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Evolution kinetics and phase transitions of complex adaptive systems
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Motivated by the fact that a population of competing agents never set up a true stationary distribution, we
propose a theory of evolution kinetics for complex adaptive systems. The formula derived for the survival
probability is used to describe different phases in the population evolution when the prize-to-fine ratio as well
as time changes. A kinetic phase diagram is obtained to show the phase boundaries for the self-segregating
region, the intermediate region, and the clustering region. The kinetic evolutionary equations of strategy
distribution are also established and used to give the root-mean-square separation of strategy distribution. It is
revealed that the rootstock of the phase transitions is ascribed to the cooperation and competition among agents
with different gene values for a limited resource.
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A common problem which is of central importance in to-fine ratioR takes a variety of different valu¢46]. It has
social, economic, and biological sciendds5]| is the evolv-  been shown that sharp phase transitions exist in this model:
ing population in which individual membergagents adapt  “confusion” and “indecisiveness” take over in the time of
their behavior according to past experience. The most intefgepression with the prize-to-fine rat®smaller than a criti-
esting situation is that agents compete for a limited resourcgy) valueR.. In this case, the cautious agefitharacterized

or to be in the minority. Considerable progress in the theobyg:1/2) perform better than the extreme ones. That is, for
retical understanding of such systems has been made tﬁ/

studying a simple, yet realistic model of the minority game =R, agents tend to cluster arouge 1/2 rather than seif-
(MG) and its evolutionary versio(EMG) [6—18|. The basic segregate into two opposing groups.

roce of e EVG consits o (o agerts, ez navig |7 €% 2 PORUILEN of Srmoetng sgene never s
some finite number of strategies. At each time step, eacpu Y ) gp ty

?If an agent isoscillatorily time-dependeritl7]. In order to

member has to choose one of the two kinds of actions, suc . . .
as buying and selling the asset in a financial market. Th&Plain the global behavior of agents in the extended EMG,

payoff of the game is that after all agents have taken actiot "andom-walkRW) model with atime-dependenjumping
independently, those who are in the minority group win andProbability, correspondl.ng to the winning probability, has
acquire a point. The agents make their decisions based on tfigen proposeflL8]. In this model, a walker randomly walks
common knowledge of the past record. The most interestin§n @ one-dimensional lattice with discrete tiv0,1,2,.. .
result[6,10] of the model is that some kind of cooperation The probability(t) to step to the right is given by(t)=3

and self-organization appears among the agents. It is possibtes—(-1)'A. The biased value is often positive and<1/2.

that the agents can improve their performances by modifyingror definitenessA is taken as positive and represents the
their strategies through a genetic-algorithm-based crossovemplitude of temporal oscillations. To let the probability be
mechanisni12]. Another approach for the EMG is that each meaningful, it is required thaA<3-s. It is noted that this
agent is assigned a single number or “genetic vatuft3].  theory is based on the stationary assumption by adopting
Following a givenm-bit record,g is the probability that the ¢(g)=(go/ VN)g(1-g) [14]. Therefore, phase transitions are
agent will choose the same outcome as that stored in ﬂ"@ependent on the bias and will disappealNif-o. More-
common knowledge, i.e., he will follow the current predic- over, there is no time-dependent phase transition for any

tion, while 1-g is the probability he will choose the oppo- given prize-to-fine raticR. These seem not to be found in
site. The most remarkable conclusion deduced from this kingea| circumstances and are also in contradiction to numerical

of EMG is that the population of competing agents tends tGimulations.
self-segregate into the opposing groups characterized by ex- The aim of this paper is to study the evolution kinetics of
treme behavior when the prize-to-fine rafibequals unity, a system composed of adaptive competing agents, which
and in order to flourish in such situation an agent woulddoes not depend on any stationary assumption. We start to
behave in an extreme way with the gene vaywed or 1. In jnvestigate the evolution of individual agents by RW in one
order to explain this result, two analytic theorigh4, 15,  dimension. Due to the well-known fact that the winning
both based on the stationary assumption, have been pr@robability of an agent may experience periodic oscillations
posed. To consider the more realistic life situations, an €Xf16,17], we can differentiate two time units used for conve-
tended EMG model has been explored, in which the prizenjence. One is the time step for the agent to make a decision,
and the other is the oscillating half-period for winning or
losing sequentially. Generally the latter, denotedTg, in-
* Author to whom correspondence should be addressed. Electronidudes more than one time step. In our approach, a time-
address: gjin@nju.edu.cn. dependent jumping probability density is defined as
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p(x,00=48(x—xg) and the absorbing boundary condition

! 1 i
wx,t;x',t=1) = {5 - (= DtA} o(x,x" +RI) p(0,t)=0, can be expressed as

1 1 (x—x0+<x>t>2]
+| =+ (- DA |8 X —| 1 X, 6%0,0) =~ eXP[——
[2 (-1) ] X =D, (1) POx.tixo,0) 4\27702{ 20,
which describes a process in which a walker jumps from site +exn - (X=X = ())?
x' at timet-1 to sitex at timet. Here the oscillating half- p_ 20, ]
periodT/2 is taken as the time unit, the paramefeis the 57
ratio of two distances jumping to the right and to the left —exp _w
(i.e., the prize-to-fine ratio in the EMGand| defines the L 20, ]
jumping distance to the left in a half-period. In the reduced I (X + %o — (X) )2‘
units, I=T/2. Furthermore,p(x,t) is used to denote the —-exp - 0 L (6)
spatio-temporal probability density for the random walkers at L 20, J
positionx at timet. Its evolution obeys the general master From this equation, we can obtain an analytic expression for
equation the survival probability,
p(x,t) = f wxtx' t=1)p(x’,t = 1)dx’ S(t|x) = f P(X,t; Xo, 0)dlx
0
1 1
:[5—(— 1)‘A}p(x—RI,t—1)+{5+(— 1)‘A] _1 erf<><oi<>t> +erf(><o—ﬁ>t) @
2 V205 V20,

Xp(x+1,t=-1). (2) . . . .
where erx) is the error function. Equatiotv) is the central

Based on Eq(2), some important quantities are derived by result of this paper, from which a lot of relevant information
using the characteristic function methid®]. The first-order  regarding the evolving population of a complex adaptive sys-
moment and the second-order central moment are given byem can be extracted.
1 . From Eq.(7) we can investigate the evolution kinetics of
01=Xo+ (X=X - =(1-R)It - Al(1 + R)sin21 (3) a competing and adaptive agent system by considering an
2 2 agent’s survival probability depending on his gene value and
on time. It is shown that the amplitude of the oscillating
winning probability[17,18 can be expressed b&=a(R)|g
o= ((x= 0% -1/2] and its periodT also varies with the prize-to-fine ra-
1 ¢ tion R. According to the previous and also our numerical
= (- - A2>(1 +R)A% - 21 -RY)I’A sin21, (4)  simulations, we find it is appropriate to adoptR)=1/[1
4 2 +exp(1-R)], which gives A=0.491 whenR=0.8, andA
wherex, is the initial position of the walker and is assumedzo'zg’ whenR=1, for g=0 or 1; andT(R)=101+ex{1
larger than zero in general. According to the central-limit~R)J% which corresponds t§~ 10 time steps wheR=0.8
theorem, for a long enough time the probability density andT=40 time steps wheR=1.0. Correspondingly, frorh
p(x,t) can be approximated by the Gaussian distribution witri~ /2, the jumping distance of the walker to the left is 5 and
the expectation value, and the square standard deviation 20 "€Spectively. It should be noted that so far the prize-to-
oy, It tells us, from Eqgs(3) and (4), that the distribution fine ratio dependence of the o_scnlat!ng amphtude and period
center moves with an oscillating drift speed towards the lef€@n only be shown by numerical simulations. The two ex-
and the distribution widens oscillatorily with time. pressions here foa(R) and T(R) are obtained by fitting the
In the EMG, an agent always tries to locate in the minor_nu_mencal re_f,ults and they are consistent W|th Figs. 1, 2, and
ity group, so there is a tendency to form a probability flow 4 in [17] qualitatively. In fact, we have also writte(R) and
approximation a valid approach for further dealing with ourdeviations in the phase diagram. Substituting these two ex-
problem. In this approximatiof.9], the evolution ofp(x,t) ~ Pressions for the amplitude and period into E@, (4), and
after a long time can be described by the variable coefficient?). We can analyze the behavior of agents with different
diffusion equation gene values. For a given initial positiog, we can plot the
survival probabilityS(t,R) with respect to gene valugfrom
Ip(x.) 0 to 1 for a different prize-to-fine ratiR at a given timet or
%2 v(V ax ®) at different timest for a given prize-to-fine ratidR. The
former is the same result obtained by Hod with a different
where the diffusion coefficient and the drift velocity are re- approactj 18], but the latter is totally new. Generally, we can
lated to Egs.(3) and (4) by o,=2[(D(t)dt and (x);  find three kinds of distributions, or three phases, shown in
=[tv(t)dt, respectively. When timé is long enough, the Fig. 1; the parametex, is chosen to be 4. TheJ-shaped
asymptotic solution of Eq5), satisfying the initial condition curve represents the self-segregation, which corresponds to

and

PpXY _ ® Fpixt)
ot d
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FIG. 2. Kinetic phase diagram.

0.05
L R=0.975 55500 (b) amplitudes of the winning probabilities of agents with differ-
0.00 > = 5 ent gene values.

Furthermore, we can determine two critical times to char-
acterize the kinetic phase transitions, i.e., from the self-
FIG. 1. Survival probability vs gene valué) At a fixed time segregating phasgJ phasée to _the intermediate phas@/ .
for three different prize-to-fine ratiogh) for a fixed prize-to-fine phas¢ and from the mtg_rmed_late phase to the C_Iusterlng
ratio at three different times. The graphs are rescaled for conver-)h‘r?‘se(m ph_asee. B(_)th _Cr't'cal times can be de_termlned by
nience and the time step is chosen as the time unit. Iettmg the first q_erlvatlve and the second derivative of the

survival probability S with respect to the gene valug be

the case in which there are lesautiousagents(character- equal to zero. For theJ-M phase transition, the first deriva-
ized by g=1/2) than extremeagents(characterized byy tive is taken ag=0 (or 1) and for the Mf\ phase transition,
=0 or 1); the N-shaped curve corresponds to the case oppathe second derivative is taken gt 1/2. After a little math-
site to the first one; and the M-shaped curve is the intermeematics, the critical times are determined. They read
diate phase.

From the analytic results obtained above, the evolutionary to.= 2% COth[ 2%(1-R) } (8)
behavior of complex adaptive systems can be interpreted as T1-R (1-a9)(1+R?
follows. On the one hand, for the agents near an extremum

gene value g

characterized bg=0 or 1, A=A,.{(R), while for the cau- and
tious agents characterized lgy=1/2, A=0. Therefore, it 2Xg 2%5(1-R)
can be seen clearly from E@) that in the case of any value toe = 1- RCOth (1+RA |’ 9)

of R, the scores of the cautious agents disperse more quickly
than those of the extreme agents. On the other hand, théis noted that in deriving these two expressions, the oscil-
distribution center of scores for all agents drifts toward to thdating terms in Eqs(3), (4), and(7) are omitted for simplic-
absorbing boundary with the same drift spaedty=do,/dt ity, because they are trivial for the long-time effect. Equa-
for R<1 and dangles about, for R=1. As a result, foR  tions(8) and(9) can be used to give a kinetic phase diagram
=1, the survival probability of an extreme agent is alwayswhich describes what kind of state the system is in at a given
larger than that of a cautious agent, and the survival probtime for a given prize-to-fine ratio. Plotting, andt,; with
ability distribution of the whole system showsla shape, respect taR for the given parametet,, we can find that the
i.e., a self-segregating phase. R« 1, the scores of agents curvest;(R) and t,.(R) divide the (t,R) plane into three
decrease oscillatorily. Once their scores fall bellow someegions as shown in Fig. 2, in which the upper, middle, and
value, they will eventually perish. Thus, at the beginning, thebottom regions correspond to the clustering, intermediate,
survival probability of an extreme agent is larger than that ofand self-segregating phases, respectively. From @ysand

a cautious agent, and the survival probability distribution of(9) and Fig. 2, we can draw some interesting conclusi@ns.
the whole system shows @ shape, i.e., a self-segregating To express as the functions oR, there is a free parametey
phase; in the late period, most of the extreme agents’ scoress the initial value for an agent to enter in EMG. Its variation
have fallen below critical valud, but some of the cautious will not affect the analytic property of the phase boundaries
agents have not and the survival probability distribution oft;. andt,., so the phase diagram is stable under the pertur-
the whole system showsa shape, i.e., a clustering phase. bation byx,, although the system itself is nonstation&i)

In the intermediate period, the survival probability distribu- If R— 1, t;. andt,. tend to infinity and it is impossible for a
tion of the whole system shows an M shape, i.e., an intermephase transition to appear. That is to say, the population of
diate phase. In one word, the phase transitions are related empeting agents with similar capability and knowledge will
the presence of a drift speed for the distribution center of th@lways tend to self-segregate into the opposite groups char-
scores of agents, and also to the difference of oscillatingicterized by the extreme behavior, which is in agreement
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obtained by numerically solving Eq910—12), which
034 | agrees qualitatively with the result presented in Fig. 2 in Ref.
e t=3000 [16] by numeral simulations.

N 032} t=2000 In summary, based on the fact that a population of com-
A} T t=1000 peting agents never establishes a true stationary distribution,
NO, 0.30 |- a theory has been proposed to study the evolution kinetics
< for complex adaptive systems according to the characteristic
V o028t function method and the variable coefficient diffusion equa-
tion. In the presence of an absorbing boundary, an analytic

026 | expression for the survival probability was derived and used

L to show the kinetic phase transitions from the self-

3.0 2.5 0.5

segregating phase to the intermediate phase and from the
InR intermediate phase to the clustering phase when the prize-to-
fine ratio as well as time changes. Two formulas for the
prize-to-fine ratio at=1000, 2000, and 3000 time steps, respec-kinetiC phase boundaries were °b.t‘."‘i”6d an(_j th_en a kin_etic
tively, for xo=4.0. The horizontal line represents the rms separation!Dhase dlagra_m was plotied. In addltlon: the kinetic evolution
which equals 1{12, for the uniformP(g) distribution. of strategy qhstrlbutlon was glso analytlca_lly trefited gnd the
results are in agreement with the numerical simulations. It
has been made clear that the rootstock of phase transitions in
omplex adaptive systems can be ascribed to the cooperation
nd competition among agents with different gene values and
limited resource characterized by the prize-to-fine ratio.

FIG. 3. Root-mean-squar@ms) separation of strategies vs

with the result presented by Johnsemnal. [13]. (iii) At any
long enough time, there are generally three phases whic
correspond to the regions with different prize-to-fine rafos

and are in agreement with the result presented by Ho : ; :

. . or any value of the fine-to-prize ratio less than 1, the popu-
[16'13' ('V). For anyR<1, there will always be. phase tran- lation distribution of the system will always experience three
sitions as time changes from the se_If—segreg'atmg phase to trEl‘ﬁ‘ferent phases. At the beginning, the survival probability of
intermediate phase and from the intermediate phase 10 e, oyireme agent is larger than that of a cautious agent, and

clustering phase. the survival probability distribution of the whole system

. Equatlr(])n(7) IS _al_so us%efﬁl to elumdaét_e thg k_metlcf evolu- shows aU shape, corresponding to the self-segregating
tionary characteristics of the strategy distribution o ager‘ts‘phase; the extreme agents behave better than the cautious

P(g,1), which could be expressed as agents. In the late period, most of the extreme agents’ scores

t have fallen below a critical value, while some of the cautious
P(g,t) = > pi(g,t). (10) agents’ scores have begun to rise above this value. Then the
i=0 survival probability distribution of the whole system shows a

N shape, corresponding to the clustering phase; the cautious

Here pi(g,t) is taken as the fraction of agents who have,genis will behave better than the extreme agents. Between
survived aften time steps since they enter the game. Thereyyese two extreme periods, the survival probability distribu-

fore, tion of the whole system shows an M shape related to the
1 t1 intermediate phase. Our theory definitely confirms the fact
Po(0,t) :f dgz pi(g,t—- D[S(g,i) - Sg,i +1)] (11) that a population of competing agents never sets up a true
0 =0 stationary state.
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