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A numerically efficient transfer matrixsTMd approach is introduced to investigate the long-range Ising spin
chain. Results obtained within this procedure are primarily used to verify the Tsallis scaling hypothesis for
long-range systems with ana power-law decay of the interaction constants, both in the extensivesa.1d and
nonextensivesa,1d regimes. Results for finite-size systems, taking into account all interactions between spins
up to 24 sites apart, show that the conjecture is satisfied with a very good precisionsless than 0.004%d for all
temperature intervals. This TM procedure is further used to investigate several other thermodynamic and
critical properties of this system, and it may also be extended to similar one-dimensional long-range systems.
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I. INTRODUCTION

The long-range Ising chain constitutes a classical chal-
lenge that has attracted the attention of physicists for many
decades. In its more common version, each spinsi interacts
with all other spins on the chain mediated by coupling con-
stantsJr =J/ ra, wherer is the distance between the interact-
ing spins measured in integer number of lattice spacings.
Despite the absence of a closed solution, much is known
about this system. Existence theorems for phase transitions
have been obtained by a large number of authors, e.g.,f1–4g.
On the other hand, sophisticated numerical schemes have led
to very precise estimates for values of the critical tempera-
ture, Tc, and critical exponents, as reported, e.g., inf5–9g.
This large number of contributions have indicated that, for
a.2, the system shows only a disordered phase,∀T f4g.
Phase transition at finite temperature is found for 1,aø2
f1,2g, with the presence of an ordered phase whenT,Tc. For
0øaø1, the system is nonextensivef10g and it has a single
ordered phase∀T. Classical mean-field exponents are found
when 1,aø1.5 f4g, while for a=2 a discontinuous magne-
tization atTc is observedf2g.

The purpose of this work is to investigate the validity of a
conjecture raised by Tsallisf11g to the Ising long-range
chain, using a first-principles solution that comes as close as
possible to the exact one. Our solution is provided by a trans-
fer matrix sTMd approach that leads to numerical results tak-
ing into account the long-range interaction between spins up
to a certain distanceg apart. It has been optimized regarding
both the required space to store the energy values for all
distinct spin configurations and the successive increase in the
value ofg as well as avoiding the numerical evaluation of the
TM largest eigenvalue.

In 1995, Tsallis conjectured a universal scaling scheme
for thermodynamic functions that should be valid for a large
class of both extensive and nonextensive long-range models.
For the later models, the energy per degree of freedom di-
verges, so that the usual intensive energies are devoid of
significance. The Tsallis scaling conjecturesTSd f10,11g
states that any intensive energylike thermodynamic property,
e.g., in the case of magnetic systems, the free Gibbs energy,
fsT,H ,Nd=FsT,H ,Nd /N, of a finite system ofN constitu-
ents, in ad-dimensional space, with long-range interaction

decaying with the distancer between particles as 1/ra, can
be properly described by anN-independent function

f̃sT̃ = T/Ñ,H̃ = H/Ñd = fsT,H,Nd/Ñ s1d

with the help of a scaling variableÑ, defined as

Ñ =
N1−a/d − a/d

1 − a/d
. s2d

WhenN→`, we obtain limit values forÑ as a function ofd
anda,

Ñ =5
a/d

a/d − 1
if a/d . 1

ln N if a/d = 1

1

1 − a/d
N1−a/d if 0 ø a/d , 1.6 s3d

According to the same conjecture, other intensive thermody-
namic functions depending on the temperatureT, the mag-
netic fieldH, and also onN, like the entropys, specific heat
c, and magnetizationm, admit N-independent related func-
tions defined as

s̃sT̃,H̃d = ssT,H,Nd,

c̃sT̃,H̃d = csT,H,Nd,

m̃sT̃,H̃d = msT,H,Nd. s4d

TS takes into account the divergence in the definition of
usual intensive quantities, as the free energyf, for nonexten-
sive modelssa /dø1d, and generalizes the ad hoc normaliza-
tion procedure to treat mean-field models, which simply con-
sists of replacing the single-coupling constant for all pairs of
particlesJ by J/N. This particular value is recovered in defi-
nition s2d when a→0. For extensive long-range models
sa /d.1d, the usual intensive energies asf will reach an
N-independent value whenN→`, but the scaling procedure

shows a much faster convergence tof̃, valid for finite-size
systems.
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The Tsallis proposal has motivated a large number of
works aiming to certify its validityf12–14g. Many distinct
models with long-range interactions have been investigated
ever since, including spin models within mean-field, renor-
malization group, and Monte Carlo simulation approaches
f15–17g. The present investigation considers one of the most
simple long-range systems, for which numerical results of
the thermodynamic properties—that take into account all en-
ergy levels of finite-size approximations—can be computed.
The results discussed herein show that, despite the limita-
tions imposed by the size of the considered systems, TS is
verified for all analyzed thermodynamic functions with a sat-
isfactory degree of accuracy.

The rest of this work is organized as follows. In Sec. II,
we discuss the transfer matrix methodsTMd used to evaluate
the partition function and the free energy. In Sec. III we show
that, for the free energy, TS is satisfied with high accuracy.
The evaluation of the correlation function, the correlation
length, and the critical temperature are developed in Sec. IV.
In Sec. V, we discuss results for the entropy, specific heat,
and magnetization, all of which agree with the proposed be-
havior within the TS framework. Section VI closes the work
with our final remarks and conclusions.

II. TRANSFER MATRIX FORMULATION OF THE
PROBLEM

As advanced in the Introduction, the long-range Ising
chain is described by the Hamiltonian

H = − o
i=0

`

o
r=i+1

`

Jrsisi+r − Ho
i=0

`

si . s5d

We consider two different ways to step over from a finite
to an infinite chain with an infinite number of interaction
constants, as illustrated in Fig. 1. In the first one, we start
with an infinite 1-chain, at generationg=1, with only first-
neighbor interactionJ1, and add, successively, interactions
J2,J3, … . So, all interactionsJg are introduced at the same
gth step of decoration, defining an infiniteg-chain fsee Fig.
1sadg. In the second way, we start, atg=1, with a finite two-
spin chain and oneJ1 interaction, and move onto generation
g=2 by adding a third spin together with all new interactions
that fit into the resulting array. This procedure can be re-
peated over and over: for a generic valueg, we introduce one
spin andg new interactions mediated byJr , r =1, 2, … , g,
that link thesg+1dth spin to all spins introduced in the pre-
vious generationsfsee Fig. 1sbdg. Of course the two proce-

dures lead to the same system wheng→` but, for finite
values ofg, the approximate results differ from each other.

In this work we introduce TM’s that can describe interac-
tions in both construction ways. This is done by 232 TM
Mg,c, that describe finite chains ofN=g+c+1 spins, encom-
passing all interactions among spinsg sites apart. This
scheme differs from that inf8g where, at generationg, a

2g32g TM M̂g describes all theg2 interactions among spins
in two neighboringg+1 patches. Theg-approximate parti-
tion functionZg for the infiniteg-chain is obtained from the

numerically evaluated largest eigenvalueLg of M̂g.
We consider first the situationN=g+1, illustrated in Fig.

1sbd, and define a 232 TM Mg;Mg,c=0, that describes all
interactions within a patch limited by the spinss0 and sg.
Within this definition, a partial trace, over all configurations
involving spinssi, i P f1,g−1g must be performed. This can
be accomplished in a very efficient way if we make use of
nonsquare TM’s, as those used to describe spin models on
hierarchical latticesf18,19g. This approach is simpler than
the first one, since the TM’s are smaller and the numerical
evaluation of their largest eigenvalue is not required. So,
starting withg=1 and restricting our discussion to the sim-
pler situation whenH=0, the quite obvious TMM1 can be
rewritten in the following way:

M1 = Sa1 b1

b1 a1
D = Sa1 b1 0 0

0 0 b1 a1
D1

1 0

0 1

1 0

0 1
2 ; P1L1,

s6d

wherea1=b1
−1=expsJ1/Td. The expanded TMP1 links spin

s0 to the pairss0,s1d, while L1 projects the pairss0,s1d to s1,
by performing a sum over values ofs0. Here, as well as
throughout the work, we make use of the lexicographic order
to associate a given spin configuration with the matrix ele-
ment labels. This procedure is extended to all values ofg,
according to

Mg = Sp
k=1

g

PkDLg ; RgLg, s7d

whereLg is a 2g+132 matrix whose elementssLgdi,j =1 for
i + j even, andsLgdi,j =0 for i + j odd. The matrix elements of
the 2k32k+1 TM’s Pk are recursively expressed by

sPkdi,j =5
sPk−1di,jak

s− 1d j−1
for i ø 2k−1

and j ø 2k

sPkd2k−i+1, 2k+1−j+1 for 2k−1 ø i ø 2k

and 2k ø j ø 2k+1

0 otherwise,
6 s8d

whereak=expsJk/Td. In Eq.s7d, each TMPk couples a group
of spinshs0,s1,… ,sk−1j to hs0,s1,… ,sk−1,skj, accounting for
the interaction of spinsk with spins s, , ,=0, 1, … , k−1.
Equations8d shows thatPk contains the same interactions of
Pk−1 with the addition of the interactionJk. MatricesPk are

FIG. 1. A schematic representation of the construction of the
infinite g-chain along the firstsad and second strategiessbd.
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very sparse, but their products, condensed in the 232g+1 TM
Rg, store in a very compact way, the information scattered
among them.

The matrix elements ofRg are Boltzmann weights to each
spin configuration of ag-chain, ordered in a convenient way,
so that the effect of successively increasing the length of the
chain can be easily accounted for by matrix multiplication,
i.e., Rg=Rg−1Pg. As Mg is symmetric,Rg has point inversion
symmetry with respect to the central position. So, for a given
valueg, this property allows us to occupy only the first line
of a 232g+1 field to write down the values of matrix ele-
ments and use the second line as a buffer to store the ele-
ments ofPg that give rise toRg. Note that an infinite product
of Mg describes an infinite chain, where all spins within one
g-patch interact with each other, but not with spins in other
patches.

This matrix definition can be extended to describe the
case illustrated in Fig. 1sad. Such chains can be regarded as
being formed byg-patches of spins,with interaction among
spins of neighboring patches. For example, takingg=2, the
configuration in Fig. 1sad is recovered from Fig. 1sbd, by
attaching to it other 2-chains and including the interactionJ2
between the midspins of neighboring patches. This corre-
sponds toc.0, i.e.,N.g+1.

Let us assume that we have evaluatedMg and proceed to
obtain Mg+1. If we omit the Boltzmann weightag+1 in Eq.
s8d, the resulting TMPg+1 takes into account the interactions
between spinsg+1 with spinss, , ,=1, 2, … , g, while s0 and
sg+1 do not interact any longer. Hence, the TMMg+1

;RgPg+1Lg+1=Mg,c=1 describes two partially overlapping
g-patches, with some interactions among spins of distinct
patches. Further, for any situation where all weightsak, k

=g+1, g+2, … , g+c have been neglected,Mg,c=M̄g+c of-
fers an exact description of chains constructed along the first
way, valid also in thec→` limit.

The evaluation ofPk, k=g+1, … , g+c, required for
building Rk and Mg,c, can be circumvented. This is easily
seen for the matrixMg,1. If ag+1 is not included in Eq.s8d, the
elements ofPg+1 are the same as those ofPg, but each one of
them appears twice as much as inPg. So, in the evaluation of
Rg+1=RgPg+1, at least two elements ofRg will be multiplied
by the same factor. Due to the lexicographic labeling used
herein, we identify that this fact happens for all pairssRgdi,j

and sRgdi,2g+j , j =1, 2, … , 2g. They correspond exactly to
the same spin configuration except by the flipping of the spin
s0. As the interaction energy of the spinss1, s2, … , sg with
sg+1 in Pg+1, for these two configurations, is the same, the
information inRg+1 can be condensed in

Rg,1 = RgQgPg. s9d

Qg is a 2g+132g matrix defined by

sQgdi,j = H1 for i = j or i = j + 2g

0 otherwise
J s10d

that performs the sum ofsRgdi,j and sRgdi,2g+j prior to the
multiplication by Pg. This definition can be extended in a
straightforward way, so that all interactions in a chain with

N=g+c+1 spins and interactions amongg nearest neighbors
can be cast into

Mg,c = Sp
k=1

g

PkDsQgPgdcLg ; Rg,cLg. s11d

It is important to observe that the matrix elements ofRg,cÞ0
are no longer single Boltzmann weights corresponding to a
particular spin configuration.

The free energy per spin,fg,c=−T lnsZg,cd /N, and the TS

free energyf̃ g,c= fg,c/ Ñ follow from the partition function

Zg,c = 2lg,c
+ = 2fsMg,cd1,1+ sMg,cd1,2g = o

i,j
sRg,cdi,j . s12d

This scheme can be easily enlarged to include the more gen-
eral situation whenHÞ0, required for the evaluation of the
magnetizationm. The basic relations are still valid, with the
exception of the matrix element point inversion symmetry
with respect to the central position. The only consequence is
that it demands twice as many variables to store the field-
dependent energy levels.

III. TSALLIS SCALING FOR THE FREE ENERGY

Let us now discuss results that show a remarkable preci-
sion in the collapse of the Tsallis rescaled free energy for the
Ising chain. The partition functionZg,c was evaluated for
different values ofa, takingg=1, 2, …, 24 andc=1, 2, …,
200, performing this way several tests for the validity of TS.
For the sake of clearness, we show some of our results are
shown in Figs. 2 and 3 for selected values ofg andc only.

Figure 2sad shows results forfg,csTd, whena=0.5 and 2.0,
for c=0 and several values ofg. Two features can easily
distinguish nonextensivesa,1d from extensivesa.1d sys-
tems:sid the values off converge withg for the latter but not
for the former;sii d the width of the low-temperature plateau
increases withg for the nonextensive case while, in the ex-
tensive situation, despite a discrete increase, it rapidly con-
verges to a fixed length. Fora=0.5, wheng→` this plateau
extends itself toT→`, corresponding to a single ordered
phase of zero entropyf6g. Figure 2sbd shows the influence of
increasingc on f when a=1.2, for a fixed value ofg, indi-
cating that a slow convergence is achieved. The same kind of
dependence onc, for fixed g, is observed for nonextensive
cases.

Performing TS onf leads to the curves shown in Fig. 3

for f̃ g,csT̃d3 T̃. An important finding is that the correct scal-
ing, whencÞ0, requires that the total number of compo-
nentsN=g+c+1 in Eq. s2d be replaced by the range of the
interactiong. In Fig. 3sad we show, fora=0.5, the influence
of bothg andc. Rather small values forg have been chosen
to better display the effect of increasing it. We note that
curves for distinct values ofg are gathered together for fixed
values ofc rather than the other way around. This shows
clearly thatsid TS is directly related to the rangeg of inter-
actions,not to the number of constituentsN; sii d for small
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values ofg, different values ofc are treated by TS as differ-
ent systems. As expected, for larger values ofc, the curves
are less dispersed.

Figure 3sad also shows, in the inset, results fora=1.2 and
for much larger values ofg andc. Eight curves are superim-
posed, attesting a very good convergence, which is very
clearly shown in Fig. 3sbd, where we draw the difference
between two curves of the inset of Fig. 3sad as a function of

g and c. Holding g constant, the differencef̃ g,c+dsT̃d
− f̃ g,csT̃d monotonically decreases with respect toT̃. The
curves differ by less than 0.0035 for the whole temperature
range. Asd=10, this indicates that the discrepancy by in-
creasingc by 1 is less than 0.0004%. The behavior found for
other values ofa is much the same as those shown here, e.g.,
for a=0.5, the discrepancies are less than 0.0008% for the
same values ofg andc used in Fig. 3.

On the other hand, holdingc fixed, f̃ g+d,csT̃d− f̃ g,csT̃d is
bounded by the same value above. Since nowd=2, the dis-
crepancy by increasingg by 1 is less than 0.002%. We also
observe that the curves go through a maximum at nonzero

value of T̃. The position of this maximum on theT̃ axis,
indicated by an arrow in the inset of Fig. 3sad, is close to the
peak of the specific heat, as will be discussed later. Although
very small, the inclusion of new interaction constants causes
a nontrivial effect in the free energy, that might be useful
when exploring the critical properties of the model. Fora
=0.5, the distance between the curves gets roughly doubled,
much like wheng is fixed. Their shape is now much closer to

those of f̃ g,c+dsT̃d− f̃ g,csT̃d, however superimposed to a small
peak that rapidly vanishes upon increasingg.

Still better convergence can be achieved by increasing the
values ofg and c but, in our opinion, the precision we at-
tained is sufficient to attest the validity of TS, for both non-
extensive and extensive values ofa.

IV. CORRELATION FUNCTION AND THE CRITICAL
TEMPERATURE

The correlation function between spins placedr sites apart
depends on both the range of interactions and the size of the
system. Restricting to the situation wherec=0, we define a
g-dependent correlation function between the first and therth
spins along the chainCgsr ;Td=ks1srlg, r =1, … , g. Using
the fact that the row and column labels of the matrix ele-
ments ofPk are defined according to the lexicographic order,
it is straightforward to show thatCgsr ;Td can be easily ex-
pressed in terms of the matrix elements ofRg as

Cgsr ;Td =
1

Zg
o
i,j

fRIgLg,rgi,j ;
1

Zg
o
i,j
FPI1Sp

k=2

g

PkDLg,rG
i,j

,

s13d

where

FIG. 2. sad Free energyf for a=0.5 ssolidd and 2.0sdashedd,
whenc=0 andg=5, 10, 15, and 20;f decreases wheng increases.
Convergence is observed only for the extensive case.sbd The same
as in sad, for a=1.2 and fixedg=12. f decreases whenc increases
from 0 to 20, 40, 60, and 80.

FIG. 3. sad TS free energyf̃ for a=0.5 whenc=0 ssolidd, 10
sdashedd, and 50sdottedd. Three curves in each group were obtained
for g=6, 8, and 10. Inset: superposition of eight curves fora=1.2,
when g=18, 20, 22, 24 andc=80, 90.sbd For a=1.2, differences

f̃g,80sT̃d− f̃g,90sT̃d, wheng=18, 20, 22, 24. Magnitude increases with

g. Inset: differencesf̃g,90sT̃d− f̃g+2,90sT̃d when g=18, 20, 22. Here
the magnitude decreases withg.
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PI1 = Sa1 b1 0 0

0 0 − b1 − a1
D ,

sLg,rdi,j = − 1qg,rs jd, qg,rs jd = LF j − 1

2g−r G , s14d

with Lfxg; largest integer inx.
The definition ofCgsr ;Td can be extended to more gen-

eral situationsCg,csi , i +r ;Td, wherec.0, r .g, and theith
spin must not necessarily sit on the first place of the chain.
However, as the expression forCg,csi , i +r ;Td in terms of the
matrix elements ofPk’s is much more complex and the es-
sential behavior of the spin correlation function can be ob-
tained from Eq.s13d, let us proceed with the discussion of
the results obtained by this simpler situation. It can be better
accomplished if we refer to a series of graphics for
Cgsr ;Td3 r andCgsr ;Td3g shown in Fig. 4. In Fig. 4sad, we
take the limit situationa=0, for which the spins should be
aligned at all temperatures whenN→`. ForT=10, when the
values of Cgsr ;Td3 r are relatively scattered, we see that
they are almost insensitive with respect tor for a fixedg and,
for fixed r, they increase monotonically withg. The qualita-
tive features of this picture do not change with the tempera-
ture, and are consistent with the expected behavior, namely
Cgsr ;Td=1, ∀ r whenN→`.

Going far inside the extensive region, we show in Fig.
4sbd the behavior for a=10. The several curves for
Cgsr ;Td3g, at T=0.5, show a reverse situation to the one
obtained whena=0: they are almost insensitive with respect
to g for a fixedr while, for fixedg, they decay exponentially
with r. This T-independent behavior is in accordance with
the expected absence of ordering at any finite temperature.

When 1,aø2, a phase transition at finite temperature
occurs. The behavior ofCgsr ;Td3 r when a=1.2 for two
distinct temperatures is drawn in Figs. 4scd and 4sdd. In both
cases we see that, for a fixed value ofg, Cgsr ;Td clearly
decays withr, especially whenr ,g. For a low value ofT
fFig. 4scdg, we note thatCgsr =g;Td initially decays withr,
but then this trend is reversed. On the other hand, for a larger
value ofT fFig. 4sddg, Cgsg;Td keeps its decreasing behavior
until the largest value ofg. Of course we cannot anticipate
whether, for this particular value, the curve will reverse its
derivative. Nevertheless, these results strongly suggest that a
T-dependent twofold behavior should emerge for that inter-
val of a, reflecting the emergence or absence of long-range
spin ordering.

The observed behavior forCgsr ;Td suggests a scheme
leading to finite-size estimates of the critical temperature of
the system. For a given value ofg, we can indicate that the
system will develop long-range order at a particular tempera-
ture T if Cgsg;Td.Cg−1sg−1;Td. This inequality is only a
sufficient condition for the existence of long-range ordering
when g→`, but it can be used to define a series of
g-dependent critical temperaturesTc,g, which constitute
lower bounds for the actual critical temperature of the chain.
Thus it is natural to defineTc,g andTc by

Cgsg;Tc,g+1d = Cg+1sg + 1;Tc,g+1d,

Tc = limg→`Tc,g. s15d

If we use Eq. s13d for r =g, it is possible to express
Cgsg;Td in terms of the eigenvalues ofMg as Cgsg;Td
=lg

−/lg
+. Note further that the correlation length for a chain

FIG. 4. sad Correlation functionCgsr ,Td3distancer when a
=0 andT=10. Each line corresponds to a value ofg from 1 sbot-
tomd to 20 stopd and the squares indicatesCgsg,Td. sbd Correlation
function Cgsr ,Td in logarithm scale3g when a=10 andT=0.5.
Each line corresponds to a value ofr from 1 stopd to 20 sbottomd.
As in casesad, the squares indicateCgsg,Td. scd The same assad for
a=1.2 andT=4.5. sdd The same asscd for T=5.0.
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composed of patches described by the matrixMg, as men-
tioned in Sec. II, is given by

jg =
g

lnslg
+/lg

−d
= −

g

lnfCgsg;Tc,gdg
. s16d

So, combining Eqs.s15d ands16d, it is possible to rewrite the
criterion for the finite-size estimates for the critical tempera-
ture Tc,g as

jgsTc,g+1d
g

=
jg+1sTc,g+1d

g + 1
. s17d

Finally, we recall that Eq.s17d coincides with the expres-
sion used by Glumac and Uzelacf8g, derived within the
method of finite-range scaling, to evaluate finite-size esti-
mates for the critical temperatures. The steps leading to Eq.
s17d use no scaling arguments, and it is rather amazing to
obtain the same expression working within two different
frameworks.

Series of very precise values ofTc,g for a=1.2 and 1.8 are
shown in Table I. Fora=1.2, we observe that the values in
Table I agree with the illustrations in Figs. 4scd and 4sdd as
4.5,Tc,g=20,5.0. Using Padé approximants or other similar
techniques, it is possible to extrapolate the finite series re-
sults for a limit valueTc, which has been inserted in the last
row in the bottom of Table I. A comparison of the results in
Table I shows that our results forTc,g are smaller than the
corresponding values reported in Ref.f8g. This difference is
due to the smaller amount of interaction energy that is in-
cluded in one matrixMg. Nevertheless, with the help of the
Vanden Broeck and SchwartzsVBSd extrapolation procedure
used inf8g, we are led to values forTc that reproduce those
reported in the literature with an accuracy of 1.2 and 1.6%

for a=1.2 and 1.8. In Table I, we also include values for

T̃c,g=Tc,g/ Ñ and T̃c=Tcsa−1d /a.

V. DERIVATIVES OF THE FREE ENERGY

As introduced in Eq.s4d, TS foresees for the intensive
quantitiess̃, c̃, andm̃ a different behavior from the one for
the free energys1d, that has been explored in Sec. III. This is
related to the fact that they measure properties of the internal
degrees of freedom of the system that cannot increase be-
yond a saturation point even with the addition of energy from
the long-range interactions. In any case, as their thermody-

namic conjugate intensive variables scale withT̃, the sum-
mands in any Legendre transform have an overall correct
scaling.

We have investigated the behavior of derivatives of the
free energy along two different paths: by numerically deriv-
ing expressionss8d and s11d, or by working out analytical
expressions from the Boltzmann weights stored in the matrix
elements. The results agree with each other within the ex-
pected numerical accuracy. The second strategy requires fur-
ther analytical work, but its results are more stable and avoid
rounding off errors resulting from differences between two
quite close values. Because of this, our discussion is based
on results along the second path. For any of the three quan-
tities, it is straightforward to set up expressions for the new
matrix elements that describe the effects of taking the deriva-
tive of the Boltzmann weights with respect to the tempera-
ture and the magnetic field. For instance, in the case of the
magnetization, we obtain

msT,Hd =
1

ZgsT,Hdoi,j pgs jdsRgdi,jd
pgs jd, s18d

where

TABLE I. Values of the critical temperatureTc,g and the Tsallis scaled counterpartT̃c,g for a=1.2 and
a=1.8, for oddg from 1 to 23. The extrapolated values obtained by the VBS procedure using odd and even
values ofg are included in the last row. For comparison, the reported values ofTc in Ref. f8g are, respectively,
10.84 and 2.43.

g a=1.2 a=1.8

Tc,g T̃c,g Tc,g T̃c,g

1 1.3556580 0.8229839 0.8388462 0.5475270

3 2.3629378 1.0688599 1.2011865 0.6536522

5 2.9514932 1.1778344 1.3667507 0.7002222

7 3.3616308 1.2444814 1.4699165 0.7301505

9 3.6731505 1.2909930 1.5432409 0.7521076

11 3.9224949 1.3259833 1.5993359 0.7693643

13 4.1292676 1.3536242 1.6443204 0.7835166

15 4.3051803 1.3762246 1.6815968 0.7954662

17 4.4577656 1.3951828 1.7132407 0.8057728

19 4.5921416 1.4114038 1.7406053 0.8148082

21 4.7119372 1.4255034 1.7646193 0.8228320

23 4.8198144 1.4379177 1.7859455 0.8300324

VBS extrapolation 10.713270 1.785545 2.474799 1.099911
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ZgsT,Hd = o
i,j

sRgdi,jd
pgs jd, pgs jd = o

r=1

g

qg,rs jd,

d = expsH/Td. s19d

Results for the TS entropys̃ are shown in Fig. 5. Conver-
gence has been checked for both situations explored in Sec.
III: holding c fixed and lettingg change or the other way
around. Let us focus the discussion on the first possibility, as
it is more relevant for the purpose of checking the TS valid-
ity. We show in the main set, forH=0, a=0.5, andc=200,
five curves forg=10, 16, 20, 22, and 23. The two curves for
lower values ofg are still a bit apart from those forg=22 and
23, which collapse with each other with a precision of the
order of 10−3, as blown up in the inset for the difference
between the values ofs̃ for the successive values ofg, Ds̃

=ss̃g+d− s̃gd /d. The attained precision of convergence for this
value ofg is somewhat smaller than that for the free energy,
but this is not unexpected, as the derivative operator usually
enhances differences between similar objects. The same kind
of behavior is observed for other values ofc. Only for
smaller valuesc,50 is it possible to detect a noticeable
increase in the discrepancies between the curves for different
values ofg. As we can expect from Fig. 2, if we draw the
corresponding curves ofssT,H ,Nd3T, we observe that they
do not collapse at low values ofT, but move to the right with
increasing value ofN.

Essentially the same kind of situation is observed for the
curves of the TS specific heatc̃ shown in Figs. 6sad and 6sbd,
for a=1.2 and 1.8,c=90, and the same values forg. They go

through a rather smooth maxima and then decrease withT̃.

We observe that the maxima of the curves occur atT̃M,

which are smaller thanT̃c in Table I. Fora=1.2 and 1.8 we

have, respectively,T̃M / T̃c.0.66 and 0.87. Similar discrep-
ancies between the specific-heat maxima and the critical tem-
perature have been reported by Nagle and Bonnerf5g, who
refer to a very slow convergence of the specific-heat maxima
towards the values of the critical temperature obtained by the
behavior of other thermodynamic properties. In the insets of
Fig. 6 we show, for each set ofa, differencesDc̃=sc̃g+d

− c̃gd /d. The progressive displacement of the maxima to the

FIG. 5. TS entropys̃ for a=0.5, H=0, c=200, and different
values ofg: 10 ssolidd, 16 sdashedd, 20 sdottedd, 22 sdot-dashedd,
and 23sdash-dot-dottedd. Inset: the differenceDs̃ for the same pa-
rameters of the main set.

FIG. 6. sad TS specific heatc̃ for a=1.2, H=0, c=90, and dif-
ferent values ofg: 10 ssolidd, 16 sdashedd, 20 sdottedd, 22 sdot-
dashedd, and 23sdash-dot-dottedd. Inset: the differenceDc̃ for the
same parameters of the main set.sbd The same assad, for a=1.8.

FIG. 7. TS magnetizationm̃ for a=0.5, c=150, and different
values of fieldH: 0.05 ssolidd, 0.3 sdashedd, and 0.8sdottedd. For
each value ofH, there are five curves forg=10, 16, 20, 22, 23.
Inset: the differenceDm̃ for the same parameters of the main set
with the respective symbols wheng=22 andd=1.

FIG. 8. TS magnetizationm̃ for a=1.8, c=150, and different
values of fieldT: 0.6 ssolidd, 1.0 sdashedd, and 2.0sdottedd. For
each value ofT, there are five curves forg=10, 16, 20, 22, 23.
Inset: the differenceDm̃ for the same parameters of the main set
with the respective symbols wheng=22 andd=1.
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right is clearly enhanced, which indicates the trend of the
curve maxima motion reported above. As expected, a slight
decrease of the relative precision among the curves, as com-

pared to that forf̃ and s̃, is observed for the entire range of
reduced temperature, being more relevant for the smaller
value ofa.

Finally, in Fig. 7 and 8 we illustrate the behavior ofm̃

with respect to bothT̃ andH̃. These curves are important to
show the validity of the TS conjecture with respect to the
magnetic field. In Fig. 7, curves are drawn fora=0.5 and

three different values ofH̃, while in Fig. 8 we considera

=1.8 and three values ofT̃. For both cases we use the same
values ofg as before, andc=150. The quality of the collaps-
ing of the curves depends slightly on the values ofH and, as
in Fig. 6, on the value ofa. However, the precision measured
by Dm̃=sm̃g+d−m̃gd /d is still very high s,10−2d for both
values ofa wheng=22 and 23.

VI. CONCLUSIONS

In this work, we presented a thorough investigation of the
thermodynamic properties of the Ising chain, focusing on the
set scaling properties proposed by Tsallis.

The investigation was carried out with the help of an ef-
ficient procedure to obtainZsT,N=g+c+1d of long-range
Ising chains. It requires only a storage space and small TM,
avoiding the necessity of eigenvalue evaluation. The CPU

time required for its implementation grows exponentially
with g and linear withc, while the storage necessity in-
creases exponentially withg and is insensitive to the value of
c. The results were obtained with a double-precision
FORTRAN code implemented on a common desk computer.

The comparison with similar results reported by other au-
thors and the high degree of accuracy indicate that the pro-
posed procedure is reliable. This is evidenced, in particular,
by the reproduction of a criterion for the critical temperature
based on the analysis of the correlation function, which was
previously obtained within the finite-range scale framework,
together with the actual values forTc that we have obtained.

We have shown that all thermodynamic properties of the
chain, such as the free energy, entropy, specific heat, and
magnetization, satisfy TS with a high degree of accuracy for
both nonextensivesa,1d and extensivesa.1d regimes.
This agrees with other analyses of long-range systems, which
have been carried out with the help of such other approaches
as the renormalization group and Monte Carlo methods. Still
better precision in the results can be achieved by increasing
the values ofg andc, but our purpose of showing the validity
of TS is fully completed by the present contribution.

ACKNOWLEDGMENTS

We acknowledge E. P. Borges for useful discussions and
remarks.

f1g F. J. Dyson, Commun. Math. Phys.12, 91 s1969d.
f2g J. Frölich and T. Spencer, Commun. Math. Phys.84, 87

s1982d.
f3g J. L. Cardy, J. Phys. A14, 1407s1981d.
f4g M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman, J.

Stat. Phys.50, 1 s1988d; M. Aizenman and R. Fernández, Lett.
Math. Phys.16, 39 s1988d.

f5g J. F. Nagle and J. C. Bonner, J. Phys. C3, 352 s1970d.
f6g M. E. Fisher, S. K. Ma, and B. G. Nickel, Phys. Rev. Lett.29,

917 s1972d.
f7g J. L. Monroe, R. Lucente, and J. P. Hourlland, J. Phys. A23,

2555 s1990d.
f8g Z. Glumac and K. Uzelac, J. Phys. A22, 4439 s1989d, 26,

5267 s1993d.
f9g S. A. Cannas and A. C. N. de Magalhães, J. Phys. A30, 3345

s1997d.

f10g C. Tsallis, Braz. J. Phys.29, 1 s1999d.
f11g P. Jund, S. G. Kim, and C. Tsallis, Phys. Rev. B52, 50 s1995d;

C. Tsallis, Fractals3, 541 s1995d.
f12g F. Tamarit and C. Anteneodo, Phys. Rev. Lett.84, 208s2000d.
f13g V. Latora, A. Rapisarda, and C. Tsallis, Phys. Rev. E64,

056134s2001d.
f14g H. H. A. Rego, L. S. Lucena, L. R. da Silva, and C. Tsallis,

Physica A 266, 42 s1999d.
f15g S. A. Cannas, Phys. Rev. B52, 3034s1995d.
f16g S. A. Cannas and F. A. Tamarit, Phys. Rev. B54, R12 661

s1996d.
f17g S. A. Cannas, A. C. N. de Magalhães, and F. A. Tamarit, Phys.

Rev. B 61, 11 521s2000d.
f18g R. F. S. Andrade, Phys. Rev. E61, 7196s2000d.
f19g R. F. S. Andrade and S. T. R. Pinho, Eur. Phys. J. B34, 343

s2000d.

R. F. S. ANDRADE AND S. T. R. PINHO PHYSICAL REVIEW E71, 026126s2005d

026126-8


