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Exact theory of kinkable elastic polymers
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The importance of nonlinearities in material constitutive relations has long been appreciated in the con-
tinuum mechanics of macroscopic rods. Although the montenue response to bending is almost univer-
sally linear for small deflection angles, many rod systems exhibit a high-curvature softening. The signature
behavior of these rod systems is a kinking transition in which the bending is localized. Recent DNA cyclization
experiments by Cloutier and Widom have offered evidence that the linear-elastic bending theory fails to
describe the high-curvature mechanics of DNA. Motivated by this recent experimental work, we develop a
simple and exact theory of the statistical mechanics of linear-elastic polymer chains that can undergo a kinking
transition. We characterize the kinking behavior with a single parameter and show that the resulting theory
reproduces both the low-curvature linear-elastic behavior which is already well described by the wormlike
chain model, as well as the high-curvature softening observed in recent cyclization experiments.

DOI: 10.1103/PhysRevE.71.021909 PACS nun$)er87.14.Gg, 87.15.La, 82.35.Pq, 36.20.Hb

[. INTRODUCTION remains active down to 60 basepép) separations between
the binding site$8-13].

The behavior of many semiflexible polymers is captured From a continuum-mechanics perspective, this failure of
by the wormlike chain modél1,2]. This model amounts to the model at high curvature is hardly surprising; the impor-
the statistical mechanics of linearly elastic rd@3, where tance of material nonlinearities has been appreciated for
the elastic energy is microscopically a combination of bothmany years. In fact, anyone who has ever tried to bend a
energetic and entropic contributioh4]. The mechanics of drinking straw has observed that the straw will at first dis-
DNA, a polymer of particular biological interest, has beentribute the bending, as predicted by the linear theory, but as
studied extensively experimentally and theoretically and it§he curvature increases, the straw will eventually kink, local-
mechanical properties have been very well approximated bizing the bending. This kinking behavior is the signature of
the wormlike chain modegWLC) [5] and its successors such nonlinear constitutive softening at high curvature. Nonlin-
as the helical wormlike chain modi2]. For example, accu- €arities are certainly important in microscopic physical sys-
rate force-extension experiments have shown that DNA i$€mMS, such as polymers, because the effective bending free
surprisingly well described by WL4—6], at least until the ~€N€rgy, a combination of interaction potentials and entropic

: ; ; ffects, is only approximately harmonic. The possibility of
g?s::ssgfpﬁNA stretching become important at tensions Oi’Iiinking in DNA was realized long ago by Crick and Klug,

Despite the success of the WLC in describing DNA me_who proposed a specific atomistic structure for the kink state

: L . . 14]. Many authors have since found kinked states of DNA
chanics, recent DNA cyclization experiments by Cloutier an n protein-DNA complexessee for examplé15]), but less
Widom|7] have shown a dramatic departure from theoreticalyontion has been given spontaneouinking of free DNA
predictions for highly curved DNA. These experiments SUGin solution, even though Crick and Klug pointed out this
gest that the effective bending energy of small, cyclized sebossibility
quences of DNA is significantly smaller than predicted by ‘

o X . . . Our goal in this paper is to develop a simple, generic
existing theoretical models based upon linear-elastic constis iansion of the WLC model introducing only one addi-

tutive relations, in which the bending energy is quadratic ingona| narameter: the average number of kinks per unit length
curvature. Similar anomalies have been revealed mtranscrl;:h-)r the unconstrained chain. The “kinks” are taken to be

tional regulation where DNA looping by regulatory proteins fee)y_pending hinge elements in the chain. This model is an

extension of the well known wormlike chaiWLC); we
refer to it as the kinkable wormlike cha{KWLC). Although

*Electronic address: pwiggins@caltech.edu our model is not a detailed microscopic picture for DNA, it
URL:http://www.rpgroup.caltech.eduiviggins/ does capture the key consequences of any more detailed pic-
"Electronic address: phillips@aero.caltech.edu ture of kink formation. As such, it serves as a useful coarse-
*Electronic address: nelson@physics.upenn.edu grained model to describe high-curvature phenomena in
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many stiff biopolymers, not just DNAL6]. Our main results
are summarized in Figs. 5, 6, 10, and 11.

The KWLC is the simplest example of a class of theories
that have been proposed and studied by Storm and Nelson (@)
[17] and more recently by Levingl8]. It is simple enough
that many results are exact or nearly so. The method by
which we obtain our exact results is analogous to the Dyson
expansion for time-dependent quantum perturbation theory.
For the KWLC, the perturbation series can be resummed
exactly.

For small values of our kinking parameter the KWLC
model predicts nearly identical behavior to the WLC—
except when the rod is constrained to be highly curved. Such (0)
constraints induce kinking, even when the kinking parameter
is small. We will show in detail how the energy relief caused
by this alternative bending conformation can account for the
observed anomalously high cyclization rate of short loops of FIG. 1. (a) The discretized KWLC is a chain of wormlike and
DNA [7] and anomalously high levels of gene expressiorkinklike vertices. In this illustratiotN=4; thus there are four verti-
[10,11]. A generalization of KWLC specifically applicable to ces, of which one is kinklike. When a vertéxis wormlike (o;
DNA will appear elsewhergl9]. Yan and Marko, and Volo- =1), the energy is given by the normal wormlike chain energy; if it
godskii, have independently obtained results related to ouri§ kinklike (¢;=0), the energy is, independent ot}. (b) The con-
[20,21]. Also, Sucatoet al. have performed Monte Carlo tinuum version of this theory. Although the number of vertices is
simulations of kinkable chains to obtain information aboutNoWw infinite, the continuum limit maintains a finite average kink

their structural and thermodynamic propertigg]. density.
The outline of the paper is as follows. In Sec. Il, we
introduce the KWLC model in a discrete form. In Sec. Il L g df)?
we compute the unconstrained partition function for the Er=f d%(&) ' (1)
theory and show that there is a sensible continuum limit. In 0

Sec. IV, we give an exact computation of the tangent partiyheref(s) is the unit tangent at arc lengshL is the contour
tion function of the continuum theory as well the moment-jength, and is the bending modulus. Throughout this paper
bend constitutive relation and the !(In!( number for bent poly-ye “will express energies in units of the room-temperature
mer chains. We show that kinking causes an exacihermal energyksT=4.1x 1021 J. For WLC it is well
renormalization of the tangent persistence length and Wgnown that the bending modulus and persistence leftyth

write exact expressions for the average squared end distan%gth scale over which tangent are thermally correlasee
and the radius of gyration. In Sec. V, we exactly compute theequal in these unitg4].

Fourier-Laplace transform of the spatial propagator and dis- "y js most intuitive to define our new model in terms of the
cuss various limits of these results. We also compute thjscretized definition of WLC. Accordingly, we divide a
exact force-extension relation and the structure factor fOEhain of arc length_ into L/¢ segments of lengtl. There

KWLC. In Sec. VI, we compute the KWLC correction to the 5.0 thenN=(L/¢)-1 interior vertices, plus two end points

Jacobson-Stockmaydrfactor and the partition function for e 1(2)) Next we replace the arc length derivative with the
cyclized chains. We show that the topological constraint Oéinite difference over the segment lengthreplace the inte-

cyclization induces kinking and we compute the kink num-gra| with a sum, and introduce the spring constart ¢/ <.
ber distribution explicitly. In Sec. VII, we discuss the limita- 11,4 resulting energy is

tions of KWLC. In the Appendix, we present a summary of

the Faltung theorem which is required for computations and N o
develop the small and large contour length limits of the EF:_E k(1 =1ty 2
KWLC J factor. =1

wheref; is the vector joining verticesandi+1.
We introduce a similar discretized energy for the kinkable
Il. KINKABLE WORMLIKE CHAIN MODEL wormlike chain modelKWLC). In addition to the bending
angle, there is now a degree of freedom at each vertex de-
Although the wormlike chain model was originally pro- scribing whether the vertex is kinklike or wormlike. To de-
posed to describe a purely entropic chain without a bendingcribe this degree of freedom, we introduce a state variable
energy[1], it is often interpreted as the statistical mechanicso; at each vertex. Whew;=1, we say that the vertex is
of rods with bending energies quadratic in curvafi823].  wormlike and the energy is given by the discrete WLC en-
From a mechanical perspective, the success of the WL@rgy at that vertex. When;=0, the vertex is kink like and
model is not surprising since the small amplitude bending othe energy is independent of the bend angle at that vertex,
rods universally induces a linear moment response. Fobut there is an energy penakiyto realize the kink state. This
WLC, the bending energy for a polymer in configuratiois ~ model is depicted schematically in Fig. 1. The energy for the
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model we have just described can be concisely written as

K—®©

' Q* = lim f d?ti(exp - x(1 - cos#)] + exy - €])
R = QUL+ 2x€), ©

where thex denotes that this is the energy of the KWLC which we have written in terms of the corresponding WLC
quantity Q. The total partition function for the chain d{

theory ande is the energetic cost of introducing a kink in the g - AN
chain. Note that in general we denote KWLC results or equat 1 SEIMENts i€giqerd L) =4m(Q* )™
tions with a*. We will recover the WLC results when we !N the small segment length limit, E¢) shows that the

take the kinking energy to infinity. While Storm and Nel- probab?lity of a_vertex being .kink-like is:aeff. Therefore'the
son[24] and otherd18,24—28 have considered more gen- p_roba_b|llty of kinking per unit lengtttfor this unconstrained
eral theories where the kink energy is not assumed to baituation is
independent of the kink angle, much of the important physics 2¢ A
can already be studied in the simpler KWLC theory. More- {=—e‘=—72=¢€F, (7)
over, this theory has the significant advantage of being ana-
lytically exact to a much greater extent than more generalvhere we have eliminated the bending spring constarit
theories; it applies in the limit where the kinks are only favor of the persistence lengthi= «¢. In order to recover a
weakly elastic compared to the elastic rod. sensible continuum limit, we will hold the parametecon-
stant as we take the segment length to zero. Note that we
recover the WLC theory when we s¢t- 0. In later sections
we will discuss a formal “zero temperature” limit, in which
For a summary of notation used in this article, see Appensimple mechanicgno thermal fluctuationsdescribes the
dix D. physics. This limit is a useful intuitive tool, not an experi-
We have defined the KWLC model in terms of a discretemental prediction of the behavior of polymers frozen in so-
set of degrees of freedom. In the next section, however, wiition. The “zero temperature” limit is taken treatidgas
shall wish to take advantage of the continuum WLC machintemperature independent, which is equivalent to either the
ery. To this end, this section formulates the continuum limitshort rod limit or the large persistence length limit which we
of the KWLC model. Beyond the computational advantageshall use interchangeably.
there is also an additional reason to go to the continuum In the continuum limit, we must remove a divergent con-
limit. Figure 1 describes the kinking with two parameters, astant in the partition functions aé— . Thus we define the
density¢~! of kinkable sites and the kink energyWe wish  path integral measure

Ill. PARTITION FUNCTIONS

to describe the kinking in terms ofsingle parameter, to be N oo
called [see Eq.7)]. { essentially sets the average number [di9L =11 ﬂ (8)
of kinks per contour length for a long, unstressed chain. In b Q

the continuum limit of WLC, we tak& — 0 while holding i i ) _
the persistence lengthand chain length. constant. To take WhereQ is defined by Eq(4). Note that unlike the discrete

the corresponding continuum limit for KWLC, we will also €@se, in this measure the starting tangent vetjds not

hold ¢ constant ag — 0. integrated, but is instead fixed to some givienThe con-
We begin by computing the partition functions for the tinuum partition function corresponding HyiscrerdL) is then

WLC and KWLC and demonstrating that there is a con-

tinuum limit of the KWLC. These unconstrained partition Z(L) Ef[df(s)]fe"f*:l. (9)

functions are required for later computations. For this case, '

the partition function factors into independent contributionsyyith our choice of integration measur&(L) just equals

from _each |nte_r|or vertex. In the cqntmuum Imﬁrt—wo),_the one, independent df.

partition function for each vertex in the WLC model is The continuum KWLC partition function is now

: - 2m _ JLAN
Q= Ilim | db exd-«(1-cosb)]= e (4) Z*(L)=Ilim({1+ N =gl (10
K—® N—oe
whereg; is the polar angle of defined using;_; as the polar  The convergence of the partition function assures us that the
axis, that is, cog=f;-f_;. The measurel’f;=d(cos6)d¢, continuum limit is well defined. As a consistency check, we
denotes solid angle on the unit sphere. The total discretizedow compute the average kink number for the unconstrained
partition function for the chain o+1 segments is then chain
_dlogz*

ZiscredL) = 47TQN- (5 (m) =

The factor of 4r reflects one overall orientation integral, for dlog¢

example the integral oveg. which confirms that is indeed density of kinks. The expan-
Similarly, the partition function for a single vertex of the sion of the partition function in a power series shows that the

KWLC theory is kink number distribution is also correct. We will repeat the

L, 11
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to finding the quantum-mechanical propagator for a particle
on the unit spherg29,30. The tangents correspond to posi-
tion, arc length corresponds to imaginary time, and persis-
tence length corresponds to mass. Thus the tangent partition
function is

2(%, 6 L) = (Ge ™Mby, (14)

FIG. 2. (a) Diagrammatic representation of the kink expansionyhere the Hamiltonian operator is defined as
for the tangent partition function. The dashed curve represents the

KWLC theory and the solid curves represent the WLC theory. It is "

convenient to collect the terms by kink number as shdwnDetail H= p_, (15)

of the two-kink term, showing the relation to the underlying dis- 3

crete modelL; andv; are the tangent vectors flanking kink number

i where p? is minus the Laplace operator on the unit sphere.
The Hamiltonian is diagonal in the angular momentum rep-

average kink number calculation several times in the courseesentation so the tangent partition function for WLC can be

of this paper for different constraints to show that constrain-expressed as

ing the chain will affect the kink number.

N

o0 |
IV. TANGENT PARTITION FUNCTION AND Z(E50=2 X YYD * CL). (16)
PROPAGATOR =0 Mool

In this section we compute the tangent partition functionn this expression, th¥™s are the Spherical Harmonics and
and propagator by using a method symbolized in Fi@.2 the coefficientsC; are
By tangent partition functior(t;,t;,L) we mean the parti-
tion function with the initial and final tangents constrained p{ I+ 1)|_}
[Eq. (12) below]. Dividing the tangent partition function by C(Ly=exp - ————
the unconstrained partition functicf(L) gives the probabil- 28
ity density H(f;,f;,L) for the final tangent vector, given the
initial tangent. We will refer taH as the normalized tangent
partition function, or propagator.

Most of the kink-related physics of the KWLC theory can . )
be understood qualitatively from the tangent partition func- 1° cOmpute the tangent partition function for KWLC, we
tion. Furthermore, the computation of the tangent partitiorP0c€€d with the path integral in exactly the same fashion,

function is more transparent than the analogous spatial con?—etting t_he initial tangent, integrgting over an infinite set of
putation in which the end-to-end distance is constrainedt€rvening tangents, and summing over the state vectors:

along with the initial and final tangents. The tangent partition
function for WLC is defined as

17

It can easily be shown that this partition function has the
required normalization by summing over the final tangent to
recoverZ(L)=1.

Zx(Gin= X [di(s)]; &= 6P[fy - f].
{og,. . .ont

2,60 = f [df(s)]fi e_Eé(z)[fN -, (12 (18)

where the path integral is regularized as described af&ye 11 s now convenient to collect the terms in contributions

(8)]. Due to the tangent constraint, the partition function NOith a fixed numbem of kinks and then express the result in

longer factors into independent vertex contributions. Thethe continuum limit.
LCJ\{ver limit on tD'e |nte'grat|on denﬁotgs that tbe initial tangent The first step in going from the definition of the discrete
to is held equat;; the final tangenty, is set tof; by the delta  \y|C tangent partition function to the continuum limit is to
function. We integratéor sunm over the infinite set of inter- reorganize the sum ovdp,} as a sum over the number of
vening tangents in order to generate the partition function. Ifnks m. Each term of this sum is in turn a sum over the
this regularization schem(;a, th_e tlangent partition function a”‘f)ositionsni of the kinks, fori=1,... m. The only subtlety
tangent propagator are identica here is introducing the correct limits on the sum to avoid
HEE:L) = 2@E.8:L), 13 over counting the kink states. The last kink can be chosen at
(trtiL) (ttiL) (13 any arc-length location, but additional kinks must always be
since with our conventions the unconstrained WLC partitionchosen with smaller arc-length values than the following
function is one. However, we will see that this convenientkink. This method is more convenient than introducing “time
identity does not hold for the KWLQH* # Z*, ordering” and a factor of 1! to explicitly remove the over-
While the direct evaluation of the path integral in E§2)  counting as is commonly done in the Dyson expansion for
is difficult, it is well known that this calculation is equivalent time-dependent quantum perturbation thel@¥].
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The next step is to replace the kink position sums with L

integrals over the position of the kinks as (Fe®Q)(L)= f dLF(L - Ly)G(Ly). (20)
0

In the intervals between kinks, the chain is described by the
Mi+1~1 Livt gL WLC energy function. We can therefore replace each partial
> —>f E i=1,..m, (199 path integral with a WLC propagator.
n;=i 0 For every kink, there is one factor @ that has been
introduced by the path integral normalizatiidgg. (8)] but is
not absorbed by the definition of the WLC propagdiegs.
whereL;=n;¢ and we takd_,;=L. The structure of the arc (18) and(13)]. Them factors of¢~1, e ¢, andQ™! can now be
length integrals is that of a series of convoluti8g], which  written as(¢/4m)™ [see Eq.(7)]. Defining z*:zmz:n, the
we write symbolically asx. For example, iff(L) andG(L)  terms in the kink-number expansion can thus be written
are two functions, then (compare Fig. 2

" i d;

Z i) =0 | 1 ———W5,) ® HGip0,m) © - @ H@H)D).
- N
! e (21)
[
The 2m angular integrations are over the incomifig) and _ _ 1 CXp)
outgoing(v;) tangents of then kinks. Z* (f,t;p) = H(t,T;p) + i e (23
Equation(21) has a very simple interpretation. The prob- T1-{Co(p)

e thon sum over all possible confiurations being sareful "¢ >0 Kink terms clearly contribute o tangent depen-
P 9 9 dence. The inverse Laplace transform can now be computed

choose the integration limits so as not to over count the kink S o
states. At each kink, all orientational information is lost, soW'thOUt complications, giving the exact KWLC tangent par

that only tangent independent terms of the propagator contltlon function

tribute (those with angular quantum numHer0). o o L
To compute the contour length convolution of propaga- Z* (t,t;L) =H(t:, 4, L) +

tors, it is convenient to work with the contour length Laplace

transformed propagatots [Eq. (A6)]. We shall denote the ~ Alternatively, we could have derived E¢4) by noting

contour length Laplace transformed functions with a tildethat the KWLC model is mathematically equivalent to a

and use the Variab]p as the arc |ength Lap|ace Conjugate quantum mechanical system whose Hamiltonian is diagonal

variable. Although we could avoid Laplace transforming thein the angular momentum representation:

partition function at this juncture, we use this method pres- _

ently because it is analogous to our later computation of the H*=-140,0©(0,0+H. (25)

spatial propagator. By the well known Faltung theoréf.  Here |I,m) is the state with angular momentum quantum

(A10)], the convolution of propagators is just the product of nymbersl andm and{ is the Hamiltonian operator for the

Laplace transforms. Therefore, in terms of the transformegy|c. The only change to the theory is a “ground state en-

WLC propagators, the kink KWLC Laplace transformed par-grgy” shift equal to €.

tition function is The KWLC tangent propagator and its Laplace transform

can now be evaluated using E4.0):

(24)

m H(fflf)l!p)i m:o'

Z(ffip =™ - (22) - £ (1 £ Y IR o |
Co ™ (p)/4m, m>0. H* (t,t;L) = Tz C© SH(E,E L) + i |
To derive Eq(22), note that Eq(16) gives the WLC tangent (26)
propagator summed over the initial tangentCGsl), which
equals 1 from Eq(17). The corresponding Laplace transform - I ¢
is just Co(p)=1/p. H* (tf,ti;p):H(tf,tiip’fD+m- (27)
The m kink contributions to the KWLC transformed tan-
gent partition function can now be summed exadilg., Figure 3a) compares the KWLC tangent propagator to the
z*:zmz*m) because they form a geometric series, resultingVLC theory with an illustrative valug=0.01/. The two
in theories appear indistinguishable, and in fact we will find
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e Figure 3b) compares the free energies of WLC and
0.8 KWLC. Despite the similarity of propagatofEig. 3a)], the
- 06} free energies are quite different. To understand the signifi-
041 cance of this free energy, we imagine discretizing the chain
0.2 at some segment length The free energy-(6;€) gives us
oL - - WLC &£ RWLC the effective constitutive relation for single-state torsional
20 springs in this new discretized theory. As depicted is Fig.
—~ 15} «\,C 3(b), the potential energy of these springs is initially qua-
E Lok KWLC dratic in deflection, but saturates due to kink formation.
&gt / A. Moment bend relation and kink number
ol — L To understand the interplay between chain kinking and
0 i 7 1—“ T deflection, it is helpful to explicitly compute the relation be-
0 tween the deflection angle and the restoring moment

(torque, as well as computing the average kink number.
FIG. 3. The tangent propagator and the tangent free energy a3ere we ask the reader to imagine a set of experiments
functions of the deflection angle for the illustrative values0.2¢ analogous to force extension but where the moment-bend
— 2 i A . . . .
and ¢£=10". The solid curves are KWLC and the dashed curvesgqgiittive relation is measured. We compute the constitu-

are WLC with the same value gt In the absence of kinking, the - e relation in the usual way in terms of the deflection angle
WLC distribution (H) is essentially zero away from small deflec-

tion. For the small value of chosen above, WLC and KWLC are

indistinguishable in the top panel. The presence of kinks adds a J

background level to the propagator which is independest bfit is no;L) = - %F(g; L), (29
thermally inaccessible—too small to distinguish from zero in the

top panel, but visible in the free energy in the lower panel. ThewhereF(6;L) is the tangent free energy amds the deflec-
tangent free energy gives an intuitive picture of the system intertion angle. In terms of the WLC bending moment, E2¢)

preted as as single-state system with an effective bending modulushows that the moment for KWLC has a very simple form:
which saturates due to kinking. Most thermally driven experiments

measure the polymer distribution as it is pictured in the top panel 7 (6:L) = (6:L) Z(6;L)
and are therefore insensitive to the high-curvature constitutive rela- ’ T Zx(6L)]
tion. But experiments which do probe this regime, short-contour-
length cyclization for example, will be extremely sensitive to the Where 7 is the WLC moment an& and Z* are the tangent
difference between the theories due to the large free energy diffepartition functions for WLC and KWLC, respectively. The
ence at large deflection. moment is plotted as a function of deflection in Fig 4. For
short chains, the small deflection moments of the two theo-
that many, but not all, predictions of the models are esserfi€s init.ie_llly coincide. Bu.t as the deflection incrgases, there is
tially the same in this parameter regime. a transition, corres.pondlng to the onset of kinking, where the
In principle since the propagator is known exactly, every-moment is dramatically reduced to nearly zero. In £29),
thing in the theory can now be computed. Of course this is alI,_hls transition is clear from the ratio o_f _the partition _func—
exaggeration since, even though the tangent propagator fgPNnS- Remember that the KWLC partition function is the
WLC has long been known, only recently have the exactUm ©f the WLC partition function and tima>0 kink parti-
expressions for the transformed spatial propagator been gdon functions. Before the onset of kinking, the WLC and
rived [33,34). The free energy of the chains for both theoriesKWLC partition functions are equal since the kinked states

have the canonical relation with their respective partitiondo not contribute significantly to the partition function. For
functions: large deflection, the KWLC partition function is kink domi-

nated and therefore the ratio in E§0) tends to zero. Physi-
F(6:L) = - log Z(f, L), (29) cally, once the c_hain is kink_dqminated, the moment must be

zero since the kink energy is independent of the kink angle.
where we have explicitly written the free energy in terms ofAt zero temperature, the moment would be zero, but fluctua-
the deflection angle defined by the dot product of the initialtions in which the chain becomes unkinked cause the mo-
and final tangents: ca&=t -f;. Up to this point we have writ- ment to be nonzero. We discuss this effect in more detail
ten the partition function and propagator as explicit functiongPelow. L L
of both the initial and the final tangent but the rigid body 10 explicitly see that the reduction in the moment corre-
rotational invariance of the energy implies that these funcSPONds to kinking, we compute the average kink number as a
tions depend only on the deflection angle. To express an{Hnction of deflection:
guantity in terms of the deflection angle, we set the initial JE* L
tangent to be the unit vector in ttzedirection and the final (m)(e;L) = - o0z 2ol * (gL
tangent to be the unit vector in the radial directishnow dlogg  4mH™ (0;L)
assumes its canonical definition in spherical polar coordiwhich is depicted in Fig. 4. Note that when we remove the
nates. tangent constraint, we again find that the average kink num-

(30)

(31)
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" KWLC bend-moment can be rewritten in terms of the kink
. T ‘0 s number
=~ 5 GRLC 5
3 iy 3 7* (6;L) = (6;L)(1 —(m)), (33
e H
iﬁ /\ WLc where the kink number is just the Heaviside step function,
0 3
1 (M(6,L) = O 6 o], (34)
0.8 around a critical deflection angle
o 06 1/2
2L 2
5 0a fo= {— log —i] . (35)
02 & L
0 3 For deflection less than the critical deflection, the kink num-
0 i vy n ber is zero and the moment is given by the WLC moment. At

D NIA

the critical deflection angle, there is an abrupt transition to
the kinked state with kink number one and the moment zero.
) _ : _ Precisely at the critical angle the free energy of the kinked
functions of the tangent deflection angle for illustrative valles state and the elastically bent state are equal. Note that we

— - 2 H
=0.% and g\i/—l_lccr "trT Tﬁ solid Clérvej‘ are _KtWLC f‘nd tt:eA?ashﬁld have not discussed dynamics and have assumed that the sys-
curves are with the same bend persistence length. Atshall oo, i iy equilibrium, not kinetically trapped.

the normalized bending moment exhibits a linear spring dependence The behavior of the KWLC theory for short contour

and the chain is unkinked. The limiting linear behavior of the short ; -
lengths is nearly what one would expect from mechanical

rod limit is the dotted curve, labele@=0 corresponding to the . tuiti Bendi fthe cha hort | th les ind
mechanical limit of WLC. For large deflection, the chain kinks andIn urtion. bending of the chain on short length scales induces

the moment drops to zero. This correspondence between kinkin moment which is initially linearly dependent on deflection.

and the moment is clearly illustrated in the short length limit de-V/hen the chain is constrained to a large deflection angle,
picted above. kinking is induced and the response of the chain to deflection
is dramatically weakened. In the mechanical limit, once
. - . kinking is induced, the moment is zero but for finite size
?a?crtcl)? i‘ \r/zhirr]tigizctr:(alr* ;S_lc?\ln;téam:f,’[hﬁgeirﬁnn::?ﬁgenrtods, the ability of the chain to fluctuate between the kinked
brop ' P ntstates and unkinked states blurs the dramatic zero-
. : =~ temperature transition between the kinked and unkinked
strained to be aligned and enhanced when the chain is S'%'eng response
nlflcagtlgl bentb;n Fig. f: th;: Ignk(—)lngutce?h(rae@(e:tlgp tlhneﬂlle Our discussion here has focused principally on develop-
moment can seen 1o correspond 1o fs 'n|ﬁg an intuition for the short chain limit. From an experimen-

number from zero to one kink. tal perspective, it is difficult to measure the moment-bend
We will now compare these exact results to the mechani-

b e ; o i relation directly as we have described, especially for short
cal or “zero temperature” limit. This regime is equivalent to

. - ; chains. While single molecule AFM experiments might
the _'ff“ge persistence _Iength limit, where we can write th‘?arobe this relation, most of the information about the
partition function concisely as :

moment-bend constitutive relation comes from indirect mea-
2 ¢ surements of thermally-induced bending. For example, light
[— p( 02) + gL]; (32)

FIG. 4. The bending momentand average kink numbém) as

scattering, force extension, and cyclization experiments are
all measures of thermally induced bending. As we shall ex-
plain, only cyclization experiments with short contour length
the WLC limit is recovered for=0. In the short length limit, polymers are sensitive to the high curvature regime of the
the moment of the WLC chain is simply linear in deflection: moment-bend constitutive relation. For the most part, these
7==0§/L. This moment is also plotted in Fig. 4. Even with- thermally driven bending experiments are only sensitive to
out the complication of kinking, there is already one inter-the thermally accessible regime of the moment-bend consti-
esting feature of the exact WLC moment-bend constitutiveutive relation which corresponds to small curvature and
relation which needs explanation. For large deflection, theherefore small deflection on short length scales, a regime
linear relation already fails in the WLC model. This is a that is very well approximated by linear moment-bend con-
thermal effect which is best understood by going to the exstitutive relation. For long chains, the initial linear response
treme example of deflectiof= 7. For any configuration, the s weaker implying that the kinking transition is less pro-
contribution of a chain reflected through the axis defined byhounced. In fact we shall see in the next section that for
the initial tangent will make the partition function symmetric some of these indirect measurements of the low curvature
aboutf;=—f;. This implies that the bending moments from regime of the constitutive relation, the effect of the kinking
these chains cancel. Away frofx 7, the cancellation is no  will be indistinguishable from the linear elastic response.
longer exact. In the mechanical limit, this effect is present
but localized at#= due to the path degeneracy. B. Persistence length

In the mechanical limit, kinking is always induced by  Since many polymer characterization experiments are
bending and at most one kink is nucleated. In this limit, themost sensitive to the thermally-accessible weak-bending re-

N 1
lim Z* (tf,tl,l_) =—
L—0 41

L T
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gime, it is clearly of interest to determine whether kinking experiments at large wave number, force extension for large
changes this low-curvature physics. Intuitively, we have al<force, or cyclization experiments for short contour length. To
ready argued that, at least for small kink densities, manyredict the effects of kinking in these experiments, we must
properties of the polymer that do not explicitly probe thecompute the spatial propagathe spatial distribution func-
highly bent structure will remain essentially unchanged. Intion).
this section, we will derive a number of exact results that
show that the effects of kinking can be described by a renor-
malization of the persistence length of WLC theory for some
bulk features of the polymer distribution, regardless of the
magnitude of¢.

The tangent-tangent correlation must be a decreasing e
ponential due to multiplicativity4,30] and therefore we can
discuss the decay length. The tangent persistence is

V. TANGENT-SPATIAL AND SPATIAL PROPAGATORS

The spatial propagatd¢(x;L) is defined as the probabil-
ity density of end displacementfor a polymer of contour
1(éngth L. Similarly, the tangent-spatial propagator
G(X;f,1;L) is defined as the probability density of end dis-
placementX with final tangents;, given an initial tangent;,
(s .f0>:e—(§+§'1>A, (36) for a chain of contour lengti.. Although in principle the
] o o theory is solved once the tangent propagator is known, the
which can be computed by examining the limit of small  ,oments of the spatial propagator, or spatial distribution
and applying the tangent propagaféiq. (26)]. Since this  fnction, are more experimentally accessible than the tangent
result is identical to the WLC result except for the decaypopagator. In particular, thifactor measured in cyclization
constant, we introduce the effective persistence length  gyperiments, the force-extension characteristics, and the
* — (1o 11 structure factor measured in scattering experiments are all
EX =(E+ &l (37) .
more directly computable from the propagat@sandK. In
where the kink length is defined &g, =¢ . The form of  this section, we first compute the spatial propagator and then
this effective persistence length is not surprising since aliscuss its application to experimental observables.
roughly analogous effect is observed adding two linear Following our computation of the tangent propagator, we
springs together or from the combination of static and dy-compute the tangent-spatial and spatial partition functions.
namic persistence lengff85—37. This tangent persistence Our solution relies on the same Dyson-like expansion of the
result immediately implies that an analogous exact renormalpartition function in the kink number as was exploited to
ization occurs for both the mean squared end distance compute the tangent partition function. The only added com-
_ _ _ plication is that, in addition to the arc length convolution, we
(RP)wic = [<R2>WLC]§H§* =aLgr-2¢r (1-eH) must also compute convolutions over treespatial positions
(39 of the kinks. By going to the Fourier-Laplace transformed
propagator, the convolutions again become products and the
m kink contributions can be summed exactly. Unfortunately
<RS>KWLC = [<R§>WLC]§H§* the exact results of this computation will only be found ana-
) 3 ” lytically up to a Fourier-Laplace transform, in part because
- L& &2+ 2¢° _ zi(l —et), (39 the WLC theory itself is only known analytically in this form
3 L L2 ' [33,34.
We begin by writing the tangent-spatial partition function
the KWLC theory in an form analogous to the tangent
partition function in Eq(18):

and the radius of gyration

since these result are simply integrations of the tangent Pef,
sistence[3]. In experiments sensitive only to the radius of
gyration (static scattering for small wave number the av-
erage square end distanderce extension in the small force
I|m|t), the measgred persistence length of the KWLC theory zZx (= D [di(9)]ce & 6@[E - ]
will be the effective persistence lengif¥, regardless of the '
magnitude of. In most systems of physical interest, the kink Ao
length is much larger than the bend persistence length imply- X 89 Xar ~ X1, (40
ing that, even if the bend persistence were independently
measurable, the difference between the effective persistentéeret, is the initial tangent vector. The additional spatial
length and the bend persistence length would be very smalRirac delta function in the equation sets a spatial constraint
In other words, the loss of tangent persistence due to kinkingpr the end displacement; in this expressién,lzﬁﬁzofn.
is negligible compared with the loss due to thermal bendingMe will again collect the terms in this sum by kink number
since kinks are rare on the length scale of a persistence. In the intervals between kinks, we again introduce the
length. WLC propagator, but this time we use the tangent-spatial
The tangent persistence corresponds to the first momeipropagatorG, defined by an expression analogous to Eg.
of the tangent propagator. Clearly the renormalization we40), but with E in place of E*.
have discussed fails for higher order moments. At least in Because we have normalized the unconstrained WLC par-
principle it is therefore possible to determine the bend pertition function such thatZ=1, the tangent-spatial partition
sistence from higher order moments of the distribution. Fronfunction and propagator are identical. It is convenient to in-
an experimental perspective this corresponds to scatteringoduce the WLC spatial propagator

{01,...oN}
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1 oo oo Zx (RE.T
K(x;L) = 4—fd2t1d2t2G(x;t1,t2;L), (41 G* (Ki,t:p=LF M =Zz* (KL, 6:p+ 0,
i X (N
where we sum over the final tangent and average over the (47)
initial tangent to derive the spatial probability density. We
also introduce the one tangent summed tangent-spatial _
propagator ~ ZH0 |~
K*(kKp)=LF| ——— |=2* (kp+{), (48
z2* ()

60 = | FEew L, (42)

where L is the arc-length Laplace transform atfdis the
which will allow us to concisely express intermediate resultsSPatial Fourier transform. The transformed WLC spatial
Finally for economy of notation, we write the convolutions Propagator is exactly knowf83,34

over both the spatial position and arc length symbolically 5 1
with ®, generalizing the notation introduced in Sec. IV. K(k;p) = - , (49

The m>0 kink KWLC tangent-spatial partition function P+ Ak
can be written in terms of the WLC propagators: 0 AK?

P +——

R L B DR ! AR

Zm(X;tf,ti;L) = 4_(G (tf) ® [K ® ]l’l’l G (ti))(X, L), m> 0. P2+ —
a
(43 whereA, andP; are defined
We now introduce the WLC Fourier-Laplace transforms of j2 i(G+1)
the propagator§&’ andK. We denote the transformed func- A= 22-7 Pi=p+ 2—§ (50
j2-

tions with a tilde. The Laplace conjugate of contour lenigth

is p and the Fourier conjugate of the end displacemeist  gecayse the KWLC transformed spatial partition function
tgel Oanﬁ numbel[<. The; Falttl;]ng thetprlenquls. (At\l?) and ,.2nd propagator are functions Kt they are also known ex-
E. )] E'ithoms us g r(ip a?eth erpa |a|-_arc| engt c?cnvo u- ctly. In principle, bothK and K* can be computed by in-
lons with the products of the Fourier-Laplace ransiormeq;q in the transforms numerically. In order to compute the

{)_ropagators. Then kink KWLC transformed partition func- KWLC tangent-spatial partition function and propagator, the
lon1s WLC tangent-spatial propagatoG, must also be known.

Zn(lz:ff,ﬂ;p) Since G is not knqun analytically, our solution for the
tangent-spatial partition function and propagator are formal.
1LT0p), m=0, From the perspective of computing experimental observ-
e e ables K* will suffice for computation of the force-extension
JpK™ K PG (kG p)/4m, m>0, characteristic, the structure factor, and surprisingly,Jtfec-
(44)  tor, despite the tangent constraint in its definition.

which is analogous to Eq22) for the tangent propagator.
As before, the transformenh kink contributions can be
summed exactly in a geometric series. Abbreviating the no- While we have written the exact transformed propagators
tation somewhat, the resulting tangent-spatial transformeébr KWLC, like WLC, these transforms cannot be inverted
partition function becomes analytically. It is therefore useful to examine the exact trans-
- - formed propagators in several limits which can be computed
{G'G’ (45) analytically. First we consider the long length scéte-0)
4ar(1 - gli) ' limit. We find that KWLC and WLC are identical apart from
the renormalization of the persistence lenggtbe Eq.(37)]:

A. Wave number limits

Z* (Kt Gp =G+

We can also derive the KWLC transformed spatial partition . 2 N

function by averaging over the initial tangent and summing i K * = lim K. . = p+= 4o

over the final tangent. Applying the definition in E@t1) k—0 koo F 3p+(ex)?t

gives (51)
- K(K: : . - .
Zx (Kp) = (k;p) (46) By expanding the exponential in the definition of the Fourier

transform, it can be shown that this result is equivalent to
showing thaiR? is exactly renormalized. In our discussion of
To compute the KWLC spatial and tangent-spatial propagathe J factor it will be convenient to consider an even more
tors, we divide the constrained partition functions by the un+estrictive limit. We now add the additional restriction that
constrained partition functiofEg. (10)]. The transformed the chain is longp—0). In this limit we must recover the
tangent-spatial and spatial propagators are Gaussian chaifficentral limit theorem

1-KK:p)
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* |2

3

-1
lim K* =lim Kgﬂg*:{p+ +} , (52
—0

k,p—0 k-
which is the transformed Gaussian distribution function for
Kuhn length Z*. When applicable, the Gaussian distribution
is a power tool due to its simplicity.

The opposite limit is the short length scdle— ») and
short contour length limi{p— o). In this limit WLC and
KWLC are identical, both approaching the rigid rod propa-

gator: o Low extension limit

L= L~ ~ 1 kK 0.1 1 10

lim K* = lim K=K, ,=~tan"—. (53 fL

pk—ce pk— k p
The rlgld rod Spatlal propagator descrlbes a polymer that |s FIG. 5. .F-Orce'extension Chal’aCteriStiC fOI‘ KWLC Compared to
infinitely stiff. In the limit that we analyze very short seg- WLC and rigid rod forl. =4¢ and{¢=4. At low extension, the force
ments of the polymer, both the WLC and KWLC models e>_<ten3|on qf KWLC(solid curve approaches.WL(L‘da_shed curve
appear rigid since we have confined our analysis to Iengtlylv'th a perS|§tence Iength equal tp the effective persistence length of
scales on which bending is thermally inaccessible. In thi WLC. At high extension, the k'nlf modes are frozen out and the
limit, the propagators take a very simple form which is more WLC .force'EXt?ns'on characteristic approaches V.meed
tractable than either WLC or KWLC. The rigid rod propaga- curve with a p_erS|stence length equal to the bend persistence length
tor is useful when discussing the limiting behavior of the of KWLC. Rigid rod (dot dashed curyehas been plotted for com-
factor at short contour Iengthgand is disc%ssed in more detaﬁarison. The extension of rigid rod corresponds to alignment only.
in the Appendix.

100 1000

and low extension. The low-force limit is clearly related to
low wave number limifEqg. (51)] via an analytic continua-
tion of the wave number. Therefore KWLC with effective
persistence lengtlf* and WLC with persistence length*
In force-extension experiments, a single polymer mol-correspond in the low-extension limit as can be seen in Fig.
ecule is elongated by a bead in an external field. The averags
extension of the polymer is measured as a function of exter- At high force, Fig. 5 shows that kinking becomes irrel-
nal field strength. The forces opposing extension are enevant and the extension of KWLC and WLC both with bend
tropic. These entropic forces are caused by the reduction ipersistencé are identical. In this limit, the chain is confined
the number of available microstates as the polymer extensiof small deflection angles for which the effect of kinking is
is increased. The persistence length defines the length Scai@g|igib|e' as can be seen in Fig. 3. In essence the kink
on which the polymer tangents are correlated. For small peimodes freeze out and measurement of the extension versus
sistence length, the number of statistically uncorrelated tanforce measures the bend persistence rather than the effective
gents is greater, which increases the size of the entropic copersistence length of the KWLC polymer chain.
tribution to the free energy relative to the external potential. These two regimes imply that in principle the valueof
This deceptively simple physics implies that a chain with acould be determined by the difference between the persis-
softer bending modulus acts as a stiffer entropic spring retence length measured at small and large extension. In ex-
sisting extension. periment, this is most likely not practical. We have purposely
To compute the force-extension relation, we must comchosen an unrealistically large value dfn Fig. 5, to illus-
pute the partition function in an external fieldvhich can be  trate clearly the low- and high-extension limits. In more re-
concisely written in terms of the spatial partition function  alistic systems, the difference between the bend and effective
N persistence lengths would be small implying that it would be
ZiL) = f d* €*2(x:L) = Z(if: L), (54)  difficult to detect. Furthermore, at low extension the effects
of polymer-polymer interactions can act to either increase or

B. Partition function in an external field and force-extension
characteristic

which is a particularly convenient expression since it is thed€Crease the effective low extension persistence length. At

Fourier-transformed partition function with the wave numberhigh.eXtenSi.on' polymer str_etch also acts to increase the ex-
- . . > o . tension at high force most likely obscuring the effects of the
k analytically continued taf. Note that this is the inverse

- entropy reduction due to the loss of the kink bending modes.
Laplace transform of Eq45). The average extension is FigurgyG illustrates these remarks. ¢

P The force-extension characteristic is therefore unlikely to
x(f)) = ~f 109 2 (55 detect the high-curvature softening induced by kinking.

which may be computed by taking the inverse Laplace trans-
form numerically. (See Appendix A 2 for the numerical

method) The results are plotted in Fig. 5. In this figure, the  Another experimental observable used to characterize
KWLC theory interpolates between two WLC limits at high polymers is the structure factor, measured by static light scat-

C. Structure factor
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EXACT THEORY OF KINKABLE ELASTIC POLYMERS PHYSICAL REVIEW E71, 021909(20095

z, pm CE=0 (WLO) 7, um KWLC with & = 0.05

b ~ f, pN i - f, pN
" lﬂfp 4 lofp

01 02 05 1 2 5

01 02 05 1 2 5
FIG. 6. Left: Semilog plot of the best fit of the WLC modg]=0) to experimental data on the force-extension relation of a single
molecule of lambda DNA. Right: Best fit of the KWLC model to the same data, takjr®.05. The fits are equally good, even though this

value of{ is larger than the one that we will argue fits cyclization data. Thus, force-extension measurements can only set a weak upper bound
on the value of. (Data kindly supplied by Vincent Croquette; Je8.)

tering, small-angle x-ray scattering, and neutron scatteringcattering experiments are not sensitive to the high curvature
experiments. Measurements of the structure factor can prolghysics since the signal is dominated by the thermally acces-
the polymer configuration on a wide range of length scalessible bending regime which is essentially identical to WLC.
Symbolically the structure factor is (See Fig. 7.

L1 (t - .
g(k)Epf dsds(exdik - (X(s) = X(s))]),  (56) VI. CYCLIZED CHAINS AND THE J FACTOR
0

R Although the theoretical study of the moment-bend con-
whereX(s) is the position of the polymer at arc lengtland  stitutive relation is straightforward, it is problematic experi-
we have included an extra factor of the polymer contourmentally to apply a moment and measure the deflection di-
length in the denominator to make the structure factor divectly on microscopic length scales. It is typically more
mensionles$33]. At high wave number, the structure factor convenient to let thermal fluctuations drive the bending, but
is sensitive to short length scale physics, whereas the polyas we have discussed above, experiments which measure
mer length and radius of gyration can be measured at lowhermally driven bending are typically not sensitive to the
wave number. The structure factor can be rewritten in termsgare kinking events. In contrast, cyclization experiments, al-

of the Laplace-Fourier transformed propagator though thermally driven, are sensitive to bending at any
~ . length scale. These experiments measure the relative concen-
- _ 2 | Kk;ip) trations of cyclized monomers to noncyclized dimers. By
g(k) - LZE pz ’ (57)
where £71 is the inverse Laplace transform which can be 7
computed numericallySee Appendix A 2 for the numerical 6
method) As we mentioned above, the leading-order contri-
butions at small wave vector are the polymer length and the
radius of gyration 4
kLg
Lok =L(1+1ReR2+ ), (58) 3
where we have temporarily restored the length dimension of 2
g. At large k, both WLC and KWLC are rodlike or straight 1
which gives an asymptotic limit for large wave number

m 0.1 1 10 100

g(k) — m (59) kL

FIG. 7. The structure factor and the role of effective persistence

To what extent can scattering experiments differentiat length. The solid curve is the structure factor for KWLC with con-
g exp our lengthL=4¢, and kink parametef=4/¢. For comparison, we

b_etV\_/een WLC and KWLC? We hfwe. already afg“?d tha ave plotted the structure factor for WLC of the same contour
kinking merely leads to a renormalization of the PErsISIeNCEeih for identical bend persistence lengttiashed and identical
length for the radius of gyrationR;, so both theories are gfective persistence lengiltotted. At short length scaledarge
identical at the low and high wave number limits. For the yaye numberthe KWLC structure factor approaches that for WLC
rest of the interval, the theories do predict subtly differentyith an identical bend persistence length. At long length scales
structure factors, but for small values gfthe theories are  (small wave numbey the KWLC structure factor approaches that
nearly indistinguishable. Again, we have chosen to illustratgor WLC with a persistence length equal to its effective persistence
the structure factor for an unrealistically large value/pfo  length &. We have also plotted the structure factor for rigid rod
exaggerate its effect. Like force-extension measurementsgot dashed curyefor comparison.

since the chain is inflexible at short length scales.
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choosing the contour length of the monomers, any bending ST O n x n i‘) n

scale may be studied provided the concentration of cyclized O X

molecules is detectable. Furthermore, these experiments are _ _ _ _

typically bulk rather than single molecule. In fact the data FIG. 8. The diagrammatic representation of the kink number

motivating this work comes from recent DNA cyclization expansion for cyclized polymers. The dashed curve represents the

measurements of Cloutier and Widdifi who have shown KWLC theory which is the sum of the kink contributions. In the

that the cyclization probability is £ao 10" times larger than interval between the kinks, the polymer is described by WLC, rep-

that predicted by WLC for DNA sequences with a Contourresented by the solid curves. For eanltkink contribution, we sum

length L ~0.6£, while confirming that larger sequencés  °V€' the kink position. In order to meet the tangent alignment con-
Y . . ditions for cyclized polymers, we close the chain at a kink for kink

>¢) do cyclize at the rate theoretically predicted by the

WLC.L number one or greater.

In cyclization measurements, the configurational free en- .
ergy is isolated in the factor which is ratio of the cycliza- (O Pe better represented by loopiffgee end tangenjshan

tion equilibrium constant to the dimerization equilibrium CYclization(end tangents aligngd13]. We define the loop-
constant[38]. This ratio eliminates the dependence on theiNd J factor as the ratio of the looping to the dimerization
end-end interaction free energy. For nontwist storing poly-£duilibrium constants. The KWLC looping factor, J;, can

mers, the] factor is proportional to the tangent-spatial propa-P€ Written in terms of the spatial propagator as
gator[38] J =K* (0;L), (61)

J=47G(0:E,TL), (60) which can be interpreted as the concentration of one end at
{he other. We have again neglected the effect of twist. In this
case the explicit # in Eq. (60) is not needed, as the defini-
tion of K already includes an integral over angles. Both from
the standpoint of developing intuition and computational

which is the concentration of one end of the polymer chain a
the other(Xx=0) with the correct tangent alignment. The fac-
tor of 447 is due to the isotropic angular distribution of mono-

mer in free solution. Our analysis will neglect additional convenience it is useful to explicitly expamd in the kink

complications relevant to the study of real DNA. First, in . .
DNA the twist must also be aligned, which requires the usenumber. We introduce the WLC closed spatial propagator

of a variant of WLC, helical wormlike chaif8]. This addi- Cv°ions which we denote
tional constraint modulates thiefactor with a 10.5 bp period KM =[K® ]™0;L), (62)

equal to the helical repeat. Our interest here is in the value of h in th ts both tial and lenath
the J factor averaged over a helical repeat for which theWhere again thes represents bo SFE%"'." and arc leng
convolutions. The computation of the'™ is discussed in

effects of twist can be roughly ignord@]. A second com- . m
plication in real DNA is sequence dependent prebendinﬁAppend'x A 1. In terms of theC'™, the free tangent factor

[39,40. Prebending effects alone cannot explain the high®

cyclization rates observed for short DNA7,43; in this pa- . *
per we focus instead on kink formation. Jo=edt Y pmimy, (63)
Although cyclization experiments are fairly straightfor- m=0

ward, extracting mechanical information from the resultswhere we have defined the™ to be independent of the
poses a difficult theoretical problem due to the combinatiorkinking parametet. The kink number sum is illustrated with

of tangent and spatial constraints_. In fact, there is no exact diagrammatic expansion in Fig. 8. The probability of the
analytic expression for thé factor in the WLC theory; the ik state can be concisely written in terms of tié"
following sections and Appendices will develop the numeri-

cal methods we need. (free2)

Pm=e " 7 (64)
A. The looping J factor i . . ) . L
i o . This expression can be interpreted as the kink number distri-
Due to these computational complications, we shall ini-p,tion for a looped chain, a constraint that induces kinking in
tially dispense with the tangent alignment condition andy manner roughly analogous to the tangent constraints al-
compute a modified factor that is relevant for processes ready discussed in detail. The loopiddactor is plotted in
that do not fix the tangents of the chain. For example somgijqg. 9. |n this figure, we can see that the intuition we devel-
protein-DNA complexes exhibit a behavior that is believedoped computing the moment-bend constitutive relation is

borne out in the looping factor, despite the fact that the

Cloutier and Widom’s discussion assumed that the ligase enzymBfOCESS IS thermally drlven. In t_he short-length limit, t_he
used in their experiments acts in the same way when ligating &Pility of the chain to kink dramatically reduces the bending
single DNA or joining two segments. Although this assumption is€Nergy and increases the loopidfactor. In the short-length
standard in the field, it may be criticized when the length of thelimit, a single kink is nucleated in a manner almost exactly
DNA loop becomes not much bigger than the ligase enzyme itselfanalogous to the process we have described in detail for the
We believe that effects of this type cannot account for the immensénoment-bend constitutive relation. We will discuss these re-
discrepancy between the measudddctor and that predicted by the sults and their scaling in more detail after computing the
WLC theory. KWLC J factor.
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factor in Eq.(63). The only complication here is that for
kinked chains, the state counting has subtly changed since
we close the chain at a kink. For inverse transform numerical
computations, it is convenient to write a transformed parti-
tion function

N2, L0 _
Zc(k,p)—G+4Wplog[1 K], (67)

although the expression is understood to only have physical
61 i . i meaning when the chain is closét=0). Our derivation of
L& the cyclized partition function implies that the KWLC
tangent-spatial propagator is known for one special case

FIG. 9. The KWLC loopingJ factor,J*L, as a function of contour . (FF ) — ol 2
length plotted for various values of the kinking parameteirhe G* (OittL) =e2c(L), (68)
numbers labeling the curves indicate the value of the dimensionlesghich is precisely the expression we need to computeJthe

quantityéZ. WLC is the curve labeled 0. For large contour length  t5ctor. In terms of the KWLC tangent-spatial propagator, the
the effect of kinking can be accounted for by computilydor the KWLC J factor is

effective persistence lengt:. But as the contour length shrinks to

a persistence length, the effect of kinking becomes dominant, even *

for small £. At short contour length the loopingfactor is one kink J* =47G* (O;f,f; L)= e_gLE {mj(m), (69)
dominated and diverges in contrast to the WLC loopihfactor m=0

which approaches zero precipitously for short contour length. where we have explicitly expanded tAdactor in kink num-

ber. The7Z™ are defined by

B. The cyclization J factor
Although the computation of the free tangehfactor is Jm = {J‘ ) m=0, (70)
more direct and intuitive, thé factor with tangent alignment Lm=K™, m>0.

is of more phenomenological interest. The computation be-

gins with the ta_mgent-spatial partitipn function defineo_l in Ed.calculation ofJ*. Details of the calculation are discussed in
(45) for end distance zero and_ aligned tangents. Since thﬁppendix A 3. Note that setting the kink density
transfo_rr_n_ed WLC tangent-spatial propagator is unknown, it 1072/ ¢=0.2/um roughly reproduces the experimental cy-
WO[.JId initially appear to Pfec'“de exploiting the exact results‘clization data. Equatiofi7) connects to the density of ver-
derived above. But intuitively we know the chain may beiceq ¢ ang the free energy costof creating a kink. Assum-

ﬁ!oieg art] any E’[O.'m result|_ng t"': anl |dert1rt1|calf§c_tor. tFork_ @g that the site density is just the DNA base pair length
inked chains, it is convenient to close the chain at a kKink_ 34 m "we can estimate the kink energy,

where the tangent alignment condition is no longer required.
The only chains for which this simplification cannot be ap- 2¢
plied are the unkinked chains for which tdefactor is al- €= '”{e_zg] ~ 15kgT =~ 9 keal/mol. (71)
ready knowr[2]. To show this explicitly, we write the trans-

form of Eq. (45) in its expanded form and specialize fo Although we do not discuss detailed microscopic models in
=i, to obtain the cyclization partition function: this paper, it is interesting to note that molecular modeling

studies have found that in B-form DNA, base pairs indeed

. . ” . o open individually and noncooperatively with an activation
ZcL)=GO;tEL) + Eo ({G'(t) ® (LK ®)™G'(t))(O;L). energy similar in magnitude to the estimate in Ezfl) [44].
m=!

Figure 10 compares experimental data to our theoretical

(65) C. Topologically induced kinking

We can now use the composition property of the propagators It is useful to discuss kink number in chains that are to-

to replace the initial and final tangent-spatial propagators,siqgically confined to be cyclized. These chains have both
with a single spatial propagator. Some care is how require

. - i . ; ; e kink inducing tangent and spatial constraint.
in performing the convolution, as described in Appendix A1. "y can write the kink number distribution concisely in
The cyclization partition function then becomid=. (A13)]  ams of thel factor
. Ll g
Ze(L) =GOt fL) + —> =—Km, 66 —elL
oL =COLEL) + -3 (66) Pr=etem

, (72)

where we have expressed the result in terms of the zero emwhich is analogous to Ed64) and depicted in Fig. 11.
distance spatial propagator convolutiorl§!™. The kink The effects of kinking on thd factor are dramatic even
number sum is illustrated with a diagrammatic expansion inwhen the kinking parameteris small. Figure 10 shows that
Fig. 8. This equation has an analogous form to the looging the WLC J factor precipitously decreases with loop contour
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FIG. 11. The kink-number distribution compared for cyclized
FIG. 10. (Color) The KWLC cyclizationJ factor as a function  chains(solid curve$ and unconstrained chairigotted curvesas a

of contour lengthL for various values of the kink paramet&rAs  function of contour lengtl.. To illustrate constraint-driven kinking,
discussed in the text, our theory does not include the twist inducegie have chosen the illustrative valyé=10"2. At large contour
10.5 bp modulation of thé factor. The numbers labeling the curves |engthL, the cyclization constraint is irrelevant but as the arc length
indicate the value of the dimensionless param&t@rThe WLC  shrinks to roughly a persistence length, the bending energy required
theory corresponds =0. For large contour length, the effect of  to cyclize the chain becomes significant and there is a dramatic
kinking can be accounted for by computing thdactor using the  transition to the two kink state which dominates at short contour
effective persistence lengté. As the contour length falls below  |ength. The contributions of one anth>2 kink states are
a persistence length, kinking dramatically increasesJtfactor,  secondary.
even for smalll. For smallL, the chain is two kink dominated and

diverges, in contrast to the WLC theory which precipitously falls to . . . _ .
zero at smallL. Experimental cyclization data for DNA are plotted interesting scenarios the kinking paramefeis small. The

for comparison, assuming=50 nm. (Data sources: CW7], SB probability_ of m kink number state scal_es roughly like the
[41], SLB [42], and VV [43]) At contour lengthL =0.6¢, the ex- ~ 2vVerage klnqk number for t_he unconstrained chain torniha
perimentally measured factor is ~10* times larger than predicted POWer (LO)™ [Eq. (69)], which further decreases the impor-
by the WLC theoretical curve. The KWLC witté=1072 correctly ~ tance of higher kink number states. The dramatic transition
captures this behavior, while matching the WLC theory at largeffom the zero kink to the two kink state at short contour
contour length. length is evident in Fig. 11. Interestingly, recent molecular-
dynamics simulations on a 94 bp DNA minicircle indicate
e presence of two sharply kinked regidds].
Physically, we can understand the onset of this transition
by roughly comparing the free energies of the two kink term
J~ g2 (73 and the zero kink term to find the length at which these two
are roughly equal. Here we merely wish to motivate our
In dramatic contrast, the KWLQ factor, while tracking the results as clearly and simply as possible so we shall ignore
WLC J factor at large contour length, turns over at smallthe difference in the density of states, even though its effect
contour length and increases divergently. Physically, thidS quantitatively important. We therefore treat the free energy
small contour length divergence can be understood as af the zero kink term as the bending energy only and the free
increase in the ratio of available cyclized to noncyclizedenergy of the two kink term as twice the kink energy in the
states which is roughly inversely proportional to the physicaidiscrete modelEq. (7)]
volume explored by the chain when one end is fixed. This
divergent increase in the density of states can also be seen 2~ 2m%¢ (74)
for the Gaussian chain in the short length limit, although this it
limit is not physical for polymer systems. For the Gaussian
chain, theJ factor is monotonically decreasing with contour When the bending energy equals the energy required to
length since the only obstruction to the ends finding eacucleate two kinks, the transition occurs. It is important to
other is entropic, and the number of available noncyclizedemember that thé dependence is relatively weak while the
states scales like®? [Eq. (C2)]. For KWLC, once the chain bending energy scales like the inverse of the contour length.
is kinked twice, it is advantageous to shorten the chairBelowL ~ ¢, the bending energy grows divergently implying
which, while decreasing the degeneracy of the first kink lo-that even for very small kink densities, kinking always be-
cation,xL [Eq. (70)], increases the density of cyclized states,comes important at short enough contour length. That is to
«L"2 [Eq. (B7)]. Therefore, there is a n&f* scaling of the say, we are almost assured of observing elastic breakdown
two kink term 7@ [Eq. (70)]. In this limit, the contributions effects below contour lengths of roughly a persistence
from chains with kink numbers greater than two scale likelength.
L™3[Eqgs.(70) and(B14)], implying that at short lengths the Previously we had shown that for moment-bending, only
two kink term dominates. In addition, in most physically a single kink was nucleated, in contrast to the current ex-

length due to the increasing elastic energy required to closg‘|
the loop:
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ample where the one kink contribution to théactor, 7V, is  modifications to the theory to fix this problem: kink angle
of little scaling importance since the chain must still bend asutoffs, kinks that are not perfectly flexible, etc. But all these
illustrated schematically in Fig. 8. This will not be the caseproposals require adding additional parameters to the model,
for the KWLC loopingJ factor, J, which lacks the tangent rendering it both less tractable and less predictive, since the
constraint implying that only one kink is required to relieve additional parameter must then be fit to experimental data.

all the elastic bending. The one kink term &f therefore The KWLC is in essence a coarse-grained, effective
diverges likeL 2 [Eq. (B7)] as explained abové*L is plotted theory for systems where kinking occurs and the kinks are
in Fig. 9. localized compared with the chain persistence length. Its vir-

tue is that it offers a simple way to characterize stiff biopoly-
mers, and a quantitative guide to the mesoscale effects of
VIl DISCUSSION kinking. Thanks to this simplicity, we were able to compute
Our main results are summarized in Figs. 5, 6, 10, and 11Many results in this paper exactly, without extensive numeri-
We formulated a generalization of the WLC model, in which ¢al simulation. We discuss the specific application of KWLC
a semiflexible polymer can develop flexible sites of an alterio DNA at length elsewhergl9].
native conformation. We found that taking the density of
kinks in the unstressed polymer to be about 0.01 per persis-
tence length has negligible effect on the force-extension re- ACKNOWLEDGMENTS
Iatio_n, but vastly enhances _the probability of cyclizati_on for  \we thank J. Widom and T. Cloutier for sharing their data
chamg shorter than a persistence Iengt.h,.as seen in recegiy insights on DNA bending before they were generally
experiments on DNAY]. Several results similar to ours were 4y ailable. P.A.W. thanks A. Spakowitz for insightful conver-

independently obtained Yan and Markad]. , _sations and his results before they were generally available,
Various microscopic mechanisms could furnish the kink-5n4 ..M. Yan for his careful instruction in the mysteries of

ing mechanism in DNA, for example single-basepair flipouty,antum mechanics long ago. We also thank M. Inamdar, W.
or strand separation. But any complete, microscopic analysimug J. Maddoxs, J. M. Schurr, and Z. -G. Wang for helpful
of high-curvature DNA conformations would also have 10 giscyssions and correspondence and Yongli Zhang for com-
include a variety of effects, for example those arising fromyents on the draft manuscript. We acknowledge grant sup-
the significant thickness of the DNA molecule on the few- port from the NSF(P.A.W): the Human Frontier Science
nanometer scale of a short circle, strong polyelectrolyte efgqndation and NSE Graﬁt No. DMR-040467N): the
fects, and so on. We have taken the attitude that any n¢ack Foundation. NSE Grant No. CMS-0301657 t’he NSE-
nonlinear softening at high curvature will lead to genericf,nded Center for Integrative Multiscale Modeling and

new phenomena. By summarizing all such effects into asjmjatio, as well as the NIH Director’s Pioneer Aw&RLP.
single phenomenological parameter, our model focuses attenq p A ).

tion on the general mesoscale physics of kinking. The
KWLC'’s generality also makes it a useful starting point for

studying the conformations of other stiff biopolymers, such AppeNDIX A: FOURIER AND LAPLACE TRANSFORMS

as actin. , _ AND CONVOLUTION THEOREMS
Other diagnostics of low-curvature physics, for example

light scattering, also turned out to be almost indistinguish- ~The relations listed below are well knoW82] but essen-
able from the linearly elastic wormlike chain model. It is tial to our derivations. We define the 3D spatial Fourier trans-
only by conducting experiments that are explicitly sensitiveform and inverse transform

to high curvature, that we can measure the nonlinear re-

sponse to bending. DNA cyclization offers one experimen- F(k) = j:{p()z)}:fdiixp()z)e—"?i, (A1)
tally tractable measurement sensitive to the high-curvature

physics of free DNA in solution; we gave predictions for

other, future tests, for example the moment-bend relation and 1= R

the kink number as a function of constraints. Our kinking F() =7 H{F(K)}= o fd kF(k)e". (A2)
hypothesis has direct structural implications for very small

DNA loops, and for processes involving such loops, for ex-The Faltung theorem states that Fourier transform of a con-
ample, the looping implicated in some gene-regulatoryvolution is the product of the Fourier transforms
mechanism$8—13]. Recent simulations indeed suggest that ~——

spontaneous kinking may play a role in such situatiets. HF ® G} =FG, (A3)

: Some mathematical aspects of the model, for example thl%r functionsF and G where the spatial convolution is de-
divergence of the theoreticalfactor at small contour length fined
(Fig. 10, are artifacts of the simplified picture we have pro-
posed. The small contour length divergence is due to the two . R
kink term, which can close a loop without elastic bending F®G(KX) = J X F(X)G((X-X). (A4)
regardless of the contour length, via the creation of 180°
kinks. Clearly due to the finite thickness of the chain, thisThe generalization of the Faltung theorem is true for
divergence is unphysical. We can consider a number ofunctions
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« : : > s result it is convenient to go to the transformed partition func-
? b tion
) i = i - . = m~m—la~ " 9 =m
“ L L L v Lna L L4 L Ly - m=— K" —K=-————K", (A12)
i i ¢ 47 ap 4mmap
0 L where theL has been transformed into @mderivative. We
. . ._now return from Fourier-Lapl , givin
FIG. 12. A schematic diagram of the coordinate transformation ow retu 0 ourier-Laplace space, giving
exploited to compute the circular convolution. The crosses represent .M o
chain ends and dots represent kinks. The center line represents a Zn= m[K ® ]™O;L), (A13)

periodic coordinate system. For regular convolutions, we set the
chain end to be the zero and we compute the convolution irsthe which is written in terms of convolutions of the spatial
coordinate system. For the circular convolution, it is more convepropagator only.
nient to choosé 4, the first kink arc length position as the zero and
sum over the chain end position as represented byg'tkeordinate .
system. 2. Numerical inverse transforms
To compute the numerical inversions of the Fourier and
= = Laplace transforms involving the spatial propagator, we first
FF1® ... ®Fpp=Fy...Fpn. (AS) truncate the continued fractiof83] in Eq. (49), then we
We define the 1D contour length Laplace transform andcompute the numerical inversion with the built-in Math-
inverse transform ematica functiongnverseLaplaceTransformndInverseFou-
rierTransform In particular, the structure factor and partition
function in an external field involve only a single numerical

~ _ — “ —pL
F(p) = L{F(L} fo dL F(Le™, (A6) inverse Laplace transform.

3. J factor computation

~ 1 ~
F(L)=L£YF :—_de et A7
) {F(P)) 2w ), PH(P) (A7) We have chosen to present most of our results in the last

_ section as explicit series in kink number rather than writing
where [ denotes a contour integral along the Laplace conthem in the summed forfEgs. (48) and (67)]. The purpose
tour. The Faltung theorem states that Laplace transform of & wwofold. First these expansions allaivto be computed
convolution is the product of the Laplace transforms: efficiently for many small values aof, because th&C™ are

~~ independent of and only the first few must be computed

L{F® G} =FG, (A8) explil?:itly for sufficient nu):nerical accuracy. Furthermo?e the

for functionsF and G, where the arc length convolution is K™ are simply related to the kink number distribution al-
defined lowing the same computation to suffice for both results. Our
computational discussion will mainly focus on the short con-
tour length limit where these kink number expansions con-
verge quickly. As we have already discussed at length, the

large contour length limit can trivially be computed with the
The generalization of the Faltung theorem is truerfdiunc- ~ WLC results using the renormalized effective persistence

L
F®G(L) = f dL’” F(L")G(L-L"). (A9)
0

tions length, &. This corresponds to th&—0 and p—0 limit
~ ~ where the theories are identical. In fact, in this limit, we can
LF1® ... @ Fp}=Fy...Fp. (A10) use the Gaussian chain to compute dHactor. This compu-
tation appears briefly in Appendix C.
1. Circular convolutions It is at short contour length where the two theories sig-

Qgificantly diverge and kinking is induced. As we have dis-
cussed above, in the limit as the contour length goes to 0, the

end points are identified so that the arc-length position of thé)olymer resembles a rigid rod. It is problematlc_ to dlr_ectly
chain ends is not at an end point of the propagator. In thigo.mput.e t_he inverse transforms Kf or K numerically in
case it is convenient to redefine the arc-length coordinat&hIS limit since
system to be zero at the position of the first kibhk, and sum

over the position of the chain ends as depicted in Fig. 12. K(O;L —0) ocf dk ksinkL, (A14)
The m kink contribution to the partition function is therefore 0

. m which, although it can be computed analytically by expand-
Zm= E[(K ®)™LK](O;L), (All)  ing sine into two exponentials then integrating them on dif-
ferent contours, is problematic numerically. It is therefore
where the factor ol comes from the integration over the convenient to use the expanded definitiorKdfin terms of
end position and varies in the convolution. To simplify this the X™ [Eq. (62)]. In the short contour length limit, an

For the closed chain, we need to evaluate a special type
convolution which is circular. By circular we mean that the

[
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asymptotic expression already exig for J andK(0O;L). K@ is also fairly straightforward. It is convenient to com-
Convolutions of K must still be computed. Numerical pute the convolution explicitly

computations of the inverse transforms of powersoére 1 (- ] 1 1

still problematic in the. — 0 limit since, while they are more K@= ﬁf dLlf dk sz sin kLlF

convergent thaiK, they must be integrated to largewvhere 0 0 1 ( )

it is difficult to compute accurate Laplace transforms. But xsink(L - L) (B6)

this implies it is in precisely this limit that bending is really

irrelevant and that the mechanics of these kinked chains be- 1

comes kink dominated. Once there are two or more kinks, =—,
the chain can now be closed without elastic bending. That is 2ml
to say that, when these terms become difficult to calculatyhere the Fourier transform delta function has been used to
numerically, they can be well approximated by the kinkablegyaluate the integral.

rigid rod. The kinkable rigid rod is treated in Appendix B. As  The computation ofC® requires some care. Again it is

a practical matter there is a small contour length regiine convenient to compute the convolution explicitly

~1), between the rigid rod limit and the contour length at

L L L 0
which numerical transform inversion are rapidly convergent K@ = ij dl—lj szf dLsf dk KR
2772 0 0 0 0
1 1

(B7)

and where it is most convenient to use direct Monte Carlo
integrations to compute thE€™. These direct Monte Carlo

integrations serve as a useful check on our other numerical % — sinkLli sinkLy—
and analytic computations. For large dimensionless kink den- kL, kL, KLg
sities, the kink-number expansion is not rapidly converging XsinkLs(Ly + Ly + Lg—L), (B8S)

and direct numerical inversions of the exactly summed trans-
formed results are required. For most computations ofJthe

L/2 L/2
factor at small kink density, the rigid rod approximation suf- :i dLJ dLZ;
fices to compute the two kink term and the kink number sum 8m°Jy Lo, (L-Li—Lplyly’
can be truncated at this point as illustrated schematically by (B9)
Fig. 11.
a
APPENDIX B: KINKABLE RIGID ROD oL (B10)

In this section we develop the theory of kinkable rigid
rods, the infinite persistence length limit of the KWLC. This La
theory is useful for discussing the short loop limit of the

For convolution numbem>3, we exploit the Fourier-
place transform method

factor. The rigid rod tangent-spatial propagator is 1 (" 1 k\™

g g P propag K(m):ﬁf dk kZJ dp(Etan‘1 —) et (B11)

G(X, T, Ty, L) = S¥[X - LT J162[T, - T,). (B1) 0 c P
The spatial propagatokK, is obtained by averaging and sum- 1 (= 1 m
ming over the two tangenf&q. (41)] :—f dk’k’zf dp ﬁ‘m(—, tar* k’) ePL,
272 ), ’ k
1
K(X,L) = —— X - L]. (B2) (B12)

Aml 2
where we have made the substitutibi=k/p. Now let us

The Fourier and Fourier-Laplace transform spatial propagagompute thék’ integral, which must be done numerically. We

tor are now make the substitution taexk’. The integral ink’ be-
- sinkL comes
Klkb) == — (B3) m [
I = —f dxtar?™x x™1, (B13)
m_3 0
Wk 1 =1 K . . .
K(k,p) = | tan o (B4)  which we computed usinlylathematica

The p integral is now a simple contour integral which
In order to discuss thé factor limit, we will need the con- gives

volutions | L4
om = —m
K™ =[K®]"0,L), (B5) 272 (m-3)!’

which is proportional to the probability density of the end for m> 3. The first few values df are computed numerically
distance being 0 after arc lengthand m-1 kinks. XY is  in Table I.

zero since the rod is rigid and the ends cannot meet unless The kinkable rigid rod theory, derived above, provides a
the chain kinks. very useful analytic check of the KWLC model at short con-

(B14)
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TABLE I. Values for the numerically computed integig| for L1 3 \32
the first fewm. KM = - (C4)
(m-1!\ 4AmeL

Convolution Integral But this expression holds only when the number of kinks is

numberm Im small.
4 2.249 APPENDIX D: SUMMARY OF NOTATION
S 0.841 We imagine a chain of total contour length with L/¢€
6 0.461 elementary segments of lengthindividual segments will be
7 0.300 referred to by their sequence numbet0, ...N, whereN

=(L/€)-1, or by arclengtts=n€. A configurationI’ consists
of a sequence of tangent vectdts, ... iy}

The stiffness parametéWLC persistence lengjh¢, one-
tour length. For short cyclized polymers, the bending beVertex partition functionQ, kink formation energye, and
tween kinks can be ignored since these segments are signifiinking parametey are defined in Secs. Il and Il and Q*
cantly shorter than a persistence length. As we hav&™® related quantities relevant to the KWLC. The kink length

= 1
illustrated above, the computation of the dominant two kink'S kink=¢"" - _ _
contribution is straightforward in this limit. The measuré-“t denotes solid angle on the sphere of unit

vectorsf. Square brackets denote the functional measure
[dt(S)]{i; see Eq(8).
APPENDIX C: GAUSSIAN LIMIT The partition functionsZ(L) and Z(f;, ;L) refer to un-

The G ian limit id ful Ivtic limit to th constrained and constrained functional integrals over a chain
€ Lbaussian limit provides a usetul analytic Iimitio e ¢ \ongth | in the continuum limit. Rotation invariance im-

KWLC theory for long contour length. In this limit, the pjieg that the constrained function depends only on the angle
length of the polymer makes the initial tangent condition g yetween the vectors. so we sometimes write iz48: L).

irrelevant and describes the spatial distribution for chain expjscretized versions of the partition functions are denoted

tensions short compared with the contour length. ~ ith the subscript “discrete,” and KWLC versions with a
For Iargel_, we can work with the Gaussian distribution. star. Related quantities include the free enew;L)
The Gaussian distribution is =-log Z(6;L) [Eq. (28)] and the normalized tangent parti-

oo S tion function (or propagator H(f,;L)=2(&,6;L)/ Z(L).
G L) 1 ( 3 ) p{ 3x } (c1  lLaplace transforms of these functions brare denoted with

" 4\ 4l Ty a tilde.
When it is important to maintain spatial information, we
for persistence length. The J factor is introduce space-dependent functicfi, i, t;; L) [Eq. (40)],

K(X;L) [Eq.(41)], andG'(X,T;L) [Eq. (42)]. Fourier-Laplace

- 3 \%? transforms of these functions oL are again denoted with
J=47G(0;t,t;L) = —4 aL . (C2) a tilde.
i Laplace and Fourier transformations, and the correspond-
ing convolution operationg, are defined in Appendix A.
Repeated convolutions df give the functions™ [Eq.
(62)], and the relateg/™ [Eq. (70)].
)3,2 The partition function in an external force i8; [Eq.

For KWLC, the persistence length is replaced by the effec
tive persistence lengté:

(c3  (54)]; the cyclization partition function i€.(L) [Eq. (65)].
In an expansion in kink numbem labels the number of
kinks andi=1, ... m labels which kink is in question. The
In the Gaussian limit, the convolution functiof&™ can be  kinks are taken to be located @t or at arc length position
computed without difficulty: Li=¢n.

J* =47TG*(0;f,f;L)=<
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