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Effect of random internal structure on combustion of binary powder mixtures
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Combustion of a mixture of two solid reactants is considered. A combined geometrical and physicochemical
model of mixing of these reactants is proposed. The model takes into account random distribution of reactants
and voids over the system. This allows description of incomplete burning of reactants. The model is used for
studying the combustion wave propagation in a binary heterogeneous mixture. The obtained results are com-
pared with those calculated from the perfect-mixing model, which implies that the deficigmrespect to the
stoichiometry component burns completely. It is shown that micrononuniformity of mixing not only reduces
the combustion wave temperature and velocity but also can lead to a shift of the maximal wave velocity away
from the stoichiometric composition of the mixture. The results of this study allow us to suggest that one of the
main reasons for such a shift, which was observed in a number of experimental works, is structural disorder of
binary mixtures.
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[. INTRODUCTION tems, even if the spatial scale of combustion front much
] ] exceeds the scale of structural disorder of the system. In such
The self-propagating high-temperature syntheSiBlS,  systems, the affecting factor is nonuniform mixing of com-
or synthesis in the self-sustaining combustion wave, is one gjonents. In this case, the interfacial area of reactants plays an
the most energy-saving and cost-effective methods for proimportant role. In Ref[10], the interfacial area of a binary
ducing inorganic compounds, in particular, intermetallics ancheterogeneous system was studied using a statistical model
ceramics[1]. This synthesis proceeds in a heterogeneouand its effect on SHS was discussed qualitatively.
condensed system, i.e., a mixture of powders. The structure The present work is aimed at the development of a model
of heterogeneous condensed mixtures is one of the maj@ccounting quantitatively for the influence of disordered
factors affecting the combustion wave characteristics as weBtructure of a binary heterogeneous solid mixture on com-
as the properties of synthesized products. An important rol@ustion. The concept of the study lies in the following: to
of the charge structure in SHS processes became especia@pply a statistical approach to the description of the system
evident after experimental studies usirig situ high-  Structure ar_ld then incorporate the determined struqtural char-
resolution microscopic video recordifig—5]. Most of solid actenstlc_s into a Conventlonal model of combustion wave
combustible systems are characterized by randdisor- ~Propagationthe continuum description ) s
dered spatial distribution of different-kind particles. There The key point c.)f our can|derat|on is the “contact point
were only a few attempts in the literature to take into accounf’°d€! which implies thati) the surface area of an exother-

this randomness and its influence on the combustion of heg'ciscggtr\?v'gglnre:ﬁﬂgg cl)? t%?g?g'ggglstgctgﬁ dnrltja?c?tgatcjfa%%nt-he
erogeneous condensed systems. p '

One aspect of combustion in disordered heterogeneo combustion rate is proportional to this surface at@agach

" ic the | ; h q tinitv of th article of any reactant is distributed in equal proportion be-
Systems IS the 10SS of Smoothness and continuily 0T th€ Comyyaan g its nearest neighbors of the opposite kind during

bustion front when its characteristic scale becomes cOmpgpg reaction. Before proceeding to the detailed development
rablg with the size of combustible pamcles. Itis wgll KNown of the model it is necessary to justify its applicability to the
that in such systems the propagation of combustion proceguscription of combustion waves propagation in a certain
can bear a percolation natuiléke forest fireg [6-9]. Anum- 455 of heterogeneous media.
ber of works on percolation combustid¢for the forest-fires There are a number of examples when the propagation of
problem) have merely a formal character due to the use of.qmpstion wave over a heterogeneous medium is accompa-
formal cellular automaton rules. First attempts to relate thg,;o by complete melting of a lower-melting-point reactant
percolation characteristics and critical exponents with a setq its spreading over the porous space. Therefore such a
of structural, thermophysical, and kinetic properties of agjyation is not described by the contact point model. How-
forest-fire system were made in Ref]. But basically, & oyer there are certain SHS systems where a purely solid-
problem of determining the conditions for a transition from state interaction(i.e., via solid-state diffusionmechanism
frontal to percolation regimes in SHS, where random strucy,qis \We can mention here the system Ta/C as an example.
ture of the charge plays a key role, is still an open issue. The adiabatic temperature of the TaC formation in SHS
Another aspect of the effect of randomness on combustiof),ave T ~=2700 K, is below the tantalum melting point
. . . y L a i 3
relates to a wide class of binafpr multicomponent sys- T,(Ta)=3270 K (see Ref[11]). Similarly, SHS temperature
of molybdenum boride in the Mo/B system is lower than the
Mo melting temperaturgl2]. For such systems our model is
*E-mail address: gps@hmti.ac.by valid.
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; 5 known in the percolation theory as “energy’s], but in the

considered situation its meaning differs from the conven-

B :ir?natl use of thi_?tterm in phtysicsrE Bscallési of thisahtiretiq:e\fter
i is term is written in quotes. It should be noted that “en-
’, ergy” has its maximal value for a random system at point
e e e oo
example, chetgts pac,kihdjig:ax)=4. In the latter case, each
particle has four contacts with particles of the other kind. So,

taking into account the disorder in the system we came to the
four-time decrease of the interfacial area for the case of a

Besides, known are systems with quasi-solid-state interftwo-dimensional square lattice.
action. Those are systems where the SHS temperdiyre The second parameter, which is important for the combus-
exceeds the melting temperature of a metallic reactapat  tion wave propagation in a disordered system, is the mean
But during heating from the ambient temperatur@dn the  reacted par{mean final conversion degneef one of the
preheat zone of the SHS wave, a shell of a primary refractoryeactantsw(p) for given parameters of the system. Hence-
product forms on the particle surface. At attainimg, the  forward, reactantA will be considered as a basic one for
particle core melts but the outer shell does not permit thealculatingw(p):
melt to spread. In this case, solid-state diffusion through this

FIG. 1. Determination of the burnt fraction of partichg (ex-
planations in text

spherical layer is the rate-limiting stage of interaction. This . .
situation is analyzed in detail on the example of a metal-gas w(p) =1 _Pa_ 1 _&_ (2)
(viz., Ti/N) system in papef13]. A similar phenomenon is pa pp

possible in metal-carbon systeffesg., Ti/C[14]) as well for
small-sized metal particles. In such situations, the number
contacts between different-kind particles plays an importani density after the reaction completion, respectively.

role. In the next part of the paper, on the basis of contact "\ g nh0se that a necessary condition for reaction be-
point model we examine two characteristics of the randorqween two particles is their immediate contact. Unlike or-

mixture, viz. the interfacial area and the mean degree of COMered structures where the existence of such contact is al-
version, which are important for the combustion problem. ; ; :
ways assumed for each particle, in a random mixture some

9erep? andp), are the mean initial density of reactahand

Il. STRUCTURAL MODELS particles can have no contacts with the other reactant due to
] . imperfect mixing. This results in incomplete burning of
A. Two-component system without porosity reactants

A heterogeneous disordered system composed of particles The calculation of the value afs(p) is based on the use
of two-kind reactantsA andB (A particles and particleg is  of the second assumption of contact point model about equal
considered. All the particles are of the same densishape, distribution of reacting particle between its opposite kind
and size and are placed in the sites of a regular latdag, neighbors.
square, Fig. L ParticlesA and B are randomly distributed Let us consider an arbitrary partichs which is denoted
over the system and their numerical fractions @reand by subscript “0” (Fig. 1). Using the example presented in
1-p, respectively. Since absolutely random distribution isFig. 1, we calculate the mean final conversion degvéthin
assumed, the properties of an arbitrary particle are not cothe frame of the considered mogébr particle A,. Let par-
related with the properties of its neighbors, and hence thécle A, have twoB particles in its neighborhootthe latter
probability that the particle is oA or B kind is equal to the are denoted by subscript “L"Then the fraction of particle
fraction of such particles in the systeR;=p,Pg=1-p. Itis Ao, Which can react wittB particles, isa,=G(2/vy). Here

also supposed that for product formation one volume unit ofunction G(x) with the argumenk is determined as
the A particle should react withg volume units of theB

particle. Parametepg, is an analog of chemical stoichio- {xx< 1:
G(X) - ’ ’

1x=1.

metric coefficient. The volumetric stoichiometric concentra-
tion of particlesA is expressed through parameigr as pg;
=1/(vgt D).
The first parameter required to construct the model is thédence, if v5=3, the reacted part of particly, is equal to
total number of contacts between particles of different kind2/3; if v4=2 then the whole particl@y will be burnt; at last
per one particle. This value can be found using the percolaf v4=1 then the whole particléd, will react but on the
tion theory methods. As shown in R¢fl0], the number of average oneB; particle does not react at all. It should be
contacts between different-kind particles per one particle ohoted that each of the particlés(including particleA;) can
the system is determined by expression have 0 toz neighbors with a different probabilitithe con-
Ey,=2zp(1-p) 1) centration ofA particles,_p, i_s gi_ver). Thep, taking into ac- _
tot ' count that these are pairwise incompatible events and using
Here z is the coordination number of the lattice, i.e., thethe formula for total probability, it is possible to write for
number of nearest neighbors per site. Param&gris w(p):

3
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e $[olr 5[ -]

(4)

Here (1-p)' is the probability that particlé, has anyi B
neighborsp?™ is the probability that the re¢z—i) neighbors
of particleAq areA particles;q; is the reacted part of particle
Ay under the condition that it hasB-particle neighbors.

Expressior(4) is a rather rough approximation yet. It fol-  FIG. 2. Explanatory scheme for derivation of E¢8—(6); a is
lows from a simple qualitative consideration that for a sys-& fragment of regular square lattice=4); b is a fragment of a
tem with vg=1 there is a definite symmetry between compo-Bethe lattice(z=4).
nentsA andB, i.e., their formal transposition will not lead to
changes in the reactant concentration giving the maximqj]e
combustion wave velocity. However, this symmetry disap-
pears when using expressiof).

For a more accurate determination ef(p) value, it
should be taken into account that partic®scan react not
only with particle Ay but with otherA particles as wellin
Fig. 1 these particles are denoted by subscrip).“R&t par-
ticle Ay hasi B neighbors. Each of thed®; particles can
neighbor, aside from particld&,, with O to z—1 otherA par-

Approximations made during derivation of Eq#)—(6)

ed a more detailed explanation, which will be made by

giving an example of a square latti¢€ig. 2). According to

the proposed computational scheme an arbitrary particle of

the system is consideréi is labeled by number)0The first

two layers of the nearest neighbors of this particle are labeled

in Fig. 2 by numbers 1 and 2. As already noted above, it is

not sufficient to consider only one layer of nearest particles

(label 7 for a correct description of conversion of reactants.

. S0 : . The second layer of the nearest partidlebel 2 should also

ticles (they are mafke_d a4, In .F'g' D.1f i By _par_t|cles have_ be taken into );ccount. Those pzrticlcfes, wrﬁch can immedi-

respectivelyljy,jz, ... Ji} A neighbors, then in first approxi- - ,ie)y sinteract” during chemical reaction, are connected by

mation the probability of occurrence of such combination on,,nqs in Fig. 2. It is difficult to describe analytically the fact

the lattice is determined as that the properties of a particle in the second layer of a regu-
[ 1 lar lattice affect simultaneously the reaction behavior of two
11 (Z_ )pjk(l—p)z'l'jk’ particles in the first layefFig. 2). Therefore the structure
k=1 \ Jk pattern corresponding to the regular latti¢eg. 2) was re-

) , ] ] , placed by a more simplified ofj€ig. 2(b)]. Such a pattern is

and the fraction of reacted partick, in this case is ex-  known in physics as a Bethe lattice. In this case, properties

pressed by the formula of a particle in the second layer influence the conditions of
i reaction in only one particle of the first layer. It is important

(i 1 ) that the total number of nearest neighber$-ig. 2) and the
Vstier Jk+ 1)’ probability to find particle of the first or the second kind are

) ) ) ~not changed. For a simplified case of a Bethe lattice it is
where functionG is defined by Eq.(3) and the value in possible to obtain an analytical expression for a mean degree
parentheses is its argument. S . of reactant conversiofEq. (6)]. The substitution of structure

By summing over all possible combinatiofjs,j,....ji},  patterns implies that from the mathematical viewpoint, we
one can arrive to a corrected expression for the reacted paftve neglected some correlations between properties of par-

a; of particle Ag: ticles in the second laydthey are connected by arrows in
1 1 i Fig. 2(b)]. Two such particles in a Bethe lattice correspond to
=S > G(iE 1 ) one and thg same patrticle in the regular I_attice. To egtimate
71 jm1 \Pstendktl inaccuracy introduced by the above mentioned substitution,

: statistical Monte Carlo simulation was performed. Results of
z-1 i 1-y this simulation have shown that within the frame of the pro-

x| IT{™. ~ Jpa-p) ' ®) posed model, Eq(6) has an inaccuracy below 2%. This
small value of inaccuracy is explained by the fact that the
Then the mean final conversion @& particles over Bethe lattice was actually used to take into account the prop-
the system,w(p), can be determined by the following erties of particles belonging only to the second layer of near-

k=1 \ Jk

expression: est neighbors.
(-1 1 i Theoretically, the procedure for more accurate determina-
1 1 tion of «; values[Eg. (5)] can be continued by taking into
w(p) = 21 jlzzl ELG(V_StE i+ 1) account the fact thah, particles react not only witl, par-

' ticles but are shared between other neaBeptrticles(Fig.
-1 . 1(z , , 1). As noted above, numerical simulation has shown that
X [H ( )p’k(l - p)z_l_“‘](. )pz_'(l -p) taking into account the properties of neighbors in the second
k=1 layer allows us to describe the mean degree of reactant con-
(6) version with a good accuracy. On the other hand, expression

Jk
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(6) permits meeting the above mentioned symmetry condi- It can be shown in the way it was done for expresgi@n
tion (at v4=1) with the inaccuracy of 0.01 with respect to
relative concentration. The presented estimations of the errdpat

allow us to restrict our consideration to the use of E&).  this expression and E@9), one can obtain from Eq11)
because its accuracy corresponds to the general accuracy

Eﬁ;io(z_' )s”pz“‘”z(p+s)z". Then, taking into account
n

level of the model itself. The developed model can be gen- _ é g Z§ 1 i 1
eralized to take into account the porosity of the system. w(p,e) = , PIRADIC +1
i=1 | ;=1 =1\ Pstk=a Jk
B. Two-component system with porosity i -1
Let ¢ is the porosity of a binary powder mixture, i.e., the X kHl( i )P"‘(l -p) ik

fraction of volume occupied by voids. Voids can be treated as
the third componentalong with particlesA and B). It is 7 . ‘

implied that “void” particles are of the same size and shape ><<_ )(1 -p-¢&)(p+e)*' (. (12
as particlesA andB. Since the distribution of particles over :

the system is absolutely random, a probability to find theg,, function w(p,e), in the limit £—0, expression(12)

void in an arbitrary cell of the system B,=e. If p, @S a4 into Eq.(6). It should be noted that fors
previously, is the fraction oA particles in the system, then ~.1 w(p,s)—0.
the probability of finding a particlé or B in a cell is Py The derived expressiond), (6), (10), and (12) will be

=p andPg=1-p-¢, correspondingly. In a system with po- used in further modelin :
. e ) . g of the combustion wave propaga-
rosity the stoichiometric coefficienty; should be expressed tion in a binary disordered heterogeneous system.

as follows:
%FM- 7) lll. PROPAGATION OF COMBUSTION WAVE IN A
Pst BINARY DISORDERED MIXTURE OF REACTANTS
Based on the computational method described in Ref. A. Governing equations

[10], for the "energy” of the whole system we obtain To reveal the basic effects of the micrononuniformity of a

z\ . two-component mixture on combustion we consider a simple

(- )IOJ model of a continuous combustible medium where the spa-

tial scale of the combustion wave much exceeds the particle

22— _ scale of the mixture. On the microlevel, the above-described
X > ( )em(l -p-g)¥i™, (8)  structural model is used. The unavoidable imperfect mixing

m=0 \ M on the microlevel in disordered systems results in incomplete
conversion of reactants. Thus if the initial mean density of
componentA is pﬁ’\:pp, then the instantaneous relative con-

version degree of this component is determined as

Eo(Pre) =(1-p-e)> ]

=1

The second sum in E¢8) can easily be calculated:

]

1-p*i=(1-p-e+e)*i=2 (Zl;j >8m(1 o ) L

m=0 - Pg ~Pa_ Pg ~PA (19
® Bk Roibe)
Hence upon summation in E¢B) we obtain Here py is the instantaneous mean density of fieompo-
Ewip.e)=zpl-p-e). (10) nent.

A kinetic model of chemical conversion in the system is
As expected, expressiofl0) grades into expressiofl) at  described by a global Arrhenius-type reaction with initiation

e=0. temperaturel;,, and we imply that the reaction rate, i.e., the
Similarly, for the mean conversion degree of the systemmass of componenA consumed in a unit volume per unit
we arrive at the following expression: time is proportional to the number of interphase contacts per
z -1 z-1 1 i 1 lattice site:
o)~ 3| 3 ---ze(—z. +1) o
= (=t e\ Pt W(T, 7) = pkE(p) expl = —— [H(T=Tu)f(m). (14
i 7=1-jy .
zZ- . z-1-
x[]_[( _ )plk > ( Jk) Here T is temperature of particléK]; k is the pre-
k=1 Vi m=0 m exponential factof1/s]; E’ is the activation energy of the

} . reaction(J/mo); R is the universal gas constarif;) is the
XeM(1 —p)z Lk ( )(1 -p-¢) reaction retardation function due to solid-product formation.

' In the simplest case we use Heaviside function ffoy) as

z . well: f(7)=H(1-7).

x> (Z ! )gnpz-i—n . (11) Within the frame of this model we arrive at the system of
n=0 \ N energy and mass conversion equations in the reference frame
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connected to the combustion front moving with velodity  ing depends on the porosity at fixefl In the considered
4T dT problgm, _the characterisjtic.time s_cale is chosen equal to the
= pCy(1—£)U—= = A= + QW(T, 7), (15)  reaction time for the stoichiometric mixture at the character-
d dx? istic temperature and given porosity; =ps] KE;.(ps) EXP
X (-E'/RT,)]™*. Thus the time scale varies with changiag
becausep,; and E;; depend on porosity. On one hand, this
choice oft, permits simplifying the final dimensionless equa-
tions. On the other hand, below we consider only the ratio of
HereQ is the reaction hedtl/kg); \ is the thermal con-  the combustion wave velocity to its maximal value at given
ductivity of particles(Wt/m K); ¢, is the heat capacity of porosity and this choice of, does not influence the final
particles (J/kg K). Boundary conditions to Eq915) and  results. It should be noted that by using porosity-specific

97\t ). (16

- ppw(p,e)U i

(16) are formulated as follows: scaling factors for proceeding to dimensionless variables we
exclude from consideration the effect of thermal conductivity
dT_dy he combusti locity which k the role of
X—-0:T=T, #=1, —=—=0; (17)  on the combustion wave velocity which can mask the role o
dx dx nonuniform mixing and, strictly speaking, deserves a sepa-
rate consideration.
L 3 dT _dzy _ Definitions of dimensionless variables are close to those
X— +oT=Te 7=0, dx  dx 0. (18 conventionally used in the combustion theo#gx/x, is a

dimensionless spatial coordinatés(T-T,)/AT, is dimen-
Equations(15) and(16) are readily integrated over inter- sjonless temperatura=U/u, is a dimensionless combustion
val [-, +eo] with the use of boundary conditiort47) and  wave velocity. The other scaling factors ate=+ajt, (char-
(18) to give the following expression for the adiabatic com- acteristic width of the reaction zopevherea is the thermal
bustion temperatur®, (maximal temperature of the combus- diffusivity of particles(m?/s); u,=x./t, and the dimension-

tion frond: less parameters of the system arg=AT./ATo
Qpw(p,e) =RT(vg+ 1)c,/E'Q; B=AT./T.=RT./E.
Tp=To+ ———. (19 Then the dimensionless initial temperature of the system
(1-2) is 6p=—1/y and dimensionless combustion temperature is

The structure of a disordered mixture is characterized by
two values: porositye concentration ofA particlesp. But b= }(Wﬂ _ 1) _ }<m¢ v+l 1) 22)
since the heat capacity of empty sitg®res is negligible, °7 o\ pg Y v+ @ '
the adiabatic combustion temperature in the case of perfect i , i
mixing depends only on the equivalence ratio of components. Master equation&ls) and(16) are reshaped in the dimen-
A andB. This conventional for the combustion theory param-Sioniess form as follows:

eter[16] is defined as the ratio of volume of componénio

2
the volume of componer divided by the same ratio for the L = _1 & + (o 23
stoichiometric mixture: Mg " 108 AP, =9
o)/ (i) 0
—&-p “Pst— € - W((i))m(s,d))ud—g =o(p)®(6,7), (24

If <1 then componem is deficient; in the opposite case
(¢>1) this component is in excess. Then, using E@sand where
(20) the adiabatic combustion temperature for a random sys-

tem can be expressed as follows: P
D(0,m) =6 , 0) =H(6- 6,,) expl — ,
. Qupe)d (0,7) = () n), @(6)=H(6- 6p) p( 1 +ﬁ6)

Tp=Togt ————. (21)

O K =HL-7), a(d)=L2 =g

n=H1-7), #(d=—=¢——,

Pst vget b

B. Dimensionless variables and equations ( v+ 1>2 ()
The characteristic temperature for transition to dimension- (@)= v+ P N ¢

less variables can be determined as the adiabatic combustion

temperature attained after complete burning of a stoichioReshaping of the boundary conditions is trivial and is not
metric mixture ofA and B components with perfect mixing presented here.

(ile., at p=ps,¢=1, and w=1): T.=To+Q/(vg+1)C, After conventional transformatior{substituting the right-
:TO"'ATth The characteristic temperature scale AJ, hand side of Eq(24) into Eq.(23), integrating the latter over
=RT2/E’. Thus this scale is the same for all systems with ainterval[£, +o], and usingd as an independent variaplee
given value ofr, but different porositye. The characteristic arrive at the final differential equation in the space of vari-
time scale is more specific because the time of mixture burnables» and 6:
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dn o()®P(6,7) TABLE I. Mean final conversions and dimensionless adiabatic
- = . heating ATT®/ATSL for systems with different stoichiometry and
- 2 — — ad ad
do ~ m(¢yw(e,$)(1- A0~ b)) - m($yw(e.d)y) 070
(25)
ichi R max t

This equation was used for numerical calculation of param->oichiometry  Porosity . ATag IAToy ®lg=1 ®lgeo,
eteru by the shooting method: the equation was integrated 1.1 0.0 1.0 0.80 080 080
from 6=6,, to 6=6, and the parametar was fitted to meet (r=1) 0.05 1.0 0.75 0.78 0.78

the boundary conditiong=0 at 6=6,, and =1 at 6= 6.

. . : . . 0.10 1.0 0.70 0.77 0.77
Equation(25) is close to conventional equations used in 0.20 10 0.60 0.75 0.75

the theory of gasless combustion. The difference from the : : : : :
0.40 1.0 0.41 0.68 0.68

conventional form lies in functions(¢),w(e, ¢), and 7(¢)
which reflect the dependencies of the interfacial area, final 4., 00  1.18 0.82 082 074

conversion degree, and heat release on the structural param- (vg=2) 0.05 192 077 0.81 071
eters of the mixture.

0.10 1.22 0.72 0.78 0.70

0.20 1.27 0.61 0.76 0.66

IV. RESULTS AND DISCUSSION 040 133 0.41 066 057

A three-dimensional3D) simple cubic latticez=6) was 13 00 135 0.81 0.78 065

used to model the structure of binary mixture. The following ~ (¥s=3) 005 139 0.75 076  0.63

values of dimensionless parameters characterizing the com- 0.10 1.43 0.70 0.73 0.60

bustion process were used in numerical modeling: 0.20 1.45 0.59 0.70 0.57

=1/6,8=1/8,6,=-0.8/y. These values of parametens 040 162 0.39 060 046

and g correspond to stable combustion. The approach de— - _ - — — —

scribed in Sec. Il of this paper permits calculating the mean®- iS equivalence ratio at which adiabatic heating is maximag,

final conversioEq. (12)] and maximal temperature in the is adiabatic heating in stoichiometric mixture at perfect mixing;
. max : . . . - . . .

adiabatic combustion wav&gs.(21) and(22)] for different AT,y is maximal adiabatic heating in disordered mixture.

stoichipmetry and po.rosity_ It .is important that due to imper-inis is a peculiarity of the perfect mixing model. From this
fect mixing on the microscopic scaléhe scale of structural  standpoint, combustion in solid heterogeneous mixtures dif-
elements of the mixtujethe maximal conversion degree fers essentially from gas-phase combustion: in gases mixing
w(e, ) appears to be substantially lower than 1 and theyroceeds continuously during reacting whereas in solid
maximal heating at complete burning of the stoichiometricflames onlypremixing determines the system structure and
mixture is not achieve@rable ). It can be seen that maximal interphase reaction area.
adiabatic heating\ Ty~ is attained at the equivalence ratio ~ The combustion of solid heterogeneous mixtures is a
¢. greater than 1 for a mixture with stoichiometric coeffi- complex process and the proposed model does not include
cientvg>1: at largerv, ande the deviation ofp, from unity ~ such factors as phase transitiofmselting), dependences of
increases. At the same time, the conversion at pgimtp,,  thermal properties on the mixture composition, porosity, and
where the temperature of the wave is maximal, is lower thatemperature. The main goal of this work is to take into ac-
at ¢=1 (stoichiometric mixturg which is attributed to the count in the simplest way the effect of structure randomness
fact that maximal heating is attained at the maximum ofon the combustion of binary solid mixtures. Therefore the
function w () p(). comparison of the obtained results with experimental data in
Since the combustion wave velocity strongly depends this case may be performed on the qualitative or semiquan-
on temperature, the calculations af reflect the above- titative level only. Most suitable systems for comparison
discussed effects of nonuniform mixing on the heat releaswith our model are monodisperse mixtures used for solid-
(Fig. 3. In Fig. 3, the velocities are shown as relative valuesflame combustion. Unfortunately, data for such systems are
with respect to the maximal velocity,,,, attained at the scanty in literature. Here we use data from Réf7] where
given stoichiometry, porosity, and perfect mixing. Thus allcombustion of the AI/NiO system was studied as a function
the curves on charta,b, andc in Fig. 3 refer to different of the mixture composition. One of those results which is
velocity scales. For each combination of stoichiometry andmportant for comparison with our model is presented in Fig.
porosity, imperfect mixing lowers the combustion velocity 4. As can be seen, the shift of the maximum combustion
and shifts its maximal value to higher equivalence ratios ifwave velocity to Al-richer mixtureg¢>1) in this system
v>1. For mixtures with volumetric stoichiometric ratio really exists. A similar shift of the maximal combustion wave
1 : 1 this shift is absent. velocity was observed in Rdf18] for systems Al/NjO; and
Note that within the frame of the above modtie num-  Al/Fe,O3. According to data from Refl17], the volumetric
ber of interfacial contacts per lattice site does not changstoichiometric coefficient for mixture Al/NiO izg=1.72
during the reactionthe dependence of the velocityon the  (the mass fraction of AL, =0.19 while the maximal veloc-
equivalence ratiap has a sharp peak at perfect mixing of ity is attained at¢.~ 1.8 ({,=0.30. We can compare this
reactants. The use of different model retardation functionshift with that obtained in our model far,=1.72 and poros-
f(#) does not remove this pedkurves 1 in Fig. Bbecause ity £=0.4, which corresponds to the experimental packing
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FIG. 4. Combustion wave velocity vs mass fraction of alumi-
num and equivalence ratip according to Ref[17].

persity of a mixture(particlesA and B have equal size At

the same time, it is known that the velocity of combustion
depends on a particle size distributi@his fact is outlined in
Ref.[17], too). It can be expected that a correlation between
experiment and the model will become better when the poly-
dispersity is taken into account. But simultaneous consider-
ation of random internal structure and polydispersity of a
mixture is a complex statistical and geometrical problem and
would be the subject of future investigation.

V. CONCLUSION

A combined geometrical and physicochemical model is
proposed which includes the effect of structural disorder of
solid binary reactant mixtures on the combustion process.
The results of modeling permit describing such known ex-
. : perimental facts as incomplete conversion of the reactants, a
0 1.0 ¢ 20 3.0 decrease of adiabatic heating, and a shift of the maximum
combustion velocity away from the stoichiometric ratio.

FIG. 3. Relative velocity of the combustion wave in the struc- Since the effect of nonuniform mixing is important for both
turally disordered binary heterogeneous mixture. Curves: 1 for thehe combustion wave characteristics and the properties of
model of perfect mixingarbitrary £); 2-5 for disordered systems final SHS products, this model should be integrated into
(e=0, 0.1, 0.2, 0.4, respectively more complete models of solid-flame combustion.

density in Ref.[17]. Our calculations give the value.
~1.3. Considering all the above discussed limitations of the
model, this correlation between the theoretical and experi- The work was supported by the Belarusian Republican
mental data can be regarded as satisfactory. Along with thEund for Fundamental Resear@&rant No. TO4P-090 We
aforesaid thermophysical limitations, there is a structural reathank Dr. B. Khina for helpful discussion on the justification
son for a discrepancy between the experiments and theorgf the proposed model and for providing us with the infor-
the proposed model does not take into account the polydignation from Ref[14].
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