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The bidomain model can be used for calculating the electrical potential in the heart during defibrillation.
However, this model consists of a coupled system of two partial differential equations that are, in general,
difficult and time consuming to solve. In this paper, we present an approximate, iterative method of solving the
bidomain equations. After working out the general method, we apply it to four problems:sid a cylindrical strand
in a uniform electric field,sii d a nonuniform electric field applied to tissue with straight fibers,siii d a spherical
heart in a uniform electric field, andsivd a two-dimensional sheet of cardiac tissue with curving fibers. Finally,
we analyze the general case of three dimensions.
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I. INTRODUCTION

When the heart goes into ventricular fibrillation, the only
effective treatment is to apply a large electrical shock:
defibrillation. The design of defibrillators would be simpli-
fied if we could easily calculate the voltages produced in the
heart during the shock. The best model for performing such a
calculation is the bidomain modelf1g, which is a two- or
three-dimensional cable model that accounts for the flow of
current through the intracellular and extracellular spaces of
cardiac tissue. It is a continuum model, so the macroscopic
electrical properties of the tissue are spatial averages over
many cells. In general, cardiac tissue is anisotropicsdifferent
electrical properties in different directionsd, and the bidomain
model takes this anisotropy into account. In particular, many
of the interesting results of the bidomain model arise when
the intracellular and extracellular spaces have different de-
grees of anisotropysunequal anisotropy ratiosd. Researchers
often use the bidomain model to study electrical stimulation
of the heartf2–7g. However, the bidomain model consists of
a coupled system of two partial differential equations that
are, in general, difficult and time consuming to solve. Much
software that has been developed for solving general bound-
ary value problems such as Laplace’s equation cannot be
used to solve the bidomain equations.

In this paper, we present an approximate, iterative method
for solving the bidomain equations. This method has two
useful attributes:sid numerical simulations can be performed
using commercial software designed to solve general bound-
ary value problems, andsii d often analytical solutions can be
found, even for unequal anisotropy ratios, that provide more
insight into the physical behavior than do numerical compu-
tations alone. After working out the general method, we ac-
cess its accuracy and utility by applying it to several prob-
lems that have been studied previously.

II. GENERAL PROBLEM

The bidomain equations governing the intracellular and
extracellular potentials,Vi andVe, in steady-state and assum-
ing a passive membrane, are

= · sg̃i = Vid = bGmsVi − Ved, s1d

= · sg̃e = Ved = − bGmsVi − Ved, s2d

whereg̃i and g̃e are the intracellularsid and extracellularsed
conductivity tensors,b is the ratio of membrane area to tis-
sue volume, andGm is the membrane conductivity per unit
area. The quantitiesg̃i andg̃e are tensors because the electri-
cal properties of cardiac tissue are anisotropic: they are dif-
ferent in the direction parallel to the fibersslongitudinal Ld
than in the direction perpendicular to themstransverseTd.
The intracellular conductivity tensor depends on the intrac-
ellular conductivity in the longitudinal directiongiL and in
the transverse directiongiT, and on the fiber angle, which
may vary throughout the tissue. Similarly, the extracellular
conductivity depends ongeL, geT, and the fiber angle.

The bidomain equationsfEqs. s1d and s2dg are coupled,
making them difficult to solve. Our goal is to uncouple them.
Start with a change of variable

Vm = Vi − Ve, c =
a

1 + a
SVi +

1

a
VeD , s3d

with the inverse transformation

Vi = c +
1

1 + a
Vm, Ve = c −

a

1 + a
Vm, s4d

wherea=giT /geT, Vm is the transmembrane potential, andc
is an auxiliary potential.sThe definitions ofa and c are
slightly different than used previouslyf2–4g. d If we write the
bidomain equations in terms of these new potentials and then
add Eqs.s1d and s2d, we find

= · sg̃i + g̃ed = c = −
1

1 + a
= · sg̃i − ag̃ed = Vm. s5d

Similarly, if we multiply Eq. s2d by a and then subtract the
product from Eq.s1d, we get
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= ·Sg̃i
1

a
+ ag̃eD = Vm −

s1 + ad2

a
bGmVm

= −
1 + a

a
= · sg̃i − ag̃ed = c. s6d

An important limiting case of the bidomain equations is
when the tissue has “equal anisotropy ratios”sgiL /giT

=geL/geTd. In this case the conductivity tensors are propor-
tional, g̃i =ag̃e, so the right-hand sides of Eqs.s5d ands6d are
zero and the bidomain equations uncouple. This suggests an
iterative approach to solving the full bidomain equations:

= · sg̃i + g̃ed = cn = −
1

1 + a
= · sg̃i − ag̃ed = Vm

n−1, s7d

= ·Sg̃i
1

a
+ ag̃eD = Vm

n −
s1 + ad2

a
bGmVm

n

= −
1 + a

a
= · sg̃i − ag̃ed = cn−1, s8d

where during the nth iteration we solve the bidomain equa-
tions forVm

n andcn using the previous iteration in the source
terms on the right-hand sides. This iterative scheme starts
with the solution to the uncoupled bidomain equations for
equal anisotropy ratios,

= · sg̃i + g̃ed = c0 = 0, s9d

= ·Sg̃i
1

a
+ ag̃eD = Vm

0 −
s1 + ad2

a
bGmVm

0 = 0. s10d

In order to completely describe the bidomain problem, we
need to account for the surrounding bath, of conductivitygb,
and the tissue-bath boundary conditions. We assume that the
bath potentialVb obeys Laplace’s equation,

=2Vb = 0. s11d

sA minor generalization would allow us to describe an aniso-
tropic, inhomogeneous bath, but we will not consider that
case in this study.d At the tissue-bath boundary, the boundary
conditions aresid the extracellular potential is equal to the
bath potential,sii d the normal component of the extracellular
current density is equal to the normal component of the bath
current density, andsiii d the normal component of the intra-
cellular current density is zerof8,9g. In almost all cases of
interest, the cardiac fibers at the tissue surface lie parallel to
the surface. We will assume that this is the case throughout
the rest of our analysis. Mathematically, we can write the
boundary conditions as

Ve = Vb, s12d

geT
]Ve

]n
= gb

]Vb

]n
, s13d

giT
]Vi

]n
= 0, s14d

wheren is the direction perpendicular to the surface, going
into the tissue. Now we need to express these boundary con-
ditions in terms of the variablesVm andc. If we use Eq.s4d
and some algebra, the boundary conditions become

c −
a

1 + a
Vm = Vb, s15d

geTs1 + ad
]c

]n
= gb

]Vb

]n
, s16d

]Vm

]n
= − s1 + ad

]c

]n
. s17d

Finally, the outer edge of the bath has boundary conditions.
For instance,Vb may be specified on the boundary, the
boundary may be sealeds]Vb/]n=0d, or we may assume that
far from the heart the electric field is uniform. These bound-
ary conditions depend on the electrode geometry used during
defibrillation.

Let us now summarize our results, at least for the case of
equal anisotropy ratiossthe first step of our iteration
schemed. Equationss9d–s11d, with the boundary conditions in
Eqs. s15d–s17d and additional boundary conditions at the
outer surface of the bath, governc, Vm, andVb. The equa-
tions for Vm and c are not completely uncoupled, even for
equal anisotropy ratios, because of the boundary conditions.
Although Eq.s9d does not containVm, the boundary condi-
tion in Eq.s15d does, so we still have not achieved our main
goal: uncoupled problems forVm andc.

To make further progress, we must make an assumption.
Equations10d implies that there are no sources ofVm

0 within
the tissuessources arising from fiber curvature, for example,
require unequal anisotropy ratios; we will deal with them
laterd. The only source ofVm

0 is from the boundary. Intu-
itively, this is no surprise; we expect the tissue to be polar-
ized at the boundary. Let us assume thatVm

0 falls off expo-
nentially with depth into the tissue,

Vm
0 = Ae−n/l, s18d

where A can vary in the plane of the surface,n measures
depth below the surface in the normal direction, andl is the
length constant in the direction perpendicular to the fibers,

l =Î giTgeT

sgiT + geTdbGm
. s19d

This result is exact for the one-dimensional casef8g. It
should be approximately correct as long asVm

0 changes in the
directions parallel to the tissue surface over distances that are
much larger thanl sabout 0.2 mmf5gd. We can substitute
this expression forVm

0 into the boundary conditions in Eqs.
s15d–s17d and simplify. We find two boundary conditions for
c0 andVb,

c0 − la
]c0

]n
= Vb, s20d
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gT
]c0

]n
= gb

]Vb

]n
, s21d

wheregT=giT+geT. The third condition gives

A = ls1 + ad
]c0

]n
. s22d

We have now accomplished our goal of uncoupling the bi-
domain equations. Equationss9d and s11d are solved forc0

andVb, using the boundary conditions in Eqs.s20d ands21d.
Oncec0 is known, Vm0 is specified by Eqs.s18d and s22d.
Higher order terms can be calculated as needed. To deter-
mine the utility of this method, we consider four examples.

III. EXAMPLE 1: CYLINDRICAL STRAND IN A
UNIFORM FIELD

Consider a cylindrical strand of cardiac tissue, of radiusa,
in an electric fieldE0 perpendicular to the strandsFig. 1d.
The fibers lie along the length of the strandszd; we ignore
end effects so the potentials are independent ofz, and the
conductivities in both thex and y directions aregix=giy
=giT, gex=gey=geT. Because there are no potential gradients
in the fiber direction, the tissue in this example behaves as if
it were isotropic and the zeroth order term in the iteration
scheme is the full solutionsso, we drop the superscripts for
this exampled. The main reason we examine this problem is
to investigate the implications of assuming an exponential
decay of the transmembrane potential.

Equationss9d and s11d, written in cylindrical coordinates
sr ,ud, simplify to

1

r

]

]r
Sr

]c

]r
D +

1

r2

]2c

]u2 = 0, s23d

1

r

]

]r
Sr

]Vb

]r
D +

1

r2

]2Vb

]u2 = 0. s24d

The electric field in the bath far from the strand is uniform
and in thex direction, so asr becomes largeVb reduces to
−E0r cosu. General solutions to Eqs.s23d and s24d can be
written as

c = B r cosu, s25d

Vb = − E0r cosu +
C

r
cosu, s26d

whereB andC are unknown constants to be determined by
the boundary conditions. As before, we assumeVm falls ex-
ponentially with depth below the surfacefEq. s18d g

Vm = A cosu e−sa−rd/l. s27d

Applying the conditions in Eqs.s20d–s22d and solving forA,
B, andC gives

A = lE03 2
gb

gT
s1 + ad

1 +
gb

gT
S1 +

l

a
aD4, B = − E03 2

gb

gT

1 +
gb

gT
S1 +

l

a
aD4 ,

C = E0a
231 −

gb

gT
S1 +

l

a
aD

1 +
gb

gT
S1 +

l

a
aD4 . s28d

These expressions contain the factors1+la /ad. Our as-
sumption thatVm falls exponentially only applies if the sur-
face appears “flat”; the surface curves little over distances on
the order of a length constant. For this problem, a smooth
surface is equivalent to sayinga@l. Furthermore,a is typi-
cally on the order of 0.25f2g. Thus s1+la /ad is approxi-
mately equal to 1. Throughout the remainder of this paper,
we will assume the surface is flat, which is equivalent to
taking the boundary condition in Eq.s20d to be

c0 = Vb. s29d

With this approximation,A, B, andC become

A = E0l32
gb

gT
s1 + ad

1 +
gb

gT

4, B = − E03 2
gb

gT

1 +
gb

gT

4 ,

C = E0a
231 −

gb

gT

1 +
gb

gT

4 . s30d

This example is useful because an exact analytical solution
to the full bidomain equations exists. The transmembrane
potential is

Vm =
1 + a

a
2aE0

I1S r

l
D

I1Sa

l
D

1

1 +
a

al
S1 +

gT

gb
D I18sa/ld

I1sa/ld

, s31d

whereI1 is the modified Bessel function of the first kind and
I18 is its derivative. Figure 2 compares the approximatefEqs.

FIG. 1. A cylindrical strand of cardiac tissue of radiusa per-
fused by a bath. A uniform electric field of strengthE0 is applied
perpendicular to the strand.
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s27d and s30dg and exactfEq. s31dg values forVm, for a 0.5
-mm-radius strandsabout the size of a papillary muscled. The
agreement is good, considering how thin the strand is. Only
at the strand center do the exact and approximate solutions
deviate significantly.

IV. EXAMPLE 2: NONUNIFORM FIELD APPLIED TO
TISSUE WITH STRAIGHT FIBERS

In the previous example, the solution for equal anisotropy
ratios corresponded to the full solution to the bidomain equa-
tions. In most cases, this is not true. Cardiac tissue does not
have equal anisotropy ratiosf2g. When fibers curvef4,6g or
when the applied electric field is not uniformf7g, unequal
anisotropy ratios results in polarization far from the tissue
boundary. If the model is to be useful, we must account for
these effects by examining additional terms in our iterative
scheme.

Consider a problem analyzed by Otanif7g: A nonuniform
potential exists on the surface of a slab of cardiac tissue
having unequal anisotropy ratios. The fibers are straight and
in the x direction sFig. 3d. The y direction points into the
tissue, and the potential is independent ofz. We first solve
Eq. s9d for c0,

gL
]2c0

]x2 + gT
]2c0

]y2 = 0, s32d

wheregL=giL +geL. Like Otani, we assume that the potential
on the surfacesy=0d varies sinusoidally

Vb = V sinskxd. s33d

The solution of Eq.s32d for c0 is

c0 = Be−ÎsgL/gTdky sinskxd. s34d

As before, we assume that the transmembrane potential falls
exponentially with depth into the tissue,

Vm
0 = A sinskxde−y/l. s35d

The boundary condition in Eq.s29d implies thatB=V, and
Eq. s22d implies thatA=−VlkÎgL /gTs1+ad.

The next step is to look at the first order term for the
transmembrane potential, which will include the effects of
unequal anisotropy ratios. The equation forVm

1 fEq. s8dg writ-
ten in terms ofa, gL, gT, ande=1−sgeL/geTd / sgiL /giTd, is

gL

gT
S1 + a − ae

1 + a − e
D ]2Vm

1

]x2 +
]2Vm

1

]y2 −
1

l2Vm
1

= −
gL

gT
eS 1 + a

1 + a − e
D ]2c0

]x2 . s36d

Throughout this analysis, we assume that the potentialc0

changes slowly over distances on the order of a length con-
stant. In that case, the second derivative terms on the left-
hand side of Eq.s36d are small, andVm

1 becomes

Vm
1 = − Vk2l2gL

gT
eS 1 + a

1 + a − e
De−ÎsgL/gTdkysinskxd. s37d

Becausekl!1, the Vm
1 term decays more slowly in depth

than theVm
0 term. More than several length constants into the

tissue, theVm
1 term dominates.

Figure 4 compares our approximate analytical solution
fEqs. s35d and s37dg with a numerical solution of the full
bidomain equationsfEqs.s5d ands6dg, for k=0.3 mm−1 scor-

FIG. 2. The approximate analyticalssolidd and exact numerical
sdashedd transmembrane potentials plotted versus radial distance for
a cylindrical strand of cardiac tissue.a=0.5 mm, a=0.25, l
=0.174 mm,gT=0.0931 S/m,gb=2 S/m, andE0=100 V/m.

FIG. 3. A two-dimensional slab of cardiac tissue with the fibers
aligned along thex direction.

FIG. 4. The approximate analyticalssolidd and exact numerical
sdashedd transmembrane potentials plotted versus depth below the
surface of a slab of cardiac tissue.a=0.25,e=0.75,l=0.174 mm,
gT=0.0931 S/m,gL=0.3726 S/m,V=1 V, andk=0.3 mm−1. The
numerical solution used a space step of 0.0125 mm and a slab
thickness of 20 mm.
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responding to a wavelength of 21 mmd. To solve the problem
numerically, we used a successive overrelaxation scheme.
The transmembrane potential has a rapid decay near the tis-
sue surface, and a slower decay deeper in the tissue. The
agreement between the two solutions is excellent. Inherent in
our calculation is the assumption that all length scales are
much longer than the length constant. Thus we expect our
analysis to be valid only whenkl!1.

V. EXAMPLE 3: SPHERICAL HEART

Trayanovaet al. f6g studied a spherical heart in order to
gain insight into defibrillation. The model consists of a shell
of cardiac tissue surrounding a blood cavity and surrounded
by a conducting bathsFig. 5d. The inner and outer radii of the
shell areb anda, and the conductivity of the blood and bath
are gb and go. A uniform electric field of strengthE0 is ap-
plied in thez direction. The fibers are in theu direction, and
azimuthal symmetry implies that the potential is independent
of the anglef. In spherical coordinatessr ,u ,fd, Eq. s9d for
c0 is

gT
1

r

]2

]r2src0d + gL
1

r2

1

sin u

]

]u
Ssin u

]c0

]u
D = 0, s38d

andVo andVb obey Laplace’s equation. Far from the sphere,
Vo=−E0r cosu. General solutions for the potentials are

c0 = sCrn1 + Drn2d cosu, s39d

Vb = Br cosu, s40d

Vo = − E0r cosu +
F

r2cosu, s41d

where

n1,2= −
1

2
±Î2

gL

gT
+

1

4
. s42d

ConstantsB, C, D, and F are determined by applying the
boundary conditionsc0=Vb and gTs]c0/]rd=gbs]Vb/]rd at
r =b andc0=Vo andgTs]c0/]rd=gos]Vo/]rd at r =a,

B = − E03 3SgT

gb
DSa

b
D1−n2

sn1 − n2d

S1 −
gT

gb
n1DS2 +

gT

go
n2D − Sa

b
Dn1−n2S1 −

gT

gb
n2DS2 +

gT

go
n1D4 , s43d

C = E0a
1−n13 3Sa

b
Dn1−n2S1 −

gT

gb
n2D

S1 −
gT

gb
n1DS2 +

gT

go
n2D − Sa

b
Dn1−n2S1 −

gT

gb
n2DS2 +

gT

go
n1D4 , s44d

D = − E0a
1−n23 3S1 −

gT

gb
n1D

S1 −
gT

gb
n1DS2 +

gT

go
n2D − Sa

b
Dn1−n2S1 −

gT

gb
n2DS2 +

gT

go
n1D4 , s45d

F = − E0a
33S1 −

gT

gb
n1DS1 −

gT

go
n2D − Sa

b
Dn1−n2S1 −

gT

gb
n2DS1 −

gT

go
n1D

S1 −
gT

gb
n1DS2 +

gT

go
n2D − Sa

b
Dn1−n2S1 −

gT

gb
n2DS2 +

gT

go
n1D4 , s46d

Once again,Vm
0 falls exponentially with depth below the

tissue surface. The effect of unequal anisotropy ratios is in-
cluded inVm

1 . If the potentials vary slowly over distances on
the order of a length constant, then we can ignore the terms
containing second derivatives and find

Vm
1 = − 2

l2

r2

gL

gT
eS 1 + a

1 + a − e
DsCrn1 + Drn2d cosu. s47d

Figure 6 compares our approximate analytical solution
with a numerical solution of the full bidomain equations. The
transmembrane potential reaches about 80 mV at the tissue
surface, and decays within a few length constants of the sur-
face to a relatively constant value between 1 and 2 mV
within the tissue bulk. Qualitatively, this behavior is consis-
tent with Trayanovaet al.’s calculationf6g, and the quantita-
tive differences are caused by the different parameters’ val-
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ues. The agreement between the approximate and numerical
solutions to the bidomain equations is excellent. We would
expect good agreement, since the radius of curvature of the
fibers ranges from 30 to 40 mm, whereas the length constant
is less than 0.2 mm.

VI. EXAMPLE 4: FIBERS CURVING IN TWO
DIMENSIONS

Roth and Langrill Beaudoinf4g analyzed the mechanism
of tissue polarization caused by fiber curvature. They deter-
mined approximate analytical solutions to the bidomain
equations that specified the distribution of polarization in a
two-dimensional sheet of cardiac tissue with curving fibers.
Their solutions were derived by using a perturbative expan-
sion in powers ofe. We reanalyze this problem using our
iterative method.

We assume that a two-dimensional sheet of cardiac tissue
has the fiber geometry shown in Fig. 7,

FIG. 5. A spherical shell of cardiac tissue surrounding a blood
cavity and surrounded by an unbounded homogeneous bath. A uni-
form electric field of strengthE0 is applied in thez direction.

FIG. 6. The approximate analyticalssolidd and exact numerical
sdashedd transmembrane potentials plotted versus radial distance in
a spherical heart. The endocardium corresponds tor =30 mm, and
the epicardium tor =40 mm. The upper curves are plotted on the
expanded voltage scalesrightd. a=0.25,e=0.75,l=0.174 mm,gT

=0.0931 S/m,gL=0.3726 S/m,go=2 S/m, gb=0.6 S/m, andE0

=100 V/m. The numerical solution uses a space step of
0.006 25mm.

FIG. 7. The line segments indicate the fiber direction in a two-
dimensional sheet of cardiac tissue, and the arrows indicate the
direction of the applied electric field. A 20320-mm region of tissue
is shown, with the origin at the center.

FIG. 8. The transmembrane potential produced for the fiber ge-
ometry shown in Fig. 7.a=0.25, e=0.75, l=0.174 mm, gT

=0.0931 S/m,gL=0.3726 S/m,D=20 mm, andDx=Dy=0.2 mm.
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usx,yd =
p

2
cos2Spx

D
Dcos2Spy

D
D , s48d

whereu is the angle between the local fiber direction and the
x axis. This is one of the fiber geometries used by Roth and
Langrill Beaudoinf4g ssee Fig. 6 of their paperd. A 10-V
potential difference is applied between the left and right

edges of the tissue. The intracellular and extracellular con-
ductivity tensors both have the formf4g

g̃ = S gLcos2u + gTsin2u sgL − gTdcosu sin u

sgL − gTdcosu sin u gLsin2u + gTcos2u
D . s49d

We substitute these conductivity tensors into Eq.s9d to get

sgLcos2u + gTsin2ud
]2c0

]x2 + sgLsin2u + gTcos2ud
]2c0

]y2 + sgL − gTd1scos2u − sin2udS ]u

]x

]c0

]y
+

]u

]y

]c0

]x
D

+ s2 sin u cosudS ]2c0

]x ] y
+

]u

]y

]c0

]y
−

]u

]x

]c0

]x
D 2 = 0.

s50d

The first order expression for the transmembrane potential becomes

Vm
1 = lT

2gL

gT

s1 + ade
1 + a − e1cos2u

]2c0

]x2 + sin2u
]2c0

]y2 + scos2u − sin2udS ]u

]x

]c0

]y
+

]u

]y

]c0

]x
D

+ s2 sin u cosudS ]2c0

]x ] y
+

]u

]y

]c0

]y
−

]u

]x

]c0

]x
D 2 . s51d

We solved Eq.s50d numerically, and then evaluated the expression forVm
1 sFig. 8d. Like in Ref. f4g, we ignore theVm

0 term
because we focus on far-field effects. The solution is in good agreement with Roth and Langrill Beaudoin’s numerical solution
to the full bidomain equations. The iterative method in this paper appears to approximate the full solution much better than did
the approximate method based on a perturbation expansion ine and the assumption of a uniform electric field.

VII. FIBERS CURVING IN THREE DIMENSIONS

In three dimensions, we need two angles in order to specify the fiber direction. A standard approach is to use the Euler
anglesf10g. The angle of the fibers with thez axis is specified byu, and the angle in thex-y plane byf. sTypically, three Euler
angles are required to specify the orientation of an object. The third angle corresponds to rotations in the plane perpendicular
to the fiber axis. We assume that the conductivity is the same in both directions perpendicular to the fiber—an assumption often
but not always madef11g —so the conductivity tensor is independent of the third Euler angle.d In terms of the Euler angles,
the intracellular conductivity tensor becomes

g̃i = 1giTscos2f + sin2f cos2ud + giLsin2f sin2u sgiT − giLdsin f cosf sin2u sgiL − giTdsin f cosu sin u

sgiT − giLdsin f cosf sin2u giTssin2f + cos2f cos2ud + giLcos2f sin2u sgiT − giLdcosf cosu sin u

sgiL − giTdsin f cosu sin u sgiT − giLdcosf cosu sin u giTsin2u + giLcos2u
2 .

s52d

A similar expression exists for the extracellular conductivity tensor.
We determine the equation forVm

1 by plugging Eq.s52d into Eq. s8d and neglecting terms containing second derivatives of
Vm

1 . The solution is

Vm
1 = l2gL

gT

a

1 + a
h=c0 · D̃1 = u + = c0 · D̃2 = f + = · D̃3 = c0j, s53d

where

D̃1 = 3 2 sin u cosu sin2f − 2 sinu cosu sin f cosf sin fscos2u − sin2ud
− 2 sinu cosu sin f cosf 2 sin u cosu cos2 f − cosfscos2u − sin2ud

sin fscos2u − sin2ud − cosfscos2u − sin2ud − 2 sinu cosu
4 , s54d
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D̃3 = 3−

sin2u sin2f − sin2u sin f cosf sin f sin u cosu

sin2u sin f cosf sin2u cos2f − cosf sin u cosu

sin f sin u cosu − cosf sin u cosu cos2u
4 . s56d

The first two terms are nonzero only if the fiber direction
depends on positionscurving fibersd. The last term is nonzero
even for straight fibers if the electric field in the tissue varies
with position. Our results are similar in form to those derived
by Sobieet al. f12g.

VIII. DISCUSSION

In this paper, we present an approximate, iterative scheme
to solve the bidomain equations. In the problems we have
examined, this method converges significantly faster than the
perturbative technique examined previouslyf3,4g. The key
element of this method is our assumption that the zeroth
order contribution to the transmembrane potential decays ex-
ponentially with depth. This assumption allows us to un-
couple the bidomain equations, at least in the case of equal
anisotropy ratios. Another related assumption is that the
length constant is much smaller than all other distances in
the problem, such as the distance over whichc0 varies or the
radius of curvature of the fibers or tissue surface. In situa-
tions in which the stimulus is applied diffusely, such as dur-
ing external defibrillation, the method should be quite accu-
rate. When the stimulus is applied locally, such as during
stimulation using a small unipolar electrodef5g, our method
will be less useful. Furthermore, the method is not applicable
when the transmembrane potential is caused by small-scale
variations of conductivity, such as underlie the “saw-tooth”
effect f13,14g, which may play a role during defibrillation

f15,16g. Finally, we assume that the fibers are parallel to the
tissue surface at the surface. If this is not the case, additional
boundary effects may resultf17g.

We can summarize our method in Fig. 9, which outlines
the boundary value problem that must be solved forc0.
Within the cardiac tissue= ·sg̃i + g̃ed=c0=0, and in the bath
surrounding the tissue=2Vb=0. At the tissue-bath boundary
c0=Vb and gTs]c0/]nd=gbs]Vb/]nd. This boundary value
problem is exactly that one would expect using a
monodomain model for cardiac tissue, where the potential is
given by c0 and the conductivity byg̃i + g̃e. Many software
packages exist for solving this type of problem, and a key
feature of our method is that these packages can be applied
directly to the bidomain problem. Oncec0 is known, we
can determine the transmembrane potential byVm

0 =Ae−n/l,
with A is given by A=ls1+ads]c0/]nd, and Vm

1

=l2fs1+ad /gTag= ·sg̃i −ag̃ed=c0.
Higher order terms forc or Vm can be computed using the

iterative scheme outlined in Eqs.s7d ands8d. However, in our
experience only the zeroth and first order terms are required
to specify the transmembrane potential accurately. The ze-
roth order term is often largest, but decays rapidly with depth
into the tissue. The first order term accounts for “far-field”
effects, and typically goes to zero in the limit of equal aniso-
tropy ratios.

In summary, our iterative method has two advantages over
a full solution to the bidomain equations. First, numerical
simulations using this method are faster than solving the bi-
domain equations. Equationss1d and s2d represent two dif-
ferential equations that need to be solved in the full bidomain
calculation, whereas our problem consists of only solving
one boundary value problem forc0. Therefore we should
experience at least a factor of two speedup. Moreover, com-
mercial software packages that have been extensively opti-
mized to solve boundary value problems are widely avail-
able, whereas programs to solve the bidomain equations are
generally written as needed by individual researchers. Sec-
ond, our method often results in analytical solutions that pro-
vide insight into the physical problem. Several of our ex-
amples illustrate this point; we could at least solve the zeroth
ordersequal anisotropy ratiod problem analytically, and then
use that solution to determine the first order solution to the
transmembrane potential.
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