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We derive a dynamic field theory for a kinetically constrained model, based on the Fredrickson-Andersen
model, which we expect to describe the properties of an Arrheisimeng supercooled liquid at the coarse-
grained level. We study this field theory using the renormalization group. For mesoscopic length and time
scales, and for space dimenside 2, the behavior of the model is governed by a zero-temperature dynamical
critical point in the directed percolation universality class. We argue thatihits behavior is that of compact
directed percolation. We perform detailed numerical simulations of the corresponding Fredrickson-Andersen
model on the lattice in various dimensions, and find reasonable quantitative agreement with the field theory

predictions.
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I. INTRODUCTION neighboring regions to themselves become mobile. This sec-

The discovery that supercooled liquids, whose structure§nd Observation is the concept of dynamic facilitation
are essentially homogeneous and featureless, are dynanh&4—27. This picture of supercooled liquids can be straight-
cally highly heterogeneous is arguably the most importanforwardly cast as a dynamical field theory and its scaling
recent development in the long-standing problem of the glasBehavior determined via the RG. We find that, generically,
transition[1-3]. Dynamic heterogeneity has been observedscaling properties are governed by a zero-temperature critical
both experimentally in deeply supercooled liquidg and in ~ point. We study in detail the simplest case, that of isotropic
numerical simulations of mildly supercooled liquids6]. In  dynamic facilitation, which we expect to model an Arrhen-
addition, dynamic heterogeneity has been observed experids, or strong, glass former. We show that its low-
mentally in colloidal suspensiong]. For recent reviews see temperature dynamics is controlled by a zero-temperature
[8-11]. critical point, which for dimensiond =2 is that of directed

Understanding dynamic heterogeneity is a crucial step topercolation(DP) [28]. We argue that ird=1 the model be-
ward understanding the glass transition. Dynamic heterogdongs to the universality class of compact directed percola-
neity implies that the slow dynamics of glass formers istion (CDP) [28]. Our theoretical predictions compare favor-
dominated by spatial fluctuations, a feature discarded fronably with our results from numerical simulations of the
the start in homogeneous approaches like mode couplingredrickson-Anderse(FA) model[25], the lattice model on
theories[12] or other mean-field treatmenf$3]; see, how- which the field theory is based.
ever,[14-17. Moreover, the absence of growing structural ~ This paper is organized as follows. We derive a field theo-
length scales has been the main obstacle to the application tetic description of a generic system possessing constrained
supercooled liquids of many of the tools used so successfullgynamics in Sec. |l, and we discuss in Sec. Ill the physical
to analyze conventional phase transitions. The existence dfiterpretation of the field theory for the special case of an
dynamic heterogeneity, however, implies that the increase iisotropically constrained model. In Sec. IV we study this
time scales as the glass transition is approached is associatiield theory ford= 2 using the RG, and in Sec. V we discuss
with growing length scales of dynamically, not statically, the special case af=1. In Sec. VI we compare the theoret-
correlated regions of spa¢#8] (Refs.[19,2( offer alterna- ical predictions to simulations of the FA model in various
tive thermodynamic viewpoints This suggests that super- dimensions. Section VII contains a summary of our results
cooled liquids might display universal dynamical scaling, byand conclusions.
analogy with conventional dynamical critical phenomena.

This sca!ing_ behavior could th_en be st_ud.ied by standard Il DERIVATION OF THE FIELD THEORY
renormalization grougRG) techniques. This is the issue we

address in detail in this paper, which is a follow-up to our We build an effective model for glass formers as follows
recent Lettef21]. [22]. We coarse-grain a supercooled fluiddispatial dimen-

Our starting point is the coarse-grained real-space desions into cells of linear size of the order of the static corre-
scription of glass formers developed [8,22,23 which  lation length, as given by the pair correlation function. We
places dynamic heterogeneity at its core. It is a mesoscopigssign to each cell a scalar mobility, whose value is cho-
approach, based on two observations. First, at low temperaen by further coarse-graining the system over a microscopic
ture very few particles in a supercooled liquid are mobile,time scale. Mobile regions carry a free energy cost, and when
and these mobility excitations are localized in space; andnobility is low we do not expect interactions between cells
second, mobile regions of the liquid are needed to allowto be important. Adopting a thermal language, we expect
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static equilibrium to be determined by a noninteractingintroduces a set of bosonic creation and annihilation opera-

Hamiltonian[27], tors for each sitd, a;‘ and g, satisfying [af,aj]:a‘”-, and
N defines a set of statés)=(a")"|0), such that
H:.S;ni' (1) allmy=In+1), aln)=nn-1). 5)
1=

. L . . The vacuum ket0) is defined bya/0)=0. One passes to a
At low mobility, the distinction between single and multiple Fock space via a state vector

occupancy is probably unimportant, and we assume the latter
case for technical simplicity. The question of whether the [wt)=> Pnvll alTni|o>_ (6)
field theories for versions of a system with singtéermi- {n;} i

onic”) or multiple (“bosonic” occupancies lie in the same
universality class is unresolvd@9], but if the distinction
matters it is likely to matter more inl=1 than in higher

The master equatio(B8) then assumes the form of a Euclid-
ean Schrodinger equation,

dimensions. We shall ignore this subtlety. —-_h
We define the dynamics of the mobility field by a master ) HI¥(©), @
equation, with H=3,C({afa)H°. The unconstrained piedt” reads
aP(n,) =2 C(n) LiP(nY), 2 HO = - y(a -ala) - p(a’ - 1), (8)
1

which describes the creation and destruction of bosonic ex-

citations with rategp andy. The evolution operatog Ht can
then be represented as a coherent state path integral weighted
by the dynamical actioh31]

whereP(n,t) is the probability that the system has configu-
rationn={n;} at timet. Equation(2) shows clearly the two
ingredients of our model. The first, the existence of local

guanta of mobility, is encoded by the local operatfjrsFor

nonconserved dynamics we choose these to describe creation N _ fo N .
and destruction of mobility at sitie Sloi, disto] = EI: fo df ¢ gy + Hi(¢™, #)], 9)
LiP(n;,H) = ¢(n; + DP(n + 1,b) + pP(n, = 1,1) where we have suppressed boundary terms coming from the

— (i + p)P(n, 1), 3) system’s initial state veTctor. The fields (_t) and ¢;(t) are the
complex surrogates &f anda;, respectively, but must now
where the dependence &f on cells other than has been be treated as independent fields and not complex conjugates.
suppressed. The rates for mobility destructipand creation  The HamiltonianH; has the same functional form 3 with
p are chosen so that Eq2) obeys detailed balance with the bosonic operators replaced by the complex fields. At the
respect to Eq(1) at low temperature. This means that the level of the first moment we hav@;)=(¢;), and so we may
stationary solution of the master equation must equal theegard¢, as a complex mobility field. Higher moments mf
Gibbs distribution. Equatioiil) gives rise to the Gibbs dis- gnd ¢, are not so simply related, however: for example,
tribution Pe(n) =TT;(1-e™)e™'T, whereas the master equa- (n2)=(¢?)+(¢;) [32]. The last step in the passage to a field

tion (2) has the stationary solution theory is to take the continuum limit, according B
p\W 1 —adfddx, ¢ (t)—adp(x,t), and ¢ () — ¢*(x,t), wherea
P(n,t— ) =[] e"”y(;) e (4) is the lattice parameter.
[ i

The definition of the model is completed by specifying
Equation(4) will reduce toPe{n) providedp/y=¢T and the functional form of the kinetic constraint. The simplest

T<1. Thus detailed balance with respect to Egj. holds nontrivial form is an isotropic facilitation functio@;=X;n;,

only at low temperature, and we will hereafter assume thaf/here the sum is over nearest neighbors of sit#ith this
T<1. For convenience we writg/y~c, where c=(n); choice we expect our model to be in the same universality

angle brackets --) denote an equilibrium, or thermal, aver- plass as the. one-spin faC|'I|tated Fred'rlckson—Andersen model
. L in d dimensiong 25,27]. Different choices for the operators

age. The thermal concentration of excitati@ris the control -~ © ] ] ) ]

parameter of the model. H'® and( lead to field theoretical versions of more compli-

The second ingredient of our model is the kinetic con-cated facilitated models. A diffusive©®, for example, would
straintC;({n}), which must suppress the dynamics of ¢éfl ~ correspond to a constrained lattice gas like that of Kob and
surrounded by immobile regions. It cannot dependnpit-  Anderser{27,33; an asymmetri€ to the East mod€R7,34
self if Eq. (2) is to satisfy detailed balance. To reflect the and its generalizationg2].

local nature of dynamic facilitation we allo@; to depend In the continuum limit the isotropic constraint reads
only on the nearest neighbors iof27] and require tha€; is . - R
small when local mobility is scarce. ; ¢y = (2d+a’ Vot )fi (10)

One can derive the large time and length scale behavior of
the model defined by Egq$l)—(3) from an analysis of the where the ellipsis denotes higher-order gradient terms irrel-
corresponding field theory. The technique to recast the ma®vant in the RG sense in the long time and wavelength limit.
ter equation(3) as a field theory is standaf®0,31]. One  Terms linear in the spatial gradient vanish because the con-

026128-2



RENORMALIZATION GROUP STUDY OF A.. PHYSICAL REVIEW E 71, 026128(2005

straint is isotropic. Consequently, the dynamics of the model \
is nearly diffusive, perturbed by fluctuations in low dimen-
sions. 3) i /(2) (D
To derive the dynamic action it is convenient to make a
linear shift of the response fieldp* —1+¢ [31], in the FIG. 1. Elements of the simplified actiofi2). From left to

Hamiltonian. This is done for the following reason. Expec-right: branching and coagulation vertices, and diffusive propagator.

tation values in this formalism are given by b§A) Time runs from left to right. These processes appear in the space-
¥ i ' ies of simulati f the lattice FA l'in Fig. 2.
(AW (1)), where  [W(t))=e™ W (0)) and (s time trajectories of simulations of the lattice FA model in Fig

:;g ;i)égzi?‘ge[:ﬁl’;ﬁ;hzup;ﬂg (;Eonnsqgﬁr:iscg;tmg;greedssio%tes with each term in the action a diagram, as in Fig. 1.
S . I ; The physical processes corresponding to the terms in Eq.
(P(1)|A[W(t)) is bilinear in the probabilityP. If one wishes (12) or the diagrams in Fig. 1 can be seen in numerical

to apply Wick's theorem, one must commute the factorgjnjations. In Fig. 2 we show a typical space-time trajec-

expZ;a) to the right hand side of the bracket; the conse- 11g] for the FA model in 1+1 dimensions. The wander-

quent Sh'ftd’*,r_’“‘ﬁ n trT1e Hamiltonian follows from the 4 of excitation lines corresponds to the diffusion of isolated
identity e*f(a’,a)=f(1+a’,a)e?, and corresponds t0 & gefects. Diffusion appears in the propagator as a result of the
change of integration variables. It therefore does not changgnit ¢* — 1+ applied to the termp*V2¢4*$, which enters
the properties of the system under renormalization. Howevegq (9). This term corresponds to nearest-neighbour facili-
it can obscure important symmetries of the model in questated mobility creation with rate proportional o and so
tion, and so should be made with c46]. diffusion in our model results from facilitated creation
The dynamic action now follows from Eqe8), (9), and  (pranching, followed by facilitated destructior{coagula-
(10), suitably shifted, and reads . 1
. tion): {10— 1101}~ cv2.
3[5, ¢’t°]:f ddxf dt[a(at—Dovz—ro)¢+T¢¢()\gl> Branching and coagulation events can be clearly identi-
0 fied: one of the latter is enlarged in the lower left of the
)2 (2 Do T figure. These events correspond to fluctuations. In low di-
¥ V_B)V Y+ gbd)()lgu CRARE mgensions, where fluctuationz are important, branching and
- pplvg+ ooV P). (11 coagulation events renormalize the bare propagator of the
' theory, meaning that excitation lines joining two sites are
We have gEf'”e‘*‘gljZ)EZdad% fo=vo=2dp, vy ¥ = ya®?, dress)(lad by but?bles. In low dimensior{s ong must therefore
andop=a‘p. We write Do= o, to emphasize the emergence g, 1 the RG in order to account for fluctuation effects in

of a diffusive term, although in the unshifted model there isa controlled way.

no purely diffusive process. We have omitted higher-order
gradient terms, and suppressed boundary contributions com- IV. RG ANALYSIS OF THE ACTION
ing from initial and projection states. Equatidhl) is the

starting point for our RG analysis. A. Langevin equation of motion

By making stationary variations of the actigfhl) with

respect to the response fieltl 8S/5¢4=0, we obtain the
I1l. PHYSICAL INTERPRETATION OF THE ACTION Langevin equation of motion for the field:

Equation(11) has the form of an action for a single spe-
cies branching and coagulation diffusion-limited reaction
[28,35 with additional momentum-dependent terms. We can
see how this action governs the behavior of the model by
dropping all but the most relevant terms from the action to
give (see Sec. IY

S= f dx dt (3 — DoVZ = ro) b

+ j A% dt (\op? — vod*h). (12) T

For brevity we shall occasionally WI’itEOE)\gl); )\E)Z) will

always be shown with its superscript label. The first term in - £ 5 A space-time trajectory for the FA model in 1+1 dimen-
Eq. (12) is the bare propagator of the theory, the renormalsions; time runs horizontally from left to right; space vertically.
ized version of which corresponds to the probability that twopopile sites are black. The events corresponding to the diagrams in
sites separated in space and time are connected by an unbfgg. 1 can be clearly seen. The wandering of the excitation lines
ken chain of mobile sitef28]. The second and third terms corresponds to ; branching and coagulation events act to renormal-
are the vertices corresponding to coagulation and branchinige the excitation lines. In the lower left a coagulation event is
interactions, respectively. In the usual W&86] one associ- shown enlarged.
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dp(t) = DoV2h + 1o — Nodp” + (X, 1), (13 < : >< <
where the noisey satisfies(#7(x,t))=0, and (@)
() (X' 1)) = 2(ved = N $?) S(x = X) St - t'). ( ) % %
(14 (b) (©

We neglect diffusive noise. The noise-noise correldfiah FIG. 3. Vertices corresponding to terms in the af_lt(ﬁﬂl))- @
describes stochastic fluctuations of the mobility fieldand Fr(()gn left to(lr)|g2ht, diagrams corresponding to the vertic&§'vo,
comes from the coefficient of the terms in the action qua=o » and v ai. The dot denotes a momentum dependescen
dratic in . We see that Eq(14) describes a competition ©°"€ of'the incoming legstb) The structure of the onvest-ordgr
between mobility correlations and anticorrelations, induced©/"ections to the propagator, showing how the effective couplings
by branching and coagulation, respectively. If, for example, £M€9e- The coupling shown herexisSimilar diagrams with dots

branching event occurs, a particle will find itself with more on right, left, and both vertices correspond to propagator renormal-
' ization controlled by the couplingg, z, and u, respectively.(c)

nearest neighbors than one would expect from a mean-fielg. 2 . .
argument. In the long-time and -wavelength limit, tbe 2, iagrams renormaI|2|ng the 'coupll.ng Because thgse diagrams are
. L symmetric with respect to incoming and outgoing momenta and

we show below that the seC(_)nd term in ETd) is |rrelevf':1nt, frequencies, the contribution from each is doubled. Note tbat
and may be dropped. E.quatlo(‘]s.%) and(14) then Cpns,t'tl“'te also contributes to the renormalizationgfvia the renormalization
the well-known Langevin equation for OR8], albeit witha s
positive definite mass term.

The mean-field approximation consists of dropping the @ @ @ @
noise and diffusion terms from E¢L3). The resulting equa-  , _ Volg Y ToMg _ VoY 90%
tion possesses a dynamic critical pointcatr,=0, or T=0. 0 D§ ' 0 D(Z,
For T>0, in the nonequilibrium regime, the densidy ap- (15)
proaches its thermal expectation vakrep/ y exponentially
quickly. At T=0 the decay becomes algebraig(t— =) The factors ofDy come from the explicit evaluation of the
~(Ngt)™L. Whether at equilibrium or not, the mean-field integrals associated with the diagrams. (Is) we addg,
equation admits the critical exponents=1 and 8=1. The EAE)Z)/DO andhy= vf)z)/DO, which couple to four-point ver-
former describes the growth of time scalgsear criticality, tices; see Fig. 3. Dimensional analysis reveals that the upper
via §~c™; the latter is the order parameter exponent, de<ritical dimension is 4, at which the most relevant coupling,
fined as the long-time scaling of the density in terms of thexy, is marginal. Renormalization effects must therefore be
control parametem(t— o)~ cf. By restoring the diffusive taken into account ford<4. Above d=4 the classical
term, the spatial exponemg:%, defined analogously te;, (fluctuation-freg¢ predictions apply. Other couplings pecome
may be identified. relevant belowd=2, and we shall therefore restrict our

In the following section we show that fluctuations alter analysis to 2d<4. Dimensiond=1 is treated separately in
these predictions in low dimensions, by virtue of endowingSec. V.
space and time scale exponents with small dimension-
dependent corrections. The exponghthowever, remains C. DP fixed point
unchanged. We argue that because our madel possesses deWe employ the usual field theoretic renormalization group

tailed balance, which ensures thap(t—))=(#)=c. S schemd 36,37, using dimensional regularization dr4-¢

must be equal to unity. This may also be inferred from theyimensions to identify the unphysical ultraviol@tv, short
invariance of the unshifted action under the transformation; e and distandepoles of the vertex functionENN of the

(¢.¢")—(cg*.c'¢), and the consequent Ward identity theory. The vertex functionE™N consist of all one-particle-
[37]. irreducible diagrams wittN outgoing andN incoming am-
putated lines. Their uv poles result from exchanging a lattice
B. Dimensional analysis model, which is regularized at short distances, for a con-
tinuum field theory, which is not. But by invoking universal-
We identify the upper critical dimension of the model via ity, which says that the behavior of a system approaching
dimensional analysig36,38. We rescale space according to criticality is governed by a small number of relevant param-
x—xp*? in order to remove the temperature dependenceters, we recognize that the uv poles correspond to irrelevant
from the diffusion coefficient. Note that this rescaling is notmicroscopic degrees of freedom. By removing these poles
valid at c=0. The action(11) then reads as before, with e both render our theory finite, and, via scale invariance
rescaled parameters&gl'z)zZdadp‘d’zy, ro=vo=2dp, oy and dimensional analysis, infer its physically important in-

=a? and vgl’z)zyp‘w/zad"z. We show some of the dia- frared (ir, large time and distangescaling[38]. We shall
grams corresponding to these couplings in Fi@).3 work to one-loop order, and use dimensional regularization

To perform a scaling analysis, we identify the effective and minimal subtractiof36].
couplings emerging from the action. These follow from the We introduce the following renormalized counterparts of
structure of the diagram shown in Figb3, and are the fields and couplings appearing in Efl):
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=716, =0, NV=Z2Z\Pud2 Ag
R=Z, P, dr=¢ ALY ZU=1_?XOM6’ (18)
— -2 — -2
v=ZyZvop s T =ZyZ(fo = Togp*, whereAy=4(47)"9?I"(3-d/2). Note that the cubic vertices
renormalize identically as a consequence of a Ward identity.
D =Z,Z5Dy, The renormalization factor associated with=\Vy/D?

is therefore Z,=7,7,wZ,Zp*=1-(3Ay/2€)Xou +O(€?).
wherer is the additive counterterm introduced to cure thelnsofar as one can ignore the propagator mass, the rescaled
quadratic divergence of the vertex functibi-?. We have  coupling x— Agx=AsZXon ¢ changes with the observation
introduced an arbitrary momentum scalén order to render  scaleu according to
the couplings dimensionless, and have chosen to allocate di-

mensions to the fields according[i]=1,[ #]=u". The pre- X (_ e+ §x>

P . . : Bx=p_— =X (19
dictions of the theory must be independent of this allocation. dp

We define the multiplicative renormalization facta@sas
follows. From the propagator couplings, we fix mass, field,
and diffusion constant renormalization via

If we parametrize the change in the observation scalg by
— u(€)=put, we can solvg19) for x(£):

*

_ X
T =1+

Gol3 2 (@,q)np=1, X(€) (20)

LD - Thusx—x*=2¢/3 as¢ — 0, because&>0. Since{~1 and
IR (@,9)|np=D, X . )
£ <1 correspond, respectively, to microscopic and macro-
scopic length and time scales; is an ir-stable fixed point.
—F(Rl'l)(O,O) =ru?, (16) At this fixed point the critical exponents of the theory are
independent of its microscopic parameters, and so are “uni-
while for the couplings comprising, we impose the condi- versal.” We therefore expect the model to display scaling
tions behavior independent of its microscopic details for very low
temperatures. This scaling behavior belongs to the universal-
d-2 ity class of directed percolation.
NP’“ ' Having assumed the non-DP couplings in the action are
irrelevant for 2<d=4, we shall now justify this assumption.
These couplings are indeed irrelevant at the classical fixed
w2 (17) point, as one can verify from E¢l1) by dimensional analy-
NP sis. We find that they remain irrelevant at the DP fixed point.
Further, those coupling$y,z,g) which are marginal ind
The subscript “NP” stands for “normalization point,” and is =2 at the classical fixed point are rendered irrelevant at the
the value of the external momentum scale at which we evalupp fixed point. Hence we expect to see DP scaling#2,
ate the vertex functions. It can be chosen for conveniencey|so. Defining a renormalization scheme in a similar manner
provided that it lies outside the ir-singular region; we taketg pefore,
the normalization point a8w,q?,r)=(2Du?,0,0). Note that

1
A= STR(0.0)

1
R L (O

this choice corresponds to the system at criticality, which for NI =757, \Pu*?, 0=2,7,00,
finite T is an approximation. For nonzefioone must retain
the mass term in the propagator. This leads to the emergence D = Zfb Vgl)zy(l) ud @= Zfb ZV<2>VE,2) ud, (21)

of an effective coupling that flows logarithmically to zero,
signaling a crossover to a massive, classical fixed point. Weyhere
will discuss this case in Sec. IV E.

We first assume that for2d =<4 the couplings other than N2 = EF(Z'Z)( ) d-2
Xp are irrelevant, and hence the actidd) reduces to that of 4 R 9 NP’U“ '
DP (we shall callx the “DP coupling’). We shall find that
those couplings which are marginal @=2 at the classical
fixed point are rendered irrelevant at the DP fixed point.
Hence we expect to see DP scaling ferd=<4. We find, to
one-loop order, the well-know# factors[28], = 9l'R (0, ) |neud,

g= (?qZF(RZ’:L)(q,(UNNp,

2) — (2,2) d
z¢:1+f4iixoﬂ-e, ZDzl—g—:xo,u"f, V2= 9l 22(,0) e, (22

we find to one-loop order

2
Zr =1- 2_2)(01“_61 Z)\(l) =1- %XOILL_E! Zv(l) = Z(r =1- fAdXOM_Ei
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_ Now self-destruction is excluded by any dynamical rule
=1 ‘:XoM ‘. (23 preventing mobility destruction unless facilitated by a near-
est neighbor. Moreover, no such process can be generated
The corrections to the Gaussian scaling dimensions of thesender renormalization from only branching and coagulation
couplings may then be calculated. The correction to theprocesses whose respective rates are fixed by detailed bal-
Gaussian eigenvalue of=\?/D is determined byZ,  ance.Hence we expect one-spin facilitated models in general
=Z¢Z)\(2)Zal=l—5xo,u_f/(8e). So 7’35 ud, IN(g/go)lx=x»=d  to have a critical point at zero temperature.
-2+5¢/12. Thusg is less relevant at the DP fixed pointthan  This argument may be made explicit for the model we
at the Gaussian fixed point, and fde=2 may safely be study. By imposing the condition for criticality 0% (w

ignored. So too may. In a similar way we find that;,  =0,q=0,ro=rq), we find that, to one-loop order,
=y,=d-2+5¢/3, and y,;=d+7¢/3, all of which are irrel-
evant ford=2 at the DP fixed point. Thus ford=4 the N AG2
. . . . _ ()\OvolDo)Nd

scaling properties of the model near criticality are those of loc= 5 = (25)
DP. 1 - (Nguo/DHNgA

The critical exponents of the model then follow from ) , i
standard argumenti28,36. They are, toO(e), (VEP’VHD Here, for convenience, we have imposed an explicit wave-

=(1/2+€/16,1+¢/12). The temporal exponent appropriate vector cutoff A; the additive correction to the mass is for-
' ' mally equal to zero in dimensional regularization, and yet the

for comparing these predictions with numerical simulations : . e !
is 1+y. The additional factor of unity arises because thephysmal shift of the critical temperature must be independent

. . . . . the regularization scheme usg2B]. We have introduced
microscopic time scale associated with the system goes |tse;iiI - - .
as ~c. Tﬁe nontrivial value ofg ﬂDP=1—e/6y, canngot be a(27) “(d-4)75, whereSdEZTrd’le(d/}) Is the surface

observed for a model such as ours which eventually equiliarea of ad-dimensional hypersphere, am=(d-4)N4/(d

brates, as discussed above. —-2). We also use the unscaled variables of the adildi in
which Dy c.
D. Critical temperature From Eq.(25) we see that the critical bare mass changes

In general, systems in the DP universality class, such a$lgn asT— 0 from above. Ostensibly the critical temperature
directed bond percolation in 1+1 dimensions, exhibit a coniS then negative; physically, of course, it is zero. This is a
tinuous phase transition from an active to an absorbing stafgPnsequence of the vanishing of fluctuations in the limit of
at some finite valug,# O of their control parametgy. Our ~ Z€f0 temperature, which may be Inferred from the Van|§h|ng
model, for whichp=c, displays no such transition. One can in that limit of the branching vertex in the action. The diffu-
justify this difference on physical grounds, as follows. If we sion term arises from nearest-neighbor facilitated branching,
interpret the mobilityn; as the concentration of a chemical @1d S0 must also vanish in this limit. Thus there is no
reactantA, then the kinetically constrained model we Studyquctuatlon-lnduced shift of the critical temperature which
for d>2 corresponds to a chemical reaction involving diffu- "€MainsTc=0. , _ _ ,
sion (A+0«+0+A), branching(A+0— A+A), and coagula- This is as we expect, if the field theory is a faithful rep-
tion (A+A— A+0). Recall that the diffusive process arises resentation of the o_r|g|nal master equation. The master equa-
from the mechanism of mobility creation facilitated by g tion satisfies detailed balance at all temperatures, which

nearest-neighbor site, and is made manifest only following &"€2"S that it cannot admit an absorbir]g. state: an absorbing
g y g tate breaks detailed balance because it is a state that may be

shift of the response field. DP corrsosponds fo these thregntered, but not left. Nonetheless, it is necessary to verify, as
processes plus self-destructioA+0—0+0. It is self- in Eq.(25), that there exists no finite-temperature absorbing

destruction that permits other systems in the DP universalitgtate under coarse-graining of the master equation. The FA
class to undergo a phase transition at a finite value of thenodel, upon which the field theory is based, is known to

control parameter. Self-destruction gives rise to a secondiave a critical point at zero temperat(].

quantized operator

Heg= — oo(a — alj‘ai), (24) E. Crossover to classical behavior

which, following a shift of the response field, results in a__FOr anyT=>0 the mass parameteg>c will be nonzero.
term in the action of the formryéé. Thus the mean-field Under renormalization, as discussed above, it will eventually

critical point becomep, = o, Near criticality,p, is increased become large, rendering our approximation of criticality in-

above its mean-field value by fluctuations. This occurs be€Orrect: The system will thus for very large time and length

cause the DP noise-noise correlator is positive, and so Coaga__cales exhibit classical scaling properties, with the associated
lation is enhanced by the branching process: each particliMPI€ exponents. ,
finds itself with more neighbors with which it may coagulate W€ can quantify the emergence of the classical theory by
than one would expect from a mean-field approximation€t@ining the mass term in the propaga8i]. If we write
This enhanced coagulation enters the term that renormalizes="/D. we find that
the mass, effectively enhancing self-destruction relative to
branching, and shifting the critical percolation threshold up- dln_x(€) —_ 43

e+39(¢), (26)
ward. din¢
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W made apparent by considering instead the corresponding per-

, — sistence fieldP;(1), i.e., the field which takes value(t)=0 if
sitei has flipped by timd, andP;(t)=1 otherwise. The cor-

responding trajectory oP;(t) in our example is shown in

g % Fig. 4 (right pane).

& Clearly, while the dynamics afi(t) is reversible, that of
T g Pi(t) is not. A related observation is that the clusters gener-
I —— ated by the evolution oP;(t) are compact, as seen in Fig. 4.

R R The control parameter is againwith c=0 corresponding to
time e the transition between an active phase in whitt) even-

tually becomes unity throughout the whole system, and an
FIG. 4. FA model ind=1. The left panel shows an equilibrium inactive phase, in which it does not. As before, the exponents

trajectory for the mobility fieldn;(t) at T=0.3 (window size isL v, and v, determine the scaling of time§D7)~c™ (with
=250X At=5000. The right panel shows the corresponding trajec-p ~c), and lengthsé~c™"+. Two further exponents deter-
tory of the persistencg fiel@;(t); black sites denote those which mine the asymptotic values 6P;(t)). To extract these expo-
have been or are mobile, and so safiBft)=0. The clusters gen- o4 it js convenient to define tiansiencefunction T;(t)
erated by the dynamics of tH&(t) are compact, and their scaling =1-P,(t): starting from an initial finite seed(T,(t— o))
properties are those of CDP. no . o " ;

~ ¢, with the dynamics running in the forward time direc-

tion; starting from a completely full lattice(T;(t— —=))

dins({)

=-2+3g(¢), (27) ~c#, with the dynamics running backward in time. Note
din¢ that B+ B’ due to the irreversibility off;(t) [or P;(t)].

whereg(€)=x(¢)[1+s(£)]¥>2 is an effective coupling. For Thg domgins ofT;(t) spread qnly through diffusion of.

small's, x would in the ir limit approach the directed perco- mobility excitations and interactions play no role. In this

lation fixed point. Buts does not remain small, flowing as Sense, the scaling behavior Bft) should be that of freely
S(€) ~ ¢7270@ |f we introduce the scaled mass=[1 diffusing domain walls, and coalescing domains. Examples

+5(1)"1¢2*0911 we find that in the large mass limit—1  Of systems that behave similarly are the zero-temperature

we obtain a Iogarithmically dlmlnlShIng Coupling, Is_ing _chain under Glauber dynami@BS] a_nd the reaction-
diffusion systemA+A— 0 [28,39. These indeed belong to

3 1 the CDP universality class.
9(6) ~ g(l){ 1+ 1_6(4 +d)g(Din € +-- } . (29 CDP has the following exponen&8]:
The vanishing of the effective coupling signals the reemer- yPP=2, PP=1, gPP=0, p'CPP=1. (29

gence of a classical theory: becaugeouples to diagrams
renormalizing the propagator, its logarithmic vanishing re-
sults in a logarithmic crossover to classical exponents.
Thus we should see DP scaling provided that temperatur
are small enough and time and length scales are not t o X :
large. The crossover temperature will be system dependerf€ €xcitation will eventually flip, and thu"E:/(Ateoo):'l for
because the prefactors of the flowing couplings are nonun@ll i, independently ot. We therefore havg™=0, which is
versal. For larger temperature or large enough length an@ consequence of ergodl(:lt_y in the active phase_. Conversely,
time scales we expect to see a logarithmic crossover to & ONne takes a final state with all=1, and runs time back-
classical theory. This is characterized, in the nonequilibrium¥V@rd, the state at— —o will have a density of excitations,

regime, by exponential decay to the steady state, and in ge@d therefore ofT;, equaIF/}EC._TbiC%Fjs a consequence of
eral by classical scaling behavior. detailed balance. Hengg™=1=4"~"". _ _
We propose a field theoretic justification for this behavior

as follows. The Langevin equation of motion fgris given
V. DIMENSION d=1 AND CDP by Egs.(13) and(14). At and aboved=2 the term in\? is
) o . irrelevant at the DP fixed point and may be dropped, leaving
For d=1 DP scaling no longer holds. This is signaled in ;5 with the DP Langevin equatid@s]. In d=1, however, at
the field theory by the relevance of some of the non-DPhe DP fixed point(assuming it exisls we have from our

couplings betweed=2 and 1, and the resulting profusion of ,eyious results the anomalous dimensions of the couplings
uncontrollable singularitief36]. In this section we argue that appearing in the noise correlator:

in d=1 systems with single-spin isotropic facilitation, such
as the FA model, belong instead to the universality class of 7;@) =d-2+€/3, v,=0. (30)
compact directed percolatid28].

Consider the FA model id=1. The elementary order pa- We have calculated these dimensions using the prescription
rameter of this model is the mobility fielt(t). Figure 4(left [ $]=[¢]=u%?, appropriate when the cubic vertices are con-
pane) shows a portion of an equilibrium trajectory @  sidered independently. We see th&® andv are both mar-
=0.3. The connection between the FA model and CDP igjinal ind=1. This is, we stress, a crude approximation, be-

These are precisely the values of the exponents of the FA

model ind=1. The time and length exponents afé=2 and
iA=1, giving the dynamic exponent™ ="/, A=2
8,27). Each site of a lattice which initially contains at least
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cause the calculation of the anomalous dimensions assume 1

the irrelevance of\'®. But it does suggest that here this

assumption is inconsistent. Assuming that we can trust thest 0.8 1
exponents, there should then exist a fixed point controlled by

A? | at whichu is irrelevant. Assuming this is so, and assum- (.6 4
ing further that the system can access this fixed point, this=

would leave the only vertices in the effective the@rp? and a 0.4 ]
(4¢)?, which allow no propagator renormalization. Hence

z=2 exactly. For this theory the beta function is calculable to o .
all orders, since perturbation theory N{f) gives us a geo-

metric serieg39]. We then have a new fixed point, at which oL N LN AN

there exists a renormalized value)dP corresponding to an 10 10? 10* 10° 108 10%
infinite value of its bare counterpaxt”. Thus\y’¢?>rog, t
giving the effective theory

FIG. 5. Persistence functioi(t) for the d=3 FA model. From
ap(t) = D0V2¢_ )\gl)ti)2+i\e")\(()2)7](x,t). (31) Ioefégto right: T=5.0, 1.5, 1.0, 0.6, 0.4, 0.25, 0.17, 0.13, 0.106, and
This is the Langevin equation for the CDP universality class

[39]. We stress that this argument is conjecture only. A more ajye 0 otherwise. Figure 5 shows, as expected, that the dy-
rigorous analysis of the field theory would be required inpamics slows down markedly when temperature is decreased

order to justify this claim. below T,~ 1.0, which marks the onset of slow dynamics in
this model[23,41].
VI. SIMULATIONS OF THE d=3 FA MODEL We extract the mean relaxation timeT), via the usual

The one-spin facilitated FA mod¢PR5,27] is the lattice relat|on.P(7-_)—e " The tem-peratlljre dependepce ofis
model upon which the field theory of the previous sections i _hown in Fig. 6, where various fits are allso included. The
based. In this section we report the results of our large scal |gh-temperature _behgwor is well described by a naive
numerical simulations of the equilibrium dynamics of the FA mean-field approximatiof23],
model in dimensiord=3, and compare these results to the
predictions of the field theory. While the one-dimensional FA TmE ~ C L. (39
model has been extensively studied by numerical simulations

[27], we are not aware of any detailed numerical study forryis pehavior breaks down belo,, where fluctuation-

d>1. dominated dynamics becomes important. From our field

We consider the FA model on a cubic lattice with periodicyheqretic arguments we expect that in the nontrivial scaling
boundary conditions. The model is defined by the Hamil-

regime
tonian (1), and the isotropic dynamical rule g
CiC _ —A _ -
n=0= n=1. (32) T~C7 A=l4y =21, (35)
Ci(l—C)

The kinetic constraint i;=1-II;;,(1-n;), where(j i) de- where the ngmerical value is_ the DP estimat_eiin thr_ee dimen-
. . . sions[28]. Fitting our data with the formr~c™ we find

notes nearest-neighbor pairs. We perform Monte Carlo simu-
lations of this model for several temperatures in the range

TE€[0.09,5.0. We use the continuous time algoritHr0], 107 g
which is well suited to this problem. The dynamical slow- !
down in this model is accompanied by the growth of a dy-
namic correlation length, and hence we must account for
possible finite size effects. For instance,Tat0.09 it was 3
necessaryand perhaps even then not sufficient; see bglow g 103 E
to use system sizes as largeNes 16C6°. = [

10° E

A. Global dynamics 101 E

We first consider the spatially averaged dynamics. This
may be probed via the mean persistence function,

At 1 1 1 1 1 1 1 1
10 0 2 4 6 8

Pm=<$EPﬁ», (33) 1/T

) . ) . ) . FIG. 6. Arrhenius plot of the mean relaxation time in te3
where P;(t) is the single site persistence function at tine FA model. The DP exponent fits the data, while the classical expo-
which takes value 1 if site has not flipped up to timg and  nent does not.
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d (a) t
FIG. 7. Dimensionality dependence of the time exponkatl 10° F
+y, of the FA model, from numerical simulations in dimensiahs |
=1 to 6(filled squares The full line is thee? expansion prediction. 10-1
The values of the exponents agree within error bars with those for
DP for alld>1, and CDP foid=1. The upper critical dimension of 10-2 [
the FA model isdt"=d>F=4. 3 i
A=2.095+0.01, 36 M 103F
as shown in Fig. 6. We include for comparison a fit using the 10-4 [
Gaussian value of the exponent=2, which is inconsistent X
with our data. s | | .
We show in Fig. 7 the results for similar simulations of 10 109 107 10  10-3 10-1 1ot
the FA model in dimensiond from 1 to 6, together with the  (b) w

relevant DP exponent t0(e%), as tabulated in Ref28]. We
note that these results are consistent also with numerical FIG. 9. Top: The fit of the persistence function with a simple
simulations of systems in the DP universality clfa8]. Our exponential reveals an additional short-time process. Bottom: This
numerics also show that one-spin facilitated FA models disis a_Iso true in Fourit_ar space, where the additional process looks like
play, in all dimensions, Arrhenius behavior. They are thus? high-frequency wing.
coarse-grained models for strong glass formers, as expected o ) _
[22]. tion the d|§tr|but|on of r_elaxat|on timesz(t), related to the

In summary, Fig. 7 strongly supports the RG prediction™ean persistence function a3
that the FA model exhibits nonclassical scaling in low di- o
mensions, consistent with DP behavior e 2, and CDP P(t) :f dt'm(t'). (37)
behavior ind=1. t

These distributions are shown in Fig. 8.
o . A careful study of the functionB(t) and =(t) reveals the
The mean relaxation time(T) captures only in part the ¢y10wing structure. At very large times, the persistence de-
relaxation behavior of the model. We consider in this subseczays 10 0 in a purely exponential manneP(t> 1)
0 ~exp(-t/ 7). This is not the case id=1, where asymptoti-
10 — T T T T T T T . ; .
cally the decay is described by a stretched exponential
with stretching exponenB8=1/2. That stretched exponen-

B. Distribution of relaxation times

1074 N ] tial behavior is not seen id=3 is consistent with the fact
R S S 7 that strong glass formers display an almost exponential
o~ 1078 aopelnnophe o . relaxation patterf2].
= [ ] Using 7(T) as a unique fitting parameter does not allow a

satisfactory description of the whole decay of the persistence
function; see Fig. 9. This figure shows that there exists an
] “additional short-time process,” in the language of glass tran-
1071 ] sition dynamical studies.

Indeed, we find that fitting our data with the expression

10—12 -_ _-

L s 1 L L 1 L
10° 104 108 1012 .
t () ~ 72 exp(— -) , (38)
FIG. 8. Distribution of relaxation timeymbolg and fits to Eq. 7

(39) (full lines) for temperature§=1.0, 0.4, 0.25, 0.17, 0.13, 0.12, wherea andr are free parameters, describes the distributions
0.106, 0.095, and 0.0drom left to right. reasonably well over several decades; see Fig. 8.
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Often, data in the supercooled liquid literature are pre- 1 ) i)
sented in the frequency domain, because many decades can ~ Sa.t,T) = F(t)z [(PLP(1)) = PA(D)Je*".
be accessed via, e.g., dielectric spectrosdd@y. Following kil
this convention, we present frequency data obtained from th?inally,

o ; , the zero-wave-vector limit 08(q,t) defines a dy-
distribution of time scales via

namic susceptibilityy(t,T)=S(q=0,t,T), which can be re-

% written as the normalized variance of theaveragedper-
P(w) = f m(In(7))———dIn 7. (39)  sistence functiomp(t) = N"13,P;(t):
o l+ior
Interestingly, the short-time power law behavigft) ~t™2 )((t,T)zﬁ[(pz(t»—(p(t))Z]. (41)
observed in the distributions of time scales is also apparent f(t)

in the frequency space as an “additional process” on the
high-frequency flank of ther relaxation,P”(w) ~ w™**%; see
Fig. 9. In this figure, the full lines correspond to fits of the
main peak with a simple exponential, as discussed above.
This feature is reminiscent of the “high-frequency wing”

Figure 11 shows the time dependence of the susceptibility
(41) for various temperatures. The behavioryoik similar to

that observed in atomistic simulations of supercooled liquids
in general[5], and strong liquids in particuld6]. The sus-

. : ) ) . ceptibility develops at low temperature a peak whose ampli-
discussed at Iength in the dlelectrl_c spectroscopy literaturg, qe increases, and whose position shifts to larger timds as
[42]. The wing is usually oberved in fragile glass formers; yocreases. As expected, the location of the peak scales with

unfortunately, no dielectrit_: data are available for strong gl_as§ne relaxation timer(T), indicating that dynamical trajecto-
formers[43]. Other techniques, such as photon correlatlor}ies are maximally heterogeneous whenr(T)

spectroscopy, hint at the presence of an additional process In In Fig. 12 we show the correlat@(r,t,T) and the struc-
strong glass formers similar to that observed in Fig44). ure factor S(a.t,T) for different temperatures and fixed

More experimental studies of the dynamics of strong glas . o .
P y 99 imes t=7T) where dynamic heterogeneity is maximal.

formers would be needed to confirm and quantify this simi- ) . ) . .
larity. These correlation functions clearly confirm the impression

given by Fig. 10, that a dynamic length scale associated with

spatial correlations of mobility develops and growsTage-

creases. Note that at the lowest temperatures the structure
The growth of time scales in the FA model~c™, is  factor does not reach a plateau at IqwThis is because the

accompanied by growing spatial correlatiois;c™+, as the  system size we use, although very larfgé=16C), is not

system approaches its critical point B+0. These correla-  sufficiently so to allow us to probe the regingg<1. The

tions are purely dynamical in origin, and give rise to dy- necessary system sizes are simply too large to simulate on

namic heterogeneit{4—11,18,45 Figure 10 illustrates this such long time scales. As a consequence we do not access the

phenomenon in the FA model. We quantify the local dynam-whole spatial decay of the correlators shown in Fig(tbp)

ics via the persistence functiéh(t). For a given temperature for the two lowest temperatures, and so we slightly underes-

we run the dynamics for a tim&, such thatP(t*)=1/2,  timate the dynamic susceptibility in the manner described in

meaning that half of the sites have flipped at least once. WRef. [46].

color white persistenimmobile) spins, for whichP;(t*)=1, We can extract numerically the value of the dynamic

and black transientcurrently or previously mobilespins, length scale(T) at each temperature. To do so, we study in

for which P;(t*) =0. Figure 10 shows the persistence functiondetail the shape of the correlation functions shown in Fig. 12.

for thed=3 FA model at different temperatures. Clearly, the As for standard critical phenomena, we find that the dynamic

dynamics is heterogeneous, and the spatial correlations of tleructure factor can be rescaled according to

local dynamics grow a3 is decreased. The “critical” nature

of dynamic clusters is apparent: the pictures are reminiscent S(q,t,T) ~ x(7, T)S(qé), (42)

of the spatial fluctuations of an order parameter close to a , .

continuous phase transition, such as the magnetization of aihere the scaling functioB(x) behaves as

Ising model near criticality. In our case, the order parameter

C. Dynamic heterogeneity

is a dynamic object, the persistence function, and the critical S(x— 0) ~ const, (43)
fluctuations are purely dynamical in origj46].

We now quantify these observations. We can measure spa- S(X — ) ~ X7, (44)
tial correlations of the local dynamics via a spatial correlator
of the persistence function, Both the susceptibilityy and the dynamic length scalg

estimated at timé=7 behave as power laws of the defect

S [(P(OP.((1) -PAD],  (40)  concentration,

C(r,t,T) = N2

i i ) x~c7 &~cL (45)
where the functiorf(t)=P(t)—P2(t) in the denominator en-
sures the normalizatio€(r=0,t,T)=1. Alternatively, one These relations imply that the exponemtand v, should be
can take the Fourier transform of E@0), giving the corre- numerically accessible by adjusting their values so that a plot
sponding structure factor of the dynamic heterogeneity,  of ¢”S versusgc ¥t is independent of temperature. We show
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FIG. 10. Spatial distribution of the local persistence at tirhe
such thatP(t*)=1/2 (i.e., 50% of sites, shown in black, have
flipped by timet*). From top to bottomT=1.0(a), 0.2(b) and 0.12
(c), for system sizeN=80°. The appearance of dynamic critical
fluctuations wherT — 0 is evident.
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2
T

109 102 10* 108 108 100 1012

FIG. 11. Time dependence of the dynamic susceptibifity) at
different temperatures. From left to righit1.0, 0.6, 0.4, 0.3, 0.25,
0.2, 0.17, 0.15, 0.13, 0.12, 0.106, 0.095, and 0.09. The horizontal
dotted line denotes the infinite time valyé — «)=1; the diagonal
dotted line denotes the power-law fitr, T) ~ 7046

such a plot in Fig. 13, and we find that the values 0.97

andv, =0.5 lead to a good collapse of the data. The expo-
nent v can be independently and more directly estimated
from Fig. 11 by measuring the height of the maximum of the

10° —

104

108 F
102 |

101 |

S(g, 7(T), T)

100 F

10_1- il M | M
102 101 109 10!
(b) q

FIG. 12. The spatial correlation function of dynamic heteroge-
neity in real(top panel and Fourier(bottom panel spaces reveals
the growth of a dynamic length scale @s»0. Temperature de-
creases from left to righttop panel and from bottom to togbot-
tom panel. The dashed line in the bottom panel denotes the
asymptotic behaviorS(q, 7, T)~q @, when gé>1, with 7=
-0.15.

026128-11



WHITELAM, BERTHIER, AND GARRAHAN PHYSICAL REVIEW E 71, 026128(2005

10! g The RG treatment suggests that the [dwdynamics is
dominated by a nonclassical, zero-temperature critical point,
which in turn implies that correlation times, dynamic corre-

St 1 lation lengths, and susceptibilities exhibit the scaling behav-
o107 E E ior

= - . T~ch, g~c, x~c7, (46)

gl 103 F . with A=1+w,. The Arrhenius behavior of the equilibrium
. E ]

[ ] concentration of excitations~e ', gives rise to Arrhenius

3 3 behavior of the dynamics througl#6). For dimensiond

L < =2, the critical point is that of DP, while fai=1 it is that of

10_150_1 ol 1(')1 ol ““I()g CDP. The upper critical dimension @=4, so that for di-

gc=05 mensionsd=4 the exponents take classical values. Bor

=d.=4 the exponents are classical, augmented with the usual
FIG. 13. Collapse of the dynamic structure factor of Fig. 12logarithmic correctiong36]. For the time and space expo-

using scaling lawg45) and takingy=0.97 andv, =0.5. Dashed nents we hav¢28]

S - : — 2- ; -
line is the scaling functio®(x)=1/(1+x="") with =-0.15. A=~3,2321,2d=1,2,3,=4), (47)

susceptibility for various concentrations. Fitting the result to v, ~1,0.73,0.58,1/2. (48)

a power law ofc gives y=0.96, in reasonable agreement We have also performed large scale numerical simulations
with the first value. We find also that the scaling function of the FA model, which confirm many of the field theoretic
S(x) is well described by an empirical forn®(x)=1/(1  predictions. The relaxation times of the FA model, Figs. 6
+x277), consistent with Eq(44). Thus we can determine the and 7, follow the scaling laws given by Eq46) and(47) in
value of the “anomalous” exponeny; we find 7~ -0.15. all dimensions simulatedd=1 to 6. The existence of an

As usual, it is difficult to estimate what constitutes the UPPer critical dimension al.=4 is evident(see Fig. . The
“best” collapse of the data, and so determine accurately thdYnamics is increasingly heterogeneous and correlated in
errors in the values of the exponents. Consequently, we ar%oacle as te.mperaturfe lhs dlecrelased,' as can bi se(_?_r;], for ex-
unable to determine, with sufficient accuracy to conclude ample, n pictures O.t € loca persstendég. .0)' ‘he
that it agrees—or disagrees—uwith toe3 DP value, »°P structure factor for this dynamic heterogeneity fielddin3
N : . o L exhibits scale invariancé-ig. 13.
;r;;?)i :,te:|su :lst?eggflﬁilt tL?sC\?vrQSI?jr?evéﬁR;tzrﬁgriﬁslfr?:v?/_ thq More extensive simulations are required in order to clarify

’ L . ) wo further points. The spatial exponent obtained from the
anomalous exponenj characterizing spatial correlations of numerics ispv ~05 bu'? we wepre unable to establish
. . . . . 1 -y

the persistence function. From a field theory perspective th'ﬁ/hether this number agrees precisely with tv3 DP value

is a formidable task. However, from our numerics we have v, =0.58. We also caution the reader that there may exist,
that »=-0.15, and so from scaling arguments we fipd

. . . even ford>2, a crossover from early-time CDP behavior to
=(2-7)v, ~1.075. This estimate lies however on the i mediate-time DP behavior, as is the case for some sys-
“wrong” side of the classical valug®=1 as compared to the tems in, ostensibly, the DP universality cld@s].
numerical value obtained above. . Our work shows that standard theoretical methods, such

We must conclude that numerical uncertainties are t0Qyq the renormalization group, can be used to analyze coarse-
large and d_ewf’;\tlons from_ classical behavior too small _t(%rained models of glass-forming supercooled liqui47.
make quantitative comparisons between DP and numericg g,hnorts the view that the dynamics of glass formers is in
exponents for spatial correlations. Plus, as we discussegl,ny respects similar to that of standard critical phenomena,
above, our data may.b_e squect at very low temperature 1Q.ch as reaction-diffusion systerf85,49 (see alsq[50]).
small, but unknown, finite size effects. _ , We have found, numerically and analytically, that the FA

We are nonetheless satisfied that the naive estimate oqe| and its associated field theory possess a zero-
=1/d=1/3 [27] that one gets by estimating the mean dis-yomnerature critical point, in agreement with results obtained
tance between defects is invalidated by our numerical result%y other mean§27]. Rigorous results confirm the existence

of a T=0 critical point in other kinetically contrained sys-

tems, such as the East modet9], and an analogous
VII. CONCLUSIONS maximal-density critical point in the Kob-Andersen model

[51]. Extending the field theory treatment to models of frag-

We have derived a field theory for a kinetically con- ile glass-forming liquids, such as the East md@=] and its
strained model with isotropic facilitation, exemplified by the generalization$22], constitutes an interesting challenge.

FA model. We have studied the field theory via RG, and the Finally, our results provide some insight into the physical
lattice-based FA model via numerical simulations. Our cenmeaning of fragility, in the Angell send&]. First, we have

tral results, briefly summarized in R4R21], are the follow- shown here and elsewehdr&8,22,23 that strong systems
ing. show fluctuation-dominated heterogeneous dynamics, in a
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similar manner to fragile systems. This contradicts the poputal investigations of strong glass formers would also be very
lar view that “cooperativity,” “fragility,” and “heterogeneity” welcome.
are different facets of the same concghg].

In our view, the difference between strong and fragile
liquids is in the strength of fluctuation effects. For example,
the breakdown of the Stokes-Einstein relation observed in We thank G. Biroli, J.-P. Bouchaud, P. Calabrese, J. L.
fragile liquids[52,53 should also be observed in strong onesCardy, D. Chandler, M. Kardar, W. Kob, B. Rufflé, and O.
[54], but the effect will be less striking. However, since Zaboronski for discussions and comments. We acknowledge
strong systems such as the FA model are characterized byfimancial support from EPSRC Grants No. GR/R83712/01
constant dynamic exponent, we expect that typical lengtland No. GR/S54074/01, Marie Curie Grant No. HPMF-CT-
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