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We calculate the field-theoretic functions of the generalized dynamical mddem®ere two conserved
secondary densities are coupled to a nonconserved complex order paré@®@temn two-loop order. A
transformation to “orthogonalized” densities can be performed where only one secondary density with non-
trivial static coupling to the OP exists while the second one remains Gaussian. The secondary densities remain
dynamically coupled by the nondiagonal diffusion coefficent. General relations for the field-theoretic functions
allow us to relate the asymptotic critical properties of modé& @ the simpler model Cwith only one
conserved density coupled to the OP. The nonasymptotic properties, however, differ as can be seen from the
flow of the dynamic parameters, which is presented for the case of a real OP with compofess 3.
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[. INTRODUCTION decouples from the OPD and model C reduces to model A
[11]; region L, (weak scaling where the OPD and the SD
The universal critical properties of dynamic critical be- scale differently, the OPD with the model A dynamic critical
havior may be separated into different universality classesxponentz=2+c» and the secondary density with=2
depending on the structure of the set of dynamical equationsa/v where « is the positive specific heat exponent and
in addition to the separation into static universality classeghe correlation length exponent; region (Btrong scaling
[1]. The set of dynamical equations contains the slowwhere all densities scale witt=2+a/v. In the last region
densities—that is the order parameter dengi®PD)— the fixed point value of the time scale ratié of the relax-
because of the critical slowing down and other densities o#tion rate of the OPD and diffusion constant of the SD is
conserved quantities in the systefsecondary densities finite and nonzero, while in the other regions it is zero. This
(SD’s)]. Moreover, it is important in which way these SD’s means that in regions | the OPD is much slower than the SD.
couple to the OPD and with each other. One may have refhe reverse situation of the SD being slower than the OPD
versible couplings found from Poisson bracket relatiffis (W' =) is not a stable fixed poirftL2].
static couplings in the Hamiltonian, and/or a coupling via the  As we can expect from other models containing additional
irreversible part in the equatiofidiffusive terms in the equa- conserved densities like model Bnd model E [13] the
tions of motion). additional conserved density does not change the asymptotic
The structurally simplest model in this respect is model C,
where the nonconserved OPD is coupled via a static term t¢ 2.0 x T : T : T
one SD[3]. This model is highly nontrivial and its critical .\
properties have been resolved only recefdlly Another im- I \
portant aspect is that model C with OP dimensioris the 15l \\ i
limiting case of more complicated models with reversible ' \ a=0
terms. One example far=2 is model F describing the criti- i N /
cal dynamics ofHe-*He mixtures(seg[5] for the model and N
[6] for a quantitative comparison of theofy] with experi- 1.0 alv=en N T
meny. However, this model containe/o conserved densities N\ region | : p,*(w,)=0; =0
coupling to the OPD. Thus it seems to be worthwile to gen- | X
eralize model C to the case of more than one secondan s s
density(model C'). Moreover, the properties are of interest
when one wants to describe the tricritical behavior and/or the L region Il p_*(w,)$0; y"$0
crossover between tricritical and the usual second-order tran
sition behavior for’He-"He mixtures. Nevertheless, model ~ 9 ' , ' 5 ' 3 ' y
C’ might be of interest in itself. One might also think of
applications to segragating systertaloys) described by
model C. The order parameter in these systems is noncon- gig, 1. Regions of different dynamical critical behavior in the
served and couples to the concentration of one componenty plane (e=4-d), which are defined by the stable fixed point
[8,9]. If one adds the energy density, modél i€ obtained.  values of the static coupling and the dynamic parametgs. The
From model C one knows that there are three regionsixed point value of the second dynamic parameterand the
depending on the number of components of the QB&  imaginary part o, are always zero. The borderlines are defined by
Fig. 1 and compare Fig. 1 if10]): region L where the SD the conditions indicated.

region |,: p,*(w,)=0; y*¥0
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critical properties of the OP. This was guaranteed by certain P = — o] U2 S(y — 5 S(t — +
structural properties of the field theoretic functions valid in- (O, (XD Oy (X', 1)) = = 2LV-SX = XY AL =1 (8)
dependent of the perturbational order of the explicit fieldThe critical behavior of the thermodynamic derivatives fol-
theoretic calculation. This is the case for model @o.  |ows from the static functional
General relations of the model- Cfield-theoretic functions
prove that the asymptotic critical behavior of the OP is the H{vo, Mio} = H o} + Hil tho, Mic}, 9
same as in the simpler model (Restricting the analysis to )
the case of a real OP we show that although the fixed point/ith an OP functional
values of the dynamic parameters depend on a new time . w2 d o
. A - G -

isncilg (;aetll%N(gs Et}f;eFoilghimm critical exponents are the same asHW{ Job = J dix ) Hidol? + EE SV oV il + Z|¢°|4

The paper is organized as follows: After setting up the
model equation$Sec. 1)), the model is renormalized in Sec.
Il 'and the relevant field-theoretic functions are calculated ingnq 5 secondary density functional
two-loop order. Then it is shown that the asymptotic critical
properties can be mapped onto modgiSec. I\V) and in Sec. o)1, 1, 1, -, o
V the nonasymptotic flow is considered. After the Conclu- Hm{'/’Ova}:f d*x 5>Mio* 5Ma0* §7mzo| ol”— hmyo
sion some details of the calculations are contained in the
Appendixes. 11

i=1 p=1
(10

. with |<ZO|2E zZE-zZO [the center dot denotes dn/2)-
Il. MODEL C " EQUATIONS dimensional scalar producandd is the spatial dimension.

We consider a system including a complex nonconservea_he static functional for the secondary,densn(eﬁ)_ is of
course not the general form for model’Clt contains al-

OP #o(x,t) and two real conserved secondary densitiegeaqy several special features. First, only one coupjiagd
Myo(x,1) andmgo(x, 1). The order parameter is assumed to beone external fieldh, corresponding to the second secondary
a vector withn/2 (n=2,4,..) componentd14]. The two '

secondary densities are scalar quantities. The critical dyna densitymy, are present while the first secondary densiy
; y g ‘ . Ay ppears in a Gaussian form. Second, the whole Gaussian part
ics of the nonconserved OP is purely relaxational while the

. P . 0of the secondary densities is diagonal and static susceptibili-
dynamics of the conserved secondary densities is determin y 9 P

e . ; ) §es are absent. It is obtained by some suitable “orthogonal-
by a diffusive mode. This leads to the dynamic equations ization” of the general form of the static functional, which

- SH usually appears. A subsequent scaling of the densities leads
W _ _ o — éw, (1) to the static functional in Eq11). Details concerning these
at Sy transformations are described in Appendix A.

The above static functional may be reduced to the

-, Ginzburg-Landau-Wilson functional with complex OP by in-
Iy _

Vo _ _ o+ oH s ) tegrating out the secondary density.
- .//1
ot 5!#0 1 1n/2 d '::J
s s HGLWZJ d’x E? thol* + EE > VuthoV .t + Z|l/fo|4 .
am ° ° i=1 u=1 :
0= \V2—— + LV2— + 6, , (3) .
ot My, My M (12)
5 S S The parametersandu in Eq. (12) are related ta, U, y, and
:1t20:|_vzéTn +;Lv2&n +0m21 (4) hin Eq(g) by
10 20

which we will call model C’ in the following. In the case of F=fedh 0=T-3 (13
a real order parameter it reduces to modeél The super- The choice of &n/2)-component OP in the equations above
script + denotes complex-conjugated quantities. The kinetiguarantees that the static functioné® and (12), and also
coefficient of the OF'=T""+iI"” is assumed to be a complex all static properties derived from them, are fully equivalent
quantity. The stochastic forces, fulfill the relations to the corresponding static properties of a system with a real
' n-component order parametéthen with n=1,2,..). The
(0, (x,1) 0’[&_(x’,t')) = 4f’5(x_ X)d(t-1)8;, (5)  ability to eliminate the secondary density péil) in Eq. (9)
: ) also leads to relations between the correlations of the second-
R ary densitym,, and the OP correlations. For the first and
(O, (X,1) O (X', 1)) = = 2AV25(x-x)8(t-t'), (6) second cumulants one obtains

S
(O, (XD 6 (X 1)) = = 2uV2S8(x = X) 8t =), (7) (Myy(x)) =h = 7<§|¢o(><)|2>, (14

026118-2
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oo 1= 1 - ) ¢ functions of the kinetic order parameter coefficieh{d™*
(Mpg(X)Mpg(0))¢ = 1 + 72 > | (X)) 5|¢0(0)| . (19 are defined and calculated analogouslj0] [compare Egs.
¢ (16) and(17) thereinl. The only difference is that they now

Note that the angular brackets in Eq$4) and(15) have to  depend also on the additional kinetic coefficients of the sec-
be calculated with a probability density d€xj1)/ N on the  ondary densities. The correspondiifunctions follow from
left-hand side and with expHg w) /A’ on the right-hand Egs.(19),
side, where\ and A are appropriate normalization factors.
The external fielch is chosen to eliminate the finite expec- LUy =0, 4uy= gmz(u’y)' Luluy) = ngz(u’y)’

tation value ofm,, Choosing (21
o /1 - and are determined by the stafidunction
h= y<5|wo<x>|2> (16 Y the stal
1
from Eq. (14) immediately follows{my(x))=0. gmz(u,y) = 57’25#(“)- (22)

The functionB 2(u) is connected to renormalization of the
specific heat and has been definedf].

*

IIl. RENORMALIZATION OF MODEL C

Using the static functional9) the renormalization of the Introducing time scale ratios
static parameters is quite analogous to moddfdt details I I L
see A_ppendix B ir[l_O]_). The secor_ndary o_lensitylzo and all W=, Wo=—, Wa=——, (23
couplings and coefficients belonging to it correspond to the A M VA

secondary densityn, in [10]. The additional secondary den-

sity myo does not couple to the order parameter. Therefore n
perturbational contributions arise from this density and no U v Iwh) = £e(U. v IW 24
new renormalization is needed compared to model C. This bug (U 7o tWH) = Gl 7, (), 24
outlines the advantage in using the static functional with Eqg.

e immediately obtain the correspondifidunctions as

(11) instead of Eq(A1). S (U, 7, AW}) = &r(u, 7, W) = 7B ya(u), (25
In dynamics the kinetic coefficienis andI"™* renormalize
identical to model C. namely, Lu(U, 7, (W) = 0. (26)
I= Zrl, I = ZiIre. (17) The B functions for static or dynamic model parameters
The kinetic coefficients of the secondary densities renormal<i &re generally defined as
ize as O o B} = ai(- 6+ £, (fe)), 27)
N=ZN, L=ZL, p=Z,p. (18 \wherec, is the naive cutoff dimension of the corresponding

Note that the coefficient here corresponds to in [10]. In  parameter obtained by power counting. The stgtiunc-

the present dynamic model mode couplings are absentions and flow equations are explicitly listed [ih0]. The g
Therefore we simply have functions of the time scale ratiog can be written as

=1, 2=Zy, Z,=7,, (19 By (U 7, AW}) = Wi g (U, 7, (W), (29)

WhereZm2 is the renormalization factor afi, (corresponding with i=1,2,3, which follow immediately from Eq.(27).
to Z,, in [10]). Since the cutoff dimensiow; of all kinetic coefficients is
zero, it is zero also for all ratiosy;; see Eq.(23). The ¢
functions are taken from Eq§24)—(26). The flow equations
of the time scale ratios are given by

We will use in statics and dynamics the same definition

' dw
for each{ function, |d_|| = Buy (U, 7, (). (29)

dinz!
La({aih) = an K' : (200 Equation (26) implies thatws stays constant at its initial
value and therefore appears like a fixed external parameter
in the following, where{a;}={u,y,I',I'"",\,u,L} is the set  within the model[15]. The only dynamic{ function {r,
of static and dynamic model parameteas.represents any which defines the dynamical critical exponent of the OP, has
density ¢, my or any model parametey,. to be determined from dynamic perturbation expansion
Because the secondary density, does not cause any within model C’. All other functions are known from the
additional renormalization in statics when H@1) is used, Ginzburg-Landau-Wilson mod¢l2).
all static ¢ functions, and the relations between them, are From the general structure of the functions (28) we
identical to those presented [ih0] for model C/C. Also the  obtain immediately the flow equation for the ratig/w, as

A. ¢ and B functions

026118-3
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dw,

dlw, (30

= ¥’B,a(u),
which is completely determined by static quantities.

The above equations are valid in the complex modél C
as well as in the real model’CIn the first casgw} is a place
holder forw,,wy,w,,w;,w; (w; andw, are complex quan-
tities); in the second casgv} stands forw,,w,,ws.

In the complex case the imaginary partsvaf andw, in
Egs. (23 are both related to the same imaginary dditof
the kinetic coefficient of the order parametar and u are
real quantities anyway Thusw; andwj cannot be indepen-
dent from each other. This means that the ratjéw, has to
be real even for complew;, which is verified in Eq.(30).
From the condition Irtw;/w,)=0 we obtain immediately
Wi

i
2

1=W, (31)

B. Two-loop results

Using the model with the transformed static functional
(11), the explicit two-loop expressions of the statidunc-
tions are identical to those of model AT in[10] and can be
taken from there. In order to simplify the dynamic perturba-
tion expansion the dynamigfunction {r has been calculated
within the dynamically diagonalized modé€B8) and (B9)
given in Appendix B leading to the expressitBil4).

For the following considerations it is convenient to intro-
duce

W; )
L} I:1,2,

- 1+w, (32)

Pi
mapping the time scale ratiog, andw, onto a finite region
of the complex plane. In the case of modélwherew; and
w, are real the corresponding parametersand p, fall into
the interval 0< p; < 1. Transforming th& function (B18) of

the dynamically diagonal system back to the parameters of

the dynamically nondiagonal modé23) and (32), respec-
tively, we obtain

2
£ (U, v,p1p2ws) = £8(U) + %@{1 -t -L)
+1ﬁ{&2 _D+M’§}
21-WE| 2 A 20 1-w2
2
_}<ﬁ> (D++D_)
2\K,
1w (M)z @4 "
e e K

with coefficients
WE= (1 - py)(1 - pp)W5 (349)

and

Kp= V(p2=p0)?+ 41021~ p)(1 =03, (35)

The parameterD, are defined as

PHYSICAL REVIEW Er71, 026118(2005

t(p1—p) +K,
2

£ =

D

|

where we have introduced

2
Ri) (1+R)IN(1-RY), (36)

2p1p2

. (37)
p1tp2tK,

Ri':

The cross coeﬁicient@i) are

P1P2

(P1+Pz)<1 + 1 —VV§> —4p1p;
(1-p)(1-p)(1-W5)
Xl‘Plpz_W%m<1_ ),

1-W5
D@ = P2,
(1 -p)(L - p)(1 - WA (1 -WB)?

B )
Xl =—=-1]In
R,
1 2
e
R
The contributiong*FA)(u) in Eq. (33) denotes the dynami¢
function of model A. Its two-loop expression is given in Eq.
(B16) in Appendix B. The above function (33) is valid in
both the complex and real models. The difference between

the two cases lies in the expression fogp. In the complex
model C’ it reads

D(><l)= 2

P1P2
1-W5

(38)

p1t P2~ 2p1p2
R(1-W5

p1t P2~ 2p1p2

39
R.(1-W)) =5

F+ 2
1+5)
r

)

r

e T (40

1+2—
r

2
LA:2In—F++ 2
1+

r

with T', and w;, w, respectively, as complex parameters,
while in the real model C(in the limit I’ — 0) the function
L, reduces to the simple number

4
La=3 Iz, (41)

with wy, w, also as real parametefs; is always real
The ¢ function (33) reaches different interesting limits for
special choices of its arguments.

1. Model C’ for wz=0

The first limit of interest is the case where the dynamic
couplingL of the two secondary densities vanishes. The sec-
ondary density with index 1 has no static coupling to the
order parameter. It couples only via the dynamic cross coef-
ficient L, or w; respectively; see Eq$3) and(4). Thus set-
ting wz=0 the function has to reduce to tkefunction of
model C/C from [10]. Taking into account

026118-4
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w3=0 w3=0

W;— 0, K,— p2—p1, (42)

following immediately from(34) and (35), the ¢ function
(33) indeed reduces to

&r(u, v, p1,02,0)

=W + Pz’}’z{l - %u(l -Ly)

1 n+2 n
+ 59272|:TLA_ 5 tp2T (1+py)In(1 ‘Pg)]}

=49, 7,00, (43

which corresponds to the model &C ¢ function where the
secondary density is indexed with[2ompare Eq(50) in

PHYSICAL REVIEW E 71, 026118(2005
_ 1-wg
p2=p 1- pW% )

as a function of the model’CC parametep and the external
parametemws.

(48)

3. Model C' for p,=0

This limit describes a model where the secondary density,
which couples withy to the OP, is getting very fast and
therefore unimportant in the critical region. From Eg§3)
we obtain

(U, y,p1,0,W3) = (). (49)

In this case the critical dynamics is completely described by
model A.

[10]]. The contributions of the other secondary density com-

pletely drop out.

2. Model C’ for p;=0

This is another limit of interest and it is equivalent to
w; =0 which means that the first secondary density is gettin
very fast compared to the order parameter. In this case
should not influence the critical behavior and the critical dy-

namics should also be determined by model@ Equations
(34) and (35) reduce to

wq=0

W; — (1 - pp)w5,

wy=0

K, — po. (44)

Performing this limit one has to take into account tRat

becomes 0/QR, is simply 0. A careful examination reveals

that we have

P2

= 1o - pw

p1—0

(45)

leading to

2
¢r(u,9,0,p0,W3) = g(rA)(U) + p(p2,Ws3) 3’2{1 - %U(l -La)

1 2
¥ 5p<p2.w3>f[%LA -2+ o)
~[1+ plpp W In[ 1 ‘Pz(Pzaws)]] }

=9, ,p),

with p(ps,w3) as

(46)

P2

—_—. 47
1-(1-po)W3 “0

p(p2,W3) =

From Eq.(46) we can see thgb, andws only enter in the
special combinatiori47). We obtain a model @C ¢ func-

tion with a dynamic parametes and therefore the whole

critical dynamics is determined by model/T. All solutions

concerning fixed points and stability pfcan be taken from
[10]. p, is then obtained by inverting E§47) , which leads
to

IV. ASYMPTOTIC PROPERTIES OF MODEL C "'/C’

The asymptotics of the model is essentially determined by
the fixed points and their stability from which the critical

oints and their stability regions are the same as in model
"/C [10] where an extensive discussion has been per-
formed.

ixponents follow. From Ed9) it follows that the static fixed

A. Fixed points

Restricting the discussion to the stable fixed points we
have to consider the Heisenberg fixed paihtuy which is
always stablgd<d.=4) for all OP component numbers
The stable fixed point fory then depends on. For Ising
models withn=1 a finite fixed pointy*=1, is stable, while
in planar(n=2) and Heisenbergn=3) modelsy*=0 is the
stable fixed pointthis holds for alln=2). uy and y¢ have
been calculated in several renormalization schemes. Within
the minimal subtraction scheme thkeexpanded results in
two-loop order can be taken from Ed42) and(45) in [10],
for instance. When Borel resummation is used the fixed point
values foruy/24 can be found in Table 2 ¢1.6] for integer
numbersn=0,1,2,3.

The dynamic fixed points/" are determined by the zeros
of the B8 functions(28) together with Eq(24) and (25). But
it is more approprate to consider the fixed points of the pa-
rametersp; introduced in Eq(47). From the definition47)
of p; and thef functions(24) and(25) we obtain immediately

Bpl(u! 7!p1!p21w3) = P1(1 - pl)gl"(u! '}/,pl,Pz,Wg), (50)

sz(ui 'y,P1;p2,W3) = pZ(l - pZ)[gl"(u! Vs pl!p21W3)
- ¥Bpa(u].

Inserting a static fixed point*, v* into Egs.(50) and(51) we
have to look for solutiong] and p} of the equations

(51)

Bpi(U*ly*!pI!pg'W3) = 0! I = 1!2 (52)

The above equations have always the four trivial solutions
(p7.,p3)=(0,0,(0,1,(1,0,(1,2). The nontrivial fixed
points with finitep] or p; are determined by the equations

026118-5
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gF(U*! Y*aPIaPEvWS) = 01 (53) I ' I ' I ' I
n=1
gF(U*! ‘y*ipLPEIWS) - ‘y*ZBt//Z(U*) =0. (54) 0.4 - 7]
p*=0.33 model C
The stable static fixed point* determines which solutions of e
the above two equations are possible. -
(i) In the casem=2, with v*=0, we havedsee Eq(33)]
£r(Un,0,p1,p3,Wa) = & (Uy) # 0. (55) oz} -
The two equation$s3) and(54) reduce to the same equation
without any solution. Thus in this case no fixed point values
p; different from O or 1 are possible.
(i) In the casen=1, with y* =y, we obtain, from Egs.
(53) and (54), 0.0 : : . . : . . . .
0.0 02 0.4 0.8 0.8 1.0
{r(Un, v, p1,p2: W) =0, (56) w2
r(ug, 'YC’PI’F);’W3) - 7(2:B¢2(UH) =0. (57) FIG. 2. Fixed point value fop, as function of the parameter;

Assuming that we have found a solution wigfi# 0 which at OP component number=1 calculated from EG(59) .

fulfills Eq. (56), the second equation would be in contradic-

tion to the first sincey2B,2(uy) #0. Thus a solution with By, 9By,
both parameterp} # 0 andpj # 0 is not possible. The only [(plgp} Ip1  dpy
nontrivial solution isp; =0, then Eq(56) is obsolete accord- — | = (60)
ing to Eq.(50) , and one has to solve Ipi % ﬂ
dpz  Ipz

{r(Un, ¥e, 0,03, W3) = 2B 2(up)
= 49(Un, ve,p®) — ¥2By2(up)
=0 (58)

1
for p, or p, where the first equality follows from Eq46). Ay = §[S+ +G1+ Gy (s + G+ Gy)* —45.G,], (61)
However, nothing has to be calculated since p*(p5,ws)
defined by Eq(47) is given by the fixed point value deter- with the definitions
mined already in model @C. Thus the fixed poinp; de-

Inserting the general structufg0) and (51) of the 8 func-
tions into Eq.(60) we obtain the eigenvalues

pends on the parametes, S =(1-2p){r £ (1 202)({r — ¥*B2) (62)
1-w3
ps=p* - iy (59) and
1-p'w; o
quite analogously to Eq48). In [10] we have shown that the G =pi(1 _Pi)(g_;, i=1,2. (63
I

complex model C has the same fixed points as the real

model C which was expressed p§*=0, leading to a real The transient exponens is obtained by inserting a special
nontrivial fixed pointp*=p"*. From Eq.(59) follows imme-  fixed point into the eigenvaluel). Thus we have
diately thatp} is also always real and that the complex model
C'" and the real model Chave the same fixed points. In Fig.
2 we have plotted the fixed point value @f in the parameter
interval O<w;=<1 at the OP component number 1 where
Eq. (59) is the stable fixed pointsee Table | and the next * " N Stable for
subsection At w;=0 the fixed point valug} is equal to the
model C/C fixed point valuep*=0.33. 0
Note that a solutiom>=0 andp] # 0 is not possible. Due
t(|) Eqg. (49) one would end up with the conditiogﬁ(FA)(uH)

TABLE I. Overview of the fixed point values of model’@C’
for the Heisenberg fixed point*=uy.

he)
iy
A=)
N

n=2,3,...

= 0 following from Eq.(56) , which is not true. A survey of
all fixed points concerning the static Heisenberg fixed point 7c
Uy is given in Table 1.

B. Stability

In order to obtain the dynamic transient exponents we
have to consider the eigenvalues of the matrix

OFRr P OOFrR PR OO
N, OFRPr OFr O Fr O
,

he]
*

e

i
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(W) = )\»_e(Ws)|{a}:{a*}, (64) *TABLE Il. Overview of the transient exponents of model
C'"/C’ for the stable fixed points at severalThe exponents with
where {a} represents the parameter $aty,p;,po}. FOr a  superscript(b) are calculated with the Borel summed static func-
stable fixed point all two transient exponents have to be positions, while for the one with superscrifi)e-expanded statics has
tive. The parametew; appears as an argument because ibeen used17].
enters the expressions like an external parameter.

(b) (b)

For the trivial fixed pointsp;=0,1 we always haveG; n o’ " o o

=0 from Egq. (63). In these cases the transient exponents

0.1766 0.0103 0.0988 0.0544
reduce to
2 0.0304 0.0304 0.0145 0.0145
—_ * * *
@y =(1=2p1)¢r(Up, ¥, p1,p2 W), (65) 3 0.0312 0.0312 0.0150 0.0150
o= (1= 205)[&r(Un, ¥, P15, W3) = ¥*?By(Uy)]. (66)

Wy = gl"(uH’ ‘}/Cvovp;iWS)v (71)

Inserting the four combinations(p},p3)=(0,0),(0,1),
(1,0,(1,1) into Egs.(65) and (66) one can see that in the g
caseq0,1), (1,0, and(1,1) at least one exponent is always w_=p5(1 pz) {a} (a*}- (72)
negative independent of the value gf. These fixed points

are unstable for all OP component numbars=or (p7, p3) Using Eq.(70) we obtain immedlately
=(0,0) we obtain, fOI’y*:O,

o
0= 0= Uy =cy>0 (67) w0, = YeBy2(Un) = v’ (73
and, fory* =1y, which is positive for Ising(n=1) systems. With Eqs(59)
and (46) the transient exponerd_ can be expressed by the
w0, = {P(uy) =cp>0, (69) (46) P P Y

known dynamic transient exponem ) of model C/C,
which is plotted in Fig. 3 if10]. It turns out that

w_={P(up) - ¥2B(uy) = - % (69) 0= 0. (74)

Thus we have proven that the stability regions and also the
dynamic exponentz, respectively, are identical to model
C'/C in the wholen-d plane. The cross time scale ratig
which couples the two secondary densities dynamically has
no influence on the critical dynamical behavior. However,
the fixed point values op, and the nonasymptotic dynamic
flow of the time scale ratios depend on the valuesvgf

From Table Il one sees that the transient exponents are
considerably small for all OP component numbersonsid-
ered. This leads to nonasymptotic behavior even very close
to the critical point.

In Table 1l we summarize the dynamical critical expo-
nents of the OP and the secondary densities in the different
regions in thee-n plane. The dynamic critical exponents are
defined by the corresponding values of the Onsager coeffi-
cient ¢ functions at the stable fixed point: i.e.,

222+, =2, =2+(, (75)

For planar(n=2) and Heisenbergn=3) systems the static
fixed point y*=0 is stable. From Eq(67) follows that p]
=p5=0 is the stable dynamic fixed point in this case. In Ising
(n=1) systemsy* =+ is stable and the dynamic transient
exponentg68) and(66) are relevant. In this case._ is nega-
tive becauser/ v>cz. Thusp;=p5=0 is unstable. We want
to emphasize that at noninteger valuesnad region in the
n-d plane exists in whichw_ is positive and therefore the
fixed point y*=yc, p;=0 and p5=0 stable. The region is
determined by the conditions/ v=0 (border for the stable
static fixed pointy*=0) and «/v=c# [border forw_ in Eq.
(69 to change sighand is identical to the one in model
C'/C (see Fig. 1 here and ii0]).

Considering the nontrivial fixed poinp;=0, p5+0,
the expressions in Eq(63) reduce to G;=0 and G,
=po(1-p,)(d¢r! dp,). The fixed point valugy fulfills

Uy, Y, 0,05, W) — ¥aB,2(uy) = 0. 70 _ y .
(U, 70,005, W) = 78 42Un) (79 In region L the secondary densities decouple at the fixed
Equation (62) reduces therefore to s,=s.  point(y*=0) and the time scale ratiog" are both zero. The
={r(uy, vc,0,p5,W3) and the transient exponents turn into model reduces to model A with the corresponding dynamic

TABLE Ill. Overview of the dynamical critical and transient exponents of modelirCthe different
regions of then-d plane(see Fig. L wzc) is the transient of model C.

Region z 2 z [ON -
Il 2+alv 2+alv 2 alv wLC)
Iy 2+cy 2+alv 2 cy cy—alv
la 2+cy 2 2 cy cy
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exponent for the OP. The secondary densities have simply ' ' " h=1) ' '

z=2 according to their conservation property. In regign | 0.04 F =2 7
one secondary densitiindexed by 2 couples to the OP

(y* # 0) but the time ratiosv| stay zero. This is the region of 003 L n=3 i

weak scaling since due to the coupling to the OP the second
ary density indexed by two scales nontrivially wi=2 -
+alvdue tO§;=y%*B¢,2(u;)=a/ v. The time scale of the OP 3 002 .
remains at its model A value and is slower than that of the
secondary density in agreement with=0. In region 1lw} 001 L 4
# 0 and the OP and the secondary density 2 are slow with the
same time scale. This is expressed by the relation at the fixe:

- o gk _ ; o 0.00 . L . I . I
point gr-gz-a_/v_ according to Eq.(58). _Thus z=2,=2 40 30 0 10 0
+al/v and one is in the strong scaling region. (a) log, ()
20 ' I ' I ' | ' I
. ' H n=1
V. NONASYMPTOTIC PROPERTIES OF MODEL C *'/C’ fixed points @ n=
A n=3

The nonasymptotic behavior is mainly described by the 1.5
flow of the static and dynamic parameters. The latter are
determined by the flow equatiori29) with the B8 functions
(289) for the time scale ratios. Because we do not need the-.
static functions at noninteger valuesmfas we did if10] in
order to discuss borderlines in timed plane, we use now 05
static flow equations with Borel summedunctions. This is
the reason for differences in the static flow presentdd @
and here. 0.0 s ! s ! s !

The static flow equations far and y are then(at d=23) ) c.co 0.01 0.02 " 0.03 0.04 0.05
u/4!

n=1

du
|— = B,u), (76) FIG. 3. (a) Flow of the static couplingi/4! at three different
di order parameter component numberd he initial valueu(ly)/4! is
in all cases 0.00023b) Flow of u [see(a)] and ? (see Fig. 4in

dyz the /- u plane with the inital condition. The fixed points for
lﬁ = 72(= 1+ 2,2(u) + B 2(1), (77 =1,2,3 arendicated by different symbols.

with sz(u)zn/2+(9(u2). The Borel-summed functions are for n=2, and an up triangle fon=3. Quite analogously at

theu axis the Heisenberg fixed point=uy, y*>=0, which is

2<1 +a4£) stable ah=2 andn=3, is marked for all threa values. The

__u u 4l model C fixed pointu*=uy, y*?=94 is only drawn atn=1

A= 4! +4(n+8)<4!> (1 u ) (78 (where it is stable From Fig. 3b) one can see that the
+a5—
4! 16 . . .

= 4n+2)—(1-10~ uP_g( Yy’ 1
{pp(u) =4(n+ )4! —10, a4 ) el o) - Ll
(79 1ol
The coefficients,,a,,a,4,a5 are listed in Table 2 of16] for r
integer n values. Using the initial valuesu(ly)/4! o 081

=0.000 25 andy’(lp)=0.25 withl,=0.1 we obtain the static 4|
flow presented in Figs. 3 and 4 for differemt -

While in Fig. 3a) u reaches it:1-dependent fixed point 04
value relatively fast at~ 107, the couplingy in Fig. 4 is I

much slower. Atn=1 it reaches the finite value. at | 0'2__

~ 10 while atn=2 it is even ai =104° considerably dif- 00 ;

ferent from the fixed value 0. The different fixed points at -40 -30

n=1, n=2, andn=3 are sketched in Fig.(B). In the u-y? log, (1)

plane the paths plotted are calculated from the initial values

to the fixed points indicated in the figure by different sym-  FIG. 4. Flow of the static coupling? at three different OP
bols. On they? axis the unstable fixed point*=0,9%*?>  component numbens, corresponding to tha flows in Fig. 3. The
=2/n (at e=1) is represented by a square for 1, a circle initial value is in all cases?(ly)=0.25.
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statically coupled conserved density depends on the Onsager
coefficients time scale parameter, [for the definition see

Eq. (23)], the dynamical critical exponents and the transient
exponents are of course independentvef The nonasymp-
totic properties however are strongly dependent on this time
scale parameter.

As was already shown in model C a fixed point with an
infinite ratio of the OP time scale to the conserved density
time scale is not stable. Thus one can expect that the problem
which appeared at the tricritical point in dynamics mentioned
by Siggia and Nelson does not appear in two-loop ofig}.
Tricriticality is not described by a fixed point valwg =« as
found in the one-loop calculatiofb], but by a finite value;
this restores scaling for the OP and the corresponding sec-
ondary density.
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FIG. 5. The flows ofp, andp, for all threen values at several APPENDIX A: DIAGONALIZATION OF THE STATIC
values of the cross time scale ratig. The flows correspond to the FUNCTIONAL
static parameters in Figs. 3 and 4.
In general the structure of the secondary density static

. , .
values ofu and 42 are driven first to the unstable fixed point functional of model- C'-type systems is of the form

at they? axis and later change the direction to the stable one. 1 1 . .

This causes the enhancement in the flowydin Fig. 4. Of Hq{ 0, Glio} = J d quAqqo+ Es/gq0|¢o|2— hadlo (-
course this behavior depends on the initial values ahd y?

and is obtained at very small(lo) and largery?(ly). For (A1)

small enoughy_z(lo) and/or largen(ly) the flow tends dlregtly The coefficient matrix
to the stable fixed point ang?(l) drops down from starting
from the initial value. (a1 ap
The behavior ofy influences the behavior of the flow of Aq=
the dynamic parametepg. This is shown in Fig. 5, where we _ o _
have plotted the flows op; and p, corresponding to the IS usually related to thermodynamic derivatives in the non-
static parameters in Figs. 3 and 4 at several valueg;dor ~ critical background. The matrix elemengg represent in-
n=1,2,3.p, drops down to its fixed point value relatively Verse electric or magnetic susceptibilities in the case of elec-
fast. Butp, contains the slow dynamic transient. The tran-tric or magnetic systems, and inverse compressibilities,
sient exponents are listed in Table Il from which it is seenspecific heats, and concentration susceptibilities in the case
that the values of, atn=1 are considerably larger than the of fluids, fluid mixtures, or superfluid mixturésee, for in-
values an=2 orn=3. In the casav;=0 where no coupling stance[19-21]). The secondary densities—the couplings to
between the two secondary densities exists, the flopsé  the OP and the external fields—which are chosen to elimi-
identical to the flow ofp in model C. From the behavior of nate the finite expectation value of the secondary densities,
the flow we can expect that at2 andn=3 always effective ~are written as pseudovectors

(A2)
a;p axp

exponents will be observed in experiments or numerical . o

simulations instead of the asymptotic values. Evem=ai _ (%o o _ [ Yu - hg, A3

where the asymptotics is reached at10 %° the correspond- Q= Uoo/’ Yo~ g,q AT b ' (A3)
2

ing exponents will be hardly observable in experiments. %

The superscript denotes the transposed quantity. In order to
simplify the perturbation expansion a transformation is con-
VI. CONCLUSION structed which diagonalizes the Gaussian part of the second-
We have extended model C to model @here two con- ary densities and eliminates one of the couplings to the OP in
served densities couple to a nonconserved OP. It turned o@€ Step. Introducing the transformation
that the asymptotic critical properties of model €an be 5= Mq (A4)
related to those of model C. Although the fixed point value 0 o
of the ratio of the OP time scale to the time scale of thewith the transformation matrix
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M=< 1 M12> (AS) F(: \/(;\—IZL)2+4L°2. (BS)

M M
1z ez The diagonal dynamic coefficient matrix is then obtained by
and matrix elements . . .
A O (N L
Yo, . |=Rl. . IR, (B4)
a;p~ —ap y 0 X\, L u
_ a2 _ %
M12= ¥, ' IV|21‘7,_M22’ (A6) where the transformation matriR is obtained from the
ay - —ay, 2 eigenvectors corresponding to E&2). It is an orthogonal
Ya, matrix (R"1=RT") and has the structure
Rii - R
Yoy Rz( 11 21)1 (B5)
1~ ap R Ru
_ g, .
M,,= >, (A7) with
Ya, Ya,
T ) Rk Lk
q q M M
. R 2 2 . Ry = . Rx= .—. (B6)
one static coupling is eliminated. With E¢A4) the static 2K 2K

functional (A1) turns into . . . - .
The transformation to a diagonal dynamic coefficient matrix

, I S S S S implies the introduction of transformed secondary densities
Ho{to,Gig} = | d% Eal%o*' Eazcbo*' 572Q20| ol

mo = RTmo. (B7)
- ﬁéqéo}. (A8)  The dynamic equation&) and(4) reduce to

N . - 5510 ° 51"

ote that the coefficients;; and the ratIqullyqz do not — =\ VP—+ b5, (B8)
renormalize. Therefore the transformation is invariant under ot oMy !
rengrmalization. Rescaling the secondary densitiesmhy
=g, leads to the expression given in Hd1) with corre- My o _,
sponding rescaled couplings and external fields. The advan- a AV Moo + b, (B9)

tage of transforming the static function@1)—(A8) lies not
only in the simplified perturbation expansion, but also in aThe transformed secondary densities also enter the static
simplified renormalization procedure. In order to conservefunctional leading to

the connection between the model- @ype static functional

(A1) and the Landau-Ginzburg-Wilson functiondll2), — el 1, .

which is expressed by relations analogous to E#8) and Hi o, Mo} = f d x{§m10+ 5Mo* 5Y Mol ol = mo}.

(15), under renormalization a matrix formulation of the (B10)
renormalization procedure is necessat@]. With a static
functional of type(B10) and(11) the usual scalar renormal- The static couplings and external fields transform according

ization scheme can be used. to
APPENDIX B: DIAGONALIZATION OF THE DYNAMIC o 071 AT 0
EQUATIONS v=\. |=R1. | (B11)
Y2
The dynamic perturbation expansion gets extremely com-
plex when a nondiagonal kinetic coefficidntas in Eqs(3) o
and(4), is present. In order to perform a two-loop calculation = (h N 0
it is absolutely necessary to diagonalize the matrix =|. |7R : (B12)
o o h
o [(n L 2
An= Coa (B The perturbation expansion will be performed in the diago-

nalized dynamic mod€(l), (2), (B8), and(B9). Introducing

appearing in the dynamic equatio(® and (4). The eigen- time scale ratios
values of the dynamic coefficient matriB1) are

2|

r .
=—, 1=1,2, (B13)
o 1 o ° o o 1 o ° o A
M=SA+utK) A=A +u-K), (B2 '
within the dynamically diagonal model, quite analogous to
with Eq. (23 , we obtain[22]
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W ;i n+2 — W| .
uiyhiwph) =2, ——y1-——u(l-L =—, 1=1,2, B17
G =2 Ty 1 ULy P (B17)
1 WJ7 n+2 noow which will stay finite whenw; tends toe for the real case
+§E —L 5 A_§+—— instead of the time scale ratios. The rewrittérfunction
j 1+w 1+w (B14) reads
1 .
@ _p2)@ itvr n+2
+7 +v_vi(v_vj2|‘j WAR) + (1 +W; - W) G(u k) =2 oy 1 - UL
1
1+w +w,
i R (A) 1 n+2 n _
X 1+wW I”) Hw, (819 +§EWJZ|: > Lam5 e
J
(o= p) P
with L, defined in Eq.(40) for the complex model € and - —‘1—_1_—2'In(1 + - 2pi>
Eq. (41) for the real model C The logarithmic terms are 1-p) Pi
defined as _A=2+pp)d=pip), o —
——In(1-pip))
(1-p)(1-p)
9= MW 1 + ). (B18)
I 1 +W; +Wj J W, . . . . .
1+— Inserting the transformation rul¢&, is defined in Eq(35)]
W.
J
— 2p1p — 2p1p
=i =i (B1Y)
The last contribution in Eq(B14), P17 P27 B PL= P27 R
and
n+2 1 n=Ray, 7=Ruy, (B20)
48) = u2<LA— —), (B16) _ , o
36 2 with matrix elementgB6) rewritten in parameterg;,
R.= p2—p1tK, R..= p1i=p2tK,
is the two-loop expression of the corresponding model A 1= 2K v 2K '
function. Neglecting the sum in EqB14) and settingw; g ? B21
=Wj=w we obtain the result for model Qresented if10] (B21)
[compare Eq(40) therein. It is convenient to use the param- into the above’ function (B18) we obtain the corresponding
eters expression(33) in the dynamically nondiagonal model.
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