PHYSICAL REVIEW E 71, 026121(2005

Directed percolation with long-range interactions: Modeling nonequilibrium wetting
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It is argued that some phase transitions observed in models of nonequilibrium wetting phenomena are related
to contact processes with long-range interactions. This is investigated by introducing a model where the
activation rate of a site at the edge of an inactive island of ledgih 1+af~. Mean-field analysis and
numerical simulations indicate that for>1 the transition is continuous and belongs to the universality class
of directed percolation, while for€ o<1, the transition becomes first order. This criterion is then applied to
discuss critical properties of various models of nonequilibrium wetting.

DOI: 10.1103/PhysRevE.71.026121 PACS nuni$)er05.70.Ln, 61.30.Hn

I. INTRODUCTION tem are bound to remain identical one with respect to each

Many recent theoretical studies have shown that th&ther atall future times, we can conclude that the completely
growth process of a solid phase on a substrate can undergo®4nchronized phase is absorbing for system dynamics, thus
variety of nonequilibrium transitions. They are analogous ta?layng the role of the irreversibly depinned phase in non-
equilibrium wetting phenomena in which liquid boundary equilibrium wetting processes. Interestingly, both numerical
layers exhibit critical behavior in the vicinity of the liquid- analyses of coupled map lattices syst¢fis12 and analyti-
gas coexistence line. Such growth processes can be effecal argument$12,13 predict the synchronization transition
tively modelled by defining a suitable evolution rule for the to exhibit a critical behavior, which belongs either to the MN
profile (interface, corresponding to the boundary of the solid or to the DP universality class.
layer. Several growth models which do not obey detailed A schematic typical configuration of an interface bound to
balance and evolve towards stationary non-equilibrium stated substrate is depicted in Fig. 1. It is composed of detached
have been studied in the past. In many cases, by varying @mains separated by pinned segments. The dynamics of the
control parameter, they exhibit a transition from a regimeinterface is such that each detached domain may either
where the solid phase remains pinned to the substrate toshirink or expand from its edges; new domains may be cre-
regime where an unbounded growth set§ir8]. This de- ated by the unbinding process of bound sites, and two or
pinning of an interface may be considered as nonequilibriuninore detached domains may merge into a single larger one.
wetting, in analogy with its equilibrium counterpart. In some In principle, a segment internal to a detached domain may
models the character of the depinning transition changes, déind back to the substrate. However, in some physical con-
pending on the dynamical rates which control the interfaceditions such processes are virtually suppressed. This occurs
evolution. Numerical studies in 1+1 dimensions allowed towhen the unbound interface moves on the average away
identify both first- and second-order phase transitions, thoséom the substrate, while it is held bound to the substrate by
of the latter type falling into two universality classes: di- some short range attractive interaction. In fact, the farther is
rected percolatio{DP) [9] and multiplicative nois§ MN)  a segment from the edge of a domain, the larger is the height
[10]. Since the transition always occurs towardsiragvers-  of the inferface and, accordingly, the more unlikely the pos-
ibly depinned phase, it is quite natural to draw an analoggibility to bind back to the substrate. In this case, the dynam-
with dynamical processes characterized by an absorbinigs of the interface may very well be described by a contact
state. process in which the active sites correspond to those bound

Recently, it has also been shown that such a depinnintp the substrate. The resulting depinning transition is thus
transition can be related to tisgnchronizatiorphase transi- expected to belong to the DP universality class. The obser-
tion in spatially extended chaotic systerisl,12. In this  vation of DP depinning transition in some modéis8,14
latter framework, two different replicae of the same dynami-confirms the validity of the above arguments. In some cases
cal system are coupled one to each other, either determinis-

tically [12] or by the addition of the same realization of a — /\ 7\

spatiotemporal stochastic noise. Upon increasing the cou

pling parameter, the system undergoes a nonequilibriuu/ 7777777777777 7777777777
phase transition between an unsynchronized phase and a

completely synchronized one, characterized by a vanishing FIG. 1. Schematic configuration of an interface bound to a sub-

local difference between the tw(itially) different replica.  strate. Within the DP framework bound sites may be considered as
Since two completely synchronized replica of the same sysactive while islands of depinned sites are inactive.
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a possible crossover to a first order transition has been sugffective long range interactions in wetting models. Numeri-
gested, when the attractive interaction between the interfaceal determination of the power of the effective interaction
and the substrate is increased. While in certain regions of thiaus allows inferring the order of the phase transition also in
phase diagram the existence of a first order transition hathese models.

been clearly demonstrated, in other regions it has only been The paper is organized as follows: In Sec. Il we introduce
tentatively suggested, based on numerical simulations of fia generalized contact process in 1+1 dimensions that in-
nite systemg3,14]. Due to the strict connection between cludes an activation rate which decays algebraically with the
wetting and complete synchronization non-equilibrium phaseize of inactive domains. The mean-field solution of the
transitions, a more accurate understanding of this part of theodel predicts a first-order transition, when the interaction
wetting phase diagram is highly desirable not only from thedecays slowly enough with the inactive domain size, while
theoretical point of view, but also in view of possible experi- faster decay rates yield a DP behavior. In Sec. IIl we present
mental realizations of the MN and/or the DP universality ihe results of detailed numerical simulations, which are in a
plasses. In our opinion, in fact, the synchronization tran5|§|qq,ery good agreement with the mean field predictions. The
in spatially extended systems represents the most PromisinNgidge between this generalized contact process and wetting
framework in which one can look for MN critical properties, models is discussed in Sec. IV. There we consider two mod-

if not for DP ones, which seem to require a highly nonlinearels, which have been introduced previously for studying non-

local dynamics governing a spatially extended syste I : S . .

[11,13. It is worth stressing that both these classes are S{i't;umbm;m wert]tmg. d‘_l'he first is a SOI'IQ'On'fSO“d 'model
eluding a clear experimental evidence, possibly due to th .._4]’ whose phase diagram contains a line o wet't!ng tran-
presence of quenched disorder in experimental realization tions. While the .f'rSt o_rder nature of the trangmon has
and, in the case of DP phase transitions, to seemingly urg early been estab!l_she(_j in a part of t_he phase diagram, the
avoidable small fluctuations of thesupposedly absorbing hature of the transition in anoth_er region proved to be more
state[9]. Interesting candidates for experiments include thedlffICUIt to analyze. Our numerical study seems to suggest

photosensitive Belousov-ZhabotinskBZ) reaction, which that inside the latter region, upon changing a suitable control
is known to exhibit complex spatiotemporal dynamjas] parameter, the effective activation rate at the boundary of

and semiconductor lasers with time-delayed optical feed'—na‘:t've domains can exhibit both a fast>1) anq a slow
(o< 1) power law decay. However further analysis based on

back. In Ref[16] it has been shown that such delayed sys-" ,
tems can be interpreted in terms of a suitable spatiotempor&f@ling arguments shows that the slow decay of the effective

dynamics, where the effective system size is given by thé&ctivation rate(and thus the first order behavias only a

ratio between the delay time and the typical fast time scale ofinite-size effect, albeit particularly robust. This result sug-
the system. Notice that, in principle, the use of semiconducdests that in this entire region the transition is asymptotically

tor lasers with time-delayed feedback allows for obtainingE@ntinuous and of DP nature. We then analyze a second wet-

rapidly a large data set, which is basically free of quenchedi"d model(single-step-with-wa)l [8], where previous stud-
noise effects. These features provide the possibility of &S have mdwgted_acontl_nuous DP-like wetting transition for
proper statistical description of the synchronization transiSong attractive interaction between the substrate and the

tion. Finally, the role played by small fluctuations near theinterface. We provide numerical evidence that the effective

completely synchronized phase and their exponential sugictivation rate governing the dynamics of inactive islands
pression in the case of synchronization DP has been di€Orresponds to the case> 1. This is indeed consistent with
cussed in Ref[13]. the DP nature of the transition. The main results are summa-

In the present paper we introduce a framework withinrized in Sec. V, which contains also some remarks and com-

which the crossover from DP to first order transition may beMenNts on future perspectives.
Qxamined. This framework is Fr_]en applieq to two previously Il. A CONTACT PROCESS WITH LONG RANGE
mtrodu_ce_d modgls of r_10neqU|I|br|um wetting. INTERACTIONS

Preliminary simulations performed in the pinned phase ) ] ) )
close to a seemingly first-order wetting transition have re- In this section we introduce a lattice model of a contact
vealed that the activation rate at the border of a depinne@focess in 1+1 dimensions with long range interactions
island depends on the island length. This suggests that tHhich shows a crossover between a continuous DP and a
dynamics of a fluctuating interface leads to an effective indirst-order phase transition. We conS|de_r a per|9d|c lattice of
teraction between the sites at the island boundaries. If thi€ngthL, where the state variabl§ at sitei is either “ac-
interaction is long range, it can affect the dynamics of largdive,” S=1, or “inactive,” §=0. The dynamics evolves by
islands and, in principle, provide a mechanism for a firstt@hdom-sequential updates, i.e., at each time step a lattice
order wetting transition. In this paper we consider a generSite! 1S ch(_)sen at random._ If th_e se_le_cted site is either active
alization of the contact process where the activation rate off Next neighbor of an active site, it is updated according to
sites at the boundary of an inactive domain decays algebrdbe following rules
ically with the domain length. In particular, the activation 10 withrate 1, (1)
rate for an island of lengtlf is assumed to take the form
N(1+a/€?), where\, o, anda are positive constants. We find -1 1 . o -
that, depending on the powet, the model exhibits either a 0'1 [107] - 011 [11077]  with rateA() =\(1 +a/(?),
continuous DP-like(for o>1) or a first-order(for o<1) where @ is a shorthand notation for an inactive island of size
transition. We then examine the possible emergence of such Finally, as for usual contact processes, inactive sites that
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are not adjacent to active ones cannot be activated, thus guarrediction by simulating the generalized contact process de-
anteeing that the inactive state is absorbing. The conskantsfined in Eq.(1). In order to obtain independent checks, we
anda are both non-negative: the case0 corresponds to the performed two different kinds of numerical analyses, i.e.,
usual short range contact process, which exhibits a DP trammeasuring the scaling properties of suitable observables
sition at\.=1.648928) [17]. Fora>0 the power law decay starting from(i) a fully active state andii) a single active
with ¢ of the shrinking rate of inactive islands introduces site (epidemic spreading Although we do not expect the
effective long-range interactions. Within the mean field ap-overall scenario to depend on the parametésee Eq.(1)],
proximation one finds that the transition is continuous forthe accuracy of the numerical simulations actually does de-
o>1 but becomes first order for<Oc<1. To demonstrate pend. For smalf, discontinuities in the order parameter are
this point let p(t) be the average density of active sites atcorrespondingly small, while for large, it is necessary to
time t. In the thermodynamic limitL — o, the mean field consider very large lattice sizes to reach the asymptotic-
dynamics ofp reads scaling regime. All the numerical results reported in this pa-
. per have been obtained fa=2, which represents a good
" a ¢ compromise. We findr,=1.0£0.1, which suggests that the
dio Pt ;l 1+€_a 1-p) mean-field analysis is quite accurate even in 1+1 dimen-
sions. However, we cannot exclude the possibility that the
5 5 ” (1-p)* precise threshold value in such a low dimensional case
=(\—-1)p-Np?+Nap”>, o (2)  slightly deviates from 1. This has already been observed in
=1 directed percolation with long-range infections through Levy
For o> 1 the sum on the right-hand sid@HS) of Eq.(2) is  flights, where a small deviation from the mean-field predic-
finite in the limit p—0 and its contribution amounts to a tion was found for the critical value of the control parameter
renormalization of the coefficient of thg? term. Accord-  (i.e., the exponent of the Levy distributipfl9,20.
ingly, the mean field equation describes a standard DP pro-
cess with short range interaction, thus recovering, for suffi- A. Analysis of the stationary active state

ciently small values o#, the continuous nature of the phase e first discuss the evolution of Monte Carlo simulations
transition. For large, the coefficient of the? term becomes  that start from a fully active state. In order to distinguish
positive and the mean-field approximation predicts a firstpetween first-order and second-order transitions we deter-
order transition. However, studies of similar models indicatepine the density of active sites and the size distribution of
that the mean-field prediction of first-order phase transitiongyactive islands. Let us first summarize the expected results
associated with the change of sign of ifeterm is unreli-  for each of the two quantities. Since the continuous transition

able[18]. . o . should be DP, the average density of active sii¢8, mea-
For 0<o<1, the leading contribution arising from the geq at criticality, should decay as

sum in the rightmost side of Eq2) can be captured by

dp

replacing it with an integral oveu, p(t) ~t77. (5)
5 (7@ -p)¢ On the other hand, off-criticality, in the active phase of an
dp=N-1)p=Np°+N\ap f Tdf : (3)  infinite system, p(t) saturates to a stationary valug),
0 (where(-); denotes time averagevhich scales with the dis-
which, to leading order ip, reduces to tance from the critical poink; as
dp=(\=1Dp+arl(1-0)p" - \p?. (4) P~ IN=\JP, (6)

HereI'(x) is the standard Gamma function. The leading nonwhere3=0.2764868) [21]. These two critical exponents are
linear term in this equation involves a noninteger power, as @onnected by the so-called temporal exponegntso thaté
consequence of the long range nature of the interactions: 3/v,=0.1594646) [21].

Since its coefficient is positive, E¢4) cannot admit fixed Moreover, in DP the size distributioR(¢) of inactive
point solutions for arbitrarily small densities, so that the tran-islands decays algebraically as

sition to the absorbing state is first order. This result is ex-

. K -(2-Blv
pected to hold even far=1, where the leading singular term P(€) ~ €@ ()
in the equation is p*In p. with a cutoff at the spatial correlation length, ~ |\
-\ ™"t, where the exponent 28{/v, =-1.747... follows
Il. NUMERICAL RESULTS from (€£)~1/p~ fﬁ/“. In fact, the average length of inactive
islands

The mean field calculation, that is expected to hold above
the upper critical dimension of directed percolatidg=4, *
indicates that forr> 1 the transition is second order with the (0= fo P(6)¢ d¢ (8)
critical exponents of DP, while fos-<1 it turns into a first-
order transition. The crossover from a continuous to a disédiverges at criticality due to scale invariance, so tRéf)
continuous transition is therefore predicted to take place at- ¢™* with 1<a<2 for {<&,. Since the average size of
o.=1. In what follows we investigate the validity of this inactive islands is proportional to the inverse of the density
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TABLE |. Estimates of the critical points fa=2. They have been obtained starting from a fully active
initial state (7\2) and by spreading analysis of localized initial conditic(m%). Finite size corrections are
responsible for the small differences.

o 0.5 0.8 0.9 11 1.2 15
)\2 1.2850@5) 1.36505) 1.40911) 1.47083)
)\L 1.287@4) 1.33953) 1.36355) 1.40933) 1.42805) 1.47113)

of active sites, one has ﬂn/v<€>~§‘j“’i, which impliesa  tently with the prediction for DPsee Eq.(7)].
=2-Blv,=1.747...[22-24. On the other hand, below=1 a scaling region at the
Conversely, for a first-order phase transitipft) is not  transition point could not be identified. The saturated density
expected to exhibit any critical behavior associated with &f active sites(p); shows a finite discontinuity anB(¢) de-
diverging correlation length at the transition point. Insteadcays faster than ¥7 (see Fig. 3. Accordingly, this analysis
the saturated order parametp}, exhibits a discontinuity at provides evidence that the transition is discontinuous.
the transition. Since in this case the active phase cannot dis-
play any coarsening properties, the average lef@jtlof in- B. Spreading from a single seed
active |szlands should be'flmte, |.§?(€) should decayas'ter A further verification of the mean-field analysis has been
than 1/%. As no hysteretic behavior can be observed in noNnpaineq by simulating modél), starting from a single ac-
e_\qumbnum processes with an absorbmg_stat_e, _the distribug, e site at the origin25]. In this type of simulations, the
tion P(¢) turns out to be the most effective indicator of & rgjeyant variables are the survival probabilyt), the num-
first-order transition. . - . berN(t) of active siteqaveraged over all rupgind the mean
In order to reduce as much as possible finite-size effectsSquare spreading2(t) of the active region. At the critical

we considered very large systems of size2® with peri- . iy .
odic boundary con){jitiogéad)éitionally we have alsop aver- point .O.f a phase transition towards an absorbing state, these
gquantities are known to scale as

aged over a few different realizationg he best estimates of
the critical point)\i, are reported in the first row of Table I. Pyt) ~t™°, N(t) ~t7, Rt) ~ t?2. 9)

For o0=1.1 ando=1.5 we identified a critical scaling region , .
(see Fig. 2 where both the exponenssand 3 are in agree- In the special case of a DP phase transition, the exponents

ment with the best numerical estimates for DP in 1+1 di-97:Z ¢an be expressed in terms of the standard exponents
mensions. Moreover, we comput&d() in the active phase B.v..v as[26]

close to t_he _critic_al point by sampling spatial configu_rations 5=0=Ply, u=(dv, -2B/v, z=plv,. (10

at periodic time intervals and counting all the inactive re- . ) o

gions of sizef. As shown in Fig. 3P(¢) is characterized by Their actual values are reported in the first line of Table
a power law decay slower than @ (prior to the unavoid- !I- A scaling behavior of the type described by HE) is

able exponential cutoff due to finite-size effgctsonsis-

0T T T ALY

e

b)
! I

10° RPN BT B 1l NN
0.001 0.01
10 I}"_7“c|

FIG. 2. Power law critical behavior of the generalized contact FIG. 3. Doubly logarithmic graph of théun-normalized size
process(1) for o=1.1 ando=1.5, compared to the expected DP distributions of inactive islandB(¢) as a function of siz¢. From
behavior(dashed lines (a) decay in time of the density of active top to bottom the solid lines correspondd&s1.5,0=1.1, 0=0.9,
sitesp(t); (b) stationary density of active sites as a function of theand ¢=0.5. The dot-dashed line marks the power-law decay ex-
distance from criticality. Circles correspond to the casel.5, pected in the case of a DP phase transition. The long dashed line
while squares tar=1.1. Both graphs are plotted in a doubly loga- decays as 12, discriminating in 1+1 dimensions between first
rithmic scale. order and continuous phase transitions.
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TABLE Il. Exponents in seed simulations for DP and zero-
temperature Glauber dynamics in 1+1 dimensions.

) 7 z
DP 0.1594646) 0.3136868) 1.58074%10)
Glauber 1/2 0 2

expected to arise also in systems exhibiting a first-order tran- il v i v v

sition in 1+1 dimensiong18], although the relations be-

tween spreading and stationary exponents assume a Mmoic

general form than Eq(10) [9]. In these cases, the critical
dynamics follows from the marginal relative stability of two
coexisting phases(i) the absorbing state itself an@) a

PHYSICAL REVIEW E 71, 026121(2009
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FIG. 5. Time evolution of the average number of active sites
close to the phase transition. In the left panel the average number of
active sitesN(t) is plotted as a function of time foa=2, o

phase characterized by a suitable finite density of active sites.g 5 0.8,0.9 and for different values bf close to\.. All curves
For instance, an active site evolves into a droplet of phasggicate thatN(t) converges to a constant after a transient time

(i) embedded into a sea of phage. At criticality, the

which increases witlor. In the right panel the time-rescaled number

boundary, having no preferential velocity, diffuses like anof active sitesN(t)t™7 (with 7=0.313686 is shown fora=2, o
unbiased random walk. A clear example of such a type is the1.1,1.2,1.5, and for different values ®f close to\.. In order to
one-dimensional Glauber-Ising model at zero temperaturegvoid a messy overlap, the curves have been shifted vertically by an

where the density of active sites in phdsgis maximal, i.e.,
equal to 1. In models such as Ed), the natural existence of
small inactive islandgsee Fig. 4 can seemingly make the

arbitrary value. Their asymptotic behavior indicates good agree-
ment with the expected DP critical scaling. The estimates.aire
reported in Table I. Both graphs are plotted in a doubly logarithmic

separation into two phases questionable. However, for suffiscale.

ciently smallo values, the long-range interactions are strong

enough to suppress the formation of large inactive islands. In We have also investigated the asymptotic behavior of

these circumstances, one would expect the long-term dynanfs(t) andN(t) at criticality (see Fig. 6. For large times, both

ics to be controlled by the evolution of the boundaries. Inquantities exhibit a power-law behavior: for>1 (o <1) the

particular, the scaling exponents of contact processes exhilgrowth rates are consistent with a DP transiti@lauber-

iting a first-order phase transition in 1+1 dimensions ardsing dynamics As expected, the closer isto 1, the longer

expected to be the same as in the Glauber-Ising model @ the time needed to reach the scaling regime.

zero temperature, whose values are reported in the second In conclusion, our simulations indicate that the crossover

line of Table Il. Notice thaty=0 means that the density from a continuous to a discontinuous transition takes place in

remains finite at criticality. our model betweew=0.9 ando=1.1. This result is consis-
Numerical simulations of the spreading dynamics confirmtent with the predictions of the mean field arguments dis-

our expectations. Independently of the results discussed iBussed in Sec. Il. For the sake of completeness, we mention

the previous section, we have first estimatedby measuring
the average number of active sité&) for different values of

the results of simulations made in the marginal casd.. In
such a case, there are indications of a still first-order transi-

\ and then looking for the value of the control parameter thation, although the Glauber-Ising exponents are not yet recov-

minimized the curvature of(t) at long times(see Fig. 5.
By performing simulations up tty,,=3>% 10° Monte Carlo
sweeps(MCs) and by averaging over %Qealizations, we

have obtained fairly accurate estimates, which are listed in
the second row of Table |. The differences with the values

ered on the accessible time scales.

IV. NONEQUILIBRIUM WETTING AS A CONTACT
PROCESS WITH LONG RANGE INTERACTIONS

In this section we investigate to what extent the behavior

reported in the first row provide an indirect estimate of theof nonequilibrium wetting processes can be interpreted as a

magnitude of finite-size corrections.

i

5000

FIG. 4. Typical cluster grown from a single seed o+ 0.5 at

criticality, simulated up to 5000 Monte Carlo sweeps. Notice that

large inactive islands are suppressed and the growing cluster can
regarded as effectively compact.

contact process with long-range interactions of the fétimn

and whether the previous results can be used as a criterion
for distinguishing first-order from DP-like continuous transi-
tions. To this end we consider two previously introduced
wetting models, studying them within the above derived
framework. In practice, we numerically estimate the effec-
tive activation rates at the boundary of detached islands and
show that they are indeed of the forfh). The results ob-
tained in the previous section can help to discern the nature
of the wetting transition in the two models.

A. Restricted solid-on-solid wetting model

be The first system we consider is a restricted solid-on-solid
(RSO3 model[2-4]. It is defined on a one-dimensional lat-
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100 LRRRLUL L IR B R L B 100

FIG. 6. The survival probabilityP4(t) (left
pane) and the average number of active sites

-~ E 3 N(t) (right panel at criticality for o
ar [ | b ] =0.5,0.8,0.9,1.1,1.2, 1(5hown from bottom to
2 ---- 6=0.9 S top) in a doubly logarithmic representation. The
e e .3 predicted asymptotic slopes of directed percola-
F |- o=Ls &E tion (DP) and Glauber-IsingGl) are indicated as
L i bold lines.
10-3 1. ||||||||2| lIIIlllI3l ||||||||4| .m...ls. .......IG. 1 1. .m...lz. I“""I3I .......IA. ||||||||5| ||||||||6|
100 10° 100 100 100 10 100 10° 100 100 100 10
t [mcs] t [mcs]

tice with periodic boundary conditions: at each lattice site
the height variabléy; can take any nonnegative integer value
such thath,—h;,,|=0, 1. Ahard attractive substrate is located

at zero height preventing; from becoming negative. The Here h=h(x,t) indicates the height of the interface on the
interface evolves by random sequential updates controlled byypstrate, whiler=¢(x,t) is the noise terms-correlated in
three real parameteis g and'p. At each move, a sité'is space and timelZ(x,t) (X ,t')) ~ 8(x-x")8(t—t’). The coef-
randomly selected and, provided the above constraints agient » of the nonlinear term is positive fgr>1 and nega-
fulfilled, one of the following three processes is carried outjye for p<1. Detailed balance holds only fqr=1. This
(see Ref[4]). _ , special case can be solved exa¢fg]: its critical properties
Particles are deposited with rajgat the bottom layer and  5re gescribed by an Edwards-WilkinsEW) equation[29]

with rateq at higher layers. , (v=0) equipped with the interface-substrate interaction po-
Particles evaporate from the edges of a terrace with rate }onq).

Particles evaporate from the middle of a plateau with rate Decreasing, amounts to increasing the attractive inter-
' . . N action between interface and substrate. It has been observed
_ The phase diagram of the model is shown in Fig. &olf = {hat pelow a certain threshold, the continuous transition may
is large enoughie.g., do=q), the model exhibits a line of 1 intg a discontinuous or&]. For instance, ap=1 it was
continuous phase transitions, which belongs to the MN unigp, oy analytically that fogy<2/3 the transition becomes
versality class. lIts critical behavior can be described by st order, while the transition point remains locatedgat
Kardar-Parisi-ZhangKPZ) equation27] in a potentiaV(h) =7 Numerical simulations provide very clear evidence that

representing the interaction between the interface and th@is scenario extends to the nonequilibrium casel: the

- N
h=DV?h+ 1(Vh)?- +* L. (12)

p

substrate phase-transition line is still independent qf (see Fig. 7,
while for g, smaller than a threshold valuqé(p), the transi-
tion becomes first order. In this case, the interface dynamics

LS——T——T1— 15— is quite different from the one described by our model. In

fact, direct inspection of the interface dynamics in the active
phase close to criticality shows that there is a non-negligible
probability for the interface to return in contact with the sub-
strate not only at the domain boundaries of inactive domains,
but also inside these domains. In DP jargon, this amounts to
saying that an inactive site may become active even without
being in contact with an active site. This excludes any direct
relation with the model of a generalized contact process with
long-range interactions introduced in Sec. II.

Conversely, for 8<p<1, the dynamics appears to be
strongly related to that of our model. For sufficiently small

detailed balance ]

0.5

>3, (P)

Gp <9 (P)

090

R
1.0
p

1.5

2.0

%

1
p

N
1.5 2

o [i.e., gg smaller then a thresholqz,(p)], a region in the
(p,q) plane arises, where the pinned and the unbound phases
coexist[see Fig. T)]. In this region, an unbound interface
moves away from the substrate and never binds back. On the
other hand, a bound interface remains bound for macroscopi-

FIG. 7. Phase diagram of the RSOS model dgr>q(p) (left
pane) andq,<qy(p) (right panel. The phase transition takes place cally long times and, in the thermodynamic limit, will never
along the full line, while the dashed line in the right panel marks thedetach from the substrate. Only if the growth ratés in-
lower border of the phase-coexistence regisee text creased beyond a new critical value, a depinning transition
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takes place at the upper border line of the phase-coexistenc 10°— T
region[see Fig. ™)]. It is the nature of this transition that
we want to investigate here.

As explained in[3,4], the stability of the pinnedactive
phase in the coexistence region is ensured by the negativ
sign of the nonlinear coefficient: when a large detached 42|
island forms, it grows quickly, acquiring a triangular shape |
with a given slope and eventually shrinks from the edgesk<
with constant velocity. Because of the triangular shape of thes
interface, the probability of returning to the substrate at somé< i
point far from the edges of the island is exponentially sup- 0%k
pressed. Therefore, it is reasonable to conjecture thap for
<1 the model belongs to the class of contact processes.

Numerical simulations of the RSOS model dynanfiost

shown herseem to indicate that also in this case the depin- 1:)1 ' —_— Yo

ning transition may become discontinuous dgK qg(p). For l
p=0 and, correspondinglygjy< qg(0)~0.399, we know that
itis of DP type[3]. On the other hand, the DP scaling r€QIMe 5 function of size of depinned islands. Numerical simulation have

becomes transparent only after a transient time thatagor peen performed close to the special pgirt0. Circles refer tor,
=0.35 is on the order of T0units. Although the crossover =(p=0,q,=0.2,4=0.755, while squares to T;=(p=0.01 g,

FIG. 8. RSOS model—decay of the activation regee text as

becomes practically unobservable for yet smafjgvalues,  =0.2 q=0.76. The graph is plotted in a doubly logarithmic scale.
there are compelling reasons to believe that this regime igor the sake of clarity the data are shifted vertically by an arbitrary
eventually attained3]. value.

In order to shed some light about the order of the transi-
tion for 0<p<1, we have tested whether effective long- size is just a finite-size effect or holds fot arbitrarily large
range effects spontaneously emerge as a result of the RSQffstances. Here below we present an argument supporting the
microscopic dynamics. In practice, we have measured thformer hypothesis.
effective activation rate\(¢)=N,(¢)/Ny(¢) at the border of In order to clarify this point we move progressively away
depinned islands of sizé (N,(¢) is the number of times a from the equilibrium case. Fop=1, it is known that the
depinned site at the border of an inactive island of iras ~ transition is discontinuougt] (for small enougtt) and that
been selected in the stationary regime ahet) is the num- the dynamics of the free interface is asymptotically described
ber of times the selected site is immediately pinnddata Py the EW equation. Whep is lowered below 1, the only
has been obtained by averaging over time, space and diffefelevant difference that is expected to occur is a crossover in
ent realizationgtypically, 100 for large latticefL=10F) and  the free interface dynamics from and EW to a KPZ regime
close to the transition line. above some critical lengtli. [32,33. It is thus natural to

We have first analyzed the nature of the transition clos&Oniecture that as long as the dynamics of the bound inter-
to p=0. In Fig. 8 we display the results obtained at the
transition points To=(p=0,0,=0.2,q=0.759 and T,=(p 10"
=0.0199=0.2,q=0.76. The activation ratex(f) is re- i
ported after subtracting its estimated asymptotic value ;8 i

=lim,_.\(€). In both cases, it is found that it converges 5
towards\., faster than 1¢, although no precise estimate of =
the scaling rate can be obtained. Altogether, these result 2
suggest that DP critical properties persist also for small val-
ues ofp andqg< qg(p). On the other hand, fop=0.2 and
q0<q8(0.2):0.515... our findings are suggestive of a first-

order phase transitiofand thus, in agreement with previous

findings[3]). In fact, from Fig. 9, we see that in both points i o
T,=(p=0.2,0p=0.4,g=0.70, and T3=(p=0.2,9,=0.3, sl , L | o
g=0.745 the activation rate is found to converge slower 10 10! 10°

than 1/, although the actual value of the exponent 1 !

appears to depend on the parameter. According to the crite- £, 9. RSOS model—decay of the activation réee text as
rion introduced in Sec. Il, these results are therefore compa function of size of depinned islands. Numerical simulation have
ible with a discontinuous phase transition. been performed at the critical poin@:(p:01q0:0_4,q:0_70

As a result, we can attribute the seemingly first-order nafsquaresand T;=(p=0.2,0,=0.3,q=0.749 (circles. The graph is
ture of the transition to the existence of effective long-rangeplotted in a doubly logarithmic scale. Datagt 0.3 show a power
interactions. Nevertheless, it remains to be proved whethdaw decay with an exponenrt=0.692), while gy=0.4 data decays
the slow dependence of the activation rate on the windowvith an exponentr=0.892).
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face remains insensitive to such differences, the scenario
should not change. Here below we argue that this occurs for
system sizes smaller than some lengiththat can be ex-
tremely large.

The best way to characterize the above mentioned cross-
over is by monitoring the widthw(t)=({(h-(h))?)¥? of an
initially flat (and fre¢ KPZ interface. In fact, after an initial
growth ast'* (in agreement with EW equatipnat some
time t., w(t) crosses over towards a behavior of the tyjsé
and eventually saturates because of the finite length of the
system. In other words, for times smaller thathe interface
behaves in the same way as in an equilibrium regime. Since
the stationary profile of an interface is a diffusive random FIG. 10. Updating rule of the SSW model. The full line repre-

walk, one can safely assume that sents the interface, while the shaded area represents the wall.
) — Dashed segments indicate interface growth occurring in randomly
w,. = lim w(t) =kyL, (12) chosen local minimasee A and B in upper paneand in all sites

t—o

located below the wall after it has been shifted upwards by one.
wherelL is the interface length. By extending the above re-
lation to finite times, one can interpret it as the definition ofcrgssover length is so large that the asymptotic regime is
the effective scal&(t) that is resolved at time For instance, practically unobservable. Note also thatdiverges exponen-
£.=(wW(ty)/K)? is the minimal length of a free interface that tially as p— 1, thus approaching the equilibrium point.
allows observing a crossover to the KPZ scaling behavior.  Numerical simulations performed at the transition point
Within the context of a bounded interface, this implies T;=(p=0.01,g=0.76 g,=0.2) indicate thatk=0.1791) and
that deviations from equilibrium are observable only in thosew(t,)=2.92), yielding the estimate/,~260. On the other
depinned islands of length> €. Accordingly, the problem  hand, direct computations of the island sizes indicate that
of determining the minimal length to observe deviations¢,~O(10?), yielding L.~3.5x 10° and altogether confirm-
from the equilibrium scenario amounts to estimating theing that the crossover towards DP can be observed, as we
probability for a suitably large depinned islands to arise. Atactually do. Moreover, at the transition poifiy=(p=0.2,
equilibrium, the theoretical analysis developed4ihas re-  4=0.704,=0.4, we find k=0.2041) and w(t)=5.72),
vealed t_hat when the transition is _cisconﬂnu@hae scenario while ¢, is almost unchanged, yielding the estimafes
we are mteresteq Jnthe mterfacg_ls exponentlally localized <780 and L.~2x 10°. Consistently, no indication of the
at Fhe substrate, i.e., the probability to.flnd !arge valpes of the..ossover has been observed up to times on the @)
heighth scales a§’(h)ze_xp(—h/ho). It is quite pIqq&bIe o and system sizes of leng®(109).
assume, and we have indeed numerically verified, that as
long as deviations from equilibrium are not detectable, the
exponential decay survives also fo< 1. Since we have also
seen that depinned islands have an approximately triangular The second model we have tested is the so-called “single-
shape, this means that also island lengths are exponentialgtep-with-wall” (SSW model [8], a variant of the well
distributed P(¢) =exp(—€/£,), where {, is proportional to  known single-step model introduced in Reff30,31]. Here,
ho, the proportionality constant being related to the slope othe growing interface is described by a set of integer heights
such islands. h, at sitei of a one-dimensional lattice of length with
As a result, the probability that at least a given islandperiodic boundary conditions. In this model, the “continuity”
reaches the siz&. is proportional to exp-£./{,). In a large  restriction|hj—h;,4|=1 plays the role the RSOS constraint.
but finite system of sizé, this may happen independently at An upward-moving wall is located at some integer height
different places. Hence the first large island would appear if(t), below the interface. It moves with velocity,, thus
a typical time r={./L exp(€./{y). Accordingly, the mini- pushing the interface which cannot be overtaken by the wall.
mum system size guaranteeing that such islands are observitpreover, in analogy with the RSOS model, the interface is
with nonnegligible probability and dominate the wetting dy- also attracted by the wall. The model evolves by random-
namics is sequential dynamics, i.e., at each time sdepl/L, a sitei is
chosen at random. If the interface has a local minimum at
L= €cexpltd/ o). (13 §itei (namelyh <h,,), the heighth, is increased by two
Therefore, as long as theffective size remains smaller Uunits with probability 1 if hy>h,, or with probability (1
than L., a seemingly first-order transition is observed. Be-—0) wWhenever the interface is pinned to the wdi|=h,).
yondL,, in the fully nonlinear regime, several theoretical andSince 0<q<1, an effective attractive force is introduced
numerical studies of different modef8,14] suggest that a between the wall and the interface. Aftey=L/v,, time
DP behavior sets in. As a result, we expect in particular thasteps, the wall is moved upward by one unit, while the height
the distribution of depinned islands crosses over from arof all interfacial sites that would be overtaken by the wall is
exponential to a power-law distribution. However, given theincreased by two unitée.g., see Fig. 10 On the basis of
exponential dependence bf on €, it may happen that the these microscopic update rules, one can easily infer that the

B. Single-step-with-wall model
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0.495 T T | length scales, and is thus accessible in numerical studies of
finite systems. The reason is that the SSW model is designed
in a way that the nonlinearity is maxim@2], and hence the
crossover length is fixed and of order 1. On the other
hand, in the RSOS model the nonlinearity depends on the
growth parametep, with a diverging crossover length g@s

— 1.

M)

V. CONCLUSIONS

In this work we examined a possible connection between
X wetting phenomena and contact processes. Inspired by the
Y ap puzzling richness of the phase diagrams found in various
0.465 ' ' ' models, we introduced a generalized contact process with the
l goal of capturing both the DP and first-order transitions ob-
o ~ served in one-dimensional nonequilibrium wetting transi-
FIG. 11. SSW model—Double logarithmic plot of the activation tions occurring at nonzero interface velocity. The element of
rate\(¢) as a function of the sizé of depinned islands. Numerical novelty distinguishing our model from standard contact pro-
simulations have been performed at criticality: circles correspond t¢esses consists in an algebraic dependence of the activation

IC_1=0-7. vwk=0-4297 W?_ile Sql;afes t9=0.8, v,,=0.3489. 'DaIShid rate on the lengtt of the depinned island containing the
ines mark our best fits with Eq.1), rendering respectively the inactive sitex(£)~=\(1+a/ ().

estimatesy=1.20(5) ando=1.303). A mean-field analysis predicts that whet- 1, the model
exhibits a continuous phase transition characterized by DP
critical exponents. In other words, the algebraic decay of the
interactions is not so long-range as to alter DP critical prop-
Yerties. Conversely, for € o<1 the phase transition turns to
wall to the free interface, ang, i.e., the “stickiness” of the a first-ord_er_ one. Ngmerical simulations_ confirm the mean-
' R field predictions, which are found to provide also an accurate

waII_. By decrea3|_ng;w, a phase transrglon Il a_pmned toa estimate for the critical value,, separating the two different
depinned phase is observed. Numerical analysis and analypégimes:afl.OiO.l from numerics. By directly measuring

cal argumentg8] show that whenmy<q'=0.444... such a | o — o .
transition takes place at,=1/2, i.e., when the relative ve- the effective activation rat&(€) in nonequilibrium wetting

locity of the wall with respect to the free-interface changesProcesses, one can use the estimate of the expenesta
its sign. The transition in this part of the phase diagram igractical tool for_ pr_oblng the nature of a wetting transition.
continuous and belongs to the MN universality class. or 10 apply the insight gained from the DP process to wet-
>(q’ the effective attractive force binds the interface to thetind phenomena, we considered in this paper two wetting
wall and a continuous DP phase transition takes place at @odels, RSOS and SS\gee Sec. IY. Previous numerical
critical valuevS(q) <1/2. studies of the_ latter mod¢8] indicate that for a sufﬂmeptly

In order to estimate the role of long range interactions inS'oNg attractive force of the substrateall), the wetting

the critical dynamics of the SSW model, we have measuredfansition .is DP. QU( criterion'co.nfirms these results, since
also in this case the effective activation r:ﬁ( @). Since the the effective activation rate is indeed found to _converge
T . ) faster than 14 to its asymptotic value. The phase diagram of
time interval 1b,, between two consecutive wall moves can the RSOS model on the other hand is known to be more

be regarded as _thg natural “”?e scale of the SSW model, W(%mplicated, since it contains both first order and continuous
meg;qred the .pmnlng.rate attimg=m/v,, (m=1,2,..) fOF wetting transitiond3]. Our analysis suggests that fpr< 1

an initially depinned site located at the border of a depinnegne engire phase-transition line located at the upper border of
island of size( at timety,_,. Averages have been taken over ihe coexistence region should asymptotically belong to the
time, space and different ensemble realizatigtypically  pp yniversality class. However, the finite-size behavior de-
100 for large enough systenit=10) close to the DP criti- a5 on two length scale) the crossovef . between EW

cal line, atq=0.7 andq=0.8. Our results are shown in Fig. znq kpz roughening behaviofii) the effective sizef, of

11, where numerical data has been fitted wilf{)=\(1  depinned islands. As long as the system size is smaller then
+a/¢?). There is evidence that(¢) decays to a constant Lc={ceXp({c/{o) and islands of size larger thah are not
faster than 14 with exponentsos=1.2055) (for q=0.7) and significative;ly generated,l numerical simylations can qnly
0=1.305) (q=0.8). According to our predictions based on provide .eVIdence of a first-order transition. A q*uaht_atlve
the behavior of the generalized contact process, this impligghase diagram for the RSOS model in the agse do(p) is

a continuous DP transition, which indeed has been observezketched in Fig. 12. .
in Ref. [8]. It is interesting to compare our results with those recently

Unlike the RSOS model discussed in the previous sectiorPbtained for the KPZ equation with an attracting hard core
here in the SSW model the DP behavior is observed at smafiotential[ 14]: h=DV?h+ »(Vh)?=V’(h) +¢. Although the au-

velocity of the free interface is 1/2 in the thermodynamic
limit.

The phase diagram of the SSW model is controlled b
two parametersv,,—1/2, i.e., the relative velocity of the
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1.5

y T T T T (first-orde) behavior has been observed in a parameter range
Depinned phase where the crossover scalg [as defined by Eq13)] is nu-
merically accessible(unaccessible as suggested in the
present study. This work helps to better understand the part
of the wetting phase diagram characterized by a negative
coefficient of the KPZ nonlinearity, which is precisely the
| part related with the complete synchronization transition
the case of an MN phase transition, this relation can be made
explicit by use of the Cole-Hopf transformatid4]). In
) particular our analysis indicates that the dynamical details of
Pinned phase the system may induce a seemingly first order phase transi-
1 tion which lasts over exponentially long time and space
scales, effectively suppressing DP critical properties.
05 : 0'5 : ; . Ts Finally, we wish to comment about the transition line for
P p>1 (where the coefficient of the KPZ nonlinearity is posi-
S _ tive). For go<qy(p), the transition is known to be first order,
FIG. 12. Qualltatlv*e “finite-size” phase diagram of the RSOS |y 1t it occurs when the interface velocity changes digh
model in the casq0<qo(p).We exp.ect the entire tran.si.tion line for i.e., there is no region of phase coexistence. Accordingly,
p<1to belong to the DP universality class. The full liliee A) on 4o 5inneq islands are no longer characterized by a triangular

the 'Pfft Of.the equilibrium .po'.n(EQ) marks a regionin Wh'c.h the shape and interface fluctuations may easily give rise to the
transient first-order behavior is the only numerically accessible one,. . . . . L

. . . . pinning of inactive sites far away from the active ones; in
with a crossover lengtt.. to DP behavior which diverges gs

— 1. On the other hand, also systems of moderate size can exhibit%ther words, the analogy with contact process is seemingly

DP critical behavior over the dashed lifi). The dot dashed tran- IQSt' It would be interesting to investigate Whether th.e inglu-
sition line (C) on the right of the equilibrium point is genuinely first SN Of some sort of “spontaneous” nucleation of active sites
order (see text Finally, the light dashed line where the free inter- €an eventually account for the scenario observegferd. A

face velocity changes sign marks the lower boundary of the phasdUrther open problem is the crossover from the DP to the MN
coexistence regiotPQ). universality class, which takes place in both RSOS and SSW

models. The study of this crossover would require the inclu-
thors do not exclude the possibility that the entire transitiorsion of nucleation of active sites in the interior of inactive
line belongs to the DP universality class, their numericaldomains. An appropriate generalization of the DP model in-
analysis revealed both a first order and a DP wetting transicluding such processes could yield useful insight onto the
tion. In particular, DP critical behavior has been observec:rossover phenomena taking place in nonequilibrium wet-
upon decreasing the attractive force and reducing by a factaing.
ten both the diffusion (D) and the nonlineatv) term with
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