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Coupled dynamics of voltage and calcium in paced cardiac cells
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We investigate numerically and analytically the coupled dynamics of transmembrane voltage and intracel-
lular calcium cycling in paced cardiac cells using a detailed physiological model, and its reduction to a
three-dimensional discrete map. The results provide a theoretical framework to interpret various experimentally
observed modes of instability ranging from electromechanically concordant and discordant alternans to quasi-
periodic oscillations of voltage and calcium.
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I. INTRODUCTION concordant alternans with a long/short APD corresponding to

Over the last decade, there has been a growing recogna large/small calcium transient on alternate beats, discordant

. L - . . I ternans with a long/short APD corresponding to a small/
tion that dynaml_c mstab!hty of th_ cgrd|ac action F’Oter?“a' large calcium transient, and modulated voltage/calcium alter-
can play a crucial role in the initiation of life-threatening

arrhythmiag 1-6]. Most studies to date have focused on the"2"3 with amplitudes that vary sinusoidally in time. The

dvnamics of the transmembrane voltage aoverned b thEhysiological conditions which favor a given dynamical be-
y . 9¢ 9 y avior are explained. Finally, we interpret the model results
standard equation

in terms of a three variable iterated map which describes the
V==(lion+lo)/Cr, 1) beat-to-beat dynamics of calcium and voltage.

whereC,, is the membrane capacitantg, is the total mem-

brane current, which is the sum of the individual currents for Il. IONIC MODEL
Na*, K*, and C4 ions depicted schematically in Fig. 1, and
ley IS @ current stimulus applied at equally spaced time in-
tervals T. A widely used approach to model the nonlinear To describe the electrophysiology of a cardiac myocyte
dynamics of voltage is the one-dimensional discrete majve integrate a recently developed model of calci(®a*)
A...=f(T-A,) which relates the action potential duration cycling [11], with an established ionic model due to Fei
(APD) at two subsequent beats via the restitution curve@l. [12] that is based on the Luo-Rudy currefs3]. The
A..,=f(D,), whereD,, is the interval between the end of the ionic currents, along with elements of the calcium cycling
previous action potential and the ne@t—6]. The periodic ~ System, are illustrated in Fig. 1. The movement of calcium
fixed point of this map corresponding to the stable 1:1inside the cell is described by

A. Calcium cycling

rhythm undergoes a period-doubling instability to alternans, B, c—c
a sequence of lon@.) and short(S) (LSLS...) APD, when Cs= #{he,— el P INaCa:| - Bds, (2)
the slope of the restitution curve is1. Us s

Even though this map has been successful to model the
unstable dynamics of voltage in some ionic modé&kand .| G—¢c i
experimentg4], its predictions are inconsistent with a wide Gi= '3‘[ e lup= I"] 3
range of observationg5—8]. For example, Hallet al. [5]
found that alternans can be absent even when the slope of the

experimentally measured restitution curve is significantly G ="l * lup “)
larger than one, and conversely alternans are observed under .

ischemic conditions in which the restitution curve is flg}. o= GG 5)
Furthermore, recent experimentgl,9,10 and theoretical y Ta

studies[11] suggest that alternans may result from an insta-

bility of intracellular calcium cycling. This result clearly in- . e

dicates that the dynamical behavior of a cardiac cell is gov- lrer = 9lcdQ(c)) = L (6)
erned by nonlinear processes that are not taken into account '

by the restitution relationship. wherecs, ¢;, andc; are the concentrations of free calcium in

In this article we explore the coupled nonlinear dynamicsa thin layer just below the cell membrargsubmembrane
of voltage and calcium cycling in paced cardiac cells using sspaceg, in the bulk myoplasm, and the sarcoplasmic recticu-
physiologically based ionic model. We demonstrate that dum (SR), with volumesus, v;, andvg, respectively, where
paced cell can be unstable to three distinct dynamical modethe SR volume includes both the junctional 8F8R and the
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_______________ Myoplasm
ss'gggembrane FIG. 2. lllustration of the effect of an increase in the magnitude
t-tubule of the calcium transient, which can prolong or shorten the APD for
(a) positive and(b) negative coupling, respectively. The sign of the
FIG. 1. lllustration of currents that control the dynamics of volt- coupling depends on the relative contributionsl @f and Iyaca to
age and intracellular calcium cycling. the APD. The solid or dashed lines correspond to the same beat.

network SR(NSR); ¢/ is the average JSR concentration in S ]
the whole cell as defined in RdfL1]. The concentrations, Steep APD restitution in the absence of calcium alternans
andc; are in units ofuM, whereasc; andc/ are in units of ~ €an also induce APD alternans. This steepness is especially
uMuvg/v;. All calcium fluxes are dividec| by; and have sensitive to the recovery from inactivation of the calcium
units of uM/s. Instantaneous buffering of calcium to SR andcurrent[12,13
calmodulin sites irv; andvg is accounted for by the func-
tions Bs=B(cy and g; %B(ci), and the current§” describe lea=d-f-fearica (8)
time-dependent buffering to troponin [C1].

Calcium release from the SR is triggered by calcium e”t%vhereiCa is the single channel current ardff) is a fast

into the cell via calcium-induced calcium relea@ICR) (o) yoltage-dependent activatidinactivation gate. For

[1;1]' ReIeaseLoccurs a}t.a Verﬁ/ Iargle numbgr O; junctionﬁhe intermediate range of pacing rates studied in the present
where several-type calcium channelfic,) and a few re- oy “increasing the time constant of the f gate in the
lease channel§yanodine receptors; RyR$ace each other tonf=[f. (V) =1/ 7 st APD restituti d

in close proximity. Only one of these junctions is shown in €quation =[f.(V)~f]/ 7 steepens restitution and pro-

Fig. 1 for clarity. The total release current for the whole cellMotes voltage alternans.
k

is the suml re|=2|’:‘=(tl)l'r‘e|, of local currentd, at each junction
where release channels are activated. The number of sparks C. Voltage-calcium coupling

N(t) varies in time since sparks are recruited stochastically
and extinguish. The spatially localized nature of release is
described by the dynamical equation for the release curre
[Eq. (6)], which captures phenomenologically three key ex-
perimental observationg§i) sparks are recruited at a rate pro-

portional to the whole cell, or N~ lca[16], which insures

The mutual influence of voltage and calcium during the
ction potential is controlled by the membrane currents that
epend on intracellular calcium concentration. These include
lca @and the sodium-calcium exchangef,c, A larger cal-
cium transient following a larger release enhances inactiva-
tion of I, via the calcium-dependent gafg, and hence
¥hortens the APD, but increases the chemical driving force

[15,17, (ii) the spark lifetimer; is approximately constant, for calcium extrusion from the cell via the exchanger. Since

and (iii) the amount of calcium released increases with SRy 06 N4 jons enter the cell for every Gaion extruded, this

concentration(SR load [18]. increase in driving force increases the inward membrane cur-
B. Instability mechanisms relntt_which ;t)r.ct))lclngs thfe AP%.IThergfore, d_epetﬂding on the
: . . relative contributions of ., andly,c, increasing the magni-
;Ialmulrr alterlngns, aper!od—?ciublmg sekquence of ldige tude of the calcium transient can either prolofmpsitive
and sma (s) calcium transienlsls... pea ci),.can OCCUT " coupling or shorten(negative couplingthe APD, as illus-
independently of voltage alternans in experiments with gyateq in Fig. 2. The sign of this coupling can be changed in

single cell paced with a periodic voltage wave fdi®h Both o model by varying the exponestin the phenomenologi-
theoretical analysgd1,19 and recent experimenfs0] sup- g expression

port that a steep dependence of release on SR load is the
underlying mechanism of these alternans. The sensitivity of

release to SR load is controlled in the model by the slope of f,= - (9)
the functionQ(c/) at high load 1+(cdCy)”
u=dQ/dc. 7)

for the steady-state value ¢f, where the constard sets
For a large enough slope, the model produces calcium altethe concentration range for inactivation. Increasimgen-
nans when paced with a periodic voltage wave f¢irh] as  hances calcium-dependent inactivationlgf and tends to
in the experiments of Ref9)]. make the coupling negative.
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FIG. 4. Definition of map variables.
140 v=1.5 2000 ® A
1 200concordant/  \asiperiodie] 55 (' “oey Hopf frequency that vary withy andu for the in between
£ 100 B é . B case where the instability is driven by both voltage and cal-
g0 < 2002 cium. Both electromechanically concordant and discordant
stable o alternans have been widely observed experimentally under
60 oordant 230 c various conditiond20]. In addition, there is experimental
40 5 o 3 20 — : — evidence for quasiperiodicity in recordings of voltajg]
0 Cfeak(’uM) and, more recently, calciufi22].
FIG. 3. Stability boundaries in the ionic model for positive IV. ITERATED MAP ANALYSIS
(dashed line;y=0.7) and negativgsolid line; y=1.5 coupling. T . .
=300 ms. Examples of steady-state dynamics close to the stability A. lterated map of voltage-calcium dynamics

boundaries are illustrated by plots of peak calcium concentration The numerical findings in the previous section were found
(cipea")_ vs APD for a fe_w labeled points. Higher order periodicities apply at a wide range of pacing intervals To interpret
and irregular dynamics are observed further away from thesg,,r ragulits, and investigate the generality of the findings, we
boundaries. extend the two-dimension&2D) iterated map developed in
Ref.[11] for calcium cycling when the cell is paced with a
IIl. NUMERICAL RESULTS fixed periodic voltage wave form, to the present case where

The dynamics of the system was studied numerically as '€ voltage is unclamped. To a good approximatiags ¢
function of the two instability parameters and r; which ~ @nd ¢ =¢; preceding a stimulug1l], such that we only
promote calcium and voltage alternans, respectively, and fd€€d to track beat-to-beat changesadndc;. Furthermore,

two values ofy that were found to yield a positivey=0.7) we assume for simplicity that t_)uffering pf caIcium is in-
and a negativéy=1.5 coupling between voltage and cal- stantaneous such that there exists a unique nonlinear rela-

cium. All the other parameters are the same as in RefdiOnShip between the concentration of free calcigifg;) and

[11,12. We study the stability of the periodic fixed by com- total calcium(free plus boung ciT(ch). The basic variables

puting the steady-state APD, and the corresponding peak ce®f the map (Fig. 4) are thenc and cf at time t,=nT

cium transientc”®®. The APD is computed by measuring of the nth+1 stimulus, defined byx,=c(t) and y,

the time interval to 80% repolarization. In Fig. 3 we plot the = (vs/v;)¢] (t,) where bottx, andyj, are in units ofuM, and

stability boundaries as a function of the model parameters dhe APD corresponding to this stimulus,, .

a fixed pacing rate of =300 ms. The map is obtained by extending the restitution map to
The results plotted in Fig. 3 highlight the crucial role of include the effect of calcium on the APD and by integrating

the coupling between voltage and calcium in the dynamicsthe calcium flux equations

For positive coupling, the instability of the 1:1 periodic state

T,
always occurs through a period-doubling bifurcation to elec- G =lrei=lup~ Ica™ Inaca (10
tromechanically concordant alternans with the Iqsbor) -

APD corresponding to a largesmal) calcium transient, in- ¢ = (Wilvg) (= lrer + lyp), (11

dependently of whether voltage or calcium is the dominan

. . . : ANt om timet, to time . This yields
instability mechanism. In contrast, for negative coupling, . n+l y

three distinct modes of instability are found that correspond Ani1=F(Dp X Yn), (12
to: (i) concordant alternans, as for positive coupling, but only
when the instability is dominated by voltagklrge = and X1 =X+ Ry = Up+ Ay, (13)

small u), (ii) electromechanically discordant alternans with
the long (shor) APD corresponding to a smallarge cal- =y, -R,+U (14)
cium transient when the instability is dominated by calcium Yne1=Vn n

(small 7; and largeu), and (iii) quasiperiodic oscillations of respectively, whereR,, U,, and A, are the integrals of
APD and calcium transient amplitude with a phase and d, l,p and ¢t Iyaca Over the time intervalty,t,,q], re-
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spectively, and are functions @,,x,,y,,) for a fixed pacing
period; v;R, and v;U,, are the total amount of calcium re-
leased from and pumped into the SR over one beat, respec-
tively, andv;A, is the net total calcium entry into the cell

concordant b

quasiperiodic

over one beat which can be positiveegative if the ex-
changer extrudes moiges9 calcium from the cell thar,
brings into the cell.

B. Stability analysis

To make contact with the numerical stability boundaries
in Fig. 3, we study the stability of the fixed point of the

iterated map. The fixed point will be denoted @& ,x",y").

1 -

S

stable '

discordant

d

To begin, we exploit the fact that the total amount of calcium

inside the cell is approximately constant during steady-state FIG. 5. Stability boundaries from the map analysis for positive
pacing. Hence, we can approximate the three-dimensionabupling C=0.1 with concordant alternans along the dashed line,
(3D) map[Egs.(12—(14)] by a 2D map by assuming that and negative couplin@=-0.1(solid line), with concordant altern-

z,~Z , wherev;z,=v;(X,+Yp,) is the total calcium in the cell
at timet,. This 2D map is given by Eq$12) and(13) with
D,=T-A,, A,=0, andy,=Z -x,. A linear stability analysis
of this 2D map vyields the eigenvalues

1 5
M= Sl N m et V= A2 +4C], (15)
where we have defined the quantities
JF
Ny =T, (16)
Dy,
IR,—-U JR,-U
poo1 fRamU) aR-UY
IXn Yn
IR, —-Uy( dF OIF
C:M<———>, (18
dD, Y, X,

which are evaluated at the fixed point of the map. Haye,

and \. govern the degree of instability of the voltage and
calcium systems, respectively, whi@ determines the sign
of the coupling between the two systems. Making APD

restitution(dF /9D
SR load(dR,/ dy,) steeper by increasing andu in the ionic
model is equivalent to increasing, and \., respectively.
Graded release implies thaR,-U,)/dD, is positive for
high pacing rates wherk-, depends orD,, such that the
sign of C is governed bydF/dy,—dF/dx, where the latter

ans, discordant alternans, and quasiperiodicity along the segments
a-b,c-d, and b-crespectively.

phic to that obtained by simulations of the ionic model in the
(u,7;) plane of Fig. 3. Note that we have not used explicit
functional forms for the map terms, but only exploited the
basic structure of the map given by Eq42)—(14), along
with the important assumption that total calcium is constant
from beat to beat. This agreement shows that the coupled
dynamics of voltage and calcium can be understood qualita-
tively in terms of the basic features of the system.

V. CONCLUSION

The numerical study of both the ionic model and the map
in the nonlinear regime reveals the existence of a rich dy-
namical behavior including higher order periodiciti€s3,

4:4, etc) as well as transitions to chaos mediated by a
period-doubling cascade or intermittency depending on the
parameters. Moreover, this model naturally contains memory
[21,23 due to the slow change of total calcium concentration
over several beats. Both of these aspects will be discussed in
more detail elsewhere.

In conclusion, we have outlined the essential three-

n) or the relationship between release andimensional parameter space that controls dynamic instabil-

ity of membrane voltage coupled to calcium cycling, and we
have presented a theoretical framework in which to interpret
experiments beyond the limitations of the one-dimensional
restitution relationship. The main axes of this parameter
space are the degree of instability of the voltage and calcium

reflects the effect of the magnitude of the calcium transientystems, and the sign of the coupling between the two sys-

on APD vialc, and ly,ca (Fig. 2). The periodic fixed point
undergoes a period-doubling bifurcation whgn|=1 and
a Hopf bifurcation for(\,—\,)?>+4C<0 when the pair of

complex eigenvalues\,=re'(™) with r=y\\,—C and

tems, which is an important parameter to emerge from this
work. These results provide a starting point to explore the
role of calcium cycling in the spatiotemporal dynamics of

tissue scale phenomenon. For instance, it will be interesting

tanw:\'—4C—(>\c—?\v)2/()\c+>\v), crosses the unit circle to see how the more complex single cell dynamics presented
(r=1). For the latter case, the beat-to-beat oscillations ohere, influences the dynamics of spiral waves in tissue. Stud-

voltage and calcium are modulated with a periatl @. Ex-

ies in this direction may shed light on the role of calcium

amination of the eigenvectors f@< 0 reveals that alternans cycling on cardiac rhythm disorders.

are discordant wheRn_ is real and\;> \,.

In Fig. 5 we plot the corresponding stability boundaries

for positive and negative coupling in tha.,\,) plane. We
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