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Non-Gaussian fluctuations arising from finite populations:
Exact results for the evolutionary Moran process
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The appropriate description of fluctuations within the framework of evolutionary game theory is a funda-
mental unsolved problem in the case of finite populations. The Moran process recently introduced into this
context in Nowaket al,, [Nature(London 428 646 (2004 ] defines a promising standard model of evolution-
ary game theory in finite populations for which analytical results are accessible. In this paper, we derive the
stationary distribution of the Moran process population dynamics for arbitrarg games for the finite-size
case. We show that a nonvanishing background fithess can be transformed to the vanishing case by rescaling
the payoff matrix. In contrast to the common approach to mimic finite-size fluctuations by Gaussian distributed
noise, the finite-size fluctuations can deviate significantly from a Gaussian distribution.

DOI: 10.1103/PhysRevE.71.025101 PACS nuni$)er02.50.Le, 05.45-4a, 87.23-n, 89.65-s

Theoretical studies of coevolutionary dynamics usuallymutations can often be lumped in a deterministic term
assume infinite populations, as the replicator dynarfiicg| [15,21], different ways to incorporate external stochasticity
or the Lotka-Volterra equation3,4]. The limit of infinite  have been proposed, e.g., by a Langevin term of Gaussian
populations leading to deterministic differential equations isdistributed nois¢6,19,2Q or stochastic payoffg22]. Conse-
an idealization motivated mainly by mathematical conve-quently, one could also approximate the intrinsic noise of the
nience. Only in a few cases will the population be largefinite system by Gaussian noise reintroduced into the con-
enough to justify the assumption of infinite populations.  tinyum equations. But griori it is not clear, in which situ-

In finite populations, crucial differences can appear. PopUxtion this approximation is justified. Especially in small

lation states that cannot be invaded by a small fraction ofq,jations, the inherent stochasticity may significantly ex-
mutants in infinite population, so-called evolutionary stableceed any external noise. In a finite-round Prisoner's Di-
strategieq 1], can be invaded by a single mutdsi. In ad- i

o o A . lemma game, the broadness of the distribution of cooperators
dition, a certain inherent stochasticity is always present in

finite populations. In multipopulation interactions, such ﬂuc—(rjeigt?inbttlii(\;Vr?zé(;;ndofcoﬂEg&?ﬁnﬁﬂgp‘fgs&[’?ﬁ& l;:rgesr’ut)hsetan-
tuations can possibly be exploitd®]. In this paper, we Y

quantify the inherent fluctuations arising from finite popula-tlal Impact both In genetic evolutionary dynami@sl] and in

! ) ; ; . ) evolutionary optimizatiorj25].

tions. As a starting point, we investigate the classical Moran To clarify the nature of inherent fluctuations of evolution-
procesg 7] that was recently transferred to frequency depen-ar dvnamics in a Moran process is the scope of this paper
dent selectior}5,8]. In a Moran process, in each time step y dy P P Papetr.

one agent is replicated and one agent is eliminated. Thus thWe quantify the deviations from the mean value by explic-

total size of the population is strictly conserved. This proceséﬁaly calculating the stationary distribution of strategies for

can be considered as a standard model for game dynamics %ﬁgﬁr&l r%ér?vgr?irsnrﬁﬁ aggcsr?ghdned z?it:]rsgsfgrrrr]r; at'?gcézrs tlrs1e”
finite populations. Although a strictly fixed population size 9 g ' P

will be fulfilled only in systems with hard resource limita- 'USt/ated with two qualitatively representative kinds of

fons, e, A faed number of acadeic postons, 1 37 200 e exact soior, s for e more reaitc
widely common default, especially in spatial gani@s13]. 9 9 ISP '

From a systematic point of view, the dynamics within thisﬁnimorgnuelgggu;'gnmdgn:méczf'tﬁwﬁzdgfaerpeenst\{ve g;nasrl%eé a
process and the nature of the fluctuations have to be undelrﬁtera?:tiﬁ in a ameg\]/vith the pavoff matrixyp '
stood before a generalization to variable population sizes on 9 9 pay

solid grounds is possible. ab
In [14] we have shown that the Moran process introduced P= c d/) 1)
in [5] can be derived as a mean-field approximation of the
finite population game dynamics. In mean-field theories ofEach agent interacts with a certain number of randomly cho-
evolutionary game theorjl5-18§ not only the spatial de- sen partners. Tha individual s obtains the fitness

grees of freedom are neglected; but the limit of infinite popu- nfa + ntb
lations also implies a transition from a stochastic system to a m=l-w+w—p—a, (2)
deterministic equation of motion. While the average effect of Ns +Ng

wherenf(n2) is the number of interactions with (B) indi-

viduals. O=sw=1 measures the contribution of the game to
*Electronic address: claussen@theo-physik.uni-kiel.de the fitness, 1w is the background fithess. An equivalent
"Electronic address: traulsen@theo-physik.uni-kiel.de equation holds folB agents. Occasionally, the payoff of a

1539-3755/2005/712)/0251014)/$23.00 025101-1 ©2005 The American Physical Society



RAPID COMMUNICATIONS

J. C. CLAUSSEN AND A. TRAULSEN PHYSICAL REVIEW 1, 025101R) (2005

randomly chosen individualis compared with the payoff of 00 b ! !
another randomly chosen agent, With probability ¢/ (7 [

+,), a copy of agens replaces agent. With probability -
m,/ (ms+1r,), agents is replaced by a copy af. The prob- 107 F
ability that an agent reproduces is hence proportional to its |
payoff. The payoff depends on the type of the individual and |42 |
on the kind of its interactions. This approach is frequently 3
used in simulations of multiagent systefi®6—29, genetic g:

I I
Neutral evolution, w=0 ---------- =
Anticoordination game J
Constant fitness r=0.5 -----
Prisoner’s Dilemma ------

T T
\
ml

1T

-3

A

algorithms[30,31], and evolutionary game theo[{6]. 10 3 B
The averaged dynamics of this model can be computec I C 3
from a mean-field theorj14]. If every agent interacts with a 10% | El
representative sample of the population, the average payof el
of A andB individuals will be, respectively, . | J"J'malx
_ a(i - 1) +b(N-i) 30 40 0
Ai)=1-w+w N1 , Fmax
FIG. 1. Stationary probability distribution for different evolu-
ci+d(N-1-i) tionary dynamics depending on the distance to the maxiniNm

m2([)=1-w+w N—1 , (3)  =100. For comparison, also the slow decay for neutral evolution is
shown. The decay of the distribution can be fitted by a stretched
wherei is the number ofA individuals. We explicitly ex- —exponential exp-bx) with y=2.06 (anticoordination game y
cluded self-interactions. An individual is selected for repro-=0.87 (constant fitnegs and y=0.63 (Prisoner’s Dilemma The
duction with a probability proportional to its payoff, as de- inset shows the same data where both axes are logarithmized, thus
scribed above. It replaces an individual that is chosen agtretched exponentials appear as straight lines. The decay deviates
random. This reduces the process to a Moran profgks significantly from a Gaussian di_stribution for constan't fitr_less and
which was recently transfered to a game theoretic COn,[eji’rlsone.r’s Dllem.ma, corresponding to a random motion in an an-
[5,8]. The corresponding mean-field dynamics is given by g'2"monic potential.
Markov process with the transition probabilitigsA]
interior independently from the boundaries, the correct nor-

T .= ()i N-i malization can then be found analyzing the transitions from
LT AW+ 7BH(N=i) N the boundaries to the interior, i.Rqu=P;T; ..
Let us first consider thaeutral evolutionlimit of w=0,
B 720N =) i where the fitness is constant and independent of the type.
Tisi-1= 20+ BH(N-1) N’ The payoffs arer(i)=#5(i)=1. This implies
i(N=1)
Ti~>i =1 _Tiﬂi+l_Ti~>i—l' (4) Ti*?i"'l:Ti*?i_l: N2 . (6)

All other transition probabilities are zero. The state® and
i=N are absorbing, while the remaining states are transien
Conveniently, a small mutation can be introduced to allow
for an escape from the absorbing stdtg2)]. 1
The general case of nonvanishing background fitness Pj m (7)
a nonvanishing background fitness >0 the transition
properties obtained directly from Eq€3) and (4) become  which has a minimum ait=N/2. The equilibrium distribu-
quite lengthy. A more elegant way is to rescale the payoffion arises from a neutral evolution of two types, as known
matrix of a given 2< 2 game according to from population geneticg33].
. Constant fitnessThe simplest case fav> 0 is the case of
(a b ): (1+(a— Dw 1+(b- 1)W) (5) constant fitness, i.ea=b<c=d=1. The evolutionary dy-
¢ d l+(c-1w 1+(d-Dw/’

namics drifts towards the typB, which has higher fitness.
With this rescaled payoff matrix, a vanishing backgroundwe find for the stationary probability distributid®<i<N
fitness can be assumed (8) without loss of generality.

From PT,_i+1=Pi+1Ti+1_i we find in equilibrium for O<i

-1),

Fluctuations around the average strategyn order to Py ri+1)+N-i-1 i N—i
quantify the deviations from the average strategy of the sys- P =r M+N=i T AN—i-1'
tem, we compute the stationary distributi®n for this sys- :

tem. We assume a small mutation probability For x<1, wherer=1-w+wa<1. Far from the border¢at i=0, N),
mutations affect the system only in the states that are absorlf,,/P; converges tg implying an exponential decay of the
ing for ©=0. In this case, the strategy distribution is gener-stationary probability distribution.

ated only by the inherent stochasticity of the finite popula- Internal Nash equilibrium For frequency dependent fit-
tion. The stationary probability can be computed in theness andv>0, the game can have an internal Nash equilib-

(8
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T — 1 IAn' T d'l — 1 N
- ticoordination game ——— 4
107 |~ Constant fitness 1=0.5 -—--—-- - Pii1= PoH ( )7 (11
T WDﬂenmm ------- 3 =0 I+ 1 i+1
w0k e . \‘*\\ . where P, is determined by normalizatior®; is a binomial
7 distribution around the equilibrium of the replicator dynam-
z 109k N ics ati=N/2, P;=2"M1).
3 . Prisoner’s Dilemma: Nash equilibrium at the bord@&he
g i ] Prisoner’s Dilemmad34] is a standard model, where mutual
§ 107F ] cooperation leads to the highest payoff in the iterated game.
] It is motivated by the situation where two prisoners can re-
107 F 3 duce their time in prison by witnessing the other’s g(fitte-
1 fect”). On the other hand, if both “cooperate” and refrain
100 - | : 2 from blaming the other, both receive a reduction of punish-
10 00 1000 10000 ment. This is described with parameters fulfillieg~a>d

N >b; the dilemma situation originates from the temptatmon
>a, defection yields a higher payoff if the opponent coop-
FIG. 2. Scaling of the variance, normalized Ry of the finite-  erates. In its standard parameters, the Prisoner’s Dilemma is
size fluctuations for anticoordination ganf&lope —1/2, constant  defined by the payoff matrix

fitness(slope -1, and Prisoner’s dilemmglope —3/2. For neutral 30
evolution (not shown the variance increases faster thdn pP= ( ) , (12
51
rium or an equilibrium in one of the absorbing states. which has a Nash equilibrium for mutual defection, iie.,
As a simple example with an internal Nash equilibrium=0. As b=0, also the staté=1 is absorbing fow=1 (two
we choose a simple “anticoordination” game wittx 1, cooperators are needed to promote cooperatidhus a
small mutation ratex has to be assumed also foy_,,. Al-
0 1 ternatively, one could assume< 1. The transition probabili-
P= (1 O)' (9 ties are given by
T B 3i-3 i(N=1)
For the transition probabilities, we find LT _2_2i +3IN+N(N-1) N
N=i 4i+N-1 i(N=1i)
Ty = —— Tt % 5 ~ . (13
- N’ i“=2i+3iIN+N(N-1) N
From this, a closed form of the probability distribution can
. be derivedsee below for a derivation with arbitrary payoff
T L (100  matrix). A comparison between different stationary distribu-

2N’ tions is shown in Fig. 1. The finite-size scaling of the vari-
ance is shown for the same cases in Fig. 2.

which describes a random walk with a drift towards the de- Stationary distribution for an arbitrary payoff matri¥or

terministic fixed pointi=N/2. In equilibrium, we have the ratio of the transition probabilities betweieandi+ 1 we

PiTi_i+1=Pi+1Ti+1; for everyi, which leads to find with w=1, cf. Eq.(4),
|
Tisie1 (i) (i+D)7Ni+D)+(N=-i-D7B(i+1) i(N=1i)
T 170 + (N=D)7() (i +1) (i+D(N-i-1)

_ali-1)+b(N-i) iIN-D[(i+1D%(a-b-c+d)+ (i +1)(—a+bN+cN+d-2dN) + N(N - 1)d]
Tcei+)+dN=i-2) (i+1)(N-i-1[iXa-b-c+d)+i(-a+bN+cN+d-2dN)+N(N-1)d]
_a-bi-Nsg i(N=-1i) (i=Np(@i—Ny
Te=di-Ng (i+D(N=i=1) (i-Ny(i-Ny

(14

Here N;---N, are the roots of the quadratic expressions iand Ns=(a—bN)/(a-b), Ng=[c+d(N-2)]/(d-c). We have
excluded the special casasb=0, c—d=0 discussed above 8) and(a—-b)/(c—d)=1, where some factors do not depend on
i and part of the expression simplifies. é+1>k=j>1, the density of the stationary state can be solved explicitly giving
rising factorials(Pochhammer symbaolsor equivalently, quotients of gamma functions,
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Py_ ﬁ Tiisa _ (a— b)k‘i J(N=j) T(k=Ns)I'(j =Ne)T'(k= N)T'(j = NaT'(k = Ng)I'(j = No) (15

Pi i Tiswi \c=d/ K(N=K) T(j =Ns)I'(k=Ne)T'(j = N)T'(k = N)T'(j = Na)I'(k = Ny)

which yields, after calculatin®y/Py-1 andP,/Pg explicitly, ~ namics in finite populations. For the Moran process, the ef-
and after normalization, the total density of the stationaryfect of the finite size of the population can be accessed di-
state. Equationg5) and (15 cover the general case of 2 rectly. Neglecting external noise, we have shown that the
X2 games including nonvanishing background fitness. Thetationary distribution of the Moran process of evolutionary
previously discussed examples are included as special casgs< 2 games can be calculated analytically and yields differ-
To conclude, the distribution of the fluctuations around agnt decay tails of the distributions. Depending on the payoff
Nash equilibrium can be nontrivially broadened in realisticmatrix and the location of the Nash equilibrium, the finite-

models of evolutionary game theory. We analyzed the effectj e fiyctuations may deviate significantly from a Gaussian
of internal noise stemming from the inherent evolutionaryyistribution.

update fluctuations in a finite population. In general, internal

noise and externally imposed stochastic forces can follow We thank M.A. Nowak and S. Bornholdt for valuable
qualitatively different distributions. In our paper, we concen-comments on previous versions of the manuscript. A.T. ac-
trated on the important case of a Moran process, which caknowledges support by the Studienstiftung des deutschen
be considered as a standard model of evolutionary game dyolkes (German National Academic Foundatjon
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