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The importance of nonlinearities in material constitutive relations has long been appreciated in the con-
tinuum mechanics of macroscopic rods. Although the momentstorqued response to bending is almost univer-
sally linear for small deflection angles, many rod systems exhibit a high-curvature softening. The signature
behavior of these rod systems is a kinking transition in which the bending is localized. Recent DNA cyclization
experiments by Cloutier and Widom have offered evidence that the linear-elastic bending theory fails to
describe the high-curvature mechanics of DNA. Motivated by this recent experimental work, we develop a
simple and exact theory of the statistical mechanics of linear-elastic polymer chains that can undergo a kinking
transition. We characterize the kinking behavior with a single parameter and show that the resulting theory
reproduces both the low-curvature linear-elastic behavior which is already well described by the wormlike
chain model, as well as the high-curvature softening observed in recent cyclization experiments.
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I. INTRODUCTION

The behavior of many semiflexible polymers is captured
by the wormlike chain modelf1,2g. This model amounts to
the statistical mechanics of linearly elastic rodsf3g, where
the elastic energy is microscopically a combination of both
energetic and entropic contributionsf4g. The mechanics of
DNA, a polymer of particular biological interest, has been
studied extensively experimentally and theoretically and its
mechanical properties have been very well approximated by
the wormlike chain modelsWLCd f5g and its successors such
as the helical wormlike chain modelf2g. For example, accu-
rate force-extension experiments have shown that DNA is
surprisingly well described by WLCf4–6g, at least until the
effects of DNA stretching become important at tensions of
order 50 pN.

Despite the success of the WLC in describing DNA me-
chanics, recent DNA cyclization experiments by Cloutier and
Widom f7g have shown a dramatic departure from theoretical
predictions for highly curved DNA. These experiments sug-
gest that the effective bending energy of small, cyclized se-
quences of DNA is significantly smaller than predicted by
existing theoretical models based upon linear-elastic consti-
tutive relations, in which the bending energy is quadratic in
curvature. Similar anomalies have been revealed in transcrip-
tional regulation where DNA looping by regulatory proteins

remains active down to 60 basepairsbpd separations between
the binding sitesf8–13g.

From a continuum-mechanics perspective, this failure of
the model at high curvature is hardly surprising; the impor-
tance of material nonlinearities has been appreciated for
many years. In fact, anyone who has ever tried to bend a
drinking straw has observed that the straw will at first dis-
tribute the bending, as predicted by the linear theory, but as
the curvature increases, the straw will eventually kink, local-
izing the bending. This kinking behavior is the signature of
nonlinear constitutive softening at high curvature. Nonlin-
earities are certainly important in microscopic physical sys-
tems, such as polymers, because the effective bending free
energy, a combination of interaction potentials and entropic
effects, is only approximately harmonic. The possibility of
kinking in DNA was realized long ago by Crick and Klug,
who proposed a specific atomistic structure for the kink state
f14g. Many authors have since found kinked states of DNA
in protein-DNA complexesssee for examplef15gd, but less
attention has been given tospontaneouskinking of free DNA
in solution, even though Crick and Klug pointed out this
possibility.

Our goal in this paper is to develop a simple, generic
extension of the WLC model, introducing only one addi-
tional parameter: the average number of kinks per unit length
for the unconstrained chain. The “kinks” are taken to be
freely-bending hinge elements in the chain. This model is an
extension of the well known wormlike chainsWLCd; we
refer to it as the kinkable wormlike chainsKWLCd. Although
our model is not a detailed microscopic picture for DNA, it
does capture the key consequences of any more detailed pic-
ture of kink formation. As such, it serves as a useful coarse-
grained model to describe high-curvature phenomena in
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many stiff biopolymers, not just DNAf16g. Our main results
are summarized in Figs. 5, 6, 10, and 11.

The KWLC is the simplest example of a class of theories
that have been proposed and studied by Storm and Nelson
f17g and more recently by Levinef18g. It is simple enough
that many results are exact or nearly so. The method by
which we obtain our exact results is analogous to the Dyson
expansion for time-dependent quantum perturbation theory.
For the KWLC, the perturbation series can be resummed
exactly.

For small values of our kinking parameter the KWLC
model predicts nearly identical behavior to the WLC—
except when the rod is constrained to be highly curved. Such
constraints induce kinking, even when the kinking parameter
is small. We will show in detail how the energy relief caused
by this alternative bending conformation can account for the
observed anomalously high cyclization rate of short loops of
DNA f7g and anomalously high levels of gene expression
f10,11g. A generalization of KWLC specifically applicable to
DNA will appear elsewheref19g. Yan and Marko, and Volo-
godskii, have independently obtained results related to ours
f20,21g. Also, Sucatoet al. have performed Monte Carlo
simulations of kinkable chains to obtain information about
their structural and thermodynamic propertiesf22g.

The outline of the paper is as follows. In Sec. II, we
introduce the KWLC model in a discrete form. In Sec. III,
we compute the unconstrained partition function for the
theory and show that there is a sensible continuum limit. In
Sec. IV, we give an exact computation of the tangent parti-
tion function of the continuum theory as well the moment-
bend constitutive relation and the kink number for bent poly-
mer chains. We show that kinking causes an exact
renormalization of the tangent persistence length and we
write exact expressions for the average squared end distance
and the radius of gyration. In Sec. V, we exactly compute the
Fourier-Laplace transform of the spatial propagator and dis-
cuss various limits of these results. We also compute the
exact force-extension relation and the structure factor for
KWLC. In Sec. VI, we compute the KWLC correction to the
Jacobson-StockmayerJ factor and the partition function for
cyclized chains. We show that the topological constraint of
cyclization induces kinking and we compute the kink num-
ber distribution explicitly. In Sec. VII, we discuss the limita-
tions of KWLC. In the Appendix, we present a summary of
the Faltung theorem which is required for computations and
develop the small and large contour length limits of the
KWLC J factor.

II. KINKABLE WORMLIKE CHAIN MODEL

Although the wormlike chain model was originally pro-
posed to describe a purely entropic chain without a bending
energyf1g, it is often interpreted as the statistical mechanics
of rods with bending energies quadratic in curvaturef3,23g.
From a mechanical perspective, the success of the WLC
model is not surprising since the small amplitude bending of
rods universally induces a linear moment response. For
WLC, the bending energy for a polymer in configurationG is

EG =E
0

L

ds
j

2
S dtW

ds
D2

, s1d

wheretWssd is the unit tangent at arc lengths, L is the contour
length, andj is the bending modulus. Throughout this paper
we will express energies in units of the room-temperature
thermal energykBT=4.1310−21 J. For WLC it is well
known that the bending modulus and persistence lengthsthe
length scale over which tangent are thermally correlatedd are
equal in these unitsf4g.

It is most intuitive to define our new model in terms of the
discretized definition of WLC. Accordingly, we divide a
chain of arc lengthL into L /, segments of length,. There
are thenN=sL /,d−1 interior vertices, plus two end points
fFig. 1sadg. Next we replace the arc length derivative with the
finite difference over the segment length,, replace the inte-
gral with a sum, and introduce the spring constantk;j /,.
The resulting energy is

EG = o
i=1

N

ks1 − tWi · tWi−1d, s2d

wheretWi is the vector joining verticesi and i +1.
We introduce a similar discretized energy for the kinkable

wormlike chain modelsKWLCd. In addition to the bending
angle, there is now a degree of freedom at each vertex de-
scribing whether the vertex is kinklike or wormlike. To de-
scribe this degree of freedom, we introduce a state variable
si at each vertex. Whensi =1, we say that the vertex is
wormlike and the energy is given by the discrete WLC en-
ergy at that vertex. Whensi =0, the vertex is kink like and
the energy is independent of the bend angle at that vertex,
but there is an energy penaltye to realize the kink state. This
model is depicted schematically in Fig. 1. The energy for the

FIG. 1. sad The discretized KWLC is a chain of wormlike and
kinklike vertices. In this illustrationN=4; thus there are four verti-
ces, of which one is kinklike. When a vertexi is wormlike ssi

=1d, the energy is given by the normal wormlike chain energy; if it
is kinklike ssi =0d, the energy ise, independent ofui. sbd The con-
tinuum version of this theory. Although the number of vertices is
now infinite, the continuum limit maintains a finite average kink
density.
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model we have just described can be concisely written as

EG
* = o

i=1

N

fks1 − tWi · tWi−1dsi + es1 − sidg, s3d

where thep denotes that this is the energy of the KWLC
theory ande is the energetic cost of introducing a kink in the
chain. Note that in general we denote KWLC results or equa-
tions with ap. We will recover the WLC results when we
take the kinking energye to infinity. While Storm and Nel-
son f24g and othersf18,24–28g have considered more gen-
eral theories where the kink energy is not assumed to be
independent of the kink angle, much of the important physics
can already be studied in the simpler KWLC theory. More-
over, this theory has the significant advantage of being ana-
lytically exact to a much greater extent than more general
theories; it applies in the limit where the kinks are only
weakly elastic compared to the elastic rod.

III. PARTITION FUNCTIONS

For a summary of notation used in this article, see Appen-
dix D.

We have defined the KWLC model in terms of a discrete
set of degrees of freedom. In the next section, however, we
shall wish to take advantage of the continuum WLC machin-
ery. To this end, this section formulates the continuum limit
of the KWLC model. Beyond the computational advantage,
there is also an additional reason to go to the continuum
limit. Figure 1 describes the kinking with two parameters, a
density,−1 of kinkable sites and the kink energye. We wish
to describe the kinking in terms of asingleparameter, to be
calledz fsee Eq.s7dg. z essentially sets the average number
of kinks per contour length for a long, unstressed chain. In
the continuum limit of WLC, we take,→0 while holding
the persistence lengthj and chain lengthL constant. To take
the corresponding continuum limit for KWLC, we will also
hold z constant as,→0.

We begin by computing the partition functions for the
WLC and KWLC and demonstrating that there is a con-
tinuum limit of the KWLC. These unconstrained partition
functions are required for later computations. For this case,
the partition function factors into independent contributions
from each interior vertex. In the continuum limitsk→`d, the
partition function for each vertex in the WLC model is

Q ; lim
k→`

E d2tWi expf− ks1 − cosuidg =
2p

k
, s4d

whereui is the polar angle oftWi defined usingtWi−1 as the polar
axis, that is, cosui ; tWi ·tWi−1. The measured2tWi =dscosuiddfi

denotes solid angle on the unit sphere. The total discretized
partition function for the chain ofN+1 segments is then

ZdiscretesLd = 4pQN. s5d

The factor of 4p reflects one overall orientation integral, for
example the integral overtW0.

Similarly, the partition function for a single vertex of the
KWLC theory is

Q * ; lim
k→`

E d2tWi„expf− ks1 − cosuidg + expf− eg…

= Qs1 + 2ke−ed, s6d

which we have written in terms of the corresponding WLC
quantity Q. The total partition function for the chain ofN
+1 segments isZdiscrete

* sLd=4psQ* dN.
In the small segment length limit, Eq.s6d shows that the

probability of a vertex being kink-like is 2ke−e. Therefore the
probability of kinking per unit lengthsfor this unconstrained
situationd is

z ;
2j

,2e−e =
4pk

,
e−e, s7d

where we have eliminated the bending spring constant,k, in
favor of the persistence length,j=k,. In order to recover a
sensible continuum limit, we will hold the parameterz con-
stant as we take the segment length to zero. Note that we
recover the WLC theory when we setz→0. In later sections
we will discuss a formal “zero temperature” limit, in which
simple mechanicssno thermal fluctuationsd describes the
physics. This limit is a useful intuitive tool, not an experi-
mental prediction of the behavior of polymers frozen in so-
lution. The “zero temperature” limit is taken treatingz as
temperature independent, which is equivalent to either the
short rod limit or the large persistence length limit which we
shall use interchangeably.

In the continuum limit, we must remove a divergent con-
stant in the partition functions asN→`. Thus we define the
path integral measure

fdtWssdgtWi
; p

i=1

N
d2tWi

Q
, s8d

whereQ is defined by Eq.s4d. Note that unlike the discrete
case, in this measure the starting tangent vectortW0 is not
integrated, but is instead fixed to some giventWi. The con-
tinuum partition function corresponding toZdiscretesLd is then

ZsLd ; E fdtWssdgtWi
e−E* = 1. s9d

With our choice of integration measure,ZsLd just equals
one, independent ofL.

The continuum KWLC partition function is now

Z * sLd = lim
N→`

S1 +
zL

N
DN

= ezL. s10d

The convergence of the partition function assures us that the
continuum limit is well defined. As a consistency check, we
now compute the average kink number for the unconstrained
chain

kml =
] log Z*

] log z
= zL, s11d

which confirms thatz is indeed density of kinks. The expan-
sion of the partition function in a power series shows that the
kink number distribution is also correct. We will repeat the
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average kink number calculation several times in the course
of this paper for different constraints to show that constrain-
ing the chain will affect the kink number.

IV. TANGENT PARTITION FUNCTION AND
PROPAGATOR

In this section we compute the tangent partition function
and propagator by using a method symbolized in Fig. 2sad.
By tangent partition functionZstWf ,tWi ,Ld we mean the parti-
tion function with the initial and final tangents constrained
fEq. s12d belowg. Dividing the tangent partition function by
the unconstrained partition functionZsLd gives the probabil-
ity density HstWf ,tWi ,Ld for the final tangent vector, given the
initial tangent. We will refer toH as the normalized tangent
partition function, or propagator.

Most of the kink-related physics of the KWLC theory can
be understood qualitatively from the tangent partition func-
tion. Furthermore, the computation of the tangent partition
function is more transparent than the analogous spatial com-
putation in which the end-to-end distance is constrained
along with the initial and final tangents. The tangent partition
function for WLC is defined as

ZstWf,tWi ;Ld ; E fdtWssdgtWi
e−Eds2dftWN − tWfg, s12d

where the path integral is regularized as described abovefEq.
s8dg. Due to the tangent constraint, the partition function no
longer factors into independent vertex contributions. The
lower limit on the integration denotes that the initial tangent
tW0 is held equaltWi; the final tangenttWN, is set totWf by the delta
function. We integratesor sumd over the infinite set of inter-
vening tangents in order to generate the partition function. In
this regularization scheme, the tangent partition function and
tangent propagator are identical

HstWf,tWi ;Ld = ZstWf,tWi ;Ld, s13d

since with our conventions the unconstrained WLC partition
function is one. However, we will see that this convenient
identity does not hold for the KWLC:H* ÞZ*.

While the direct evaluation of the path integral in Eq.s12d
is difficult, it is well known that this calculation is equivalent

to finding the quantum-mechanical propagator for a particle
on the unit spheref29,30g. The tangents correspond to posi-
tion, arc length corresponds to imaginary time, and persis-
tence length corresponds to mass. Thus the tangent partition
function is

ZstWf,tWi ;Ld = ktWfue−HLutWil, s14d

where the Hamiltonian operator is defined as

H ;
pW2

2j
, s15d

wherepW2 is minus the Laplace operator on the unit sphere.
The Hamiltonian is diagonal in the angular momentum rep-
resentation so the tangent partition function for WLC can be
expressed as

ZstWf,tWi ;Ld = o
l=0

`

o
m=−l

l

Yl
mstWfdYl

mstWid * ClsLd. s16d

In this expression, theYl
m’s are the Spherical Harmonics and

the coefficientsCl are

ClsLd = expF−
lsl + 1dL

2j
G . s17d

It can easily be shown that this partition function has the
required normalization by summing over the final tangent to
recoverZsLd=1.

To compute the tangent partition function for KWLC, we
proceed with the path integral in exactly the same fashion,
setting the initial tangent, integrating over an infinite set of
intervening tangents, and summing over the state vectors:

Z * stWf,tWi ;Ld = o
hs1,. . .,sNj

E fdtWssdgtWi
e−E*ds2dftWN − tWfg.

s18d

It is now convenient to collect the terms in contributions
with a fixed numberm of kinks and then express the result in
the continuum limit.

The first step in going from the definition of the discrete
KWLC tangent partition function to the continuum limit is to
reorganize the sum overhsnj as a sum over the number of
kinks m. Each term of this sum is in turn a sum over the
positionsni of the kinks, for i =1, . . . ,m. The only subtlety
here is introducing the correct limits on the sum to avoid
over counting the kink states. The last kink can be chosen at
any arc-length location, but additional kinks must always be
chosen with smaller arc-length values than the following
kink. This method is more convenient than introducing “time
ordering” and a factor of 1/m! to explicitly remove the over-
counting as is commonly done in the Dyson expansion for
time-dependent quantum perturbation theoryf31g.

FIG. 2. sad Diagrammatic representation of the kink expansion
for the tangent partition function. The dashed curve represents the
KWLC theory and the solid curves represent the WLC theory. It is
convenient to collect the terms by kink number as shown.sbd Detail
of the two-kink term, showing the relation to the underlying dis-
crete model.uW i andvW i are the tangent vectors flanking kink number
i.
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The next step is to replace the kink position sums with
integrals over the position of the kinks as

o
ni=i

ni+1−1

→ E
0

Li+1 dLi

,
, i = 1, . . .m, s19d

whereLi ;ni, and we takeLm+1=L. The structure of the arc
length integrals is that of a series of convolutionsf32g, which
we write symbolically aŝ . For example, ifFsLd andGsLd
are two functions, then

sF ^ GdsLd ; E
0

L

dL1FsL − L1dGsL1d. s20d

In the intervals between kinks, the chain is described by the
WLC energy function. We can therefore replace each partial
path integral with a WLC propagator.

For every kink, there is one factor ofQ−1 that has been
introduced by the path integral normalizationfEq. s8dg but is
not absorbed by the definition of the WLC propagatorfEqs.
s18d ands13dg. Them factors of,−1, e−e, andQ−1 can now be
written assz /4pdm fsee Eq.s7dg. Defining Z* = omZm

* , the
terms in the kink-number expansion can thus be written
scompare Fig. 2d

s21d

The 2m angular integrations are over the incomingsuW id and
outgoingsvW id tangents of them kinks.

Equations21d has a very simple interpretation. The prob-
ability of creating a kink betweenL and L+dL is just zdL.
We then sum over all possible configurations being careful to
choose the integration limits so as not to over count the kink
states. At each kink, all orientational information is lost, so
that only tangent independent terms of the propagator con-
tribute sthose with angular quantum numberl =0d.

To compute the contour length convolution of propaga-
tors, it is convenient to work with the contour length Laplace

transformed propagatorsH̃ fEq. sA6dg. We shall denote the
contour length Laplace transformed functions with a tilde
and use the variablep as the arc length Laplace conjugate
variable. Although we could avoid Laplace transforming the
partition function at this juncture, we use this method pres-
ently because it is analogous to our later computation of the
spatial propagator. By the well known Faltung theoremfEq.
sA10dg, the convolution of propagators is just the product of
Laplace transforms. Therefore, in terms of the transformed
WLC propagators, the kink KWLC Laplace transformed par-
tition function is

Z̃m
* stWf,tWi ;pd = zmHH̃stWf,tWi ;pd, m= 0,

C̃0
m+1spd/4p, m. 0.

J s22d

To derive Eq.s22d, note that Eq.s16d gives the WLC tangent
propagator summed over the initial tangent asC0sLd, which
equals 1 from Eq.s17d. The corresponding Laplace transform

is just C̃0spd=1/p.
The m kink contributions to the KWLC transformed tan-

gent partition function can now be summed exactlysi.e.,
Z* = omZm

* d because they form a geometric series, resulting
in

Z̃ * stWf,tWi ;pd = H̃stWf,tWi ;pd +
1

4p

zC̃0
2spd

1 − zC̃0spd
. s23d

The m.0 kink terms clearly contribute no tangent depen-
dence. The inverse Laplace transform can now be computed
without complications, giving the exact KWLC tangent par-
tition function

Z * stWf,tWi ;Ld = HstWf,tWi ;Ld +
ezL − 1

4p
. s24d

Alternatively, we could have derived Eq.s24d by noting
that the KWLC model is mathematically equivalent to a
quantum mechanical system whose Hamiltonian is diagonal
in the angular momentum representation:

H * = − zu0,0l ^ k0,0u + H. s25d

Here ul ,ml is the state with angular momentum quantum
numbersl andm andH is the Hamiltonian operator for the
WLC. The only change to the theory is a “ground state en-
ergy” shift equal to −z.

The KWLC tangent propagator and its Laplace transform
can now be evaluated using Eq.s10d:

H * stWf,tWi ;Ld =
Z * stWf,tWi ;Ld

Z * sLd
= e−zLFHstWf,tWi ;Ld +

ezL − 1

4p
G ,

s26d

H̃ * stWf,tWi ;pd = H̃stWf,tWi ;p + zd +
z

4ppsp + zd
. s27d

Figure 3sad compares the KWLC tangent propagator to the
WLC theory with an illustrative valuez=0.01/j. The two
theories appear indistinguishable, and in fact we will find
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that many, but not all, predictions of the models are essen-
tially the same in this parameter regime.

In principle since the propagator is known exactly, every-
thing in the theory can now be computed. Of course this is an
exaggeration since, even though the tangent propagator for
WLC has long been known, only recently have the exact
expressions for the transformed spatial propagator been de-
rived f33,34g. The free energy of the chains for both theories
have the canonical relation with their respective partition
functions:

Fsu;Ld = − logZstWf,tWi ;Ld, s28d

where we have explicitly written the free energy in terms of
the deflection angle defined by the dot product of the initial
and final tangents: cosu= tWi ·tWf. Up to this point we have writ-
ten the partition function and propagator as explicit functions
of both the initial and the final tangent but the rigid body
rotational invariance of the energy implies that these func-
tions depend only on the deflection angle. To express any
quantity in terms of the deflection angle, we set the initial
tangent to be the unit vector in thez direction and the final
tangent to be the unit vector in the radial direction.u now
assumes its canonical definition in spherical polar coordi-
nates.

Figure 3sbd compares the free energies of WLC and
KWLC. Despite the similarity of propagatorsfFig. 3sadg, the
free energies are quite different. To understand the signifi-
cance of this free energy, we imagine discretizing the chain
at some segment length,. The free energyFsu ;,d gives us
the effective constitutive relation for single-state torsional
springs in this new discretized theory. As depicted is Fig.
3sbd, the potential energy of these springs is initially qua-
dratic in deflection, but saturates due to kink formation.

A. Moment bend relation and kink number

To understand the interplay between chain kinking and
deflection, it is helpful to explicitly compute the relation be-
tween the deflection angle and the restoring moment
storqued, as well as computing the average kink number.
Here we ask the reader to imagine a set of experiments
analogous to force extension but where the moment-bend
constitutive relation is measured. We compute the constitu-
tive relation in the usual way in terms of the deflection angle
u

tsu;Ld ; −
]

]u
Fsu;Ld, s29d

whereFsu ;Ld is the tangent free energy andu is the deflec-
tion angle. In terms of the WLC bending moment, Eq.s24d
shows that the moment for KWLC has a very simple form:

t * su;Ld = tsu;Ld
Zsu;Ld

Z * su;Ld
, s30d

wheret is the WLC moment andZ andZ* are the tangent
partition functions for WLC and KWLC, respectively. The
moment is plotted as a function of deflection in Fig 4. For
short chains, the small deflection moments of the two theo-
ries initially coincide. But as the deflection increases, there is
a transition, corresponding to the onset of kinking, where the
moment is dramatically reduced to nearly zero. In Eq.s30d,
this transition is clear from the ratio of the partition func-
tions. Remember that the KWLC partition function is the
sum of the WLC partition function and them.0 kink parti-
tion functions. Before the onset of kinking, the WLC and
KWLC partition functions are equal since the kinked states
do not contribute significantly to the partition function. For
large deflection, the KWLC partition function is kink domi-
nated and therefore the ratio in Eq.s30d tends to zero. Physi-
cally, once the chain is kink dominated, the moment must be
zero since the kink energy is independent of the kink angle.
At zero temperature, the moment would be zero, but fluctua-
tions in which the chain becomes unkinked cause the mo-
ment to be nonzero. We discuss this effect in more detail
below.

To explicitly see that the reduction in the moment corre-
sponds to kinking, we compute the average kink number as a
function of deflection:

kmlsu;Ld = −
]F*

] log z
=

zL

4pH * su;Ld
, s31d

which is depicted in Fig. 4. Note that when we remove the
tangent constraint, we again find that the average kink num-

FIG. 3. The tangent propagator and the tangent free energy as
functions of the deflection angle for the illustrative valuesL=0.2j
and zj=10−2. The solid curves are KWLC and the dashed curves
are WLC with the same value ofj. In the absence of kinking, the
WLC distribution sHd is essentially zero away from small deflec-
tion. For the small value ofz chosen above, WLC and KWLC are
indistinguishable in the top panel. The presence of kinks adds a
background level to the propagator which is independent ofu, but is
thermally inaccessible—too small to distinguish from zero in the
top panel, but visible in the free energy in the lower panel. The
tangent free energy gives an intuitive picture of the system inter-
preted as as single-state system with an effective bending modulus
which saturates due to kinking. Most thermally driven experiments
measure the polymer distribution as it is pictured in the top panel
and are therefore insensitive to the high-curvature constitutive rela-
tion. But experiments which do probe this regime, short-contour-
length cyclization for example, will be extremely sensitive to the
difference between the theories due to the large free energy differ-
ence at large deflection.
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ber is zL. When the chain is constrained, the enhancement
factor is proportional tosH* d−1. Note that this implies that
the kink number will be reduced when the tangents are con-
strained to be aligned and enhanced when the chain is sig-
nificantly bent. In Fig. 4, the kink-induced reduction in the
moment can be seen to correspond to the rise of the kink
number from zero to one kink.

We will now compare these exact results to the mechani-
cal or “zero temperature” limit. This regime is equivalent to
the large persistence length limit, where we can write the
partition function concisely as

lim
L→0

Z * stWf,tWi ;Ld =
1

4p
F2j

L
expS−

j

2L
u2D + zLG; s32d

the WLC limit is recovered forz=0. In the short length limit,
the moment of the WLC chain is simply linear in deflection:
t=−uj /L. This moment is also plotted in Fig. 4. Even with-
out the complication of kinking, there is already one inter-
esting feature of the exact WLC moment-bend constitutive
relation which needs explanation. For large deflection, the
linear relation already fails in the WLC model. This is a
thermal effect which is best understood by going to the ex-
treme example of deflectionu=p. For any configuration, the
contribution of a chain reflected through the axis defined by
the initial tangent will make the partition function symmetric
about tWf =−tWi. This implies that the bending moments from
these chains cancel. Away fromu=p, the cancellation is no
longer exact. In the mechanical limit, this effect is present
but localized atu=p due to the path degeneracy.

In the mechanical limit, kinking is always induced by
bending and at most one kink is nucleated. In this limit, the

KWLC bend-moment can be rewritten in terms of the kink
number

t * su;Ld = tsu;Lds1 − kmld, s33d

where the kink number is just the Heaviside step function,

kmlsu,Ld = QHfu − u0g, s34d

around a critical deflection angle

u0 ; F2L

j
log

2j

zL2G1/2

. s35d

For deflection less than the critical deflection, the kink num-
ber is zero and the moment is given by the WLC moment. At
the critical deflection angle, there is an abrupt transition to
the kinked state with kink number one and the moment zero.
Precisely at the critical angle the free energy of the kinked
state and the elastically bent state are equal. Note that we
have not discussed dynamics and have assumed that the sys-
tem is in equilibrium, not kinetically trapped.

The behavior of the KWLC theory for short contour
lengths is nearly what one would expect from mechanical
intuition. Bending of the chain on short length scales induces
a moment which is initially linearly dependent on deflection.
When the chain is constrained to a large deflection angle,
kinking is induced and the response of the chain to deflection
is dramatically weakened. In the mechanical limit, once
kinking is induced, the moment is zero but for finite size
rods, the ability of the chain to fluctuate between the kinked
states and unkinked states blurs the dramatic zero-
temperature transition between the kinked and unkinked
bend response.

Our discussion here has focused principally on develop-
ing an intuition for the short chain limit. From an experimen-
tal perspective, it is difficult to measure the moment-bend
relation directly as we have described, especially for short
chains. While single molecule AFM experiments might
probe this relation, most of the information about the
moment-bend constitutive relation comes from indirect mea-
surements of thermally-induced bending. For example, light
scattering, force extension, and cyclization experiments are
all measures of thermally induced bending. As we shall ex-
plain, only cyclization experiments with short contour length
polymers are sensitive to the high curvature regime of the
moment-bend constitutive relation. For the most part, these
thermally driven bending experiments are only sensitive to
the thermally accessible regime of the moment-bend consti-
tutive relation which corresponds to small curvature and
therefore small deflection on short length scales, a regime
that is very well approximated by linear moment-bend con-
stitutive relation. For long chains, the initial linear response
is weaker implying that the kinking transition is less pro-
nounced. In fact we shall see in the next section that for
some of these indirect measurements of the low curvature
regime of the constitutive relation, the effect of the kinking
will be indistinguishable from the linear elastic response.

B. Persistence length

Since many polymer characterization experiments are
most sensitive to the thermally-accessible weak-bending re-

FIG. 4. The bending momentt and average kink numberkml as
functions of the tangent deflection angle for illustrative valuesL
=0.2j and zj=10−2. The solid curves are KWLC and the dashed
curves are WLC with the same bend persistence length. At smallu,
the normalized bending moment exhibits a linear spring dependence
and the chain is unkinked. The limiting linear behavior of the short
rod limit is the dotted curve, labeledT=0 corresponding to the
mechanical limit of WLC. For large deflection, the chain kinks and
the moment drops to zero. This correspondence between kinking
and the moment is clearly illustrated in the short length limit de-
picted above.
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gime, it is clearly of interest to determine whether kinking
changes this low-curvature physics. Intuitively, we have al-
ready argued that, at least for small kink densities, many
properties of the polymer that do not explicitly probe the
highly bent structure will remain essentially unchanged. In
this section, we will derive a number of exact results that
show that the effects of kinking can be described by a renor-
malization of the persistence length of WLC theory for some
bulk features of the polymer distribution, regardless of the
magnitude ofz.

The tangent-tangent correlation must be a decreasing ex-
ponential due to multiplicativityf4,30g and therefore we can
discuss the decay length. The tangent persistence is

ktWD · tW0l = e−sz+j−1dD, s36d

which can be computed by examining the limit of smallD
and applying the tangent propagatorfEq. s26dg. Since this
result is identical to the WLC result except for the decay
constant, we introduce the effective persistence length

j * ; sj−1 + jkink
−1 d−1, s37d

where the kink length is defined asjkink;z−1. The form of
this effective persistence length is not surprising since a
roughly analogous effect is observed adding two linear
springs together or from the combination of static and dy-
namic persistence lengthf35–37g. This tangent persistence
result immediately implies that an analogous exact renormal-
ization occurs for both the mean squared end distance

kR2lKWLC = fkR2lWLCgj→j* = 2Lj * − 2j * s1 − e−L/j*d
s38d

and the radius of gyration

kRg
2lKWLC = fkRg

2lWLCgj→j*

=
Lj*

3
− j*2 +

2j*3

L
−

2j*4

L2 s1 − e−L/j*d, s39d

since these result are simply integrations of the tangent per-
sistencef3g. In experiments sensitive only to the radius of
gyrationsstatic scattering for small wave numberd or the av-
erage square end distancesforce extension in the small force
limit d, the measured persistence length of the KWLC theory
will be the effective persistence length,j*, regardless of the
magnitude ofz. In most systems of physical interest, the kink
length is much larger than the bend persistence length imply-
ing that, even if the bend persistence were independently
measurable, the difference between the effective persistence
length and the bend persistence length would be very small.
In other words, the loss of tangent persistence due to kinking
is negligible compared with the loss due to thermal bending
since kinks are rare on the length scale of a persistence
length.

The tangent persistence corresponds to the first moment
of the tangent propagator. Clearly the renormalization we
have discussed fails for higher order moments. At least in
principle it is therefore possible to determine the bend per-
sistence from higher order moments of the distribution. From
an experimental perspective this corresponds to scattering

experiments at large wave number, force extension for large
force, or cyclization experiments for short contour length. To
predict the effects of kinking in these experiments, we must
compute the spatial propagatorsthe spatial distribution func-
tiond.

V. TANGENT-SPATIAL AND SPATIAL PROPAGATORS

The spatial propagatorKsxW ;Ld is defined as the probabil-
ity density of end displacementxW for a polymer of contour
length L. Similarly, the tangent-spatial propagator
GsxW ; tWf ,tWi ;Ld is defined as the probability density of end dis-
placementxW with final tangenttWf, given an initial tangenttWi,
for a chain of contour lengthL. Although in principle the
theory is solved once the tangent propagator is known, the
moments of the spatial propagator, or spatial distribution
function, are more experimentally accessible than the tangent
propagator. In particular, theJ factor measured in cyclization
experiments, the force-extension characteristics, and the
structure factor measured in scattering experiments are all
more directly computable from the propagatorsG andK. In
this section, we first compute the spatial propagator and then
discuss its application to experimental observables.

Following our computation of the tangent propagator, we
compute the tangent-spatial and spatial partition functions.
Our solution relies on the same Dyson-like expansion of the
partition function in the kink number as was exploited to
compute the tangent partition function. The only added com-
plication is that, in addition to the arc length convolution, we
must also compute convolutions over the 3d spatial positions
of the kinks. By going to the Fourier-Laplace transformed
propagator, the convolutions again become products and the
m kink contributions can be summed exactly. Unfortunately
the exact results of this computation will only be found ana-
lytically up to a Fourier-Laplace transform, in part because
the WLC theory itself is only known analytically in this form
f33,34g.

We begin by writing the tangent-spatial partition function
for the KWLC theory in an form analogous to the tangent
partition function in Eq.s18d:

Z * sxW ;tWf,tWi ;Ld = o
hs1,. . .,sNj

E fdtWssdgtWi
e−E*ds2dftWN − tWfg

3ds3dfxWN+1 − xWg, s40d

where tW0 is the initial tangent vector. The additional spatial
Dirac delta function in the equation sets a spatial constraint
for the end displacement; in this expression,xWN+1;,on=0

N tWn.
We will again collect the terms in this sum by kink number
m. In the intervals between kinks, we again introduce the
WLC propagator, but this time we use the tangent-spatial
propagatorG, defined by an expression analogous to Eq.
s40d, but with E in place ofE*.

Because we have normalized the unconstrained WLC par-
tition function such thatZ;1, the tangent-spatial partition
function and propagator are identical. It is convenient to in-
troduce the WLC spatial propagator
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KsxW ;Ld ;
1

4p
E d2tW1d

2tW2GsxW ;tW1,tW2;Ld, s41d

where we sum over the final tangent and average over the
initial tangent to derive the spatial probability density. We
also introduce the one tangent summed tangent-spatial
propagator

G8sxW,tW;Ld =E d2tW1GsxW ;tW,tW1;Ld, s42d

which will allow us to concisely express intermediate results.
Finally for economy of notation, we write the convolutions
over both the spatial position and arc length symbolically
with ^, generalizing the notation introduced in Sec. IV.

The m.0 kink KWLC tangent-spatial partition function
can be written in terms of the WLC propagators:

Zm
* sxW ;tWf,tWi ;Ld =

zm

4p
„G8stWfd ^ fK ^ gm−1G8stWid…sxW,Ld, m. 0.

s43d

We now introduce the WLC Fourier-Laplace transforms of
the propagatorsG8 andK. We denote the transformed func-
tions with a tilde. The Laplace conjugate of contour lengthL
is p and the Fourier conjugate of the end displacementxW is
the wave numberkW. The Faltung theoremfEqs. sA5d and
sA10dg allows us to replace the spatial-arc length convolu-
tions with the products of the Fourier-Laplace transformed
propagators. Them kink KWLC transformed partition func-
tion is

Z̃m
* skW ;tWf,tWi ;pd

= zmHG̃skW,tWf,tWi ;pd, m= 0,

G̃8skW,tWf ;pdK̃m−1skW ;pdG̃8skW,tWi ;pd/4p, m. 0,
J
s44d

which is analogous to Eq.s22d for the tangent propagator.
As before, the transformedm kink contributions can be

summed exactly in a geometric series. Abbreviating the no-
tation somewhat, the resulting tangent-spatial transformed
partition function becomes

Z̃ * skW ;tWf,tWi ;pd = G̃ +
zG̃8G̃8

4ps1 − zK̃d
. s45d

We can also derive the KWLC transformed spatial partition
function by averaging over the initial tangent and summing
over the final tangent. Applying the definition in Eq.s41d
gives

Z̃ * skW ;pd =
K̃skW ;pd

1 − zK̃skW ;pd
. s46d

To compute the KWLC spatial and tangent-spatial propaga-
tors, we divide the constrained partition functions by the un-
constrained partition functionfEq. s10dg. The transformed
tangent-spatial and spatial propagators are

G̃ * skW,tWf,tWi ;pd = LFF Z̃ * sxW,tWf,tWi ;Ld

Z̃ * sLd
G = Z̃ * skW ;tWf,tWi ;p + zd,

s47d

K̃ * skW ;pd = LFF Z̃ * sxW ;Ld

Z̃ * sLd
G = Z̃ * skW ;p + zd, s48d

where L is the arc-length Laplace transform andF is the
spatial Fourier transform. The transformed WLC spatial
propagator is exactly knownf33,34g

K̃skW ;pd =
1

P0 +
A1kW

2

P1 +
A2kW

2

P2 +
A3kW

2

¯

, s49d

whereAj andPj are defined

Aj ;
j2

4j2 − 1
, Pj ; p +

js j + 1d
2j

. s50d

Because the KWLC transformed spatial partition function

and propagator are functions ofK̃, they are also known ex-
actly. In principle, bothK and K* can be computed by in-
verting the transforms numerically. In order to compute the
KWLC tangent-spatial partition function and propagator, the
WLC tangent-spatial propagator,G, must also be known.

Since G̃ is not known analytically, our solution for the
tangent-spatial partition function and propagator are formal.
From the perspective of computing experimental observ-
ables,K* will suffice for computation of the force-extension
characteristic, the structure factor, and surprisingly, theJ fac-
tor, despite the tangent constraint in its definition.

A. Wave number limits

While we have written the exact transformed propagators
for KWLC, like WLC, these transforms cannot be inverted
analytically. It is therefore useful to examine the exact trans-
formed propagators in several limits which can be computed
analytically. First we consider the long length scalesk→0d
limit. We find that KWLC and WLC are identical apart from
the renormalization of the persistence lengthfsee Eq.s37dg:

lim
k→0

K̃ * = lim
k→0

K̃j→j* = Fp +
1

3

k2

p + sj * d−1 + ¯ G−1

.

s51d

By expanding the exponential in the definition of the Fourier
transform, it can be shown that this result is equivalent to
showing thatR2 is exactly renormalized. In our discussion of
the J factor it will be convenient to consider an even more
restrictive limit. We now add the additional restriction that
the chain is longsp→0d. In this limit we must recover the
Gaussian chainscentral limit theoremd
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lim
k,p→0

K̃ * = lim
k→0

K̃j→j* = Fp +
j * k2

3
+ ¯ G−1

, s52d

which is the transformed Gaussian distribution function for
Kuhn length 2j*. When applicable, the Gaussian distribution
is a power tool due to its simplicity.

The opposite limit is the short length scalesk→`d and
short contour length limitsp→`d. In this limit WLC and
KWLC are identical, both approaching the rigid rod propa-
gator:

lim
p,k→`

K̃ * = lim
p,k→`

K̃ = K̃j→` =
1

k
tan−1 k

p
. s53d

The rigid rod spatial propagator describes a polymer that is
infinitely stiff. In the limit that we analyze very short seg-
ments of the polymer, both the WLC and KWLC models
appear rigid since we have confined our analysis to length
scales on which bending is thermally inaccessible. In this
limit, the propagators take a very simple form which is more
tractable than either WLC or KWLC. The rigid rod propaga-
tor is useful when discussing the limiting behavior of theJ
factor at short contour length and is discussed in more detail
in the Appendix.

B. Partition function in an external field and force-extension
characteristic

In force-extension experiments, a single polymer mol-
ecule is elongated by a bead in an external field. The average
extension of the polymer is measured as a function of exter-
nal field strength. The forces opposing extension are en-
tropic. These entropic forces are caused by the reduction in
the number of available microstates as the polymer extension
is increased. The persistence length defines the length scale
on which the polymer tangents are correlated. For small per-
sistence length, the number of statistically uncorrelated tan-
gents is greater, which increases the size of the entropic con-
tribution to the free energy relative to the external potential.
This deceptively simple physics implies that a chain with a
softer bending modulus acts as a stiffer entropic spring re-
sisting extension.

To compute the force-extension relation, we must com-
pute the partition function in an external fieldf which can be
concisely written in terms of the spatial partition function

Z fWsLd =E d3x efW·xWZsxW ;Ld = Z̃si fW ;Ld, s54d

which is a particularly convenient expression since it is the
Fourier-transformed partition function with the wave number

kW analytically continued toi fW. Note that this is the inverse
Laplace transform of Eq.s45d. The average extension is

kxsfdl =
]

]f
log Z fW, s55d

which may be computed by taking the inverse Laplace trans-
form numerically. sSee Appendix A 2 for the numerical
method.d The results are plotted in Fig. 5. In this figure, the
KWLC theory interpolates between two WLC limits at high

and low extension. The low-force limit is clearly related to
low wave number limitfEq. s51dg via an analytic continua-
tion of the wave number. Therefore KWLC with effective
persistence lengthj* and WLC with persistence lengthj*
correspond in the low-extension limit as can be seen in Fig.
5.

At high force, Fig. 5 shows that kinking becomes irrel-
evant and the extension of KWLC and WLC both with bend
persistencej are identical. In this limit, the chain is confined
to small deflection angles for which the effect of kinking is
negligible, as can be seen in Fig. 3. In essence the kink
modes freeze out and measurement of the extension versus
force measures the bend persistence rather than the effective
persistence length of the KWLC polymer chain.

These two regimes imply that in principle the value ofz
could be determined by the difference between the persis-
tence length measured at small and large extension. In ex-
periment, this is most likely not practical. We have purposely
chosen an unrealistically large value ofz in Fig. 5, to illus-
trate clearly the low- and high-extension limits. In more re-
alistic systems, the difference between the bend and effective
persistence lengths would be small implying that it would be
difficult to detect. Furthermore, at low extension the effects
of polymer-polymer interactions can act to either increase or
decrease the effective low extension persistence length. At
high extension, polymer stretch also acts to increase the ex-
tension at high force most likely obscuring the effects of the
entropy reduction due to the loss of the kink bending modes.
Figure 6 illustrates these remarks.

The force-extension characteristic is therefore unlikely to
detect the high-curvature softening induced by kinking.

C. Structure factor

Another experimental observable used to characterize
polymers is the structure factor, measured by static light scat-

FIG. 5. Force-extension characteristic for KWLC compared to
WLC and rigid rod forL=4j andzj=4. At low extension, the force
extension of KWLCssolid curved approaches WLCsdashed curved
with a persistence length equal to the effective persistence length of
KWLC. At high extension, the kink modes are frozen out and the
KWLC force-extension characteristic approaches WLCsdotted
curved with a persistence length equal to the bend persistence length
of KWLC. Rigid rod sdot dashed curved has been plotted for com-
parison. The extension of rigid rod corresponds to alignment only.
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tering, small-angle x-ray scattering, and neutron scattering
experiments. Measurements of the structure factor can probe
the polymer configuration on a wide range of length scales.
Symbolically the structure factor is

gskWd ;
1

L2E
0

L

dsds8kexpfikW · „XW ssd − XW ss8d…gl, s56d

whereXW ssd is the position of the polymer at arc lengths and
we have included an extra factor of the polymer contour
length in the denominator to make the structure factor di-
mensionlessf33g. At high wave number, the structure factor
is sensitive to short length scale physics, whereas the poly-
mer length and radius of gyration can be measured at low
wave number. The structure factor can be rewritten in terms
of the Laplace-Fourier transformed propagator

gskWd =
2

L2L−1F K̃skW ;pd
p2 G , s57d

where L−1 is the inverse Laplace transform which can be
computed numerically.sSee Appendix A 2 for the numerical
method.d As we mentioned above, the leading-order contri-
butions at small wave vector are the polymer length and the
radius of gyration

Lgskd = Ls1 + 1
3kW2Rg

2 + ¯ d , s58d

where we have temporarily restored the length dimension of
g. At large k, both WLC and KWLC are rodlike or straight
which gives an asymptotic limit for large wave number

gskd → p

Lk
, s59d

since the chain is inflexible at short length scales.
To what extent can scattering experiments differentiate

between WLC and KWLC? We have already argued that
kinking merely leads to a renormalization of the persistence
length for the radius of gyration,Rg, so both theories are
identical at the low and high wave number limits. For the
rest of the interval, the theories do predict subtly different
structure factors, but for small values ofz, the theories are
nearly indistinguishable. Again, we have chosen to illustrate
the structure factor for an unrealistically large value ofz, to
exaggerate its effect. Like force-extension measurements,

scattering experiments are not sensitive to the high curvature
physics since the signal is dominated by the thermally acces-
sible bending regime which is essentially identical to WLC.
sSee Fig. 7.d

VI. CYCLIZED CHAINS AND THE J FACTOR

Although the theoretical study of the moment-bend con-
stitutive relation is straightforward, it is problematic experi-
mentally to apply a moment and measure the deflection di-
rectly on microscopic length scales. It is typically more
convenient to let thermal fluctuations drive the bending, but
as we have discussed above, experiments which measure
thermally driven bending are typically not sensitive to the
rare kinking events. In contrast, cyclization experiments, al-
though thermally driven, are sensitive to bending at any
length scale. These experiments measure the relative concen-
trations of cyclized monomers to noncyclized dimers. By

FIG. 6. Left: Semilog plot of the best fit of the WLC modelsz=0d to experimental data on the force-extension relation of a single
molecule of lambda DNA. Right: Best fit of the KWLC model to the same data, takingzj=0.05. The fits are equally good, even though this
value ofz is larger than the one that we will argue fits cyclization data. Thus, force-extension measurements can only set a weak upper bound
on the value ofz. sData kindly supplied by Vincent Croquette; seef4g.d

FIG. 7. The structure factor and the role of effective persistence
length. The solid curve is the structure factor for KWLC with con-
tour lengthL=4j, and kink parameterz=4/j. For comparison, we
have plotted the structure factor for WLC of the same contour
length for identical bend persistence lengthssdashedd and identical
effective persistence lengthsdottedd. At short length scalesslarge
wave numberd the KWLC structure factor approaches that for WLC
with an identical bend persistence length. At long length scales
ssmall wave numberd, the KWLC structure factor approaches that
for WLC with a persistence length equal to its effective persistence
length j*. We have also plotted the structure factor for rigid rod
sdot dashed curved for comparison.
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choosing the contour length of the monomers, any bending
scale may be studied provided the concentration of cyclized
molecules is detectable. Furthermore, these experiments are
typically bulk rather than single molecule. In fact the data
motivating this work comes from recent DNA cyclization
measurements of Cloutier and Widomf7g who have shown
that the cyclization probability is 103 to 104 times larger than
that predicted by WLC for DNA sequences with a contour
length L<0.6j, while confirming that larger sequencessL
.jd do cyclize at the rate theoretically predicted by the
WLC.1

In cyclization measurements, the configurational free en-
ergy is isolated in theJ factor which is ratio of the cycliza-
tion equilibrium constant to the dimerization equilibrium
constantf38g. This ratio eliminates the dependence on the
end-end interaction free energy. For nontwist storing poly-
mers, theJ factor is proportional to the tangent-spatial propa-
gator f38g

J = 4pGs0;tW,tW;Ld, s60d

which is the concentration of one end of the polymer chain at
the othersxW =0d with the correct tangent alignment. The fac-
tor of 4p is due to the isotropic angular distribution of mono-
mer in free solution. Our analysis will neglect additional
complications relevant to the study of real DNA. First, in
DNA the twist must also be aligned, which requires the use
of a variant of WLC, helical wormlike chainf3g. This addi-
tional constraint modulates theJ factor with a 10.5 bp period
equal to the helical repeat. Our interest here is in the value of
the J factor averaged over a helical repeat for which the
effects of twist can be roughly ignoredf3g. A second com-
plication in real DNA is sequence dependent prebending
f39,40g. Prebending effects alone cannot explain the high
cyclization rates observed for short DNAf37,43g; in this pa-
per we focus instead on kink formation.

Although cyclization experiments are fairly straightfor-
ward, extracting mechanical information from the results
poses a difficult theoretical problem due to the combination
of tangent and spatial constraints. In fact, there is no exact
analytic expression for theJ factor in the WLC theory; the
following sections and Appendices will develop the numeri-
cal methods we need.

A. The looping J factor

Due to these computational complications, we shall ini-
tially dispense with the tangent alignment condition and
compute a modifiedJ factor that is relevant for processes
that do not fix the tangents of the chain. For example some
protein-DNA complexes exhibit a behavior that is believed

to be better represented by loopingsfree end tangentsd than
cyclization send tangents alignedd f13g. We define the loop-
ing J factor as the ratio of the looping to the dimerization
equilibrium constants. The KWLC loopingJ factor, JL

* , can
be written in terms of the spatial propagator as

JL
* = K * s0;Ld, s61d

which can be interpreted as the concentration of one end at
the other. We have again neglected the effect of twist. In this
case the explicit 4p in Eq. s60d is not needed, as the defini-
tion of K already includes an integral over angles. Both from
the standpoint of developing intuition and computational
convenience it is useful to explicitly expandK* in the kink
number. We introduce the WLC closed spatial propagator
convolutions which we denote

Ksmd ; fK ^ gms0;Ld, s62d

where again thê represents both spatial and arc length
convolutions. The computation of theKsmd is discussed in
Appendix A 1. In terms of theKsmd, the free tangentJ factor
is

JL
* = e−zLo

m=0

`

zmKsm+1d, s63d

where we have defined theKsmd to be independent of the
kinking parameterz. The kink number sum is illustrated with
a diagrammatic expansion in Fig. 8. The probability of them
kink state can be concisely written in terms of theKsmd

Pm = e−zLzm
Ksm+1d

JL
* . s64d

This expression can be interpreted as the kink number distri-
bution for a looped chain, a constraint that induces kinking in
a manner roughly analogous to the tangent constraints al-
ready discussed in detail. The loopingJ factor is plotted in
Fig. 9. In this figure, we can see that the intuition we devel-
oped computing the moment-bend constitutive relation is
borne out in the loopingJ factor, despite the fact that the
process is thermally driven. In the short-length limit, the
ability of the chain to kink dramatically reduces the bending
energy and increases the loopingJ factor. In the short-length
limit, a single kink is nucleated in a manner almost exactly
analogous to the process we have described in detail for the
moment-bend constitutive relation. We will discuss these re-
sults and their scaling in more detail after computing the
KWLC J factor.

1Cloutier and Widom’s discussion assumed that the ligase enzyme
used in their experiments acts in the same way when ligating a
single DNA or joining two segments. Although this assumption is
standard in the field, it may be criticized when the length of the
DNA loop becomes not much bigger than the ligase enzyme itself.
We believe that effects of this type cannot account for the immense
discrepancy between the measuredJ factor and that predicted by the
WLC theory.

FIG. 8. The diagrammatic representation of the kink number
expansion for cyclized polymers. The dashed curve represents the
KWLC theory which is the sum of them kink contributions. In the
interval between the kinks, the polymer is described by WLC, rep-
resented by the solid curves. For eachm kink contribution, we sum
over the kink position. In order to meet the tangent alignment con-
ditions for cyclized polymers, we close the chain at a kink for kink
number one or greater.
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B. The cyclization J factor

Although the computation of the free tangentJ factor is
more direct and intuitive, theJ factor with tangent alignment
is of more phenomenological interest. The computation be-
gins with the tangent-spatial partition function defined in Eq.
s45d for end distance zero and aligned tangents. Since the
transformed WLC tangent-spatial propagator is unknown, it
would initially appear to preclude exploiting the exact results
derived above. But intuitively we know the chain may be
closed at any point resulting in an identicalJ factor. For
kinked chains, it is convenient to close the chain at a kink
where the tangent alignment condition is no longer required.
The only chains for which this simplification cannot be ap-
plied are the unkinked chains for which theJ factor is al-
ready knownf2g. To show this explicitly, we write the trans-
form of Eq. s45d in its expanded form and specialize totW
= tW0 to obtain the cyclization partition function:

ZC
* sLd = Gs0;tW,tW;Ld + o

m=0

`

„zG8stW d ^ szK ^ dmG8stW d…s0;Ld.

s65d

We can now use the composition property of the propagators
to replace the initial and final tangent-spatial propagators
with a single spatial propagator. Some care is now required
in performing the convolution, as described in Appendix A 1.
The cyclization partition function then becomesfEq. sA13dg

ZC
* sLd = Gs0;tW,tW;Ld +

1

4p
o
=1

`
zmL

m
Ksmd, s66d

where we have expressed the result in terms of the zero end
distance spatial propagator convolutions,Ksmd. The kink
number sum is illustrated with a diagrammatic expansion in
Fig. 8. This equation has an analogous form to the loopingJ

factor in Eq. s63d. The only complication here is that for
kinked chains, the state counting has subtly changed since
we close the chain at a kink. For inverse transform numerical
computations, it is convenient to write a transformed parti-
tion function

Z̃C
* sk;pd = G̃ +

1

4p

]

]p
logf1 − zK̃g, s67d

although the expression is understood to only have physical
meaning when the chain is closedsxW =0d. Our derivation of
the cyclized partition function implies that the KWLC
tangent-spatial propagator is known for one special case

G * s0;tW,tW;Ld = e−zLZC
* sLd, s68d

which is precisely the expression we need to compute theJ
factor. In terms of the KWLC tangent-spatial propagator, the
KWLC J factor is

J * = 4pG * s0;tW,tW;Ld = e−zLo
m=0

`

zmJsmd, s69d

where we have explicitly expanded theJ factor in kink num-
ber. TheJsmd are defined by

Jsmd ; HJ, m= 0,

Lm−1Ksmd, m. 0.
h s70d

Figure 10 compares experimental data to our theoretical
calculation ofJ*. Details of the calculation are discussed in
Appendix A 3. Note that setting the kink density toz
<10−2/j=0.2/mm roughly reproduces the experimental cy-
clization data. Equations7d connectsz to the density of ver-
tices, and the free energy coste of creating a kink. Assum-
ing that the site density is just the DNA base pair length,
=0.34 nm, we can estimate the kink energy,

e = lnF 2j

,2z
G < 15 kBT < 9 kcal/mol. s71d

Although we do not discuss detailed microscopic models in
this paper, it is interesting to note that molecular modeling
studies have found that in B-form DNA, base pairs indeed
open individually and noncooperatively with an activation
energy similar in magnitude to the estimate in Eq.s71d f44g.

C. Topologically induced kinking

It is useful to discuss kink number in chains that are to-
pologically confined to be cyclized. These chains have both
the kink inducing tangent and spatial constraint.

We can write the kink number distribution concisely in
terms of theJ factor

Pm = e−zLzm
J smd

J*
, s72d

which is analogous to Eq.s64d and depicted in Fig. 11.
The effects of kinking on theJ factor are dramatic even

when the kinking parameterz is small. Figure 10 shows that
the WLC J factor precipitously decreases with loop contour

FIG. 9. The KWLC loopingJ factor,JL
* , as a function of contour

length plotted for various values of the kinking parameterz. The
numbers labeling the curves indicate the value of the dimensionless
quantityjz. WLC is the curve labeled 0. For large contour lengthL,
the effect of kinking can be accounted for by computingJL for the
effective persistence length,j*. But as the contour length shrinks to
a persistence length, the effect of kinking becomes dominant, even
for smallz. At short contour length the loopingJ factor is one kink
dominated and diverges in contrast to the WLC loopingJ factor
which approaches zero precipitously for short contour length.
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length due to the increasing elastic energy required to close
the loop:

J , e−2p2j/L. s73d

In dramatic contrast, the KWLCJ factor, while tracking the
WLC J factor at large contour length, turns over at small
contour length and increases divergently. Physically, this
small contour length divergence can be understood as an
increase in the ratio of available cyclized to noncyclized
states which is roughly inversely proportional to the physical
volume explored by the chain when one end is fixed. This
divergent increase in the density of states can also be seen
for the Gaussian chain in the short length limit, although this
limit is not physical for polymer systems. For the Gaussian
chain, theJ factor is monotonically decreasing with contour
length since the only obstruction to the ends finding each
other is entropic, and the number of available noncyclized
states scales likeL3/2 fEq. sC2dg. For KWLC, once the chain
is kinked twice, it is advantageous to shorten the chain
which, while decreasing the degeneracy of the first kink lo-
cation,~L fEq. s70dg, increases the density of cyclized states,
~L−2 fEq. sB7dg. Therefore, there is a netL−1 scaling of the
two kink termJs2d fEq. s70dg. In this limit, the contributions
from chains with kink numbers greater than two scale like
Lm−3 fEqs.s70d andsB14dg, implying that at short lengths the
two kink term dominates. In addition, in most physically

interesting scenarios the kinking parameterz is small. The
probability of m kink number state scales roughly like the
average kink number for the unconstrained chain to themth
power sLzdm fEq. s69dg, which further decreases the impor-
tance of higher kink number states. The dramatic transition
from the zero kink to the two kink state at short contour
length is evident in Fig. 11. Interestingly, recent molecular-
dynamics simulations on a 94 bp DNA minicircle indicate
the presence of two sharply kinked regionsf45g.

Physically, we can understand the onset of this transition
by roughly comparing the free energies of the two kink term
and the zero kink term to find the length at which these two
are roughly equal. Here we merely wish to motivate our
results as clearly and simply as possible so we shall ignore
the difference in the density of states, even though its effect
is quantitatively important. We therefore treat the free energy
of the zero kink term as the bending energy only and the free
energy of the two kink term as twice the kink energy in the
discrete modelfEq. s7dg

2e ,
2p2j

Lcrit
. s74d

When the bending energy equals the energy required to
nucleate two kinks, the transition occurs. It is important to
remember that thez dependence is relatively weak while the
bending energy scales like the inverse of the contour length.
Below L,j, the bending energy grows divergently implying
that even for very small kink densities, kinking always be-
comes important at short enough contour length. That is to
say, we are almost assured of observing elastic breakdown
effects below contour lengths of roughly a persistence
length.

Previously we had shown that for moment-bending, only
a single kink was nucleated, in contrast to the current ex-

FIG. 11. The kink-number distribution compared for cyclized
chainsssolid curvesd and unconstrained chainssdotted curvesd as a
function of contour lengthL. To illustrate constraint-driven kinking,
we have chosen the illustrative valuezj=10−2. At large contour
lengthL, the cyclization constraint is irrelevant but as the arc length
shrinks to roughly a persistence length, the bending energy required
to cyclize the chain becomes significant and there is a dramatic
transition to the two kink state which dominates at short contour
length. The contributions of one andm.2 kink states are
secondary.

FIG. 10. sColord The KWLC cyclizationJ factor as a function
of contour lengthL for various values of the kink parameterz. As
discussed in the text, our theory does not include the twist induced
10.5 bp modulation of theJ factor. The numbers labeling the curves
indicate the value of the dimensionless parameterjz. The WLC
theory corresponds toz=0. For large contour lengthL, the effect of
kinking can be accounted for by computing theJ factor using the
effective persistence length,jz. As the contour lengthL falls below
a persistence length, kinking dramatically increases theJ factor,
even for smallz. For smallL, the chain is two kink dominated and
diverges, in contrast to the WLC theory which precipitously falls to
zero at smallL. Experimental cyclization data for DNA are plotted
for comparison, assumingj=50 nm. sData sources: CWf7g, SB
f41g, SLB f42g, and VV f43g.d At contour lengthL=0.6j, the ex-
perimentally measuredJ factor is<104 times larger than predicted
by the WLC theoretical curve. The KWLC withzj=10−2 correctly
captures this behavior, while matching the WLC theory at large
contour length.
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ample where the one kink contribution to theJ factor,Js1d, is
of little scaling importance since the chain must still bend as
illustrated schematically in Fig. 8. This will not be the case
for the KWLC loopingJ factor, JL

* , which lacks the tangent
constraint implying that only one kink is required to relieve
all the elastic bending. The one kink term ofJL

* therefore
diverges likeL−2 fEq. sB7dg as explained above.JL

* is plotted
in Fig. 9.

VII. DISCUSSION

Our main results are summarized in Figs. 5, 6, 10, and 11.
We formulated a generalization of the WLC model, in which
a semiflexible polymer can develop flexible sites of an alter-
native conformation. We found that taking the density of
kinks in the unstressed polymer to be about 0.01 per persis-
tence length has negligible effect on the force-extension re-
lation, but vastly enhances the probability of cyclization for
chains shorter than a persistence length, as seen in recent
experiments on DNAf7g. Several results similar to ours were
independently obtained Yan and Markof21g.

Various microscopic mechanisms could furnish the kink-
ing mechanism in DNA, for example single-basepair flipout
or strand separation. But any complete, microscopic analysis
of high-curvature DNA conformations would also have to
include a variety of effects, for example those arising from
the significant thickness of the DNA molecule on the few-
nanometer scale of a short circle, strong polyelectrolyte ef-
fects, and so on. We have taken the attitude that any net
nonlinear softening at high curvature will lead to generic
new phenomena. By summarizing all such effects into a
single phenomenological parameter, our model focuses atten-
tion on the general mesoscale physics of kinking. The
KWLC’s generality also makes it a useful starting point for
studying the conformations of other stiff biopolymers, such
as actin.

Other diagnostics of low-curvature physics, for example
light scattering, also turned out to be almost indistinguish-
able from the linearly elastic wormlike chain model. It is
only by conducting experiments that are explicitly sensitive
to high curvature, that we can measure the nonlinear re-
sponse to bending. DNA cyclization offers one experimen-
tally tractable measurement sensitive to the high-curvature
physics of free DNA in solution; we gave predictions for
other, future tests, for example the moment-bend relation and
the kink number as a function of constraints. Our kinking
hypothesis has direct structural implications for very small
DNA loops, and for processes involving such loops, for ex-
ample, the looping implicated in some gene-regulatory
mechanismsf8–13g. Recent simulations indeed suggest that
spontaneous kinking may play a role in such situationsf45g.

Some mathematical aspects of the model, for example the
divergence of the theoreticalJ factor at small contour length
sFig. 10d, are artifacts of the simplified picture we have pro-
posed. The small contour length divergence is due to the two
kink term, which can close a loop without elastic bending
regardless of the contour length, via the creation of 180°
kinks. Clearly due to the finite thickness of the chain, this
divergence is unphysical. We can consider a number of

modifications to the theory to fix this problem: kink angle
cutoffs, kinks that are not perfectly flexible, etc. But all these
proposals require adding additional parameters to the model,
rendering it both less tractable and less predictive, since the
additional parameter must then be fit to experimental data.

The KWLC is in essence a coarse-grained, effective
theory for systems where kinking occurs and the kinks are
localized compared with the chain persistence length. Its vir-
tue is that it offers a simple way to characterize stiff biopoly-
mers, and a quantitative guide to the mesoscale effects of
kinking. Thanks to this simplicity, we were able to compute
many results in this paper exactly, without extensive numeri-
cal simulation. We discuss the specific application of KWLC
to DNA at length elsewheref19g.
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APPENDIX A: FOURIER AND LAPLACE TRANSFORMS
AND CONVOLUTION THEOREMS

The relations listed below are well knownf32g but essen-
tial to our derivations. We define the 3D spatial Fourier trans-
form and inverse transform

F̃skWd ; FhFsxW dj =E d3xFsxW de−ikW·xW , sA1d

FsxWd = F−1hF̃skW dj = S 1

2p
D3E d3kF̃skW deikW·xW . sA2d

The Faltung theorem states that Fourier transform of a con-
volution is the product of the Fourier transforms

FhF ^ Gj = F̃G̃, sA3d

for functionsF and G where the spatial convolution is de-
fined

F ^ GsxW d ; E d3x8FsxW dGsxW − xW8d. sA4d

The generalization of the Faltung theorem is true forn
functions
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FhF1 ^ . . . ^ Fmj = F̃1 . . . F̃m. sA5d

We define the 1D contour length Laplace transform and
inverse transform

F̃spd ; LhFsLdj =E
0

`

dL FsLde−pL, sA6d

FsLd = L−1hF̃spdj =
1

2pi
E

L
dpF̃spdepL, sA7d

whereeL denotes a contour integral along the Laplace con-
tour. The Faltung theorem states that Laplace transform of a
convolution is the product of the Laplace transforms:

LhF ^ Gj = F̃G̃, sA8d

for functionsF and G, where the arc length convolution is
defined

F ^ GsLd ; E
0

L

dL8 FsL8dGsL − L8d. sA9d

The generalization of the Faltung theorem is true form func-
tions

LhF1 ^ . . . ^ Fmj = F̃1 . . . F̃m. sA10d

1. Circular convolutions

For the closed chain, we need to evaluate a special type of
convolution which is circular. By circular we mean that the
end points are identified so that the arc-length position of the
chain ends is not at an end point of the propagator. In this
case it is convenient to redefine the arc-length coordinate
system to be zero at the position of the first kink,L1, and sum
over the position of the chain ends as depicted in Fig. 12.
Them kink contribution to the partition function is therefore

Zm
* =

zm

4p
fsK ^ dm−1LKgs0;Ld, sA11d

where the factor ofL comes from the integration over the
end position and varies in the convolution. To simplify this

result it is convenient to go to the transformed partition func-
tion

Z̃m
* = −

zm

4p
K̃m−1 ]

]p
K̃ = −

zm

4pm

]

]p
K̃m, sA12d

where theL has been transformed into ap derivative. We
now return from Fourier-Laplace space, giving

Zm
* =

zmL

4pm
fK ^ gms0;Ld, sA13d

which is written in terms of convolutions of the spatial
propagator only.

2. Numerical inverse transforms

To compute the numerical inversions of the Fourier and
Laplace transforms involving the spatial propagator, we first
truncate the continued fractionf33g in Eq. s49d, then we
compute the numerical inversion with the built-in Math-
ematica functionsInverseLaplaceTransformandInverseFou-
rierTransform. In particular, the structure factor and partition
function in an external field involve only a single numerical
inverse Laplace transform.

3. J factor computation

We have chosen to present most of our results in the last
section as explicit series in kink number rather than writing
them in the summed formfEqs.s48d ands67dg. The purpose
is twofold. First these expansions allowJ to be computed
efficiently for many small values ofz, because theKsmd are
independent ofz and only the first few must be computed
explicitly for sufficient numerical accuracy. Furthermore the
Ksmd are simply related to the kink number distribution al-
lowing the same computation to suffice for both results. Our
computational discussion will mainly focus on the short con-
tour length limit where these kink number expansions con-
verge quickly. As we have already discussed at length, the
large contour length limit can trivially be computed with the
WLC results using the renormalized effective persistence
length, j*. This corresponds to thek→0 and p→0 limit
where the theories are identical. In fact, in this limit, we can
use the Gaussian chain to compute theJ factor. This compu-
tation appears briefly in Appendix C.

It is at short contour length where the two theories sig-
nificantly diverge and kinking is induced. As we have dis-
cussed above, in the limit as the contour length goes to 0, the
polymer resembles a rigid rod. It is problematic to directly
compute the inverse transforms ofK* or K numerically in
this limit since

Ks0;L → 0d ~ E
0

`

dk ksinkL, sA14d

which, although it can be computed analytically by expand-
ing sine into two exponentials then integrating them on dif-
ferent contours, is problematic numerically. It is therefore
convenient to use the expanded definition ofK* in terms of
the Ksmd fEq. s62dg. In the short contour length limit, an

FIG. 12. A schematic diagram of the coordinate transformation
exploited to compute the circular convolution. The crosses represent
chain ends and dots represent kinks. The center line represents a
periodic coordinate system. For regular convolutions, we set the
chain end to be the zero and we compute the convolution in thes
coordinate system. For the circular convolution, it is more conve-
nient to chooseL1, the first kink arc length position as the zero and
sum over the chain end position as represented by thes8 coordinate
system.
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asymptotic expression already existsf3g for J andKs0;Ld.
Convolutions ofK must still be computed. Numerical

computations of the inverse transforms of powers ofK̃ are
still problematic in theL→0 limit since, while they are more
convergent thanK, they must be integrated to largek where
it is difficult to compute accurate Laplace transforms. But
this implies it is in precisely this limit that bending is really
irrelevant and that the mechanics of these kinked chains be-
comes kink dominated. Once there are two or more kinks,
the chain can now be closed without elastic bending. That is
to say that, when these terms become difficult to calculate
numerically, they can be well approximated by the kinkable
rigid rod. The kinkable rigid rod is treated in Appendix B. As
a practical matter there is a small contour length regimesL
,1d, between the rigid rod limit and the contour length at
which numerical transform inversion are rapidly convergent
and where it is most convenient to use direct Monte Carlo
integrations to compute theKsmd. These direct Monte Carlo
integrations serve as a useful check on our other numerical
and analytic computations. For large dimensionless kink den-
sities, the kink-number expansion is not rapidly converging
and direct numerical inversions of the exactly summed trans-
formed results are required. For most computations of theJ
factor at small kink density, the rigid rod approximation suf-
fices to compute the two kink term and the kink number sum
can be truncated at this point as illustrated schematically by
Fig. 11.

APPENDIX B: KINKABLE RIGID ROD

In this section we develop the theory of kinkable rigid
rods, the infinite persistence length limit of the KWLC. This
theory is useful for discussing the short loop limit of theJ
factor. The rigid rod tangent-spatial propagator is

GsxW,tWL,tW0,Ld = ds3dfxW − LtWLgds2dftWL − tW0g. sB1d

The spatial propagator,K, is obtained by averaging and sum-
ming over the two tangentsfEq. s41dg

KsxW,Ld =
1

4pL2dfuxWu − Lg. sB2d

The Fourier and Fourier-Laplace transform spatial propaga-
tor are

K̃skW,Ld =
sinkL

kL
, sB3d

K̃skW,pd =
1

k
tan−1 k

p
. sB4d

In order to discuss theJ factor limit, we will need the con-
volutions

Ksmd ; fK ^ gms0,Ld, sB5d

which is proportional to the probability density of the end
distance being 0 after arc lengthL and m−1 kinks. Ks1d is
zero since the rod is rigid and the ends cannot meet unless
the chain kinks.

Ks2d is also fairly straightforward. It is convenient to com-
pute the convolution explicitly

Ks2d =
1

2p2E
0

L

dL1E
0

`

dk k2 1

kL1
sinkL1

1

ksL − L1d

3sinksL − L1d sB6d

=
1

2pL2 , sB7d

where the Fourier transform delta function has been used to
evaluate the integral.

The computation ofKs3d requires some care. Again it is
convenient to compute the convolution explicitly

Ks3d =
1

2p2E
0

L

dL1E
0

L

dL2E
0

L

dL3E
0

`

dk k2

3
1

kL1
sinkL1

1

kL2
sinkL2

1

kL3

3sinkL3dsL1 + L2 + L3 − Ld, sB8d

=
1

8p3E
0

L/2

dL1E
L/2−L1

L/2

dL2
1

sL − L1 − L2dL1L2
,

sB9d

=
p

16L
. sB10d

For convolution numberm.3, we exploit the Fourier-
Laplace transform method

Ksmd =
1

2p2E
0

`

dk k2E
L

dpS1

k
tan−1 k

p
Dm

epL sB11d

=
1

2p2E
0

`

dk8k82E
L

dp p3−mS 1

k8
tan−1 k8Dm

epL,

sB12d

where we have made the substitutionk8=k/p. Now let us
compute thek8 integral, which must be done numerically. We
now make the substitution tanx=k8. The integral ink8 be-
comes

Im ;
m

m− 3
E

0

p/2

dx tan3−m x xm−1, sB13d

which we computed usingMathematica.
The p integral is now a simple contour integral which

gives

Ksmd =
Im

2p2

Lm−4

sm− 3d!
, sB14d

for m.3. The first few values ofI are computed numerically
in Table I.

The kinkable rigid rod theory, derived above, provides a
very useful analytic check of the KWLC model at short con-
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tour length. For short cyclized polymers, the bending be-
tween kinks can be ignored since these segments are signifi-
cantly shorter than a persistence length. As we have
illustrated above, the computation of the dominant two kink
contribution is straightforward in this limit.

APPENDIX C: GAUSSIAN LIMIT

The Gaussian limit provides a useful analytic limit to the
KWLC theory for long contour length. In this limit, the
length of the polymer makes the initial tangent condition
irrelevant and describes the spatial distribution for chain ex-
tensions short compared with the contour length.

For largeL, we can work with the Gaussian distribution.
The Gaussian distribution is

GsxW ;tW,tW8;Ld =
1

4p
S 3

4pjL
D3/2

expF−
3xW2

4jL
G sC1d

for persistence lengthj. TheJ factor is

J = 4pGs0;tW,tW;Ld = S 3

4pjL
D3/2

. sC2d

For KWLC, the persistence length is replaced by the effec-
tive persistence lengthj*:

J * = 4pG * s0;tW,tW;Ld = S 3

4pj * L
D3/2

. sC3d

In the Gaussian limit, the convolution functionsKsmd can be
computed without difficulty:

Ksmd =
Lm−1

sm− 1d! S 3

4pjL
D3/2

. sC4d

But this expression holds only when the number of kinks is
small.

APPENDIX D: SUMMARY OF NOTATION

We imagine a chain of total contour lengthL, with L /,
elementary segments of length,. Individual segments will be
referred to by their sequence numbern=0, . . .N, where N
=sL /,d−1, or by arclengths=n,. A configurationG consists
of a sequence of tangent vectorshtW0, . . . ,tWNj.

The stiffness parametersWLC persistence lengthd j, one-
vertex partition functionQ, kink formation energye, and
kinking parameterz are defined in Secs. II and III.j* andQ*
are related quantities relevant to the KWLC. The kink length
is jkink;z−1.

The measured2tW denotes solid angle on the sphere of unit
vectors tW. Square brackets denote the functional measure
fdtWssdgtWi

; see Eq.s8d.
The partition functionsZsLd and ZstWf ,tWi ;Ld refer to un-

constrained and constrained functional integrals over a chain
of lengthL in the continuum limit. Rotation invariance im-
plies that the constrained function depends only on the angle
u between the vectors, so we sometimes write it asZsu ;Ld.
Discretized versions of the partition functions are denoted
with the subscript “discrete,” and KWLC versions with a
star. Related quantities include the free energyFsu ;Ld
=−logZsu ;Ld fEq. s28dg and the normalized tangent parti-
tion function sor propagatord HstWf ,tWi ;Ld=ZstWf ,tWi ;Ld /ZsLd.
Laplace transforms of these functions onL are denoted with
a tilde.

When it is important to maintain spatial information, we
introduce space-dependent functionsZsxW ,tWf ,tWi ;Ld fEq. s40dg,
KsxW ;Ld fEq. s41dg, andG8sxW ,tW;Ld fEq. s42dg. Fourier-Laplace
transforms of these functions onxW, L are again denoted with
a tilde.

Laplace and Fourier transformations, and the correspond-
ing convolution operation̂ , are defined in Appendix A.
Repeated convolutions ofK give the functionsKsmd fEq.
s62dg, and the relatedJsmd fEq. s70dg.

The partition function in an external force isZ fW fEq.
s54dg; the cyclization partition function isZC

* sLd fEq. s65dg.
In an expansion in kink number,m labels the number of

kinks andi =1, . . . ,m labels which kink is in question. The
kinks are taken to be located atni, or at arc length position
Li =,ni.

f1g O. Kratky and G. Porod, Recl. Trav. Chim. Pays-Bas68, 1106
s1949d.

f2g J. Shimada and H. Yamakawa, Macromolecules17, 689
s1984d.

f3g H. Yamakawa,Helical Wormlike Chains in Polymer Solutions
sSpringer, Berlin, 1997d.

f4g P. C. Nelson,Biological Physics: Energy, Information, Life, 1st
ed. sFreeman, New York, 2004d.

f5g C. Bustamante, S. B. Smith, J. Liphardt, and D. Smith, Curr.
Opin. Struct. Biol. 10, 279 s2000d.

f6g C. Bouchiat, M. D. Wang, J. F. Allemand, T. Strick, S. M.
Block, and V. Croquette, Biophys. J.76, 409 s1999d.

f7g T. E. Cloutier and J. Widom, Mol. Cell14, 355 s2004d.
f8g G. R. Bellomy, M. C. Mossing, and M. T. Record, Biochem-

istry 27, 3900s1988d.
f9g K. Rippe, P. R. von Hippel, and J. Langowski, Trends Bio-

TABLE I. Values for the numerically computed integralIm for
the first fewm.

Convolution
numberm

Integral
Im

4 2.249

5 0.841

6 0.461

7 0.300

¯ ¯

WIGGINS, PHILLIPS, AND NELSON PHYSICAL REVIEW E71, 021909s2005d

021909-18



chem. Sci.20, 500 s1995d.
f10g J. Muller, S. Oehler, and B. Muller-Hill, J. Mol. Biol.257, 21

s1996d.
f11g J. Muller, A. Barker, S. Oehler, and B. Muller-Hill, J. Mol.

Biol. 284, 851 s1998d.
f12g K. Rippe, Trends Biochem. Sci.26, 733 s2001d.
f13g Y. Zhang, S. D. Levene, and D. M. Crotherssunpublishedd.
f14g F. H. Crick and A. Klug, NaturesLondond 255, 530 s1975d.
f15g R. Dickerson, Nucleic Acids Res.26, 1906s1998d.
f16g Y. Muroga, Macromolecules21, 2751s1988d.
f17g C. Storm and P. Nelson, Phys. Rev. E67, 051906s2003d; 70,

013902sEd s2004d.
f18g A. J. Levine, e-print cond-mat/0401624.
f19g P. A. Wiggins, R. Phillips, J. Widom, and P. C. Nelsonsunpub-

lishedd.
f20g A. Vologodskii sunpublishedd.
f21g J. Yan and J. F. Marko, Phys. Rev. Lett.93, 108108s2004d.
f22g C. A. Sucato, D. P. Rangel, D. Aspleaf, B. S. Fujimoto, and J.

M. Schurr, Biophys. J.86, 30793096s2004d.
f23g L. D. Landau and E. M. Lifshitz,Theory of Elasticity, 4th ed.

sButterworth-Heinemann, Oxford, 1986d.
f24g C. Storm and P. Nelson, Europhys. Lett.62, 760 s2003d.
f25g J. F. Marko, Phys. Rev. E57, 2134s1998d.
f26g A. Ahsan, J. Rudnick, and R. Bruinsma, Biophys. J.74, 132

s1998d.
f27g P. Cizeau and J. L. Viovy, Biopolymers42, 383 s1997d.
f28g I. Rouzina and V. A. Bloomfield, Biophys. J.80, 882 s2001d.
f29g R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path

Integrals sMcGraw-Hill, New York, 1965d.
f30g A. Y. Grosberg and A. R. Khokhlov,Statistical Physics of

MacromoleculessAIP Press, New York, 1994d.
f31g J. J. Sakurai,Modern Quantum Mechanics, 2nd ed.sAddison-

Wesley, Reading, MA, 1994d.
f32g G. B. Arfken and H. J. Weber,Mathematical Methods for

Physicists, 4th ed.sAcademic, San Diego, 1995d.
f33g A. J. Spakowitz and Z.-G. Wang, Macromolecules37, 5814

s2004d.
f34g S. Stepanow and G. M. Schutz, Europhys. Lett.60, 546

s2002d.
f35g E. N. Trifonov, R. K.-Z. Tan, and S. C. Harvey, inDNA Bend-

ing and Curvature, edited by W. K. Olson, M. H. Sarma, and
M. SundaralingamsAdenine Press, Schenectady, NY, 1987d,
pp. 243–254.

f36g P. Nelson, Phys. Rev. Lett.80, 5810s1998d.
f37g P. A. Wigginssunpublishedd.
f38g H. Jacobson and W. H. Stockmayer, J. Chem. Phys.18, 1600

s1950d.
f39g R. S. Manning, J. H. Maddocks, and J. D. Kahn, J. Chem.

Phys. 105, 5626s1996d.
f40g Y. L. Zhang and D. M. Crothers, Biophys. J.84, 136 s2003d.
f41g D. Shore and R. L. Baldwin, J. Mol. Biol.170, 957 s1983d.
f42g D. Shore, J. Langowski, and R. L. Baldwin, Proc. Natl. Acad.

Sci. U.S.A. 170, 4833s1981d.
f43g M. Vologodskaia and A. Vologodskii, J. Mol. Biol.317, 205

s2002d.
f44g J. Bernet, K. Zakrzewska, and R. Lavery, THEOCHEM398,

473 s1997d.
f45g F. Lankas, R. Lavery, and J. H. Maddockssprivate communi-

cationd.

EXACT THEORY OF KINKABLE ELASTIC POLYMERS PHYSICAL REVIEW E71, 021909s2005d

021909-19


