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Tsallis scaling and the long-range Ising chain: A transfer matrix approach
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A numerically efficient transfer matriTM) approach is introduced to investigate the long-range Ising spin
chain. Results obtained within this procedure are primarily used to verify the Tsallis scaling hypothesis for
long-range systems with am power-law decay of the interaction constants, both in the exteitaivel) and
nonextensivéa < 1) regimes. Results for finite-size systems, taking into account all interactions between spins
up to 24 sites apart, show that the conjecture is satisfied with a very good pretesiethan 0.004%4or all
temperature intervals. This TM procedure is further used to investigate several other thermodynamic and
critical properties of this system, and it may also be extended to similar one-dimensional long-range systems.
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[. INTRODUCTION decaying with the distance between particles as @9, can
The long-range Ising chain constitutes a classical chalP€ Properly described by a-independent function

lenge that has attracted the attention of physicists for many e e~ ~
decades. In its more common version, each spimteracts F(T=T/N,H =H/N) = f(T,H,N)/N (1)
with all other spins on the chain mediated by coupling con- . . L= '
stantsJ,=J/r¢, wherer is the distance between the interact- with the help of a scaling variabli, defined as
ing spins measured in integer number of lattice spacings. Ni-ed _ /g
Despite the absence of a closed solution, much is known :W' 2
about this system. Existence theorems for phase transitions

have been obtained by a large number of authors, [&g4].  \whenN— o, we obtain limit values foN as a function ofi
On the other hand, sophisticated numerical schemes have leghq

21

to very precise estimates for values of the critical tempera- s

ture, T., and critical exponents, as reported, e.g.[5r9]. ald it ad>1

This large number of contributions have indicated that, for ald-1 @

a>2, the system shows only a disordered phdsg€,[4]. N={InN it a/d=1 3)

Phase transition at finite temperature is found fer d<2
[1,2], with the presence of an ordered phase whetil ... For
0= a=<1, the system is nonextensi{/&0] and it has a single (1-od
ordered phasélT. Classical mean-field exponents are found
when 1< o< 1.5[4], while for =2 a discontinuous magne-
tization atT, is observed2].

The purpose of this work is to investigate the validity of a
conjecture raised by Tsallifll] to the Ising long-range
chain, using a first-principles solution that comes as close
possible to the exact one. Our solution is provided by a trans- ~s('~|' ﬁ) =S(T,H,N)
fer matrix (TM) approach that leads to numerical results tak- ' o
ing into account the long-range interaction between spins up

NI if 0<ald<1.

According to the same conjecture, other intensive thermody-
namic functions depending on the temperatliréehe mag-
netic fieldH, and also orN, like the entropys, specific heat

¢, and magnetizatiom, admit N-independent related func-
ag’ons defined as

to a certain distancg apart. It has been optimized regarding C(T,H) =c(T,H,N),

both the required space to store the energy values for all

distinct spin configurations and the successive increase in the M(T,H) = m(T,H,N). (4)
value ofg as well as avoiding the numerical evaluation of the . _ . .

TM largest eigenvalue. TS takes into account the divergence in the definition of

In 1995, Tsallis conjectured a universal scaling scheméiSual intensive quantities, as the free endrdipr nonexten-
for thermodynamic functions that should be valid for a largeSivé modelda/d=1), and generalizes the ad hoc normaliza-
class of both extensive and nonextensive long-range model8on procedure to treat mean-field models, which simply con-
For the later models, the energy per degree of freedom dpists of replacing the single-coupling constant for all pairs of
verges, so that the usual intensive energies are devoid garticlesd by J/N. This particular value is recovered in defi-
significance. The Tsallis scaling conjectu(@S) [10,11]  hition (2) when a—0. For extensive long-range models
states that any intensive energylike thermodynamic property/d>1), the usual intensive energies &swill reach an
e.g., in the case of magnetic systems, the free Gibbs energy;independent value wheN— c, but the scaling procedure
f(T,H,N)=F(T,H,N)/N, of a finite system ofN constitu- shows a much faster convergenceftovalid for finite-size
ents, in ad-dimensional space, with long-range interactionsystems.
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dures lead to the same system wigpn>o but, for finite
values ofg, the approximate results differ from each other.

AN AT Ve VE VI In this work we introduce TM'’s that can describe interac-
tions in both construction ways. This is done b2 TM
e Ve Vo T = Mg, that describe finite chains df=g+c+1 spins, encom-
passing all interactions among spims sites apart. This
(a) (b) scheme differs from that ifi8] where, at generatiog, a

29X 29TM I\A/Ig describes all the? interactions among spins
FIG. 1. A schematic representation of the construction of thein two neighboringg+1 patches. The-approximate parti-
infinite g-chain along the firsta) and second strategieb). tion functionZ, for the infinite g-chain is obtained from the

numerically evaluated largest eigenvallig of Mg,

The Tsallis proposal has motivated a large number of We consider first the situatioN=g+1, illustrated in Fig.
works aiming to certify its validity{12—-14. Many distinct  1(b), and define a 2 TM My=Mg o that describes all
models with long-range interactions have been investigatethteractions within a patch limited by the spisg and Sy-
ever since, including spin models within mean-field, renor-within this definition, a partial trace, over all configurations
malization group, and Monte Carlo simulation approachesnvolving spinss,, i €[1,g—1] must be performed. This can
[15-17. The present investigation considers one of the mospe accomplished in a very efficient way if we make use of
simple long-range systems, for which numerical results ohonsquare TM's, as those used to describe spin models on
the thermodynamic properties—that take into account all enhjerarchical lattice§18,19. This approach is simpler than
ergy levels of finite-size approximations—can be computedihe first one, since the TM’s are smaller and the numerical
The results discussed herein show that, despite the limitasyaluation of their largest eigenvalue is not required. So,
tions imposed by the size of the considered systems, TS istarting withg=1 and restricting our discussion to the sim-
verified for all analyzed thermodynamic functions with a sat-pler situation wherH=0, the quite obvious TMM; can be

isfactory degree of accuracy. rewritten in the following way:
The rest of this work is organized as follows. In Sec. Il,

we discuss the transfer matrix meth@) used to evaluate
the partition function and the free energy. In Sec. Il we show a; by a, by 0 0
that, for the free energy, TS is satisfied with high accuracy. M1= = 0 0 b a
The evaluation of the correlation function, the correlation 1
length, and the critical temperature are developed in Sec. IV.
In Sec. V, we discuss results for the entropy, specific heat, (6)
and magnetization, all of which agree with the proposed be- . ] .
havior within the TS framework. Section VI closes the work Wherea, =b;"=expJ,/T). The expanded TMP, links spin
with our final remarks and conclusions. Sp to the pair(sp,sy), while L, projects the paifsy,sy) to sy,
by performing a sum over values &f. Here, as well as
throughout the work, we make use of the lexicographic order
to associate a given spin configuration with the matrix ele-
ment labels. This procedure is extended to all valueg,of
As advanced in the Introduction, the long-range Isingaccording to
chain is described by the Hamiltonian

=Pyl
bl a 1-1

O+ O
= O +— O

II. TRANSFER MATRIX FORMULATION OF THE
PROBLEM

g
Mg:(g1 Pk)ng RyLg, (7

wherel, is a 2*1x 2 matrix whose elementd y); ;=1 for
We consider two different ways to step over from a finitei+j even, andL); ;=0 fori+j odd. The matrix elements of
to an infinite chain with an infinite number of interaction the Xx 21 TM’s P, are recursively expressed by

H:_E E Jro'io'i+r_HE gj. (5
i=0

i=0 r=i+1

constants, as illustrated in Fig. 1. In the first one, we start ( -t _

with an infinite 1-chain, at generatiag=1, with only first- (Pk_l)iyl-af; b for i < 2kt

neighbor interaction);, and add, successively, interactions andj < 2

J,,Js, ... . So, all interactiond), are introduced at the same _ .

gth step of decoration, definir?g an infinigechain[see Fig. (Pij =\ (Pozciay, goajur for 270 =i < 2" (®)
1(a@)]. In the second way, we start, gt 1, with a finite two- and ¥ < j < 2!

spin chain and oné, interaction, and move onto generation 0 otherwise,

g=2 by adding a third spin together with all new interactions -

that fit into the resulting array. This procedure can be rewherea,=expgJ,/T). In Eq.(7), each TMP, couples a group
peated over and over: for a generic vatyeve introduce one of spins{sy,s;,...,S.1} 10 {S,S1, ... ,S1, S}, accounting for
spin andg new interactions mediated hy, r=1, 2,..., g,  the interaction of spirg, with spinss,, £=0, 1,..., k-1.
that link the(g+1)th spin to all spins introduced in the pre- Equation(8) shows thatP, contains the same interactions of
vious generationgsee Fig. 1b)]. Of course the two proce- P,_; with the addition of the interactiod,. MatricesP, are
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very sparse, but their products, condensed in tR@®* TM N=g+c+1 spins and interactions amoggearest neighbors
Ry store in a very compact way, the information scatteredcan be cast into

among them.

The matrix elements dR, are Boltzmann weights to each 9
spin configuration of @-chain, ordered in a convenient way, Mgc= 1T Pk> (QgPy)’Lg = RycLg. (12
so that the effect of successively increasing the length of the k=1

chain can be easily accounted for by matrix multiplication,
i.e., Rg=Ry-1Pg. As My is symmetricR; has point inversion It is important to observe that the matrix elementsRgt...o
symmetry with respect to the central position. So, for a giverare no longer single Boltzmann weights corresponding to a
valueg, this property allows us to occupy only the first line particular spin configuration.

of a 2x 29*1 field to write down the values of matrix ele-  The free energy per spiriy.=-TIn(Z,)/N, and the TS
ments and use the second line as a buffer to store the elgee energy"fgczfg C/N follow from the partition function
ments ofP, that give rise taR;. Note that an infinite product CT
of My describes an infinite chain, where all spins within one
g-patch interact with each other, but not with spins in other
patches.

This matrix definition can be extended to describe theT
case illustrated in Fig.(&). Such chains can be regarded as
being formed byg-patches of spinsyith interaction among
spins of neighboring patches. For example, takga®, the
configuration in Fig. (a) is recovered from Fig. (b), by
attaching to it other 2-chains and including the interactlpn
between the midspins of neighboring patches. This corr
sponds tac>0, i.e., N>g+1.

Let us assume that we have evaluakégland proceed to
obtain Mg,,. If we omit the Boltzmann weigh&g,; in Eq. lIl. TSALLIS SCALING FOR THE FREE ENERGY
(8), the resulting TMPg,, takes into account the interactions
between spirgy,; with spinss,, {=1, 2, ..., g, while s, and
Sg+1 do not interact any longer. Hence, the TMg,

Zg,c = 2)\;—,(: = 2[(Mg,c)l,l+ (Mg,c)l,ﬂ = Z (Rg,c)i,j- (12)
1)

his scheme can be easily enlarged to include the more gen-
eral situation whemH # 0, required for the evaluation of the
magnetizatiorm. The basic relations are still valid, with the
exception of the matrix element point inversion symmetry
with respect to the central position. The only consequence is
that it demands twice as many variables to store the field-
€dependent energy levels.

Let us now discuss results that show a remarkable preci-
sion in the collapse of the Tsallis rescaled free energy for the
B ) i : Ising chain. The partition functioZ,. was evaluated for
=RyPgr1lgr1=Mg=, describes two partially overlapping igterent values ofx, takingg=1, 2, ..., 24 andc=1, 2, ...,
g-patches, with some interactions among spins of distincbog performing this way several tests for the validity of TS.
patches. Further, for any situation where all weigaisk  £qr the sake of clearness, we show some of our results are

=g+1,9+2, ..., g+c have been neglectet}, .=Mg.. of-  shown in Figs. 2 and 3 for selected valuesgaindc only.

fers an exact description of chains constructed along the first Figure 2a) shows results fofy(T), whena=0.5 and 2.0,

way, valid also in thec— = limit. _ for c=0 and several values . Two features can easily
The evaluation ofPy, k=g+1, ..., g+c, required for distinguish nonextensiviexr< 1) from extensivea>1) sys-

building R, and Mg can be circumvented. This is easily tems:(i) the values of converge withg for the latter but not
seen for the matridy ;. If ag,4 is notincluded in Eq(8), the  for the former;(ii) the width of the low-temperature plateau
elements 0P, are the same as thoseRy, but each one of increases witlyg for the nonextensive case while, in the ex-
them appears twice as much a9 So, in the evaluation of tensive situation, despite a discrete increase, it rapidly con-
Ryr1=RyPge1, at least two elements @, will be multiplied verges to a fixed length. Fer=0.5, wheng—  this plateau

by the same factor. Due to the lexicographic labeling use@Xtends itself toT —c, corresponding to a single ordered
herein, we identify that this fact happens for all paiRy); ; phase of zero entrody]. Figure Zb) shows the influence of

and (Ry)i 26+, =1, 2, ..., 2°. They correspond exactly to increasingc on f whena=1.2, for a fixed value of, indi-

the same spin configuration except by the flipping of the spir?ating that a slow convergence is achieved. The same k.ind of
s As the interaction energy of the spiBg s, ..., S, with dependence on, for fixed g, is observed for nonextensive

. o : cases.
?g]:rl in I:lgﬂ,.foF\r)gthese t;/)vo con:jflgura;pns, is the same, the " poitorming TS orf leads to the curves shown in Fig. 3
information inR,,; can be condensed in

for fg(T) X T. An important finding is that the correct scal-
Ry.1= RyQgPy- (9) ing, whenc# 0, requires that the total humber of compo-
. . i nentsN=g+c+1 in Eq.(2) be replaced by the range of the
Qg is @ 2129 matrix defined by interactiong. In Fig. 3a) we show, fora=0.5, the influence
1 fori=jori=j+29 of bothg andc. Rather small values fay have been chosen
(Qyij = (100 to better display the effect of increasing it. We note that
curves for distinct values af are gathered together for fixed
that performs the sum ofRy);; and (Ry); .0+ prior to the  values ofc rather than the other way around. This shows
multiplication by Pg. This definition can be extended in a clearly that(i) TS is directly related to the ranggof inter-
straightforward way, so that all interactions in a chain withactions,not to the number of constituents; (ii) for small

0 otherwise
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FIG. 3. (&) TS free energﬁ for «=0.5 whenc=0 (solid), 10

FIG. 2. (a) Free energyf for «=0.5 (solid) and 2.0(dashed, (dasheg, and 50(dotted. Three curves in each group were obtained

whenc=0 andg=5, 10, 15, and 20f decreases wheg increases. _ ) - .
Convergence is observed only for the extensive cdselhe same for g=6, 8, and 10. Inset: superposition of eight curvesderl.2,

. N ) & . wheng=18, 20, 22, 24 and¢=80, 90.(b) For «=1.2, differences
as in(a), for a=1.2 and fixedy=12. f decreases whenincreases ~ ~~ <~ '~ . ) )
from O to 20, 40, 60, and 80. f5.80(T) —T400(T), wheng=18, 20, 22, 24. Magnitude increases with

) . g. Inset: diﬁerencegf‘gvgo(fl')—79,,2,90(?) wheng=18, 20, 22. Here
values ofg, different values ot are treated by TS as differ- the magnitude decreases wigh
ent systems. As expected, for larger values,othe curves
are less dispersed. ~ ~ o~ o~ .

Figure 3a) also shows, in the inset, results for1.2 and ~ those offgc.T)=fy(T), however superimposed to a small
for much larger values of andc. Eight curves are superim- Peak that rapidly vanishes upon increasqig _
posed, attesting a very good convergence, which is very Still better convergence can be achieved by increasing the
clearly shown in Fig. &), where we draw the difference Values ofg andc but, in our opinion, the precision we at-
between two curves of the inset of FigaBas a function of tained is sufficient to attest the validity of TS, for both non-

g and c. Holding g constant, the differenc&g,cw('?) extensive and extensive values af

—fgc(T) monotonically decreases with respect To The
curves differ by less than 0.0035 for the whole temperature
range. Asé=10, this indicates that the discrepancy by in-
creasingc by 1 is_ less than 0.0004%. The behavior found for  The correlation function between spins placesites apart
other values ofris much the same as those shown here, €.9yepends on both the range of interactions and the size of the
for «=0.5, the dlscrepanC|e§ are less than 0.0008% for thgystem. Restricting to the situation where0, we define a
same values of andc used in Fig. 3. g-dependent correlation function between the first andtihe

On the other hand, holding fixed, fg.s5:(T)=f4c(T) is  spins along the chai€y(r;T)=(oy07)q, r=1, ..., g. Using
bounded by the same value above. Since @, the dis-  the fact that the row and column labels of the matrix ele-
crepancy by increasing by 1 is less than 0.002%. We also ments ofP, are defined according to the lexicographic order,
observe Ehat the curves go through a maximum~at nonzerg is straightforward to show thaEy(r; T) can be easily ex-
value of T. The position of this maximum on th& axis, pressed in terms of the matrix elementsRyfas
indicated by an arrow in the inset of Fig(&3, is close to the

IV. CORRELATION FUNCTION AND THE CRITICAL
TEMPERATURE

peak of the specific heat, as will be discussed later. Although 1 1 9

very small, the inclusion of new interaction constants causes Cq(r;T) = Z_E [RoLg,lij = Z_E [El(H Pk) Lg,r] ,

a nontrivial effect in the free energy, that might be useful g1 9 i k=2 i
when exploring the critical properties of the model. For (13

=0.5, the distance between the curves gets roughly doubled,
much like wherg is fixed. Their shape is now much closer to where
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P_(al b, 0 0 ) 10
“7\o 0 -b -a/’ 08|
_ 06}
(Lo =— 2%, g (j):L[J_l} (14) =
g,r/ij T g,r 20T | O 04t
with L[x]= largest integer irx. o2 ==
The definition ofCy(r;T) can be extended to more gen- 0 =5 15 15 2
eral situationsCy ((i,i+r;T), wherec>0, r>g, and theith (@) r
spin must not necessarily sit on the first place of the chain.
However, as the expression fG (i,i+r;T) in terms of the ! : : : :
matrix elements oP,’s is much more complex and the es-
sential behavior of the spin correlation function can be ob-
tained from Eq.(13), let us proceed with the discussion of
the results obtained by this simpler situation. It can be better = —_
accomplished if we refer to a series of graphics for o —_
Cy(r; T) X1 andCy(r; T) X g shown in Fig. 4. In Fig. é), we —
take the limit situatione=0, for which the spins should be —
aligned at all temperatures whéh— . ForT=10, when the : : ‘
values of Cy(r;T) Xr are relatively scattered, we see that (b) 0 5 10 9 15 20

they are almost insensitive with respect tior a fixedg and,

for fixed r, they increase monotonically wih The qualita-

tive features of this picture do not change with the tempera-
ture, and are consistent with the expected behavior, namely
Cy(r;T)=1, Or whenN— e,

Going far inside the extensive region, we show in Fig.
4(b) the behavior for «a=10. The several curves for
Cy(r;T)Xg, at T=0.5, show a reverse situation to the one
obtained whenr=0: they are almost insensitive with respect
to g for a fixedr while, for fixedg, they decay exponentially
with r. This T-independent behavior is in accordance with

the expected absence of ordering at any finite temperature. (%)050 5 10 15 20
When 1<a<2, a phase transition at finite temperature r

occurs. The behavior o€y(r;T) Xr when @=1.2 for two 0.30

distinct temperatures is drawn in Figgc#and 4d). In both

cases we see that, for a fixed value @fCy(r;T) clearly 0251

decays withr, especially wherr ~g. For a low value ofT 0.20

[Fig. 4(c)], we note thalCy(r=g;T) initially decays withr,

but then this trend is reversed. On the other hand, for a larger S|

value of T [Fig. 4d)], C4(g; T) keeps its decreasing behavior Oy 10l

until the largest value of). Of course we cannot anticipate

whether, for this particular value, the curve will reverse its 0.05}

derivative. Nevertheless, these results strongly suggest that a 0.00 . . ) )

T-dependent twofold behavior should emerge for that inter- (dj 0 5 10 i 15 20

val of a, reflecting the emergence or absence of long-range
spin ordering.

FIG. 4. (a) Correlation functionCy(r,T) X distancer when «

The observed behavior fo€y(r;T) suggests a scheme =0 andT=10. Each line corresponds to a valuegofrom 1 (bot-
leading to finite-size estimates of the critical temperature ofom) to 20 (top) and the squares indicat€(g, T). (b) Correlation
the system. For a given value gf we can indicate that the function Cy(r,T) in logarithm scale<g when @=10 andT=0.5.
system will develop long-range order at a particular temperaEach line corresponds to a valuerofrom 1 (top) to 20 (bottom.
ture T if Cy(g;T)>Cy_4(g—1;T). This inequality is only a Asin case(@), the squares indicay(g, T). (c) The same aa) for
sufficient condition for the existence of long-range orderinge=1.2 andT=4.5.(d) The same agc) for T=5.0.
when g—o, but it can be used to define a series of
g-dependent critical temperatureg;, which constitute
lower bounds for the actual critical temperature of the chain.
Thus it is natural to defin& 4 and T, by

Cg(g;Tc,g+1) = Cg+1(g +1 ;TC19+1)’

(15

If we use Eq.(13) for r=g, it is possible to express
Cy(g;T) in terms of the eigenvalues dfl, as Cy(g;T)
:)\5/)\;. Note further that the correlation length for a chain

Te=limg . Teg.
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TABLE I. Values of the critical temperaturg; 4 and the Tsallis scaled counterp%@g for «=1.2 and
«a=1.8, for oddg from 1 to 23. The extrapolated values obtained by the VBS procedure using odd and even
values ofg are included in the last row. For comparison, the reported valug€giofRef.[8] are, respectively,

10.84 and 2.43.

g a=1.2 a=1.8
Teg Teg Teg Teg

1 1.3556580 0.8229839 0.8388462 0.5475270
3 2.3629378 1.0688599 1.2011865 0.6536522
5 2.9514932 1.1778344 1.3667507 0.7002222
7 3.3616308 1.2444814 1.4699165 0.7301505
9 3.6731505 1.2909930 1.5432409 0.7521076
11 3.9224949 1.3259833 1.5993359 0.7693643
13 4.1292676 1.3536242 1.6443204 0.7835166
15 4.3051803 1.3762246 1.6815968 0.7954662
17 4.4577656 1.3951828 1.7132407 0.8057728
19 4.5921416 1.4114038 1.7406053 0.8148082
21 4.7119372 1.4255034 1.7646193 0.8228320
23 4.8198144 1.4379177 1.7859455 0.8300324
VBS extrapolation 10.713270 1.785545 2.474799 1.099911

composed of patches described by the maix as men- for «=1.2 and 1.8. In Table I, we also include values for
tioned in Sec. Il, is given by Teg=Teo/N andT=Ty(a-1)/a.

g ____ g
In(\g/Ag)  IN[Cy(g;Teg)]

V. DERIVATIVES OF THE FREE ENERGY

&= (16)
’ As introduced in Eq(4), TS foresees for the intensive
quantitiess, ‘¢, andm a different behavior from the one for
So, combining Eqs(15) and(16), it is possible to rewrite the  the free energyl), that has been explored in Sec. lll. This is
criterion for the finite-size estimates for the critical tempera're|ated to the fact that they measure properties of the internal
ture Teq as degrees of freedom of the system that cannot increase be-
yond a saturation point even with the addition of energy from

Ey(Teged) _ Egra(Tegen) the long-range interactions. In any case, as their thermody-

g g+1 (7 namic conjugate intensive variables scale withthe sum-
. o . mands in any Legendre transform have an overall correct
Finally, we recall that Eq(17) coincides with the expres- scaling.

sion used by Glumac and Uzel48], derived within the \ye"have investigated the behavior of derivatives of the
method of f|n|te_-range scaling, to evaluate flnlte-s_lze estitree energy along two different paths: by numerically deriv-
mates for the crl'qcal temperatures. The_ steps leading _to Eqng expressiong8) and (11), or by working out analytical
(17) use no scaling arguments, and it is rather amazing 1@, ressions from the Boltzmann weights stored in the matrix
obtain the same expression working within two differentgjgments. The results agree with each other within the ex-
frameworksf,. . | ; _ pected numerical accuracy. The second strategy requires fur-
Series of very precise values dfq for a=1.2and 1.8 aré  nor analytical work, but its results are more stable and avoid

Shg‘l"’” in Table 'Ith?]m?Ill.Z’ we observe that thg vzlues N rounding off errors resulting from differences between two
Table | agree with the illustrations in Figs(ok and 4d) 8 qjite close values. Because of this, our discussion is based

4.5< T g=50<5.0. Using Padé approximants or other similar o, yeqits along the second path. For any of the three quan-

tecl:hn]iquesl,. it is }::ossibleht_oheﬁtrapolate.the finite S(;riels "Sities, it is straightforward to set up expressions for the new
sults orha l')m't va ufTC’ k\JAII ich has been mse:cter(]d int el ast matrix elements that describe the effects of taking the deriva-
row in the bottom of Table I. A comparison of the results in e of the Boltzmann weights with respect to the tempera-

Table | shows that our results fdr., are smaller than the e 4nq the magnetic field. For instance, in the case of the
corresponding values reported in RE8]. This difference is magnetization, we obtain

due to the smaller amount of interaction energy that is in-
cluded in one matriMg. Nevertheless, with the help of the 1 _ oc(i)

Vanden Broeck and SchwartBS) extrapolation procedure m(T.H) =~ T H)E Pg(i)(Ry)i jd™™, (18)
used in[8], we are led to values foF, that reproduce those R

reported in the literature with an accuracy of 1.2 and 1.6%where
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FIG. 5. TS entropys for «=0.5,H=0, ¢c=200, and different FIG. 7. TS magnetizatiom for «=0.5,¢c=150, and different

values ofg: 10 (solid), 16 (dashegl 20 (dotted, 22 (dot-dasheg values of fieldH: 0.05 (solid), 0.3 (dasheg, and 0.8(dotted. For

and 23(dash-dot-dotted Inset: the differencés for the same pa- each value oH, there are five curves fog=10, 16, 20, 22, 23.

rameters of the main set. Inset: the difference\im for the same parameters of the main set
with the respective symbols wheyx22 ands=1.

g
Zy(T,H) = > (Rg)i‘jdpgm, py(i) = > Agr(i), :(§g+5—~sg)_/5. The attained precision of convergence for this
ij r=1 value ofg is somewhat smaller than that for the free energy,

but this is not unexpected, as the derivative operator usually

d=expH/T). (190  enhances differences between similar objects. The same kind

~ - of behavior is observed for other values of Only for
Results for the TS entropyare shown in Fig. 5. Conver-  gmajier valuesc<50 is it possible to detect a noticeable

gence has been checked for both situations explored in Sefyrease in the discrepancies between the curves for different
I1I: holding c fixed and lettingg change or the other way ,ojes ofg. As we can expect from Fig. 2, if we draw the

around. Let us focus the discussion on the first possibility, a8orresponding curves ofT,H,N) X T, we observe that they

it is more relevant for the purpose of checking the TS valid-OIO not collapse at low values @t but move to the right with
ity. We show in the main set, fdi=0, «=0.5, andc=200, increasing value oN

five curves forg=10, 1.6’ 20.’ 22, and 23. The two curves for Essentially the same kind of situation is observed for the
lower values ofj are still a bit apart from those fg=22 and curves of the TS specific heashown in Figs. ) and 6b)

23, which collapse with each other with a precision of theg . _ 15 041 8¢=90, and the same values fgrThey gb

order of 103, as blown up in the inset for the difference . =
between the values & for the successive values gf A% through a rather smooth maxima and then decrease With
We observe that the maxima of the curves occuTgt

which are smaller thaﬁ”C in Table I. Fora=1.2 and 1.8 we

have, respectivelyT,/T.=0.66 and 0.87. Similar discrep-
ancies between the specific-heat maxima and the critical tem-
perature have been reported by Nagle and BohBkgrwho
refer to a very slow convergence of the specific-heat maxima
towards the values of the critical temperature obtained by the
behavior of other thermodynamic properties. In the insets of
Fig. 6 we show, for each set af, differencesAt=(Cy,,
—Cy)/ 8. The progressive displacement of the maxima to the

15 : . 1.0
1.24 0.8
0.9 0.6+
© Y
0.6 1
0.2
0.3 .
0.0+ : — oo :
0.0 . — 0.0 0.2 04 06 0.8
() 5 1.0 ¥ 15 2.0

FIG. 8. TS magnetizatiom for «=1.8,c=150, and different
FIG. 6. (a) TS specific heat for «=1.2,H=0, ¢=90, and dif- values of fieldT: 0.6 (solid), 1.0 (dashe¢, and 2.0(dotted. For
ferent values ofg: 10 (solid), 16 (dashed 20 (dotted, 22 (dot- each value ofT, there are five curves fog=10, 16, 20, 22, 23.
dashed, and 23(dash-dot-dotted Inset: the differenc@\¢ for the Inset: the difference\im for the same parameters of the main set
same parameters of the main g@b. The same aga), for «=1.8. with the respective symbols wheyx22 andé=1.
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right is clearly enhanced, which indicates the trend of theime required for its implementation grows exponentially
curve maxima motion reported above. As expected, a slighvith g and linear withc, while the storage necessity in-
decrease of the relative precision among the curves, as cororeases exponentially withand is insensitive to the value of

pared to that forf and3, is observed for the entire range of ¢- The results were obtained with a double-precision
reduced temperature, being more relevant for the smalléfORTRAN code implemented on a common desk computer.
value of a. The comparison with similar results reported by other au-
Finally, in Fig. 7 and 8 we illustrate the behavior f  thors and the high degree of accuracy indicate that the pro-
with respect to botfF andHl. These curves are important to posed procedure is reliable. This is evidenced, in particular,

show he vty of the TS conjecture i respect o heb [ SPioducion o crteion o e erce emperaure
magnetic field. In Fig. 7, curves are drawn fer0.5 and y j

) ~ o , previously obtained within the finite-range scale framework,
three different values oH, while in Fig. 8 we considerr  {ggether with the actual values fd, that we have obtained.
=1.8 and three values df. For both cases we use the same We have shown that all thermodynamic properties of the
values ofg as before, and=150. The quality of the collaps- chain, such as the free energy, entropy, specific heat, and
ing of the curves depends slightly on the value$iaind, as  magnetization, satisfy TS with a high degree of accuracy for
in Fig. 6, on the value ofr. However, the precision measured both nonextensivda<1) and extensive(a>1) regimes.

by Afn=(fg.s~g)/ 5 is still very high (<1072 for both  This agrees with other analyses of long-range systems, which

values ofa wheng=22 and 23. have been carried out with the help of such other approaches
as the renormalization group and Monte Carlo methods. Still
VI. CONCLUSIONS better precision in the results can be achieved by increasing

the values ofy andc, but our purpose of showing the validity

In this work, we presented a thorough investigation of theys 15 s fully completed by the present contribution.
thermodynamic properties of the Ising chain, focusing on the

set scaling properties proposed by Tsallis.

The investigation was carried out with the help of an ef-
ficient procedure to obtaiZ(T,N=g+c+1) of long-range
Ising chains. It requires only a storage space and small TM, We acknowledge E. P. Borges for useful discussions and
avoiding the necessity of eigenvalue evaluation. The CPUemarks.
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