a dynamic length scale asT→0. Temperature de-
creases from left to rightstop paneld and from bottom to topsbot-
tom paneld. The dashed line in the bottom panel denotes the
asymptotic behaviorSsq,t ,Td,q−s2−hd, when qj@1, with h=
−0.15.
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susceptibility for various concentrations. Fitting the result to
a power law ofc gives g<0.96, in reasonable agreement
with the first value. We find also that the scaling function
Ssxd is well described by an empirical formSsxd=1/s1
+x2−hd, consistent with Eq.s44d. Thus we can determine the
value of the “anomalous” exponent,h; we find h<−0.15.

As usual, it is difficult to estimate what constitutes the
“best” collapse of the data, and so determine accurately the
errors in the values of the exponents. Consequently, we are
unable to determinen' with sufficient accuracy to conclude
that it agrees—or disagrees—with thed=3 DP value,n'

DP

<0.58. It is also difficult to compareg with its correspond-
ing DP value, because this would require one to know the
anomalous exponenth characterizing spatial correlations of
the persistence function. From a field theory perspective this
is a formidable task. However, from our numerics we have
that h<−0.15, and so from scaling arguments we findg
=s2−hdn'<1.075. This estimate lies however on the
“wrong” side of the classical valuegcl=1 as compared to the
numerical value obtained above.

We must conclude that numerical uncertainties are too
large and deviations from classical behavior too small to
make quantitative comparisons between DP and numerical
exponents for spatial correlations. Plus, as we discussed
above, our data may be subject at very low temperature to
small, but unknown, finite size effects.

We are nonetheless satisfied that the naive estimaten'

=1/d=1/3 f27g that one gets by estimating the mean dis-
tance between defects is invalidated by our numerical results.

VII. CONCLUSIONS

We have derived a field theory for a kinetically con-
strained model with isotropic facilitation, exemplified by the
FA model. We have studied the field theory via RG, and the
lattice-based FA model via numerical simulations. Our cen-
tral results, briefly summarized in Ref.f21g, are the follow-
ing.

The RG treatment suggests that the low-T dynamics is
dominated by a nonclassical, zero-temperature critical point,
which in turn implies that correlation times, dynamic corre-
lation lengths, and susceptibilities exhibit the scaling behav-
ior

t , c−D, j , c−n', x , c−g, s46d

with D=1+ni. The Arrhenius behavior of the equilibrium
concentration of excitations,c<e−1/T, gives rise to Arrhenius
behavior of the dynamics throughs46d. For dimensionsd
ù2, the critical point is that of DP, while ford=1 it is that of
CDP. The upper critical dimension isdc=4, so that for di-
mensionsdù4 the exponents take classical values. Ford
=dc=4 the exponents are classical, augmented with the usual
logarithmic correctionsf36g. For the time and space expo-
nents we havef28g

D < 3,2.3,2.1,2sd = 1,2,3,ù 4d, s47d

n' < 1,0.73,0.58,1/2. s48d

We have also performed large scale numerical simulations
of the FA model, which confirm many of the field theoretic
predictions. The relaxation times of the FA model, Figs. 6
and 7, follow the scaling laws given by Eqs.s46d ands47d in
all dimensions simulatedsd=1 to 6d. The existence of an
upper critical dimension atdc=4 is evidentssee Fig. 7d. The
dynamics is increasingly heterogeneous and correlated in
space as temperature is decreased, as can be seen, for ex-
ample, in pictures of the local persistencesFig. 10d. The
structure factor for this dynamic heterogeneity field ind=3
exhibits scale invariancesFig. 13d.

More extensive simulations are required in order to clarify
two further points. The spatial exponent obtained from the
numerics is n',0.5, but we were unable to establish
whether this number agrees precisely with thed=3 DP value
of n'=0.58. We also caution the reader that there may exist,
even ford.2, a crossover from early-time CDP behavior to
intermediate-time DP behavior, as is the case for some sys-
tems in, ostensibly, the DP universality classf28g.

Our work shows that standard theoretical methods, such
as the renormalization group, can be used to analyze coarse-
grained models of glass-forming supercooled liquidsf46,47g.
It supports the view that the dynamics of glass formers is in
many respects similar to that of standard critical phenomena,
such as reaction-diffusion systemsf35,48g ssee alsof50gd.
We have found, numerically and analytically, that the FA
model and its associated field theory possess a zero-
temperature critical point, in agreement with results obtained
by other meansf27g. Rigorous results confirm the existence
of a T=0 critical point in other kinetically contrained sys-
tems, such as the East modelf49g, and an analogous
maximal-density critical point in the Kob-Andersen model
f51g. Extending the field theory treatment to models of frag-
ile glass-forming liquids, such as the East modelf34g and its
generalizationsf22g, constitutes an interesting challenge.

Finally, our results provide some insight into the physical
meaning of fragility, in the Angell sensef2g. First, we have
shown here and elseweheref18,22,23g that strong systems
show fluctuation-dominated heterogeneous dynamics, in a

FIG. 13. Collapse of the dynamic structure factor of Fig. 12
using scaling lawss45d and takingg=0.97 andn'=0.5. Dashed
line is the scaling functionSsxd=1/s1+x2−hd with h=−0.15.
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similar manner to fragile systems. This contradicts the popu-
lar view that “cooperativity,” “fragility,” and “heterogeneity”
are different facets of the same conceptf1,2g.

In our view, the difference between strong and fragile
liquids is in the strength of fluctuation effects. For example,
the breakdown of the Stokes-Einstein relation observed in
fragile liquidsf52,53g should also be observed in strong ones
f54g, but the effect will be less striking. However, since
strong systems such as the FA model are characterized by a
constant dynamic exponent, we expect that typical length
scales at the glass transition are typically larger in strong
glass formers than in fragile ones. Detailed studies of dy-
namic heterogeneity in atomistic models of strong liquids
should be able to test these predictionsf6g, while experimen-

tal investigations of strong glass formers would also be very
welcome.
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