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Percolation theory is now standard in the analysis of polycrystalline materials where the grain boundaries
can be divided into two distinct classes, namely “good” boundaries that have favorable properties and “bad”
boundaries that seriously degrade the material performance. Grain-boundary engifi@@&igstrives to
improve material behavior by engineering the volume fracticand arrangement of good grain boundaries.
Two key percolative processes in GBE materials are the onset of percolation of a strongly connected aggregate
of grains, and the onset of a connected path of weak grain boundaries. Using realistic polycrystalline micro-
structures, we find that in two dimensions the threshold for strong aggregate percodad@md the threshold
for weak boundary percolatiotyygp are equivalent and have the valagp=cygp=0.381), which is slightly
higher than the threshhold found for regular hexagonal grain structggs2 sin(w/18)=0.347.. . In three
dimensions strong aggregate percolation and weak boundary percolation occur at different locations and we
find cgap=0.123) and cygp=0.7713). The critical current in highT, materials and the cohesive energy in
structural systems are related to the critical manifold problem in statistical physics. We develop a theory of
critical manifolds in GBE materials, which has three distinct reginfigdow concentrations, where random
manifold theory applies(ii) critical concentrations where percolative scaling theory applies, (#@nchigh
concentrationsc> cgpp, Where the theory of periodic elastic media applies. Regiig is perhaps most
important practically and is characterized by a critical lenigthwhich is the size of cleavage regions on the
critical manifold. In the limit of high contrast— 0, we find that in two dimensionis,«gc/(1~-c), while in
three dimensiong =g exdbyc/(1-c)]/[c(1-c)]¥?, whereg is the average grain size,is the ratio of the
bonding energy of the weak boundaries to that of the strong boundariebg &d constant which is of order
1. Many of the properties of GBE materials can be related.tavhich diverges algebraically on approach to
c=1 in two dimensions, but diverges exponentially in that limit in three dimensions. We emphasize that GBE
percolation processes and critical manifold behavior are very different in two dimensions as compared to three
dimensions. For this reason, the use of two dimensional models to understand the behavior of bulk GBE
materials can be misleading.
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[. INTRODUCTION ideas developed in statistical physics. Critical manifolds in
polycrystalline microstructures are found using the maxi-
There are many scientifically and technologically impor-mum flow algorithm from computer sciend&1,52. We
tant materials where grain boundaries are critical to controlpresent the results of large scale simulations for both two and
ling material properties. Examples range from structural methree dimensional polycrystalline microstructures and we de-
tallic and intermetallic material§1-18] to polycrystalline rive scaling laws which provide a very good description of
high temperature superconductof49—34 and ceramic the numerical data.
varistors[35,36. The grain boundaries in many of these ma- The optimization of critical currents in polycrystalline ce-
terials can be separated into “good” boundaries and “badramic high temperature superconductors relies on low angle,
boundaries so that a network model with two types of nethigh critical current, grain boundari¢49,26,29. Typically
work bond is appropriate. This is the general class of modegrain boundaries between grains which are misoriented by
which we consider in this contribution, where we defin  1€sS than about 5° have a critical current which is of order
be the fraction of grain boundaries which are “good.” We100 times as large as that of high angle grain boundaries.
generate realistic polycrystalline microstructures using welf®rain-boundary. maps“[26] or networks” [18] of either
established grain growth model87-4q and we analyze special boundarlgs or “weak boundarle_s have. been experi-
percolation processég4,25,32,34,41—46and critical mani- mentally determined and correlated with desired material

folds [20,21,25,47—5Din these grain structures using scaling ProPerties29). One interesting property which we calculate
R is the critical current of a polycrystalline aggregate as a func-

tion of the fractionc of low angle grain boundaries. There
are many papers discussing this quantity, with some focusing

*Electronic address: mcgarrit@pa.msu.edu on the behavior near the percolation threshalds and on
"Electronic address: duxbury@pa.msu.edu numerical simulations. Our previous studj&€,53,54 have
*Electronic address: eaholm@sandia.gov presented the results of simulations of realistic bulk poly-
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crystalline microstructures. A scaling theory for critical cur-  The paper is organized as follows. In the next section,
rent in GBE materials based on the theory of periodic elastiSec. I, we discuss the numerical and theoretical methods we
media[55-57] leads to surprisingly good expressions for theuse to analyze percolation processes and critical manifolds in
critical current as a function of in the high concentration models of GBE materials. Section Ill presents data for the
regime, which is the regime of most practical interest. Sevpercolation processes which are relevant in GBE materials.
eral other properties of the critical manifold, such as itssection IV presents data for the critical manif¢@M) and
roughness, are also presented here and are also well dgresents scaling theories for the behavior of the CM in vari-

scribed by the scaling theories which we derive. ous concentration regimes. The paper closes in Sec. V with a
An early success of grain-boundary engineering was th ummary and discussion.

use of processing to increase the volume fraction of specia
grain boundaries in order to increase the corrosion resistance
of Ni-16Cr-9Fe alloys[2,4-6,8,12 In this application the Il. METHODS
onset of percolation of a path of weak grain boundaries is
considered to be important, and we define the threshold for In this section we briefly outline the computational tools
this percolation process to loggp. We define the normalized and theoretical ideas used in the remainder of the paper.
penetration depth of weak boundarlgéL and calculate this
quantity as a function ot. Creep and cracking processes
have also been related to the grain-boundary character distri-
bution[7,58]. The onset of a strong percolating aggregate is We grow polycrystalline grain structures using a well
more relevant to these processes, and we defigeas the tested Potts model algorithf@7—40. Briefly, a g-state fer-
threshold for this percolation process. We find the thresholdgomagnetic Potts model on a hypercubic lattice is quenched
Csap andcypp for realistic polycrystalline microstructures.  from a high temperature state to zero temperature and a
A close connection exists between the statistical physic§onte Carlo procedure is used to anneal the Potts configu-
community and the fracture community in the area of fraC-ration of spins. Bonds between sites with different spin labels
ture surface statistics. Following the suggestion by Mandley e considered to be grain boundaries. The typical grain size
brot [59] that fracture surfaces are fractal, there has beea increases with time a2 For the simulations described
intense study of the physical origin of the roughness of fraCygein e used 100 Potts labels in the three dimensional
ture surface$60-63 and of relations between roughness andg; ., 1 4tions and 256 Potts labels in the two dimensional
fracture toughnesE63]. There is debate about whether the §imulations. The calculations are carried out on hypercubic

short distance roughness is described by quasistatic modeist. o d ) A !
: - attices of sizel © sites, wherd is the spatial dimension. It
of the sort described here, or by dynamical mo¢6H. Due has been found that the grain structures in samples with av-

to the ability to control the concentratianand grain sizey o h . X di .
in GBE materials, these systems present a tunable system §29€ grain size greater than 6, ig= 6 in two dimensions

which to test their competing theories. The roughness simi@1d9>4 in three dimensions, provide realistic polycrystal-
lations and scaling theory presented here provide a useflin® microstructure$37,38. We also restrict our analysis to
starting point in this discussion. grain sizes for which the ratig/L is less than 1/10 to avoid

As well as definingc to be the fraction of “good” grain grains which span the sample and to reduce finite-size ef-
boundaries, we also use an “energy contrast ratinhich is fects. In two dimensions we present simulations on lattices
the ratio of the grain-boundary energy to the grain interiorof up toL=1000 and in three dimensions on lattices of up to
energy. This energy contrast has different meanings in differ =100. The most time consuming part of our calculations is
ent applications. In the application to corrosion resistance ithe generation of the grain structures. Examples of typical
measures the susceptibility of high angle grain boundaries tgrain structures in two and three dimensions are presented in
permeation by corrosive agents, as compared to the bulk. IRigs. 1a) and Xb), respectively.
the case of high temperature superconductors it is the ratio of In order to model GBE materials, we consider a fraction
the critical current of high angle grain boundaries to that ofof the grain boundaries to be strong and a fractiort 1o-be
low angle grain boundaries. In fracture applications it is theweak. The bonds across the weak grain boundaries are as-
cohesive energy of poorly bonded boundaries as compared tigned an energy, while the bonds which are interior to the
well bonded boundaries. In magnetic applications it is thegrains and the bonds across the strong boundaries are both
exchange constant of well isolated grains as compared tassigned unit energy. The strong grain-boundary bonds are
poorly isolated grains. The variabtealso has different ori- selected based on the difference in Potts labels at the ends of
gins in different applications, for example in the case of higha bond. That is, in the Potts model, each site has a Igbel
temperature superconductors it is the fraction of grain=1...q. We define the normalized difference between the
boundaries which have misorientation angles less thaRotts labels at the sites at each end of a bond talbfs;
roughly 3%, while in the case of corrosion resistance it is the—sj|/q. If d<c, then the bond is a strong bond, whiledf
fraction of grain boundaries which are low order CSL bound->c the bond is a weak bond. We also define the difference in
aries. The percolation processes we study depend on the pabels modulog, so that labels 1 and differ by 1. This
rameterc. The critical manifolds we discuss depend on bothdefinition ensures that all label differences occur with equal
c ande and are minimum energy interfaces in polycrystalline probability. An example of a two dimensional system where
materials where a fractioa of the grain boundaries are as- ¢=0.39 is presented in Fig.(®. In this figure, the weak
signed energy and the remaining grain boundaries as wellgrain boundaries are highlighted as thick grey lines. The re-
as the grain interiors have energy 1. maining grain boundaries are strong. Note that in many ma-

A. Computational methods
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FIG. 1. (Color onling Examples of simulated grain structures in two and three dimensions.

terials the distribution of grain boundary orientations is notratio of cohesive energies between special and random
uniform, as is implicit in the model used here. The effect ofboundaries is of order 5. For high. materials we expect
varying the grain-boundary orientation distribution and in-=0.01, for corrosione=0.0, while for the cohesive energy
cluding correlations in grain-boundary orientatidi@2] can  of structural materialg~0.1. To span this range of ratios,
be included in a straightfoward manner and will be consid-we present data for the raties0.0001, 0.01, 0.1 and for the
ered elsewhere. full range of O<sc=<1. The energy ratic is a generalized

In GBE structural materials there is ample evidence thaparameter that corresponds to the ratio of critical currents in
special boundaries exhibit enhanced corrosion resistandee highT, case, the ratio of corrosion resistances in the case
[1-16]. In that application, the ratio of the corrosion resis- of corrosion applications, and to the ratio of cohesive ener-
tance of a high angle boundary to that of a special boundargies in the surface energy application. In the analysis of per-
is close to zero. In the case of ceramic superconductors suawlative geometries described below, the specific value of
as YBCO[19] the ratio of critical currents between low and does not play a role. However, in the calculation of critical
high angle boundaries is of order 100. In GBE materials thenanifolds the value o€ is important.

026102-3



MCGARRITY, DUXBURY, AND HOLM PHYSICAL REVIEW E 71, 026102(2009

Two percolation processes are important in the grain-
boundary model described above. The first is the onset of a
percolating path of weak grain boundaries, which we call
weak boundary percolatiolVBP). Weak grain boundaries
allow the penetration of corrosive agents, e.g., oxygen or
steam, into the interior of a material and hence enhance cor-
rosion. It is observed experimentally that three dimensional
GBE materials have enhanced corrosion resistancecfor
>0.77 (see, e.g., Fig. 3 of Ref12]). In order to find diffu-
sion paths in a polycrystalline microstructure, we use breadth
first search starting at the exterior of the sample. This proce-
dure allows penetration from an existing invaded site if the
neighboring bond is weak. This invasion is iterated until a
surface of strong bonds terminates the penetration process.
An example of this penetration process in a two dimensional
microstructure withc=0.39 is presented in Fig.(). From
results such as these we calculate: the probability that a span-
ning cluster of weak boundaries exisi; and the average
penetration depth of weak grain boundarigsWhen a span-
ning cluster of weak boundaries exists=L. In the next
section we present data fog/L as a function oft.

If a grain is connected to two other grains by strong grain
boundaries, then that grain can transmit enhanced mechani-
cal or electrical properties through the network. If there is a
continuous path of strongly connected grains, then we have
strong aggregate percolatiofBAP). We find the largest
strong aggregate in polycrystalline microstructures using
breadth first search. An example of a strong aggregate in a
two dimensional system witle=0.39 is presented in Fig.
2(c). In the next section we present data for the spanning
probability for this percolation procesB,, and also the order
parameter for this process, which is the probability that a site
in the sample is part of the largest strongly connected cluster,

.
To find the critical manifold through polycrystalline en-
sembles, we use the push-relabel max-flow/min-cut algo-

rithm of Goldberg and Tarjaf64]. The critical manifold cor-
responds to the minimum cut in a network flow problem and
to the minimal energy surface in a domain wall problem
[51]. The minimum cut is associated with the maximum flow
in a capacitated network, where in our applications the ca-
pacity of each bond is either 1 e&r as described above. This
problem is a standard problem in network flow theory and
has recently been extensively used to study a variety of sta-
tistical physics problems, including the random field Ising
model, random manifolds, and periodic elastic mddis].
We have recently used this method to study critical mani-
folds in polycrystalline material§50] and we use similar
methods to study GBE materials in this work. Examples of
minimal energy surfaces found using the maximum flow al-
gorithm for models of GBE materials in two and three di-
) ) ) . mensions are presented in Figsa)3and 3b). From results
FIG. 2. lllustration of percolation processes in a 2D GBE mi- g\, 55 these, we calculate the following key properties of
crostructure.(a) A 2D polycrystalline sample with fraction 1c- the critical manifoldSCM's): The energy of the CME:; the

=0.61 of grain boundaries which are weékick grey boundary ] -
lines). (b) The weak grain boundaries which are connected to thenumber of bonds on the CMY; the fraction of the CM

exterior are marked in black. This is the same sample &s)iand W?'_Chzl'es 02 weak grain boundariefy,; and the roughness,
is just above the weak boundary percolation threshold which is oV =(h%)—(h)* of the CM.

average atc=0.382). (c) The strongly connected aggregate is
black. This is the same sample @ This sample has a percolating ] _ ) _ )
strong aggregate and the other colors indicate the different strongly Percolation theory is used to describe the scaling behavior
connected clusters. near the percolation thresholdsygp and csap [46]. The

B. Theoretical ideas
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FIG. 3. (Color online Examples of
minimal energy manifolds in two and three
dimensions. These examples are fer
=0.01, and(a) a two dimensional system
with ¢=0.39, and(b) a three dimensional
sample withc=0.15.

(b) ,

theory of random manifolds is used to describe the scalinglimensions we have;;=0.88. The effective lattice size of

behavior of critical manifolds in the regime&<cgap  the polycrystalline aggregate is'g, whereg is the average

[48,57,68, while the theory of periodic elastic media de- grain size. All of the standard percolation scaling |dw6]

scribes the behavior of critical manifolds in the regime are modified by this rescaling. The infinite cluster probability

> cgpp [50,55,57. v is the probability that a site is part of the spanning cluster.
First consider the spanning probabiliB;, which is the In the thermodynamic limit, it behaves as

probability that an extensive cluster of connected sites exists

in the sample. Above the percolation threshaid: c,, the y=g¥c-cspp? > Csap, 2

spanning .probablllty N 1PS(C>.C*):1’ in the thermody-. where 3 is the order parameter exponent, which is known
namic limit. Below the percolation threshold, the Spannmgexactly in two dimensionsg,,=5/36, and to high precision

Frq?a_ll)_lfl:ty |§dtzherof, Tﬁ(cfc*) :'tp, n ;hegFt)he(;modydnamm in three dimensions, whe@=0.41[46]. The finite size scal-
Imit. The wi of the transition N, oy depends on .ineg behavior at the critical point is given by
sample size and goes to zero algebraically as the sample siz

L goes to infinity, y(csap) = go(L/g) P, (3)
~ -1lv
Py(c.) ~ (L9, @ The critical exponent® and v are expected to be universal,

where v is the correlation length exponent, and in two di- so they apply to both weak boundary percolation and to
mensions we have the exact resulf;=4/3, while in three  strong aggregate percolation. The correlation length scales as
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E=glc-c|™ (4)  the typical size of flat regions on the critical manifold or
domain wall. The critical length. is important in modeling
at bothc, =cygp and c.=Csap. OF course the prefactors for cyitical manifolds in GBE materials in the reginte> csap,
these two cases are nonu_mversal and need to be determingfy in sec. IV, we extend the analysislqf to the case of
from simulations or experiment. GBE materials and show that the scaling behavior of all of

The penetration depth, which we take to be the largesfne properties we calculate numerically can be related to the
depth to which weak grain boundaries penetrate, scales aSscaling behavior of this critical length.

lp=~¢ C>Cypp 5

Due to the fact that we take the largest penetration depth in 1. PERCOLATION PROCESSES

our definition oflp, this quantity has also a logarithmic size Figures 4 present data for the spanning probability for

dependent correction factor arising from rare fluctuations, o,y boundary percolatidisolid symbols and strong aggre-

[67]. An alternative definition of the penetration depth is to ;¢ percolatiofiopen symbolsin two dimensiongsee Fig.
take the average depth to which weak boundaries penetrat (a)] and in three dimensiorlsee Fig. 4b)]. First consider

This also diverges at the critical threshold, however, with &he two dimensional data in Fig(@. A simple model for
dgferent exponent and it does not exhibit rare fluctuationyis case is to assume that the polycrystalline microstructure
effects. ifol ise in th ¢ . ls | consists of a regular infinite lattice of hexagons each of size

Random manifolds arise in the study of domain walls in, 45 tional to the average grain size The percolation
random bond Ising magnets. The scaling behavior of thesg, esholds in that case are known exactly. The weak bound-
Eomam wal!s h"?ls l:;]gen ek;mcjated 'nhRWJ and[66]r; TV(‘j’O .ary percolation process is equivalent to bond percolation on a
ey properties in this analysis are the energy of the domaifghaycomp [attice, while the strong aggregate percolation

Yvalls at?d tréebroughness of th% dlorTf\ain W?j"S' Lhe j‘ca!in%orresponds to bond percolation on the dual to the honey-
aws obeyed by continuum models for random bond ISing.ompy |attice, which is the triangular lattice. From this we

models are deduce that the strong aggregate and weak bond percolation
E=gqL%'+a,L? and w=agl?, (6)  thresholds are equivalent in regular honeycomb lattices and

that cgap=Cypgp=2 Sin(7/18)~=0.347... [46]. The data in

Fig. 4@ are quite consistent with this result, though the

percolation threshold is shifted slightly to higher valueg.of

where a;,a,,a; are nonuniversal constantd,is the spatial
dimension,L is the sample size, and and { are universal
exponents which are related by the equat®n2{+d-3  Taying the crossing point of the curves in Figagas an

[48,56,65,66 The value off is known to be exactly 2/3 in . . : 2D
two dimensions[48] and to be approximately=0.41(1) rgg;t%r a?]fd the percolation threshold, - we _findsap

. . : : . o Cwep=0.381). One possible origin for the
[51,66 in three dimensions. The scaling behavior of critical _; : . .
manifolds in GBE materials are described by similar scalin Slightly higher threshold in the polycrystalline model as

Y% ompared to the regular honeycomb lattice is the presence of
laws in the limitc<cgpp as will be demonstrated in Sec. IV. P 9 y p

) : . some fourfold grain-boundary junctions in the polycrystal-
In the (100 orientation domain walls of random bond line network 9 Y polycry
Ising magnets on cubic lattices, the lattice structure imposes Figure 4b.) presents the data found e in three dimen-

a periodic potential on the random manifold. Random manixions. The most obvious difference between the results in
folds in a periodic potential arise in a variety of other CON-£ig. 4(a) and those in Fig. @) is that in three dimensions
texts and the term “periodic elastic media’ has been coineghe gnset of a strong aggregate occurs well before the cessa-
to describe models of these phenomena. The scaling laws @t of percolation of weak grain boundaries. This means that
periodic elastic medidPEM) are quite simple generaliza- {are is a broad regime in which an “interpenetrating phase”

tions of the scaling laws presented in EG). Random mani-  gyists In this phase an extensive strong aggregate co-exists
folds in PEM exhibit a competition between the tendency Ofyith percolation of weak boundaries. In two dimensional
the periodic potential to pin the manifold and to make it flat, 4 ain structures this cannot occur as the percolation of weak

and the tendency of the disorder to make the manifold roughy, o ngaries cuts off the percolation of a strong aggregate.
Scaling theories of periodic elastic med85-57 indicate  =.om the results in Fig. @), we find thatc®,=0.12+0.03

that in hypercubic lattices in th@0) or (100 directions, the and c\e,’\?BP:O]?iO.OS. A grain in a three dimensior@D)

critical lengthL. beyond which manifolds roughen scales aspglycrystalline network typically has 12-14 neighboring
Le=p/(1-p) and L.=~exda,p/(1-p)] (7) g_rai.ns. .The rhomboid dodecahedral lattice., fco is quite

. ) ) ) similar in topology. The fcc strong aggregate and weak bond

in two and three dimensions, respectivdly7]. In these percolation thresholds amggp=0.802 anctsap=0.119[46],

equationsp is the probability that a bond is present in a which are actually quite close to the values which we ob-

hypercubic lattice and, is a constant. The scaling laws for gerve in the simulations.

the energy and roughness of PEM's are then modified o Figure 5 presents data for order parameters related to the

1 ) L\¢ two key percolation processes in our GBE models. The first
E=asl™ +al” and w=a; L) (8)  order parameter is related to percolation of the strong aggre-
¢ gate. The order parameter in this case is the probability that

The new feature in comparison with E() is the appear- a site is on the largest strongly connected clustgisolid
ance ofL. in the scaling of the roughness. Physically,is ~ symbols in Fig. 5. The order parameter for the onset of a
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[FIG. 4. The spanning probabilitié%; for weak boundary perco- FIG. 5. Two order parameters for the two different percolation
lation (solid symbol$ and strong aggregate percolati@pen sym-  ocesses occuring in the GBE model. The order parameter for
bols) as a function of the concentration of strong grain boundaries strong aggregate percolation is the infinite cluster probatiiipen
in (a) two dimensions andb) three dimensions. In each case, the symbol$ which has the scaling behavior given by E®&). The
data are averaged over a range of values of the effective lattice sizgyq, parameter for weak boundary percolation is the penetration
L/g. The open and fi_IIed squares are from averages over the rangfapth of the weak boundariésolid symbols. The scaling behavior
10<L/g=50 (two dimensions and 6<L/g=<10 (three dimen- o his order parameter is given by Eqd) and (5). Results are
sions; the open and filled triangles are from averages over 5Qy esented for three different sample sizes an@inwo dimensions
=L/g=100 (two dimensions and 10<L/g<15 (three dimen-  anqp) three dimensions. The data are averaged in the same way as
siong; the open and filled circles are from averages over 1004 .+ qescribed in the caption to Fig. 4
<L/g=200 (two dimensions and 15<L/g<20 (three dimen-

siony. The two dimensional data were calculated from a total of V. CRITICAL MANIFOLDS
over 30 000 different polycrystalline samples, while the three di- )
mensional data were calculated using over 15 000 samples. We have calculated four properties of CM’s as a function

of ¢, the concentration of strong bonds, and the bond contrast
percolating weak boundary network is the penetration deptle. Note that we take both the energy of the strong boundaries
of weak grain boundariek (open symbols in Fig. 5 As  and that of the grain interiors to be unity, so tkas the ratio
expected, the thresholds for these order parameters are cdmetween the strength of the weak boundary bonds and either
sistent with the results found from the spanning probability.of these bonds. The properties we have calculatediariée
The scaling exponents for andlp are expected to be those energy of the CME; (ii) the fraction of the CM which lies
given in Egs.(2) and (5), respectively, and we find that the on weak grain boundaries,; (iii ) the total number of bonds
standard exponents are consistent with the data of Fig. 5. Ashich lie on the CM,N; and(iv) the roughness of the CM,
a practical matter, the penetration of corrosive agents into &. The results that we have found for these four quantities in
material is suppressed strongly for c,gp due to the rapid two and three dimensions are presented in Figs. 6-9. In order
decrease ithp for c>cygp (See Figs. b to understand the results presented in Figs. 6—9, we develop
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E/L°

(b) . 4

(b) ' ¢

FIG. 6. The average interface energy as a function of strong FIG. 7. The fraction of the critical manifold which consists of
bond concentration for three values of the bond strength ratio, weak grain boundaries as a function of strong bond concentration

=0.0001 (filled squarel €=0.01 (filled circles, e=0.1 (filled tri- ~ [oF CM's in: (& two dimensions andb) three dimensions foe

angles in (a) two dimensions andb) three dimensions. The data = 0-0001(filled squares e=0.01 filled circles, and =0.1 (filled
are averaged over a range of values.6§, which is the effective triangles. The data are averaged the same as was described in the

lattice size. In two dimensions we restricted calculations to effectivec@Ption to Fig. 6. The heavy lines are fits of t&e0.0001 data to
lattice sizes in the range 180L/g< 200, while in three dimensions the scaling predictions of Eq¢33) and (34) in the concentration

we considered 15 L/g< 20. These effective lattice sizes are quite 'an9€ 0-<¢<1.0. In(a), the parameter values =1.58,a,=0.56,
small, so we expect finite size effects to be significant. In two di-2nd@=0.19 were used in E¢33) to obtain the fit, while inb), the
mensions the data come from averaging over a total of 34garameter values;=0.46,8,=3.22,33=0.50, andby=0.53 were
samples, while in three dimensions the total number of samples it{S€d in Ed.(34). The curve of best fit is presented in the interval
the selected window was 3422. ¢>0.5 for illustration purposes.

haviors for all of the quantities that we measure. First, the

scaling laws in three regime€=~cgap, C<C and c e
g g SAP A energy of the CM is simply

>cgap. We concentrate on the regime<0.1 which is of

most interest for GBE applications. 41
E=elL“ "= eN. (9

A. Low concentrations c<Csap That is, since all of the CM bonds lie on weak grain bound-

At low concentrations of strong grain boundaries, andaries, the CM energy is the number of bonds on the CM
provided the energy ratie is small, the CM lies almost times the energy contrast. A plot of the scaled endiiy"*
entirely on the weak grain boundaries, as found in models o&s a function ot is presented in Fig. 6. It is evident that the
polycrystalline materialg50]. This is evident in Fig. 7 which  scaling behavior of Eq9) extends all the way togup as is
gives the fraction of the CM bonds which lie on weak grainexpected based on the fact tigtremains near unity foc
boundaries. Foc<cgpp, fy,=1 and this leads to simple be- <cgap.
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FIG. 9. The scaled roughness as a function of the strong bond

FIG. 8. The total number of bonds which lie on the critical concentration for three values of the bond strength ratio,
manifold N as a function of the strong bond concentratioifior =0.0001(filled squares €=0.01 (filled circles, and e=0.1 (filled
three values of the bond strength ratiss0.0001(filled squares  triangle$. The data are averaged in the same way as described in
€=0.01(filled circles, ande=0.1 (filled triangles. (a) The data in  the caption to Fig. 6. The heavy line is a fit of tke0.0001 data to
two dimensions;(b) the data in three dimensions. The data arethe scaling theory predictions of EG®0) and (31) in the interval
averaged the same as was described in the caption to Fig. 6. Tlie7<c<1.0. In (a), the parameter values; =0, a,=0.36, and{
heavy line is a fit of thee=0.0001 data to the scaling theory pre- =0.59 were used in Eq30) to obtain the fit, while in(b), the
dictions of Eqs(36) and(37) in the interval 0. c<1.0. In(a), the parameter values;=0.12, a,=0.67, by=1.48, and{=0.41 were
parameter values; =1.69 anda,=0.59 were used in E¢36) to used in Eq.31). The curve of best fit is presented in the interval
obtain the fit, while in(b), the parameter valuea;=0.22, a, ¢>0.5 for illustration purposes.
=4.36, andby=0.68 were used in E437). The curve of best fit is

presented in the interval> 0.5 for illustration purposes. are presented in Fig. 10. The exponents found are nicely

consistent with the expected universal valdgs=2/3 and
The roughness of the CM in the low concentration limit is 7,1 =0.41(1) [51,53. This lends strong support to the idea
the same as that of random manifolds in polycrystalline mathat /g acts as an effective lattice constant for CM’s in

terials in the limit of weak boundarieg<1, so thaf50] polycrystalline materials.
L\¢
w=g 6 , (10) B. Critical regime c~cgap

Percolative effects dominate in the critical regime, and the
where{ is the roughness exponestee Eq.(6) and the dis- scaling behavior may be understood based on critical scaling
cussion following it. The roughness of the CM as a function and finite size scaling near second-order phase transitions.
of grain size, at fixed sample sitg is then predicted to be First consider the case— 0, in which case the finite-size
woe gl Tests of this relation in two and three dimensionsscaling behaviors atgap are given by
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infinite cluster there are singly connected bonds which may
be cut to disconnect the cluster. The roughness is of order of
the sample size due to the fact that the infinite cluster is an
isotropic fractal with holes on all length scales. The behavior
on approach tq, is found by using the nodes, links, and
blobs picturg[46] to rewrite Eq.(11) as

E 1 N L\¢
et Fz?*f"c’”; wz§<g), (12)

where é=g|c—cgad ™" is the correlation length. From these
equations, we find

E _
L1 (€= Csap) ", C> Copp, (13
w= g LYc—cgpd Y L> ¢, (14)
and
N ~(Dg-d+1)/
F = (C_ CSAP) e VoL> g (15)

However, if the energy contrastis finite, the divergence
in the roughness atspp is rounded. This is due to the fact
that in that case, large excursions of the critical manifold cost
an energy proportional to the number of bonds in the excur-
sion timese. If the energy of a large excursion around
strongly connected grains is larger than the cost of breaking
the grain, then cleavage of the grain occurs. If we defite
be the length scale of the excursion, then the energy cost of
an excursion is proportional teg®rPe,

Equating this to the energy cost of cleaving a grgimt,
we find a critical length for cleavage, given by

1

D¢’

o= (16)

FIG. 10. Scaling of the roughness as a function of grain $&e:
in two dimensions foc=0.3 andc=0.5; (b) in three dimensions for f the percolative correlation length is much greater than the

¢=0.1 andc=0.35. The open circles are the raw data=a0.3 (two length scale cutoff given by Eq16), i.e., &>r,, then the
dimensiong and c=0.1 (three dimensions The open squares are energy of the CM is given by

the raw data at=0.5 (two dimensions and atc=0.35 (three di-

mensiong The filled circles and filled squares are the data averaged a1 L a1 (d-1)/Dy d-1

over a narrow bir(of order J) in grain size. The lines of best fit to E~g ar < (e) L (17

the data are indicated. In both two and three dimensions the data ¢

agree well with the scaling prediction of E(L8). In two dimen- As seen in Figs. 8 and 9, at finite energy contrasts, the
sions the line of best fit has a slope 0@0for c=0.3 and 0.3R2) number of bonds on the CM and the roughness of the CM
for ¢=0.5 while in three dimensions we find a slope of @@HJor are reduced dramatically. This is understood as follows. The
¢=0.1 and a slope of 0.65) atc=0.35, which should be compared largest possible excursion of the CM at finids gr.. The

with the predictiong'™¢, where 1¢=1/3 in two dimensions and  roughness of the CM then scalesgas instead of withé. In

1-¢=0.59 in three dimensions. a similar way, the number of bonds on the interface also
scales withgr.. In particular for the roughness, we expect
E~1: w=L: N=LPe, (12) that the roughness is that of a random manifold with renor-

malized lattice sizé./gr;, so that

whereD, is the external perimeter dimension in percolation. L N

In two dimensionsD.=5/4[46], while in three dimensions W= grc<—r) = - DDegl) ¢, (18
D.=D; whereD;=2.53 is the fractal dimension of the infinite gre

cluster[46]. At the critical point, the number of bonds on the The roughness thus diverges as the energy contrast goes to
CM is proportional to the number of bonds on the externakzero asw=¢e%2% in two dimensions wherg/=2/3, D,
perimeter of the largest strong-aggregate cluster, as the CM5/4, while w=¢e%2% in three dimensions where
avoids cutting any strong bonds in the smallimit. The  =0.41(1), D,~2.53. The exponents describing the scaling of
energy result in Eq(1l) is evident from the fact that on the roughness with the energy ratie are quite small, which
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indicates that a large energy contrast is required in order to According to the central limit theorem, the probability
observe pronounced peaks in the roughness and in the nuriat a fluctuation of siz& has energyEs is given by

ber of bonds on the CM neagp. This is evident from Figs.

7 and 8, where it is seen that even for a contrast=00.01,
the critical behavior neatsap is rounded significantly. The
energy and the fraction of weak boundaries on the CM ar
more weakly dependent on the energy contfase Figs. 5
and 6, though as seen in EqQ17) there are still nontrivial
scaling laws atgap.

Another feature of the behavior @ andN as a function
of strong bond concentration is that the peak value of thes
quantities moves to higher as the energy contrast in-
creases. This is due to the fact that at firifghe maximum e.=c; o’=c(1-c). (23
manifold wandering occurs whet>cgpp andr =¢. These
conditions maximize the number of strong bonds while stil
providing weak paths up to length. Using these conditions,
we find that the peak in the roughness and in the number of 1

PEI 2 o*lzs)llze_(ES_ eSS, (22
T

WhereS=19"1is the number of grains in the fluctuation. Here
Esis in units of the grain size. To recover the energy of the
fluctuation in standard units, we just multipg by g%*. e,,

is the average energyer grain of a grain boundary while
o2 is the standard deviatio(per grain in the energy of a
8rain boundary. For the GBE model we are using, we have

IFrom Eqg. (22) we estimate the typical size of the largest
energetically favorable fluctuation by finding the solution to

CM bonds occur atp found from (ZTS)MG_‘&EEZW"{(Z"ZS) ~1. (24)
% = (Cp— Conp) - (19) ;I;wheen r;sg(;rgrtiirgnz?ggy gain achieved by these fluctuations is
The location of the peak shift thus scales as 8B gain [07SIn(2m0?S) M2, (25)
Cp — Cgpp=~ €”Pe. (200  The energy cost of such a fluctuation scales as
O o5t €972, (26)
C. High concentrations, c>cgap, €—0 From Egs.(25 and (26) it is evident that at large enough

length scales, the energy gain is larger than the energy cost in
?oth two and three dimensions. The energy gain favors a
Huctuation which roughens the critical manifold, so at long

Song bonds,which we havetaken o be 1. The roughness 101" scle. e el manfos wanders” o ke ader:
a flat surface is zero and the fraction of the CM that is on 9 9 9

- average number of weak boundaries. The most important
weak boundaries is clearly zero. For 1, we thus have quantity in the theory is the critical length,, which is the
E N length scale at which the wandering sets in. The critical
i1 and f,=0=w. (21 manifold is flat on length scalek<L. and “rough” on
longer length scales, i.e., itis rough for L.. Equating Egs.

In the regimec<1 with 1—c small, we can consider there (25) and(26) and dropping the logarithmic term leads to the
to be a relatively small number of weak grain boundariesfollowing result for critical manifolds in two dimensional
This is the regime in which scaling concepts used in thesystems, such as thin films:
analysis of periodic elastic media apply. We are primarily
interested.in the limit of small values @&f so that a weak ?S~¢2, sothat L.~ i_ (27)
boundary is favorable at almost all angles to the average CM (1-c0
plane. For finite 1€ an Imry-Ma argument provides a sur-

o . . n three dimensions, i.e., for bulk materials, the logarithmic
Fgf'gr?tlﬁ(/: gonﬂg;ng%ry to describe the large scale behavior Okerm in Eq.(25) is dominant and must be kept, which results

In the analysis below, we use the renormalized IengtHn the expression

scalel=L/g. In the Imry-Ma argumenit55,57], we consider ex bor |

a fluctuation of sizd from a flat surface. This fluctuation o?In2mo®S) ~ €2, so L.~ 91_—61/2, (28
consists 0f%* grain boundaries. Such a fluctuation is advan- e =]

tageous if it contains a larger than average number of weawhereb, is a nonuniversal constant. The critical lendth
grain boundaries. The large scale roughening of the criticalliverges much more rapidly as—1 in three dimensions
manifold is driven by the nonperturbative or “co-operative” than in two dimensions. This means that critical manifolds
Imry-Ma fluctuations which in the context of GBE materials are more prone to cleavage in three dimensions than in two
are derived and analyzed below. In addition to these largeimensions, for the same degree of grain-boundary engineer-
scale excitations, there are small scale fluctuations whicing. The theory leading to the algebraic prefactor of the three
lead to terms proportional to Ic- These terms can be con- dimensional result may have two other logarithmic correc-
sidered to be perturbative terms while the Imry-Ma terms areions. The first is due to the number of ways in which a CM
nonperturbative. fluctuation may be placed in the material. This leads to an

The limitc=1 is trivial, as in that limit the CM is a cleav-
age surface, so that the number of bonds on the CM is ju
the surface area and the energyNisimes the energy of the
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additional factor ofl multiplying the left-hand side of Eq. above. The typical value of the co-operative tesfy, is de-

(24). In addition, the energy cost equati¢®6) may be re- scribed by the same statistics as the energy fluctuations, so
duced by a factor of Ih. These logarithmic factors do not that
affect the result in two dimensions or the exponential term in (A-D/2) -2 4 1d-1
the three dimensional result. However, they do affect the fy=alg I +1g), (32
algebraic prefactor in the three dimensional result. The wayynere | =L /g. The term in the denominator is the total
in which they modify the three dimensional result is incor- nymper of grain boundaries in the favorable fluctuation. Us-
porated into the more general formlL.=g[c(1 g Eq.(27) the behavior off,, in the largec limit for two

-c)]Y exdbyc/ (1-c)], where the new exponentdepends  dimensional system@hin films) is predicted to be
on the details of the model, but is less than or equal to 1. In

comparing with numerical data, we considered several val-
ues ofy, but found thaty=1/2 provides an adequate descrip-
tion of the data. This is the case stated in E8) and in the . . .
results which follow from it. wherea,,a,,a; are nonuniversal constants. The first term in

From the critical length.. we deduce the behavior of the Ed.(33) is the perturbative term, while the second term is the
four CM properties which we measure. First, the co-Co-operative term. In three dimensions a similar argument
operative or nonperturbative contribution to the roughness oYields

1/2

) a,C
fo = al(l—c)+a21:I ~a(l-c)+ ﬁ, (33
c 31—

CM's is given by afc(l —c) 2
L\l . fu=~a(l-0)+ —1{; eb)] : (34)
W = g(L—) so that m o |_§, (29) 3[e-0
¢ 9 ¢ where a;,a,,83,by are nonuniversal constants and the co-
wherel.=L./g. At fixed g andL, we then find that in two OPerative term is proportional to/(1+lo), from Eq. (32).
dimensiondusing Eq.(27)], for ¢> csap, W behaves as These forms are compared to the numerical data in Figs. 7
from which it is seen that they provide a good representation
W 1-c\¢ of the data.
g a(1-c)+ aZ(T) (30 The co-operative contribution to the number of bonds on

the CM is approximately

The first term in this expression is the perturbative term due L \d-1
to the small deviations of the CM from the flat manifold. The N= (gLd?+ L2‘1)<—> . (35)
second term is the co-operative term, and is due to large Le
Imry-Ma deviations from the flat CM. In three dimensions aThis leads toN/L%1=1+1/. Adding the linear term to this
similar discussion yields co-operative term, the result for two dimensions is found to
be
= ay(1-0) + alc(l -0 (3] N
gL L= 1+ay(1-c)+ayl-c)lc, (36)

In both two and three dimensioms is expected to be inde- . . ,
pendent ofg andL except for finite size scaling corrections. yvhereal,az are nonuniversal constants. Again the first term

However, a, is expected to be size dependent due to thdS the perturbative term, while the second term is the co-

normalization ofw. The perturbative correction should scale operative term. In this case bo_th terms r_\av_e a linear d_epen-
as w=alg(1—c), with a, a size independent constant. At Qence on 1€ at small 1-€. We find that this linear behavior

I . is valid over a surprisingly broad regime, as is evident from

arge sample sizes, we thus expacto go to zero. However, _. hree di ’ find that

for finite grain sizes and relatively small sample sizes, theré:'g' 8@. In three dimensions, we fin

is a significant linear term. The co-operative contribution to /2bpcl(1-0)

the roughness of CM’s approaches zero algebraically in two 12- 1+ay(1-c)+ay[c(l-c)] " e™ (87

dimensions and exponentially in three dimensions. This is

typical of the behavior of periodic elastic media in the weakwherea;,a,, b, are nonuniversal constants. The close fit of

disorder limit, where roughening of manifolds only occurs atthis form to the data is evident in Fig(i8.

exponentially large length scal¢§5]. The forms(30) and Finally, the energy is related to the number of bonds on

(31) are compared to the data of FiggaPand 4b) from  the manifold and the weak fraction through the relation

which it is evident that they provide a good representation of _

the behavior in the large limit. E=fuNe+ (1 =fw)N. (38)
Now we consider the fraction of the weak grain bound-This is an exact equation valid for alande. In fact, we use

aries which lie on the CM. The average number of weakthis equation as a check on the consistency of our numerical

boundaries on a cleavage plandjs=a;(1-c). In addition,  procedures for calculating,, N, andE. Analytic expressions

when the critical manifold wanders, it wanders to regions offor the energy as a function afat small 1-¢ are found by

the material where there is an excess of weak boundariesombining Eq.(38) with Egs.(33) and(36) for two dimen-

of,. This is the origin of the co-operative term discussedsions or with Eqs(34) and (37) for three dimensions. As a
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final empirical remark, it is interesting to note that the two V. DISCUSSION AND CONCLUSIONS
dimensional energy data are well described by the simple
relation We have presented an analysis of the properties of grain-
boundary networks where a fraction of the grain boundaries
E_ 0.97-1.741-¢) (39) ¢ are strong and the complementary fractionclis weak.
L The grain-boundary networks studied in detail here are ran-
for a broad range of values of t-We do not have an dom, isotropic grain boundary networks, however, the nu-

explanation for why the rather complex expression founomer'c‘.'jII and a.nalyt|c procedu.res we used can be adapted to
from Eq. (38) with Egs.(33) and (36) should reduce to this any given grain boundary or mFerface network.
simple behavior over such a broad range ofclthough of We found that thDe percolation pf a str_ongly _connected
course a term proportional to T-is expected from Eq3g). ~ 299regate occurs af5p=0.38+0.01 in two dimensions, and
Although the unbiased fits of the scaling laws to the nu-2t Csap=0.12£0.03 in three dimensions. The fraction of
merical data are very good, the parameter values found a@@ns in the polycrystalline material which are part of the
not precisely determined. That is, the fits are not markedPercolating aggregrate behaves as:(c—Cspp)”, for C
worse if the parameter values are varied significantly. This is~ Csap @1dC—Csap Small. ThDe onset of percolation of weak
more severe in three dimensions where the data are restrict&f!" boundanges occurs afypp=0.38+0.01 in two dimen-
to small effective lattice sizes. If the grain size is large andSions and atypp=0.77+0.03 in three dimensions. In two
the lattice size is large, we expect the finite size effects to b8iMeNSIONSTsap=Cyygp- However, in three dimensiongygp
less severe and the correspondence between the scaling law$sar Which means that in lt)hree d|r2Den5|ons there is a
and the data to improve. It is thus not surprising that the?road range of ConcentrauonéAP<C<CWBP where a per-
theory is quite precise in two dimensions. It is also importantcolating strong aggregate and a percolating cluster of weak
to note that the unbiased fits of the 3D data lead to differenPoundaries co-exist. This interpenetrating regime is absent in
values of the key parametdy, in the exponential of the WO dlm_ensmns and_ presents some interesting possibilities in
critical length[see Eq.(28)]. The unbiased fits lead to the the design of materials which require both access to the ma-
resultsby=1.48 from the roughness datsee the caption to terial interior as well as strong connectivity of the grain
Fig. 9), by=0.53 from the weak fraction dataee the caption Structure. In the case of corrosion, it is desirable to restrict
to Fig. 7, and by=0.68 from the data for the number of @ccess of corrosive agents to the interior of a material. In
bonds on the CMsee the caption to Fig))8The values for SOme important structural materials spedisfrong grain
b, should be the same, so we also carried out fits to the dataoundaries restrict diffusion of corrosive agents while the
where the value oby is chosen to find a best fit which is remaining(random) bqu_ndaries allow diffusion of corr_osive.
most consistent with all of the data. The fits are not signifi-29€nts. In that case it is important to produce materials with
cantly worse than those presented in Figs. 7-9 for a fixedn® fraction of strong grain boundaries in the range
value of by=1.0+0.2 with the other parameters free. This= Cwep- T0 further quantify the degree to which corrosive
suggests that multiple data sets are required to extract relAd€nts penetrate in this regime, we defined a percolative or-
able fitting parameters from the three dimensional numericaflér parameter called the penetration delpthwhich is the

data on the sample sizes currently available. linear size of the largest cluster of weak grain boundaries
which is connected to the boundary of the sample. This pen-
D. Unified form of scaling theory etration depth diverges on approach dggp from above,

‘with the scaling behavidi < (c—-cygp) ™. In practical terms

p diverges rapidly as— cygp SO that forc>cygp there is a
yery significant decrease in the degree to which corrosive
agents can penetrate the material.

The critical manifold(CM) in a random network can be
R.=min(&,gre) (40)  found efficiently using the max-flow/min-cut theorem. The
critical manifold is the minimum cut and the maximum flow
corresponds to the energy or current carrying capacity of the
CM, depending on the application. In the case of polycrys-
talline high temperature superconductors the maximum flow
corresponds to the critical current, while in brittle fracture it
corresponds to the energy required to break the bonds which

W R(L/IR)Y €< Copp. (41)  lie on the fracture surface. In the study of CM's we are able
to introduce an additional parameter, the energy contrast,

In the regimec>csap we need to take into account the ef- \yhich is important in applications. The energy contrass
fects of the periodic potential, which leads to the ratio between the “strength” of the weak boundaries and
/ the “strength” of the strong boundaries. In the case of struc-
Wt R(LIL) € Csan (42) tural applications, the strength corresponds to the bonding
whereL =R/ andl.=L./g is given by Eqs(27) and(28). energy of the GB while in high temperature superconductors
These scaling forms apply for all values of providedL it corresponds to the critical current of the grain boundaries.
>R, L. In the structural applications the typical ratio between the

In the statistical physics analysis of manifolds, the rough
ness scaling plays a central role. In this context, it is wort
noting that it is possible to state all of the above roughnes
results in a unified form. To do this, define a scaling length

which is the minimum of the percolative correlation length
&=glc-cgad™ and energy cutoff lengtlyr,=g/Pe. The
smaller of these two lengths cuts off the percolative fluctua
tions. UsingR; as the lattice spacing in a nodes link and
blobs picture leads to the roughness scaling
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bonding strength of special boundaries, suct®a8sbound-  while in three dimensions we predicted that this peak grows
aries, and random boundaries is of order1/5-1/10, ase %233
while in high temperature superconductors, the critical cur- From a statistical physics viewpoint the GBE materials
rent of high angle boundaries is of order a hundred timegresent an interesting opportunity to experimentally test the
lower than that of low angle boundaries, so in that applicascaling theories of random manifolds and periodic elastic
tion e~1/100. media. Grain-boundary networks can be controlled carefully
We presented data for the cases0.0001, 0.01, 0.1. We  anq the fraction of weak boundaries can also be controlled,
studied four aspects of CM's in polycrystalline materials 5, that the scaling laws for many of the properties of interest

with a fractionc of strong grain boundaries: The enem@y  can pe tested as a function of a tunable concentratiand
critical currenj densityE/L%*, the number of bonds on the energy ratioe

d-1. f ;
CM, N/L® the fraction of the CM that consists of weak From a practical GBE viewpoint there are some interest-

grain boundariesf,,; and the roughness of the CM;. The . D :
CM is sensitive to the percolation of a strong aggregate, s ng trends and poss[b|I|t|_es suggested in the results_ presented
ere. One observation is evident from the behavior of the

critical scaling of the CM properties occurs @tcgap, but : U .
nothing special happens to the CM scalinggp ass?sF) clear ©Neroy densny' presented n Fig. 6 which corresponds to the
critical current in polycrystalline high temperature supercon-

from the results found in three dimensions whex. ; _— :
<c [Note, however, that there are “critical patf(ﬁ:’l?g ductors. It is clear from this figure that there is a roughly
e ’ ’ linear improvement in the properties of the critical current of

that are singular atygp as will be described elsewhefe. high T, films for all c>0.5 which means that over 50% of

Large scale simulations were carried out for the four proper \ } .
: ghe grain boundaries need to be low angle boundaries in

(see Figs. 6-9 The energy and the fraction of weak bonds isotropic polycrystalline thin films. In the case of bulk mate-
on the CM are monotonic functions of the strong boundar))’ials’ there is a roughly linear regime which has an onset at

concentratior(see Figs. 6 and)#vhile the number of bonds ¢~0.3 and extends to roughly=0.65. It is thus necessary

on the CM and the roughness of the CM exhibit a peak clos%0 he;]\{eha_f_leastt 300? %f glrain boulndgriesdin .bUIkt pct))lyc.ryfrt]gl-
to the critical thresholdggap (see Figs. 8 and)9 In€ Nigh 1. matérials be low angié boundaries 1o be in this

The numerical results are well described by simple scal-reg'lmi' Ho&/vey er,b effortds tt? 'rt‘%rg;s.e lgh?k fracttlo_nl qf lOVIV
ing relations adapted from existing theories of random mani&NJ'e boundaries beyond about 557 in bulk materiais Is reia-
vely futile as the improvement in critical current is rela-

folds and periodic elastic media. One simple adaption is thagvely slow in this regime. A second potentially interesting

in polycrystalline materials we need to define an effective . . : .
lattice sizeL/g, whereL is the sample size ang is the feature is the peak iN andw at intermediate values af for

average grain size. Far<cgap, the theory of random mani- examlplte én Imatgrlali;hwherre] roughneiis andftoughn_ess can be
folds applies; forc~ cgap critical scaling based on percola- _correfa}[ N .hn using Eent agcemen m);)[?/\ ortenglneer-d_
tion theory provides an adequate theory; while €or cgpp Ing of toughness one has to be aware of the strong rounding

o : ) . . finite e.
the theory of periodic elastic media applies. The latter reglméOr . : o .
is perhaps the most interesting from both a theoretical and rF] F'na”y’ f'n SBE nloldgll:crf\g Itis |£npt)ortanttto real(;zteh thatd.
application standpoint. In that regime, we define a critical ere IS a fundamental difierence between two and three di-

length scald_, so that cleavage occurs in regions of typicalmens'ons' In a _broad concentration regime In thre_e dimen-
size L, and that the CM wanders and roughens on Iengtf?'onS a percolatmg strong gggregate an_d a pe_rcolatmg cluster
scalesL.. All of the properties we calculated are related to of weak boundaries co-exist. In two dimensions these two

the scaling behavior df., which is well described by simple percolgting I not co_—exist. In addi_tion, .the s_,caling
scaling laws. The critical length,, diverges a— 1. It has behavior of cleavage regions in two dimensions is quite dif-

an algebraic divergence in two dimensions and in the ”mitfere'nt th?‘” that' of cleavage regions in. three d‘me”SiOPS’ es-
e—0 we found an explicit expression for this divergence,peClally in the Important practical regime= Csap Th'.s IS
L.xgc/(1—c). In three dimensiond. diverges even more due to the fact thak . diverges algebraically in two dimen-

rapidly asc— 1 and(in fact it diverges exponentiallyand in sions while it diverges exponentially in three dimensions.
the limit e—0 we find, L= gexpboc/ (1-c)]/[c(1-c)]*?
where by is a nonuniversal constant which is of order 1.
From the expression fdr,, it is straightforward to develop The research at MSU has been supported by the DOE
scaling laws for many of the properties of interest, for ex-under Contract No. DE_FG02-90ER45418, and by Sandia
ample the manifold energy and its roughngsse Eqs(30) National Laboratories. This work was performed in part at
and(31)]. The peaks observed neajpin the roughness and Sandia National Laboratories, a multiprogram laboratory op-
in the number of bonds on the CM are strongly rounded byerated by Sandia Corporation, a Lockheed Martin Company,
finite values of the energy contrastIn two dimensions we for the United States Department of Energy under Contract
found that this peak diverges with energy contrastd$%  No. DE-AC04-94AL85000.
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