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Motivated by the fact that many physical systems disgiaypower-law correlations together witfii) an
asymmetry in the probability distribution, we propose a stochastic process that can model both properties. The
process depends on only two parameters, where one controls the scaling exponent of the power-law correla-
tions, and the other controls the degree of asymmetry in the distributions leaving the correlations unaffected.
We apply the process to air humidity data and find that the statistical properties of the process are in a good
agreement with those observed in the data.
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Many physical phenomena exhibit temporal or spatial corbutions, leaving the correlations almost unaffected.
relations that can be approximated by power laws. For ex- Before studying the autocorrelation function xf C(n)
ample, long-range power-law correlations have been foune= (X,,x)—(x;)?, and the probability distributionP(x), for
in physical, biological, and social systefiis-8], and various  different values ofp and A, we note that processi(p,\)
stochastic process¢9—12 have been developed to model exhibits two invariance properties. Under the transformations
these power-law scaling properties. Recent studies havwge——X, 7,— -7, A——\, one can see thaC(n|p,\)
shown that in addition to power-law correlations empirical=C(n|p,—\) and P(x|p,\)=P(-x|p,-\). That is, the auto-
data often exhibit a significant skewness or asymmetry ircorrelation functions calculated for opposite values\aire
their distributions. Asymmetric distributions have been foundidentical, and the distributions for opposite values\oére
in astrophysical datf13], genome sequencgs4], respira-  mirror images of each other. Hence, we focus on values of
tory dynamicg15], brain dynamic$16], heartbeat dynamics A =0 in the following study.

[17], turbulencd 18], physical activities, and finandé9]. To quantify the autocorrelations inx; generated by

With the goal of constructing a stochastic process that carfl(p.\), we employ the method of detrended fluctuation
generate time series with both power-law correlated andnalysis(DFA) [22]. In the DFA method one measures the
asymmetrically distributed variables we define the process standard deviatior(n) of the detrended fluctuations as a

Alp,\) by function of the scalen. If C(n) can be approximated by a
power law with exponeny, i.e., if C(n) «xn~?, thenF(n) can
o also be approximated by a power law with exponent.e.,
X = N|Xi_q| + > an(p) Xicn = NXiZnal) + 7, (1) F(n)«n?, with a=1+7y/2 [22]. Hence, the value of rep-
n=1 resents the degree of autocorrelations in the time series: if

a>0.5, the time series is power-law correlated;aif 0.5,
wherep € (0,0.9 and\ e (-1,1) are free parametera,(p)  the time series is uncorrelated or short-range correlated; and
are weights defined by, (p)=I'(n—p)/[T'(-p)I'(1+n)], T if «<0.5, the time series is power-law anticorrelated.
denotes the Gamma function, angl denotes independent In order to study the influence of the parameteon au-
and identically distributed Gaussian variables with expectatocorrelations and the degree of asymmetry in the distribu-
tion value (7,)=0 and variance(ni2>:1. The parametep  tion, we perform numerical simulation23] of A(p,\) with
controls the length of the memory, i.e., how rapidly the in-p=0.3 and varying\. Figure 1a) shows that, fon =0, F(n)
fluence of past values_, and|x,_,_4] on x; decays in time, can be approximated by a power law with scaling exponent
and the parametex controls the relative influence af_, on ¢, i.e., F(n)<n® where a=0.5+p=0.8, as expected from
x; compared to the influence of_,_,| on x;. Refs.[9,10,24. Figure 1a) shows that, also fok # 0, F(n)

A(p,\) can be understood as a generalizafi2@,21] of  can be approximated by a power law with scaling exponent

the fractionally integrated process proposed in Rgfsl0], a, wherea=0.5+p=0.8, i.e., the value ok has no visible

to which A(p,\) reduces forn=0. While the fractionally effect on autocorrelations of for asymptotically large val-
integrated procesgl(p,0) is known to generate power-law ues ofn. We also find from Fig. (a) that, for\ # 0, theF(n)
correlated and symmetrically distributed time sefi@gl0], curves exhibit a crossover at small time scalesvhich be-

we will show in the following that, foik # 0, A(p,\) gener-  comes more pronounced and shifts to larger scalesvaith
ates power-law correlations with an asymmetric distributionincreasing|\|.

Specifically, we will show that the parametercontrols the In Fig. 1(b) we see that, foh=0, P(x) is symmetric, as
scaling exponent of the power-law correlations, and that thexpected for the process of Ref®,10. For A=0.6 and
paramete controls the degree of asymmetry in the distri- A\=0.9, we find thatP(x) is asymmetric with positive skew-
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but also autocorrelations in the magnitudes, and pro-
FIG. 1. Correlations and probability distributions obtained from cesses with autocorrelations in the magnitudes have been in-

numerical simulations of procesd(p,\) with p=0.3 andA=0,  {roduced to model broader tails in the distributigas].
+0.6, and +0.9(a) Detrended fluctuation functioi(n). We see that Figure 3a) shows that, for asymptotically large each
the F(n) curves for opposite values af are identical, and we find F(n) curve can be approximated by a power law with scaling
that, for all V".’“ues oR,F(n) can be apprc.’Ximated by a power law exponenta=0.5+p. This states that the time-dependent
for asymptotically largen, and the scaling exponent in F(n) standard deviatiow; does not affect the relation betwean
«n® s virtually the same for all values af. (b) Probability distri- ! .

and p observed for procesd(p,\) [24]. Figure 3b) shows

bution P(x). We see that for opposite values »fthe distributions R B
are mirror images of each other, and we find thét) is symmetric the distribution ofx; generated by3(p,\) for p=0.3 andx

for =0, P(x) is asymmetric with positive skewness for-0, and ~ fanging from 0 to 0.3. As expected, the asymmetry vanishes
the degree of asymmetry increases with increa$ing for A=0 even in the presence of the termy;, meaning that

this term alone does not create an asymmetry in the distribu-
ness, where the left tail is almost identical to the left tail oftion of x; but only broadens its tail26]. For A >0, we find
the symmetric distribution, and the right tail is broader thanthat, as\ increases, the right tails of the distributions become
the right tail of the symmetric distribution. Due to the invari- proader, the left tails of the distributions become thinner, and
anceP(x|p,\)=P(-x|p,~\), we find that the distributions thys the asymmetry becomes more pronounced. Comparing
for positive and negative values afare mirror images of Figs. 3b) and 4b) we find that the time-dependent standard
each other for opposite values of deviationo; broadens the tails and increases the skewness of

In order to investigate how the correlation properties ofp(x).

A(p,\) depend orp, we perform numerical simulations to T exemplify the utility of proces#(p,\) for modeling
obtain time series fok=0.6 andp ranging from 0 to 0.4. We  yeal-world data, we study air humidity data, which can be
find from Fig. 2 that thé=(n) curves can be approximated by considered an output of a complex geophysical system. We
power laws with a scaling exponent@f=0.5+p. This states  analyze the relative air humidity recorded in 10-min intervals
that we obtain the same scaling law for the procd$s,\)  at the Institute of Plant Genetics and Crop Plant Research in
generating asymmetrical distributions as for the procesgatersleber{27]. We denote the differences of successive
A(p,0) generating symmetrical distributions. Numerically relative air humidity by, and we show in Fig. @) the time

we find that, independently ok, the relation a=0.5+p series;. Figures 4b) and 4c) show that the time seriés
holds for all values ofp and A where pe(0,0.5 and  exhibits both power-law autocorrelations with a scaling ex-
Ae(-1,1 [24]. ponent ofa=0.87 and an asymmetric distribution.

In order to model probability distributions with a different  In order to investigate to which degree procé{®,\)
shape, particularly with tails broader than those generated byan approximate the statistical properties of the empirical
processA(p,\), we propose the proced¥(p,\) by substi- time series;, we generate time series by numerical simula-
tuting the term; in Eq. (1) by the termo;7;, where the tions of proces®3(p,\) with p=0.37 and\=0.15, where we
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FIG. 3. Correlations and probability distributions of process 10 ' ' ' ' '
B(p,\). (a) Detrended fluctuation functioR(n) obtained from nu- AL B\ | oo air humidity data
merical simulations of proces8(p,\) with A=0.15 and varying 10§ 4§ [ == process B(p=0.37.A=0.15)
values ofp=0, 0.1, 0.2, 0.3, and 0.4. We find that, independently of s R ]
\, F(n) can be approximated by a power l&wn)«n® with the - 3
scaling exponentv=0.5+p. (b) Probability distributionsP(x) ob- E/
tained from numerical simulations wii=0.3 and\=0, 0.15, and E
0.3. We see thaP(x) is symmetric forA=0, P(x) is asymmetric
with positive skewness fox >0, and the skewness increases with E
increasing.

setp by using the relationt=0.5+p, and where we finc
based on a numerical least-square minimization. In Fig. 4, ©
we presen{a) the time serie; and x;, (b) their detrended FIG. 4. Comparison of the changes of relative air humidity
fluctuation functionsF(n), and (c) their distributionsP(X)  \ith the time series; generated by procesd(p,\) with p=0.37
and P(x). Figures 4a)-4(c) show that the time series &f  and\x=0.15.(a) Time serie&; andx.. We find that both time series
andx; look similar, that the autocorrelation behavior of the show sudden bursts of large fluctuations predominantly in the posi-
simulated time series is in good agreement with that of the tive direction.(b) Detrended fluctuation functioi&n). We find that
air humidity time series;, and that the distributionB(X) and  autocorrelations ok; andx; are very similar, and consistent with a
P(x) are asymmetric with positive skewness. Moreover, wepower-law scaling of(n) «n® with the scaling exponent~0.87.
find that even the shapes of both distributions are similar{c) Probability distributions?(X) andP(x). We find that both distri-
which is surprising because the shapeP¢) is not fitted to butions are asymmetric with po_sitiye §kewness._ Moreover, we find
the shape oP(X), but the shape dP(x) is entirely given by that even the shapes of both distributions are similar.
the values ofp and\.

One possible explanation for the positive skewness in th®Y processB(p,\) with a small value ofA ~0.15 suggests
data is that it is very easy to increase the humidity rapidly, bythat the influence of the past magnitudes,-;| on x; is
rain for example, but it is hard to dry it rapidly. This simple significantly smaller than the influence of the past humidity
physical fact could be one of the origins of the asymmetrychangess_,. Specifically, we might speculate that the influ-
observed in the distribution &. The agreement of the sta- ence of the past humidity changes, on x; is approximately
tistical properties ok andx; observed in Fig. 4 might indi- seven times greater than the influence of their magnitudes
cate that humidity changes at timelepend not only on past [%i-n-1/ On X. Even though both processed(p,\) and
humidity changes;_, but also on their magnitudes;_,;|.  B(p,\) can generate asymmetric distributions, we find that
The degree of asymmetry in the distributionofeproduced the empirical distribution cannot be reproduced by process
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A(p,\), but it can be almost perfectly reproduced by procesg and \ controlling the scaling exponent of the power-law
B(p,\). This surprising observation indicates that the envi-autocorrelations and the skewness of the distribution, respec-
ronmental factorsy at timei might be amplified by a mul- tively. The surprising agreement of the shapes of the distri-
tiplicative factoro;, which does not depend on past humidity butions might suggest that air humidity changes at firage
changess_, but on their magnitudef;_ /- possibly driven by(i) past air humidity changes at timesn,

In conclusion, we propose two stochastic processesji) their magnitudes at times-n, and (iii) environmental
A(p,\) andB(p,\), that generate simultaneously power-law factors at timei amplified by a multiplicative factor that
autocorrelations and asymmetric probability distributions.jtself depends on past magnitudes at times. It is clear
Both processes depend on only two parameterand X, that processesl(p,\) and B(p,\) lack many important de-
wherep controls the scaling exponent of the power-law au-tajis necessary for realistic weather models, but the simplic-
tocorrelations and controls the degree of asymmetry. We it and generality of processed(p,\) and B(p,\) might
study air humidity time series, and we find that they d'Splaypossibly make them useful for modeling diverse physical

poth power-la}w autocorrelations and agymmetric diStrib“'systems exhibiting both power-law correlations and asym-
tions. We find that processB(p,\) is capable of | atric distributions.

reproducing—aqualitatively and quantitatively—the autocor-
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