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Approximate solution to the bidomain equations for defibrillation problems
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The bidomain model can be used for calculating the electrical potential in the heart during defibrillation.
However, this model consists of a coupled system of two partial differential equations that are, in general,
difficult and time consuming to solve. In this paper, we present an approximate, iterative method of solving the
bidomain equations. After working out the general method, we apply it to four prob{@nascylindrical strand
in a uniform electric field(ii) a nonuniform electric field applied to tissue with straight fib€iis) a spherical
heart in a uniform electric field, an@) a two-dimensional sheet of cardiac tissue with curving fibers. Finally,
we analyze the general case of three dimensions.
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I. INTRODUCTION V- @ VV) =BGV, - V), (1)

When the heart goes into ventricular fibrillation, the only
effective treatment is to apply a large electrical shock:
defibrillation. The design of defibrillators would be simpli- V- (@eV Vo) = =BGV = Vo), (2)
fied if we could easily calculate the voltages produced in the
heart during the shock. The best model for performing such avhere@; andg, are the intracellulati) and extracellulate)
calculation is the bidomain modé¢l], which is a two- or  conductivity tensorsg is the ratio of membrane area to tis-
three-dimensional cable model that accounts for the flow obue volume, and,, is the membrane conductivity per unit
current through the intracellular and extracellular spaces Ofrea. The quantiti€§ andg, are tensors because the electri-
cardiac tissue. It is a continuum model, so the macroscopiga| properties of cardiac tissue are anisotropic: they are dif-
electrical properties of the tissue are spatial averages ovegrent in the direction parallel to the fibefngitudinal L)
many cells. In general, cardiac tissue is anisotrégitferent  han in the direction perpendicular to theitnansverseT).
electrical properties in different directionsnd the bidomain  the intracellular conductivity tensor depends on the intrac-
model takes this anisotropy into account. In particular, many, iar conductivity in the longitudinal directiog;, and in

of the interesting results of the bidomain model arise when,, . .nsverse directiogr, and on the fiber angle, which
the intracellular and extracellular spaces have different de- i '

grees of anisotropyunequal anisotropy ratihsResearchers may var.y.throughout the tissue. Similarl_y, the extracellular
often use the bidomain model to study electrical stimuIationconduc['\./Ity depends oge,, ger, and the fiber angle.
The bidomain equationgEgs. (1) and (2)] are coupled,

of the hear{2—7]. However, the bidomain model consists of Kina themn difficul Ve O N e th
a coupled system of two partial differential equations that™aking them difficult to solve. Our goal is to uncouple them.

are, in general, difficult and time consuming to solve. MuchStart with a change of variable
software that has been developed for solving general bound-

ary value problems such as Laplace’s equation cannot be @ 1

used to solve the bidomain equations. Vm=Vi=Ve, ¥=77 a(vi * ;Ve>' (3)
In this paper, we present an approximate, iterative method

for solving the bidomain equations. This method has tWOWith the inverse transformation

useful attributes(i) numerical simulations can be performed

using commercial software designed to solve general bound-

ary value problems, an() often analytical solutions can be V=gt LV V.= - ay 4)

found, even for unequal anisotropy ratios, that provide more : l+a ™ © l+a ™

insight into the physical behavior than do numerical compu-
tations alone. After working out the general method, we ac- h _ : ;

. - - ' erea=gi1/gem, V, the transmembrane potential, asnd
cess its accuracy and utility by applying it to several prob-W réa=gr/Ger, Vm 15 rans P lal, a

lems that have been studied previously, is an auxiliary potential(The definitions ofa and ¢ are

slightly different than used previous|2—4]. ) If we write the

Il. GENERAL PROBLEM bidomain equations in terms of these new potentials and then
The bidomain equations governing the intracellular anoladd Egs(1) and(2), we find
extracellular potentialsy; andV,, in steady-state and assum-

_ ; - 1 ~
ing a passive membrane, are VG+G)V g=- o V. G-ab)VV, (5

* Author to whom correspondence should be addressed. ElectronBimilarly, if we multiply Eq.(2) by « and then subtract the
mail: roth@oakland.edu product from Eq(1), we get
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1 (1+a)? A%
VAG—+a0e) VVin——BGnVn gir—_ =0, (14)
o a on
1+ ~ wheren is the direction perpendicular to the surface, going
T V(G- Vi ®) into the tissue. Now we need to express these boundary con-

) o ) ) _ ~ditions in terms of the variablég,, and . If we use Eq.(4)
when the tissue has “equal anisotropy ratio& /gt

=0/ 9e7)- In this case the conductivity tensors are propor- - a V=V, (15)
tional, §; = ag,, So the right-hand sides of Eq$) and(6) are 1+a ™" '
zero and the bidomain equations uncouple. This suggests an
iterative approach to solving the full bidomain equations: Y aV
i ? q Ger(l+ @) - =gy, (16)
1 an an
V- @+G)V'=———V -@-aG) VVi! (7
@I ge) '»[’n 1+a (gl age) m (7) N, I
—=-(1+a)—. (17)
an Jn
=1 - n_( +a)? n Finally, the outer edge of the bath has boundary conditions.
v (gi a " age> VVm AGmVm For instance,V, may be specified on the boundary, the
1+ boundary may be sealééV,,/ in=0), or we may assume that
-1 %y. @ - ale) V", (8)  far from the heart the electric field is uniform. These bound-
a ary conditions depend on the electrode geometry used during

defibrillation.
where during the nth iteration we solve the bidomain equa- | et ys now summarize our results, at least for the case of
tions forVyy, and " using the previous iteration in the source gqual anisotropy ratiogthe first step of our iteration
terms on the right-hand sides. This iterative scheme starigchemg Equationg9)—(11), with the boundary conditions in
with the solution to the uncoupled bidomain equations forggs, (15-(17) and additional boundary conditions at the

equal anisotropy ratios, outer surface of the bath, goverh V,,, andV,. The equa-
_ b tions for V,, and ¢ are not completely uncoupled, even for
V-(@+0) Vy =0, (9)  equal anisotropy ratios, because of the boundary conditions.

Although Eq.(9) does not contaitV,, the boundary condi-
tion in Eq.(15) does, so we still have not achieved our main
BGV2=0. (100  goal: uncoupled problems fof,, and .
To make further progress, we must make an assumption.
In order to completely describe the bidomain problem, weEduation(10) implies that there are no sources\df within
need to account for the Surrounding bath, of Conductiggy the tiSSUdSOUrceS ariSing from fiber curvature, for example,
and the tissue-bath boundary conditions. We assume that tfigquire unequal anisotropy ratios; we will deal with them

(1+a)?

1
V'(@i_"'a@e)VV%_
a

bath potentiaV, obeys Laplace’s equation, laten. The only source of%, is from the boundary. Intu-
itively, this is no surprise; we expect the tissue to be polar-
V3, =0. (11)  ized at the boundary. Let us assume th@tfalls off expo-
nentially with depth into the tissue,
(A minor generalization would allow us to describe an aniso- Vron: Ae (18)

tropic, inhomogeneous bath, but we will not consider that

case in this studyAt the tissue-bath boundary, the boundary Where A can vary in the plane of the surface,measures
conditions are(i) the extracellular potential is equal to the depth below the surface in the normal direction, and the
bath potential(ii) the normal component of the extracellular length constant in the direction perpendicular to the fibers,
current density is equal to the normal component of the bath _

current density, andii) the normal component of the intra- A= \/&. (19
cellular current density is zer®,9]. In almost all cases of (it + 9e1) BGn

interest, the cardiac fibers at the tissue surface lie parallel tnjs result is exact for the one-dimensional cdgé It

the rest of our analysis. Mathematically, we can write thegjrections parallel to the tissue surface over distances that are

boundary conditions as much larger tham (about 0.2 mm[5]). We can substitute
this expression fol&/ﬁ1 into the boundary conditions in Egs.
Ve=Vy, (12 (15)~17) and simplify. We find two boundary conditions for
JP andV,,
Ne IV ay°
e g0 13 0 NaZE =V,
et TG (13 Y= Na on \ (20)

021908-2



APPROXIMATE SOLUTION TO THE BIDOMAIN... PHYSICAL REVIEW E 71, 021908(2005

=B r cosb, (25)

C
Vp=—Egr cosf+ ?cos 0, (26)

whereB and C are unknown constants to be determined by
the boundary conditions. As before, we asshgfalls ex-
ponentially with depth below the surfaggq. (18) ]

Vi =A cos §e @M, (27
Applying the conditions in Eqg20)—(22) and solving forA,
B, andC gives
FIG. 1. A cylindrical strand of cardiac tissue of radiasper- 2%(1 +a) 2%
fused by a bath. A uniform electric field of strendfy is applied _ Or _ Or
perpendicular to the strand. A= }‘EO gb » B=-FK O \ ’
(1 +— a') 1+ (1 +— a)
oy Py gT a Or a
b
— =0, 21
Or an Yo an (21 %
1- 1 + a
wheregr=gir+get. The third condition gives C=Eza? gr a (29)
A
2 1+ %<1 + —a)
A= )\(l+a’)E. (22 or a

These expressions contain the factdr+\a/a). Our as-
‘sumption thatv,, falls exponentially only applies if the sur-
face appears “flat“ the surface curves little over distances on
the order of a length constant. For this problem, a smooth
surface is equivalent to sayiragp> \. Furthermoreg is typi-

& ally on the order of 0.252]. Thus (1+\a/a) is approxi-
mately equal to 1. Throughout the remainder of this paper,

We have now accomplished our goal of uncoupling the bi-
domain equations. Equatiori8) and (11) are solved fory?
andV,, using the boundary conditions in Eq20) and(21).
Once ¢ is known, V. is specified by Eqs(18) and (22).
Higher order terms can be calculated as needed. To dete
mine the utility of this method, we consider four examples.

Il EXAMPLE 1: CYLINDRICAL STRAND IN A we will assume the surface is flat, which is equivalent to
UNIFORM EIELD taking the boundary condition in EO) to be
Consider a cylindrical strand of cardiac tissue, of radius

in an electric fieldE, perpendicular to the stran@ig. 1).  With this approximationA, B, andC become

The fibers lie along the length of the stratm; we ignore 1
end effects so the potentials are independent, agind the 2%(1 +a) 2%
conductivities in both thex and y directions areg, =g, A=En Ot B=—E Ot
=01, Jex=Yey=0er- Because there are no potential gradients -0 b ' - =0 o0 |’
in the fiber direction, the tissue in this example behaves as if 1+= 1+=
it were isotropic and the zeroth order term in the iteration gr gr
scheme is the full solutiofso, we drop the superscripts for B
this example The main reason we examine this problem is 1 _%
to investigate the implications of assuming an exponential C=E.a2 Or (30)
decay of the transmembrane potential. = Eod o
Equations(9) and(11), written in cylindrical coordinates 1+—
(r,6), simplify to L O
’ This example is useful because an exact analytical solution
(ra_zp) 1‘7_¢= (23) to the full bidomain equations exists. The transmembrane
ror\ o) r2gf potential is
1 a( avb) 1V, |1<L)
— + ST = 0. (24) 1+« A\ 1
ror\ or /) r?o6 Vi = 2aE, (31
a a a T\ (&)
The electric field in the bath far from the strand is uniform Il(i) 1 +—(1 +—)
ah b |1(a/7\)

and in thex direction, so ag becomes larg&/,, reduces to
—-Eyr cos 6. General solutions to Eq$23) and (24) can be  wherel; is the modified Bessel function of the first kind and
written as I1 is its derivative. Figure 2 compares the approxinj&gs.
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FIG. 2. The approximate analyticédolid) and exact numerical y (mm)
(dashegltransmembrane potentials plotted versus radial distance for
a cylindrical sitrand of cardleic tissu@=0.5 mm, a=0.25, A FIG. 4. The approximate analytic&olid) and exact numerical
=0.174 mmgr=0.0931 S/mgy=2 S/m, andE,=100 V/m. (dashed transmembrane potentials plotted versus depth below the

surface of a slab of cardiac tissue=0.25,e=0.75,A=0.174 mm,
(27) and (30)] and exac{Eq. (31)] values forV,, for a 0.5 gr=0.0931 S/mg, =0.3726 S/mV=1V, andk=0.3 mni%. The
-mme-radius stranabout the size of a papillary musgl@he  numerical solution used a space step of 0.0125 mm and a slab
agreement is good, considering how thin the strand is. Onljhickness of 20 mm.
at the strand center do the exact and approximate solutions

deviate significantly. V, =V sin(kx). (33

The solution of Eq(32) for ¢° is
IV. EXAMPLE 2: NONUNIFORM FIELD APPLIED TO

TISSUE WITH STRAIGHT FIBERS P = Be VO/IDKY gin(kx) . (34)

In the previous example, the solution for equal anisotropyAs before, we assume that the transmembrane potential falls
ratios corresponded to the full solution to the bidomain equaexponentially with depth into the tissue,
tions. In most cases, this is not true. Cardiac tissue does not . _
have equal anisotropy rati¢&]. When fibers curvé4,6] or Vim=A sin(kxe . (39
when the applied electric field is not uniforfid], unequal  The boundary condition in Eq29) implies thatB=V, and
anisotropy ratios results in polarization far from the tissuegq, (22) implies thatA=-VAkyg,/gr(1+a).
boundary. If the model is to be useful, we must account for The next step is to look at the first order term for the

these effects by examining additional terms in our iterativeansmembrane potential, which will include the effects of

scheme. _ _ unequal anisotropy ratios. The equation¥[Eq. (8)] writ-
Consider a problem analyzed by Ot&#l: A nonuniform  tan in terms ofa, 9., o, ande=1-(ge,/ge7/ (G /Gi7), iS
potential exists on the surface of a slab of cardiac tissue

having unequal anisotropy ratios. The fibers are straight and %< 1+a- ae) PV N AVE 1o,

in the x direction (Fig. 3). The y direction points into the 1+a- e g2 a2'm
tissue, and the potential is independentzofe first solve gr wTes X y
Eq. (9) for ¢, _ %e( 1+a )&ztﬁo 36
PP PP gr \1+a-e/ o’
92 O ay? =0, (32) Throughout this analysis, we assume that the poterfial

. ) _changes slowly over distances on the order of a length con-
whereg, =gj_ +ge.. Like Otani, we assume that the potential siant. |n that case, the second derivative terms on the left-

on the surfacéy=0) varies sinusoidally hand side of Eq(36) are small, and/%, becomes
V, = Vsin(kx) Vvi=-— sznge(i)e‘\(gt’gﬂkysin(kx). (37)
m
or \1+a-e
Hissue Becausek\ <1, the VX term decays more slowly in depth

than theV°, term. More than several length constants into the
y tissue, theV: term dominates.
Figure 4 compares our approximate analytical solution
FIG. 3. A two-dimensional slab of cardiac tissue with the fibers[Egs. (35 and (37)] with a numerical solution of the full
aligned along thex direction. bidomain equationgEgs.(5) and(6)], for k=0.3 mni?! (cor-

021908-4



APPROXIMATE SOLUTION TO THE BIDOMAIN... PHYSICAL REVIEW E 71, 021908(2005

responding to a wavelength of 21 miiio solve the problem 1 11 9 (

. . : =9 (0 - - 7
numerically, we used a successive overrelaxation scheme. gTr arz(rl//)+gL

. (wo)
sing— | =0, 38
r?sin 096 (38)

. - ) a6

The transmembrane potential has a rapid decay near the tis-

sue surface, and a slower decay deeper in the tissue. TledV, andV, obey Laplace’s equation. Far from the sphere,
agreement between the two solutions is excellent. Inherent iW,=—Eyr cos . General solutions for the potentials are

our calculation is the assumption that all length scales are 0 .,

much longer than the length constant. Thus we expect our y~=(Cr1+Dr") cosd, (39

analysis to be valid only whek\ <1.

V= Br cos 6, (40)
V. EXAMPLE 3: SPHERICAL HEART

Trayanovaet al. [6] studied a spherical heart in order to Vo=—Eyr cosf+ Ezcos 0, (42)
gain insight into defibrillation. The model consists of a shell r
of cardiac tissue surrounding a blood cavity and surroundeghere
by a conducting batlFig. 5). The inner and outer radii of the
shell areb anda, and the conductivity of the blood and bath 1 g 1
areg, andg,. A uniform electric field of strengtl, is ap- V=T ot Zg_T *a (42

plied in thez direction. The fibers are in thedirection, and
azimuthal symmetry implies that the potential is independen€onstantsB, C, D, and F are determined by applying the
of the angles. In spherical coordinates, 6, ¢), Eq.(9) for  boundary conditions/®=V, and g(dy°/dr)=gy(dV,/dr) at
JPis r=b and y°=V, and g(dy°/ or)=gy(dV,/ dr) atr=a,

B=-E, g g a7 g g : (43
(1235 s o) 2500
b o b 9 o
Vl_V2
o5 )
C=Eat™ ) , (44)
O O N C- 1
b o b b o
3(1_9_1—1/1)
D =-Egal™ 5 5 agfl_VZ 5 5 : (45)
SN SARCE TN
( gbl o2 b gb2 o1
v1mr2
0 v L VA e
F=-Ea® 9o Y% b 9o o (46)

Once again)?, falls exponentially with depth below the Figure 6 compares our approximate analytical solution
tissue surface. The effect of unequal anisotropy ratios is inwith a numerical solution of the full bidomain equations. The
cluded invﬁ]. If the potentials vary slowly over distances on transmembrane potential reaches about 80 mV at the tissue
the order of a length constant, then we can ignore the termsurface, and decays within a few length constants of the sur-
containing second derivatives and find face to a relatively constant value between 1 and 2 mV

) within the tissue bulk. Qualitatively, this behavior is consis-
Vi=— Zx—&e<£>(0r”l +Dr*2) cosf. (47) tent with Trayanovat al’s calculation[6], and the quantita-
m r’gr \1+a-e tive differences are caused by the different parameters’ val-
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—
b
blood FIG. 7. The line segments indicate the fiber direction in a two-
dimensional sheet of cardiac tissue, and the arrows indicate the
direction of the applied electric field. A 2020-mm region of tissue
is shown, with the origin at the center.
ues. The agreement between the approximate and numerical
solutions to the bidomain equations is excellent. We would
expect good agreement, since the radius of curvature of the
fibers ranges from 30 to 40 mm, whereas the length constant
is less than 0.2 mm.
FIG. 5. A spherical shell of cardiac tissue surrounding a blood VI. EXAMPLE 4: FIBERS CURVING IN TWO
cavity and surrounded by an unbounded homogeneous bath. A uni- DIMENSIONS

form electric field of strengtli, is applied in thez direction.

Roth and Langrill Beaudoifd] analyzed the mechanism
of tissue polarization caused by fiber curvature. They deter-
mined approximate analytical solutions to the bidomain
equations that specified the distribution of polarization in a
two-dimensional sheet of cardiac tissue with curving fibers.
Their solutions were derived by using a perturbative expan-
sion in powers ofe. We reanalyze this problem using our
iterative method.

B 7 We assume that a two-dimensional sheet of cardiac tissue
80 has the fiber geometry shown in Fig. 7,
2
v, 4wl v,
@v) [ (mV) Ay
of Ho
-40 T
0
-2
-80
| | | 1 | | 1 | |
30 32 34 36 38 40
r (mm)
20 mV
FIG. 6. The approximate analyticédolid) and exact numerical
(dashed transmembrane potentials plotted versus radial distance in
a spherical heart. The endocardium corresponds=80 mm, and
the epicardium ta=40 mm. The upper curves are plotted on the
expanded voltage scaleght). «=0.25,e=0.75,A=0.174 mm,gt
=0.0931 S/m,g, =0.3726 S/m,g,=2 S/m, g,=0.6 S/m, andg, FIG. 8. The transmembrane potential produced for the fiber ge-
=100 V/m. The numerical solution uses a space step obmetry shown in Fig. 7.¢=0.25, e=0.75, A=0.174 mm, gt
0.006 25mm. =0.0931 S/mg, =0.3726 S/mD=20 mm, andAx=Ay=0.2 mm.
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edges of the tissue. The intracellular and extracellular con-
o(x,y) = _C032 > Jeog| & (48)  ductivity tensors both have the forfd]

where# is the angle between the local fiber direction and the - g.COS0+ grSinfd (g, — gr)cos 6 sin 6 49
x axis. This is one of the fiber geometries used by Roth and “\(g_—gpcos@sin g g s+ gcofd (49)
Langrill Beaudoin[4] (see Fig. 6 of their papgrA 10-V

potential difference is applied between the left and rightWe substitute these conductivity tensors into Bj.to get

0 0
0 (cog0— sza)<39f?¢ aﬁ%)
ax ay  ay Ix

(g.cosh+ gT5|r120) + (g, sirf6 + g;coso) 072;!/ +(g. - 97 P ) =0

369 369y°
+(2 sinacosa)(—+—ip———w
aXady Iy dy X X

(50
The first order expression for the transmembrane potential becomes
Py PP J0Y° 900
§0— + S|r120— +(coso- smza)( W, 9699
Vi =23 (1+ae ay? Xy ay IX 50
m g l+a-e FY° 909y°  969y°
+(2sinfcos)| —+ —— - ——

IXAy Yy dy X IX

We solved Eq(50) numerically, and then evaluated the expressionMhr(Fig. 8). Like in Ref.[4], we ignore theVS, term
because we focus on far-field effects. The solution is in good agreement with Roth and Langrill Beaudoin’s numerical solution
to the full bidomain equations. The iterative method in this paper appears to approximate the full solution much better than did
the approximate method based on a perturbation expansiemmma the assumption of a uniform electric field.

VII. FIBERS CURVING IN THREE DIMENSIONS

In three dimensions, we need two angles in order to specify the fiber direction. A standard approach is to use the Euler
angleq10]. The angle of the fibers with theaxis is specified by, and the angle in the-y plane by. (Typically, three Euler
angles are required to specify the orientation of an object. The third angle corresponds to rotations in the plane perpendicular
to the fiber axis. We assume that the conductivity is the same in both directions perpendicular to the fiber—an assumption often
but not always madgl1l] —so the conductivity tensor is independent of the third Euler angfieterms of the Euler angles,
the intracellular conductivity tensor becomes

gir(coS ¢ + sirf¢ coh) + g, sirf¢ sinf (gt — i )Sin ¢ cos ¢ sirfe (gL — gir)sin ¢ cos @ sin 0
Ti= (gt — giL)Sin ¢ cos ¢ sirfe gir(sirf¢ + coS¢ cos o) + g coS¢ sirfd (gir — g )cos ¢ cos d sin 6 |.
(giL — gi7)Sin ¢ cos @ sin 0 (gt — 9iL)COS ¢ cos @ sin girSirf6 + g cos6
(52

A similar expression exists for the extracellular conductivity tensor.
We determine the equation ftsvi1 by plugging Eq.(52) into Eg. (8) and neglecting terms containing second derivatives of
V. The solution is

Vl'ngLla {Vy®-D;V 0+ Vy.D,Vo+ VDV ¢, (53
where
2 sin 6 cos 6 sirt¢ -2 sinfcosfsingcose sin ¢(cogl - sirth)
D,=|-2 sin @ cosé sin ¢ cos ¢ 2 sin § cos 6§ cog ¢ - C0S ¢p(CoSh - sirth) |, (54)
sin ¢(cog 6 - sirfo) - cos ¢(cos - sirth) -2 sinfcosd
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sirfd sifgp  —sirfdsin ¢ cos¢  sin ¢ sin 6 cos 6
D=/ - sinf6 sin ¢ cos ¢ sinfé cos¢ - cos¢ sin 6 cosé |. (56)
sin ¢ sin # cos @ - cos¢ sin 6 cosd cog6

The first two terms are nonzero only if the fiber direction[15,16. Finally, we assume that the fibers are parallel to the
depends on positiofturving fibers. The last term is nonzero tissue surface at the surface. If this is not the case, additional
even for straight fibers if the electric field in the tissue variespboundary effects may resuyit7].
with position. Our results are similar in form to those derived We can summarize our method in Fig. 9, which outlines
by Sobieet al. [12]. the boundary value problem that must be solved §8r
Within the cardiac tissu¥ -(G;+G.) V #°=0, and in the bath
surrounding the tissuE2V,=0. At the tissue-bath boundary
VIII. DISCUSSION =V, and gr(dy°/on)=g,(éV,/d,). This boundary value
problem is exactly that one would expect using a
In this paper, we present an approximate, iterative schemmeonodomain model for cardiac tissue, where the potential is
to solve the bidomain equations. In the problems we havgiven by ¢° and the conductivity by +T.. Many software
examined, this method converges significantly faster than thpackages exist for solving this type of problem, and a key
perturbative technique examined previouB4]. The key feature of our method is that these packages can be applied
element of this method is our assumption that the zerotdirectly to the bidomain problem. Oncg® is known, we
order contribution to the transmembrane potential decays ex;can determine the transmembrane potenualVﬂyAe A
ponentially with depth. This assumption allows us to un-with A is given by A=\(1+a)(d¥’/on), and Vl
couple the bidomain equations, at least in the case of equal\q(1+a)/gra]V (G- aGe) V ¢ .
anisotropy ratios. Another related assumption is that the Higher order terms foy or V,, can be computed using the
length constant is much smaller than all other distances ifterative scheme outlined in Eqg) and(8). However, in our
the problem, such as the distance over whi€lvaries or the  experience only the zeroth and first order terms are required
radius of curvature of the fibers or tissue surface. In situato specify the transmembrane potential accurately. The ze-
tions in which the stimulus is applied diffusely, such as dur-roth order term is often largest, but decays rapidly with depth
ing external defibrillation, the method should be quite accuinto the tissue. The first order term accounts for “far-field”
rate. When the stimulus is applied locally, such as duringeffects, and typically goes to zero in the limit of equal aniso-
stimulation using a small unipolar electrofs, our method  tropy ratios.
will be less useful. Furthermore, the method is not applicable In summary, our iterative method has two advantages over
when the transmembrane potential is caused by small-scae full solution to the bidomain equations. First, numerical
variations of conductivity, such as underlie the “saw-tooth”simulations using this method are faster than solving the bi-
effect [13,14, which may play a role during defibrillation domain equations. Equatiort$) and (2) represent two dif-
ferential equations that need to be solved in the full bidomain
calculation, whereas our problem consists of only solving
one boundary value problem faf°. Therefore we should
experience at least a factor of two speedup. Moreover, com-
mercial software packages that have been extensively opti-
mized to solve boundary value problems are widely avail-
@er +giT)g—w=8 %, able, wherea_ls programs to solve_ th.e.bidomain equations are
generally written as needed by individual researchers. Sec-
ond, our method often results in analytical solutions that pro-
vide insight into the physical problem. Several of our ex-
amples illustrate this point; we could at least solve the zeroth
order (equal anisotropy ratjoproblem analytically, and then
use that solution to determine the first order solution to the
transmembrane potential.

ViV, =0
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