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We use a tight-binding formulation to investigate the transmissivity and wave-packet dynamics of sequences
of single-strand DNA molecules made up from the nucleotides guanineG, adenineA, cytosineC, and thymine
T. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the
results for the genomic DNA sequence with those of two artificial sequences:sid the Rudin-Shapiro one, which
has long-range correlations;sii d a random sequence, which is a kind of prototype of a short-range correlated
system, presented here with the same first-neighbor pair correlations of the human DNA sequence. We found
that the long-range character of the correlations is important to the persistence of resonances of finite segments.
On the other hand, the wave-packet dynamics seems to be mostly influenced by the short-range correlations.
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I. INTRODUCTION

The field of nanotechnology has emerged as one of the
most important areas of research in the near future. While
scientists have been long aspiring to controllably and specifi-
cally manipulate structures at the micrometer and nanometer
scale, nature has been performing these tasks and assembling
structures with great accuracy and high efficiency using spe-
cific biological molecules such as DNA and proteinsf1,2g.

Recently, the electric conductance of DNA molecules was
studied using a tight-binding small-polaron model and the
length dependence of the electric current was derivedf3g. It
has been conjectured that the drift of polaron states may lead
to a rapid motion of charges introduced on DNAf4g. How-
ever, although the use of DNA molecules in nanoelectronic
circuits is a very promising task due to their self-assembly
and molecular recognition abilities, their conductivity prop-
erties are still under intense debate. Controversial reports
consider that DNA may be a good linear conductorf5,6g,
while others have found that it is somewhat more effective
than proteins, even when the molecules had perfectly ordered
base pairsf7–9g. Recently, measurements of electrical trans-
port through individual short DNA molecules indicated that
it has a wide-band-gap semiconductor behaviorf10g. In ad-
dition, strongly deformed DNA molecules deposited on a
substrate and connected to metallic electrodes can behave as
an insulator or a conductor depending on the ratio between
the thickness of the substrate and the moleculef11g.

On the other hand, the introduction of long-range correla-
tions in aperiodic or genomic DNA sequences markedly
changes their physics and can play a crucial role in their
charge transfer efficiency, making a strong impact on their
biological engineering processes like gene regulation and
cell division f12,13g. Moreover, the nature of this long-range
correlation has been the subject of intense investigation, and
its possible applications on electronic delocalization in the
one-dimensional Anderson model have been recently dis-
cussedf14,15g.

A DNA chain is a sequence of four possible nucleotides
which define the structure of the amino acids to form pro-
teins. Thus the DNA nucleotide sequences can be considered
as a symbolic sequence of a four-letter alphabet, namely,
guaninesGd, adeninesAd, cytosine sCd, and thyminesTd.
Unlike proteins, ap-stacked array of DNA base pairs made
up from these nucleotides can provide the way to promote
long-range charge migration, which in turn gives important
clues to mechanisms and biological functions of transport
f16g.

Numerous algorithms have been introduced to character-
ize and graphically represent the genetic information stored
in the DNA nucleotide sequence. The goal of these methods
is to generate representative pattern for certain sequences, or
groups of sequences. With this aim in mind, we report in this
work a numerical study of electronic conduction in arrays of
DNA single-strand segments, made up from four nucleotides
following either a Rudin-Shapiro quasiperiodic sequence,
which has a long-range pair correlation, or a random se-
quence with short-range pair correlations. For comparison
we show also the electrical transport properties for a ge-
nomic DNA sequence considering a segment of the first se-
quenced human chromosome 22sCh22d.

This paper is structured as follows. We present in Sec. II
our theoretical model based on an electronic tight-binding
Hamiltonian suitable to describe a single strand of DNA seg-
ments with pure diagonal correlated disorder modeled by a
quasiperiodic chain of Rudin-ShapirosRSd type. Then we
introduce another artificial structure to model the DNA mol-
ecule but with short-range correlation, namely, the pair-
correlatedsPCd sequence structure. Their statistical proper-
ties, like the so-called Hurst exponent, are then discussed.
Section III deals with the conductivity of the DNA molecule
models through their electron transmittance coefficient. Solv-
ing numerically a time-dependent Schrödinger equation, we
compute also the time dependence of thespreadof the wave
function, as a function of time, for all DNA models consid-
ered here. Finally, the conclusions of this work are presented
in Sec. IV.
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II. THEORETICAL MODEL

Our Hamiltonian is an effective tight-binding model de-
scribing one electron moving in a chain with a single orbital
per site and nearest-neighbor interactions, i.e.f17g,

tsc j+1 + c j−1d = sE − e jdc j , s1d

wheree j is the single energy at the orbitalc j, whereast is the
common first-neighbor electronic overlapshopping ampli-
tuded.

Within this framework, thesdiscreted Schrödinger equa-
tion can be written as

Sc j+1

c j
D = Ms jdS c j

c j−1
D , s2d

whereMs jd is the transfer matrix

Ms jd = SsE − e jd/t − 1

1 0
D . s3d

After successive applications of the transfer matrices we
have

Sc j+1

c j
D = MsNdMsN − 1d ¯ Ms2dMs1dSc1

c0
D . s4d

In this way we have the wave function at an arbitrary site.
Calculating the product of transfer matrices is completely
equivalent to solving the Schrödinger equation for the sys-
tem. The criterion for allowed energy is whens1/2dTrfPg
,1, with TrfPg meaning the trace of the matrixP, andP
=MsNdMsN−1d¯Ms2dMs1d f18g.

For the DNA sequence of the first sequenced human chro-
mosome 22sCh22d, entitledNT011520, the number of letters
of this sequence is about 3.43106 nucleotides. This se-
quence was retrieved from the internet page of the National
Center of Biotechnology Information. The energiese j are
chosen from the ionization potential of the respective nucle-
otides f19g, i.e., eA=8.24,eT=9.14,eC=8.87, andeG=7.75,
all in eV, representing the adenine, guanine, thymine, and
cytosine molecules. We will consider finite segments of the
Ch22 chromosome starting at the 1500th nucleotide.

In what follows we will focus on the electronic transport
considering the above tight-binding Hamiltonian modelfEq.
s1dg for a single-strand DNA sequence. We are aware that in
order to model specific transport properties of DNA mol-
ecules, it would be important to consider not only their

double-strand character, whose electronic localization has
been recently investigatedf20,21g, but also the different val-
ues assumed by the coupling constant between distinct pairs
of nucleotidesf22–24g, which in turn has important conse-
quences in the on-sitesionizationd energiese j f25g. However,
we believe that the relative role played by long- and short-
range correlations in the nucleotide sequence can be ana-
lyzed in great detail using the proposed single-strand model
used here, with correlated diagonal disorder.

To set up a quasiperiodic chain of Rudin-Shapiro type, we
consider that the energiese j take four different values
eG, eA, eC, andeT as in the DNA genomic sequence. With
the intention of comparing this sequence with the genomic
one, we assume that their numerical values are the same.
Starting from aG sguanined nucleotide as seed, the quasip-
eriodic RS sequence can be built through the inflation rules
G→GC, C→GA, A→TC, and T→TA. The RS sequence
belongs to the family of so-called substitutional sequences,
which are characterized by the nature of their Fourier spec-
trum. It exhibits an absolutely continuous Fourier measure, a
property that it shares with random sequencesf26g. It should
be contrasted with the Fibonacci sequencesanother substitu-
tional sequenced which displays a dense pure point Fourier
measure, characteristic of a true quasicrystal-like structure
sfor a review of the physical properties of these and others
quasiperiodic structures, see Ref.f27gd. This important dif-
ference has been discussed in the literature in connection
with the localization properties of both elementary excita-
tions f28g and classical wavesf29g in the RS sequence, as
compared to other substitutional sequences.

We also constructed a random sequence containing the
same pair correlation of the Ch22 chromosome sequence. To
this end we first measured the fraction of pairspsI ,Jd sI ,J
=G,A,C, andTd in the Ch22 sequences considered. The re-
sults for these conditional probabilities are summarized in
Table I for a representative sequence. After that, we generate
an artificial sequence starting with a cytosinesCd site. Dur-
ing the sequence construction, the nucleotide following a
type I nucleotide is chosen to be of typeJ with probability
PsJ,Id=psI ,Jd /oKpsI ,Kd. The resulting pair-correlated se-
quenceswe call it the PC sequenced has only short-range
correlations which, by construction, are the same as the
original Ch22 sequence.

To compare some statistical properties of the above se-
quences, we compute the autocorrelation function of the po-
tential landscape of segments of Ch22 and RS and PC se-
quences as a function of the number of nucleotidesssee Fig.

TABLE I. Fraction of all possible first-neighbor pairs in the segment of 2000 nucleotides of the Ch22
chromosome that starts from the 100 000th one. The pair-correlated sequence is constructed to have the same
conditional probabilitiesPsJ,Id=psI ,Jd /oKpsI ,Kd.

I ,J G A T C oJPsI ,Jd

G 0.1042 0.0644 0.0511 0.0664 0.2860

A 0.09193 0.10010 0.04902 0.04494 0.2860

T 0.07660 0.03166 0.05515 0.04392 0.2073

C 0.01327 0.08988 0.05311 0.06435 0.2206

oIpsI ,Jd 0.2860 0.2860 0.2073 0.2206
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1d. Note that by construction the PC sequence has the same
first-neighbor correlation as the Ch22 sequence. The RS se-
quence has a clear signature of antipersistent correlations re-
flected in the oscillatory behavior of its autocorrelation. Be-
sides that, the amplitudes of the RS correlations are
consistently larger than those in the Ch22 and PC sequences.
On the other hand, the PC sequence is shorter ranged than
the actual Ch22 sequence.

Another important statistical characterization of random
sequences is the rescaled range statistical analysis, intro-
duced by Hurstet al. f30g. It provides a sensitive method for
revealing long-run correlations in random processes. Given a
nucleotide sequence of sizeL, the rescaled range statistics
for a discrete random walk, whose steps areji is defined as
follows. First, one defines rescaled variables

Xsk,nd = o
u=1

k

sju − kjlnd, s5d

wherekjln is the mean value aftern stepss1ønøLd, i.e.,

kjln =
1

n
o
i=1

n

ji . s6d

The rangeSsnd for a random walk of lengthsn is then given
by

Ssnd = maxfXsk,ndg − minfXsk,ndg, s7d

for 1økøn. The scaled range functionRsnd is therefore

Rsnd = Ssnd/ssnd, s8d

where s2snd is the standard deviation ofji over walks of
lengthsn, and averaged over the entire sequence, i.e.,

s2snd =
1

n
o
i=1

n

sji − kjlnd2. s9d

To perform the rescaled range analysis of the Ch22, RS,
and PC sequences, we constructed auxiliary random walks
initiated from the first to the last nucleotide of the sequences
with the following rule: for a purinesA,Gd the walker steps
down andji =−1; for a pyrimidinesT,Cd the walker steps up
and ji = +1. After n steps, the displacement isjsnd=oi=1

n ji.
The resulting random walks for Ch22, RS, and PC sequences
are shown in Fig. 2, where we have plottedjsnd as a function
of the number of stepsn. Note that for the RS sequence the
drift to negative values is stronger than in both Ch22 and PC
sequences, since it contains a larger fraction of purines.

Many processes in nature are not independent, but show
significant long-term correlations. In this case the asymptotic
scaling law is modified andRsnd is asymptotically given by a
power lawnH, wereH is the so-called Hurst exponent. Feller
f31g has proved that the asymptotic behavior for any inde-
pendent random process with finite variance is given by
Rsnd=snp /2d1/2−1, which yields a Hurst exponentH=0.5

FIG. 3. Log-log plot of the rescaled range functionRsnd, nor-
malized to the one associated with a noncorrelated sequence, versus
n for the Ch22, Rudin-Shapiro, and PC sequence random walks. RS
and PC sequences have rescaled range functions relatively close to
that expected for an uncorrelated random walk. However, the RS
walk depicts a small antipersistence while the PC exhibits some
persistence as in the Ch22 walk.

FIG. 1. Autocorrelation of segments of Ch22, RS, and PC se-
quences. The oscillations observed for the RS sequence reflect its
antipersistent character. Notice that it is longer-ranged correlations
as compared to the Ch22 sequence. The PC sequence has the same
first-neighbor correlations as the Ch22 sequence but is shorter-range
correlated.

FIG. 2. Random walks generated from segments of Ch22, RS,
and PC sequences. The larger variance of the Ch22 sequence is
related to its long-range persistent behavior.
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sthe ordinary Brownian motiond. A persistentbehavior is
characterized by a Hurst exponent 0.5,H,1, while anan-
tipersistentone is characterized by 0,H,0.5. Many ex-
amples of natural phenomena that show persistent behavior
can be found inf32g.

In Fig. 3 we plot on a log-log scale the rescaled range
function Rsnd, normalized to the one associated with a non-
correlated sequence given byRsnd=snp /2d1/2−1, as a func-
tion of the number of nucleotidesn for the genomic DNA,
Rudin-Shapiro, and PC sequences. The straight line corre-
sponds to the case of a completely uncorrelated random walk
sH=0.5d. From there, we can see clearly that in the genomic
DNA random walk the asymptotic behavior is persistent,
while for the Rudin-Shapiro sequence the random walks are
antipersistent. On the other hand, the rescaled range function
for the PC sequence oscillates around an exact power law for

a small number of nucleotides, becoming persistent with a
minor deviation from the Ch22 behavior as the number of
nucleotides increases.

III. CONDUCTIVITY AND WAVE-PACKET DYNAMICS

Consider now that the above sequences are further as-
sumed to be connected to two semi-infinite electrodes whose
energiesem are adjusted to simulate a resonance with the
guanine highest occupied molecular orbital energy level, i.e.,
em=eG. The hopping integrals are chosen such thattm= t
=1 eV, although ab initio calculations suggest thattm
.0.1–0.4 eV. For this system, the transmission coefficient
TNsEd, which gives the transmission rate through the chain
and is related to the Landauer resistance, is defined byf33g

TNsEd =
4 − X2sEd

F− X2sEdsP12P21 + 1d + XsEdsP11 − P22dsP12 − P21d + o
i,j=1,2

Pi j
2 + 2G , s10d

whereXsEd=sE−emd / tm, andPi j are elements of the transfer
matrix P. For a given energyE, TNsEd measures the level of
backscattering events in the electronsor holed transport
through the chain.

In Fig. 4 we plot the transmission coefficientTNsEd, as
given by Eq.s10d, as a function of the energy, in units of eV,
for the DNA Ch22 sequence with the number of nucleotides

sNd equal to 64, 128, 256, and 512, respectively. Observe
that the transmission bands in the spectra becomes more and
more fragmented as the segment size increases. This feature
is related to the localized nature of the one-electron eigen-
states in disordered chains. It is relevant to stress that the
presence of long-range correlations in the disorder distribu-
tion was recently shown to be a possible mechanism to in-
duce delocalization in low-dimensional systems. However,
the actual correlations in DNA sequences are not strong
enough to produce this correlation-induced transition and the
stationary states remain all localized. However, the presence
of long-range correlations enhances the localization length
and, therefore, transmission resonances survive in larger seg-
ments as compared with a noncorrelated random sequence.
To illustrate this correlation effect we plot in Fig. 5 the trans-
mission coefficient for long-range correlated Rudin-Shapiro
sequences, for the same number of nucleotidesN as in Fig. 4.
The transmission spectra depict a trend similar to the one
produced by the genomic sequence. The transmission spectra
derived from the PC sequencesnot shownd also exhibit the
same pattern, with the transmission resonances being more
sensitive to increases of the segment size due to the short-
range character of its correlations.

To compare the transmittance properties of different
chains, the behavior of the Lyapunov coefficient

gNsEd = s1/2NdlnfuTNsEdug s11d

is plotted in Figs. 6 and 7, as a function of the energyE, in
units of eV, for Ch22-based and Rudin-Shapiro sequences
with N=64, 128, 256, and 512, respectively. This exponent,
for a system with uncorrelated disorder, is related to the lo-
calization lengthlsEd by f33g

FIG. 4. Transmittance coefficientTNsEd as a function of the
energyE, in units of eV, for Ch22-based sequence near the band
center, for the number of nucleotidesN equal to 64, 128, 256, and
512. Notice that the transmission bands shrink as the segment size
increases. However, the presence of correlations contributes to the
survival of resonant transmission peaks for sequences up to hun-
dreds of nucleotides.
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lsEd = f lim
N→`

gNsEdg−1. s12d

In addition, in the presence of scale invariance properties, the
underlying structure ofgNsEd reflects the self-similarity of
the spectrum.

Focusing now on the wave-packet dynamics in the above
finite segments, we solved numerically the time-dependent
Schrödinger equation and computed the time dependence of
the spreadof the wave functionssquare root of the mean
squared displacementd, as a function of time, by using

sstd =Îo
n=1

N

fn − knstdlg2ucnstdu2. s13d

Starting from a wave packet localized at the guaninesGd
site closest to the center of segments with 104 nucleotides,
the spread of the wave function is depicted in Fig. 8 for the
Ch22, RS, PC, and uncorrelated sequences. For the uncorre-
lated random sequence we considered the same fraction of
each nucleotide composing the Ch22 sequence under consid-
eration. The root mean square displacementsstd on Ch22

FIG. 5. As in Fig. 4 but for Rudin-Shapiro sequence. Observe a
similar trend to the one depicted in Fig. 4. This feature supports the
relevance of correlations in the nucleotide distribution to the sur-
vival of transmission resonances on finite segments irrespective of
its persistent or antipersistent nature.

FIG. 6. Lyapunov coefficientgNsEd as a function of the energy
E, in units of eV, for Ch22-based sequence. We have also consid-
ered the number of nucleotidesN equal to 64, 128, 256, and 512.
The underlying structure emerging at large sequences reflects some
degree of self-similarity of the transmission spectra.

FIG. 7. As in Fig. 6 but for Rudin-Shapiro sequence. The un-
derlying structure is similar to the one presented for the actual Ch22
sequence.

FIG. 8. Spread of the wave functionssquare root of the mean
squared displacementd s given by Eq.s13d as a function of time.
The wave-packet dynamics on Ch22, PC, fully uncorrelated random
saveraged over ten distinct segments of 104 nucleotidesd, and RS
sequences were considered. The anomalous spread on Ch22 is twice
as large as that in the uncorrelated sequence. However, the long-
range correlations in the RS sequence overestimate the wave func-
tion spread. The pair correlations account for,50% of the anoma-
lous spread in the Ch22 sequences.
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segments displays an initial ballistic spread but saturates at a
finite value due to the localized nature of the one-electron
eigenstates. The saturation value is of the order ofs=30 for
the Ch22 segments. This value is twice the one reached for
the fully uncorrelated random sequence, thus indicating that
correlations in the nucleotide distribution play a significant
role in the wave-packet dynamics. On the other hand, the
spread on the RS sequence overpasses that for the actual
Ch22 by,50%. This fact is related to the longer-range char-
acter of its correlations as already discussedssee Fig. 1d.
Notice, however, that the spread in the PC sequence is only
,25% below that of Ch22 segments, which seems to indi-
cate that a well controlled approach to the actual wave-
packet dynamics on DNA segments can be obtained by in-
cluding further short-range correlations.

IV. CONCLUSIONS

Over the past few years, bionanomaterial science has
emerged as an exciting field in which theoretical and experi-
mental studies of nanobiostructures have stimulated a
broader interest in developing the field of nanometer-scale
electronic devices. In particular, intelligent composite bio-
logical materials have become an interdisciplinary frontier in
life science and material science. Nevertheless, the construc-
tion of nanometer-scale circuits remains problematic, and the
use of molecular recognition processes and the self-assembly
of molecules into supramolecular structures might help over-
come these difficulties. In this context, the ability to choose
the sequence of nucleotides, and hence provide addressabil-
ity during the self-assembly processes, besides its inherent

molecular recognition, makes DNA an ideal molecule for
these applications.

Aiming to further contribute to the present understanding
of the role played by correlations on the electronic properties
of DNA segments, we have studied here the electronic trans-
port properties of finite sequences of nucleotides within a
tight-binding approach of single-strand DNA sequences with
pure diagonal correlated disorder. In order to reveal the ac-
tual relevance of short- and long-range correlations, we com-
pared the transmission spectra and the wave-packet spread
on segments of the Ch22 human chromosome with those
resulting from the quasiperiodic Rudin-Shapiro sequence as
well as from a pair-correlated sequence. We obtained that the
long-range correlations present in Ch22 and RS sequences
are responsible for the slow vanishing of some transmission
peaks as the segment size is increased, which may promote
an effective electronic transport at specific resonant energies
of finite DNA segments. On the other hand, much of the
anomalous spread of an initially localized electron wave
packet can be accounted for by short-range pair correlations
on DNA. This finding suggests that a systematic approach
based on the inclusion of further short-range correlations on
the nucleotide distribution can provide an adequate descrip-
tion of the electronic properties of DNA segments.
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