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We investigate numerically and analytically the coupled dynamics of transmembrane voltage and intracel-
lular calcium cycling in paced cardiac cells using a detailed physiological model, and its reduction to a
three-dimensional discrete map. The results provide a theoretical framework to interpret various experimentally
observed modes of instability ranging from electromechanically concordant and discordant alternans to quasi-
periodic oscillations of voltage and calcium.
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I. INTRODUCTION

Over the last decade, there has been a growing recogni-
tion that dynamic instability of the cardiac action potential
can play a crucial role in the initiation of life-threatening
arrhythmiasf1–6g. Most studies to date have focused on the
dynamics of the transmembrane voltage governed by the
standard equation

V̇ = − sI ion + Iextd/Cm, s1d

whereCm is the membrane capacitance,I ion is the total mem-
brane current, which is the sum of the individual currents for
Na+, K+, and Ca+ ions depicted schematically in Fig. 1, and
Iext is a current stimulus applied at equally spaced time in-
tervals T. A widely used approach to model the nonlinear
dynamics of voltage is the one-dimensional discrete map
An+1= fsT−And which relates the action potential duration
sAPDd at two subsequent beats via the restitution curve,
An+1= fsDnd, whereDn is the interval between the end of the
previous action potential and the nextf1–6g. The periodic
fixed point of this map corresponding to the stable 1:1
rhythm undergoes a period-doubling instability to alternans,
a sequence of longsLd and shortsSd sLSLS…d APD, when
the slope of the restitution curve is.1.

Even though this map has been successful to model the
unstable dynamics of voltage in some ionic modelsf3g and
experimentsf4g, its predictions are inconsistent with a wide
range of observationsf5–8g. For example, Hallet al. f5g
found that alternans can be absent even when the slope of the
experimentally measured restitution curve is significantly
larger than one, and conversely alternans are observed under
ischemic conditions in which the restitution curve is flatf8g.
Furthermore, recent experimentalf7,9,10g and theoretical
studiesf11g suggest that alternans may result from an insta-
bility of intracellular calcium cycling. This result clearly in-
dicates that the dynamical behavior of a cardiac cell is gov-
erned by nonlinear processes that are not taken into account
by the restitution relationship.

In this article we explore the coupled nonlinear dynamics
of voltage and calcium cycling in paced cardiac cells using a
physiologically based ionic model. We demonstrate that a
paced cell can be unstable to three distinct dynamical modes:

concordant alternans with a long/short APD corresponding to
a large/small calcium transient on alternate beats, discordant
alternans with a long/short APD corresponding to a small/
large calcium transient, and modulated voltage/calcium alter-
nans with amplitudes that vary sinusoidally in time. The
physiological conditions which favor a given dynamical be-
havior are explained. Finally, we interpret the model results
in terms of a three variable iterated map which describes the
beat-to-beat dynamics of calcium and voltage.

II. IONIC MODEL

A. Calcium cycling

To describe the electrophysiology of a cardiac myocyte
we integrate a recently developed model of calciumsCa2+d
cycling f11g, with an established ionic model due to Foxet
al. f12g that is based on the Luo-Rudy currentsf13g. The
ionic currents, along with elements of the calcium cycling
system, are illustrated in Fig. 1. The movement of calcium
inside the cell is described by

ċs =
bsvi

vs
FI rel −

cs − ci

ts
− ICa+ INaCaG − bsI tr

s , s2d

ċi = biFci − cs

ts
− Iup − I tr

i G , s3d

ċj = − I rel + Iup, s4d

ċj8 =
cj − cj8

ta
, s5d

İ rel = gICaQscj8d −
I rel

tr
, s6d

wherecs, ci, andcj are the concentrations of free calcium in
a thin layer just below the cell membranessubmembrane
spaced, in the bulk myoplasm, and the sarcoplasmic recticu-
lum sSRd, with volumesvs, vi, andvsr, respectively, where
the SR volume includes both the junctional SRsJSRd and the
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network SRsNSRd; cj8 is the average JSR concentration in
the whole cell as defined in Ref.f11g. The concentrationscs
andci are in units ofµM, whereascj andcj8 are in units of
mMvsr/vi. All calcium fluxes are divided byvi and have
units ofmM/s. Instantaneous buffering of calcium to SR and
calmodulin sites invi and vs is accounted for by the func-
tions bs;bscsd andbi ;bscid, and the currentsI tr

s,i describe
time-dependent buffering to troponin Cf11g.

Calcium release from the SR is triggered by calcium entry
into the cell via calcium-induced calcium releasesCICRd
f14g. Release occurs at a very large number of junctions
where severalL-type calcium channelssICad and a few re-
lease channelssryanodine receptors; RyRsd face each other
in close proximity. Only one of these junctions is shown in
Fig. 1 for clarity. The total release current for the whole cell
is the sumI rel=ok=1

NstdI rel
k , of local currentsI rel

k at each junction
where release channels are activated. The number of sparks
Nstd varies in time since sparks are recruited stochastically
and extinguish. The spatially localized nature of release is
described by the dynamical equation for the release current
fEq. s6dg, which captures phenomenologically three key ex-
perimental observations:sid sparks are recruited at a rate pro-

portional to the whole cellICa, or Ṅ, ICa f16g, which insures
that calcium release is graded with respect to calcium entry
f15,17g, sii d the spark lifetimetr is approximately constant,
and siii d the amount of calcium released increases with SR
concentrationsSR loadd f18g.

B. Instability mechanisms

Calcium alternans, a period-doubling sequence of largesld
and smallssd calcium transientslsls… peakcid, can occur
independently of voltage alternans in experiments with a
single cell paced with a periodic voltage wave formf9g. Both
theoretical analysesf11,19g and recent experimentsf10g sup-
port that a steep dependence of release on SR load is the
underlying mechanism of these alternans. The sensitivity of
release to SR load is controlled in the model by the slope of
the functionQscj8d at high load

u ; dQ/dcj8. s7d

For a large enough slope, the model produces calcium alter-
nans when paced with a periodic voltage wave formf11g as
in the experiments of Ref.f9g.

Steep APD restitution in the absence of calcium alternans
can also induce APD alternans. This steepness is especially
sensitive to the recovery from inactivation of the calcium
currentf12,13g

ICa= d · f · fCa· iCa, s8d

where iCa is the single channel current anddsfd is a fast
sslowd voltage-dependent activationsinactivationd gate. For
the intermediate range of pacing rates studied in the present
work, increasing the time constantt f of the f gate in the

equationḟ =ff`sVd− fg /t f steepens APD restitution and pro-
motes voltage alternans.

C. Voltage-calcium coupling

The mutual influence of voltage and calcium during the
action potential is controlled by the membrane currents that
depend on intracellular calcium concentration. These include
ICa and the sodium-calcium exchangerINaCa. A larger cal-
cium transient following a larger release enhances inactiva-
tion of ICa via the calcium-dependent gatefCa, and hence
shortens the APD, but increases the chemical driving force
for calcium extrusion from the cell via the exchanger. Since
three Na+ ions enter the cell for every Ca2+ ion extruded, this
increase in driving force increases the inward membrane cur-
rent which prolongs the APD. Therefore, depending on the
relative contributions ofICa and INaCa, increasing the magni-
tude of the calcium transient can either prolongspositive
couplingd or shortensnegative couplingd the APD, as illus-
trated in Fig. 2. The sign of this coupling can be changed in
the model by varying the exponentg in the phenomenologi-
cal expression

fCa
` =

1

1 + scs/c̃sdg
s9d

for the steady-state value offCa, where the constantc̃s sets
the concentration range for inactivation. Increasingg en-
hances calcium-dependent inactivation ofICa and tends to
make the coupling negative.

FIG. 1. Illustration of currents that control the dynamics of volt-
age and intracellular calcium cycling.

FIG. 2. Illustration of the effect of an increase in the magnitude
of the calcium transient, which can prolong or shorten the APD for
sad positive andsbd negative coupling, respectively. The sign of the
coupling depends on the relative contributions ofICa and INaCa to
the APD. The solid or dashed lines correspond to the same beat.
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III. NUMERICAL RESULTS

The dynamics of the system was studied numerically as a
function of the two instability parametersu and t f which
promote calcium and voltage alternans, respectively, and for
two values ofg that were found to yield a positivesg=0.7d
and a negativesg=1.5d coupling between voltage and cal-
cium. All the other parameters are the same as in Refs.
f11,12g. We study the stability of the periodic fixed by com-
puting the steady-state APD, and the corresponding peak cal-
cium transientsci

peakd. The APD is computed by measuring
the time interval to 80% repolarization. In Fig. 3 we plot the
stability boundaries as a function of the model parameters at
a fixed pacing rate ofT=300 ms.

The results plotted in Fig. 3 highlight the crucial role of
the coupling between voltage and calcium in the dynamics.
For positive coupling, the instability of the 1:1 periodic state
always occurs through a period-doubling bifurcation to elec-
tromechanically concordant alternans with the longsshortd
APD corresponding to a largessmalld calcium transient, in-
dependently of whether voltage or calcium is the dominant
instability mechanism. In contrast, for negative coupling,
three distinct modes of instability are found that correspond
to: sid concordant alternans, as for positive coupling, but only
when the instability is dominated by voltageslarge t f and
small ud, sii d electromechanically discordant alternans with
the long sshortd APD corresponding to a smallslarged cal-
cium transient when the instability is dominated by calcium
ssmall t f and largeud, andsiii d quasiperiodic oscillations of
APD and calcium transient amplitude with a phase and a

Hopf frequency that vary witht f and u for the in between
case where the instability is driven by both voltage and cal-
cium. Both electromechanically concordant and discordant
alternans have been widely observed experimentally under
various conditionsf20g. In addition, there is experimental
evidence for quasiperiodicity in recordings of voltagef21g
and, more recently, calciumf22g.

IV. ITERATED MAP ANALYSIS

A. Iterated map of voltage-calcium dynamics

The numerical findings in the previous section were found
to apply at a wide range of pacing intervalsT. To interpret
our results, and investigate the generality of the findings, we
extend the two-dimensionals2Dd iterated map developed in
Ref. f11g for calcium cycling when the cell is paced with a
fixed periodic voltage wave form, to the present case where
the voltage is unclamped. To a good approximation,cs<ci
and cj8<cj preceding a stimulusf11g, such that we only
need to track beat-to-beat changes ofci andcj. Furthermore,
we assume for simplicity that buffering of calcium is in-
stantaneous such that there exists a unique nonlinear rela-
tionship between the concentration of free calciumciscjd and
total calciumsfree plus boundd ci

Tscj
Td. The basic variables

of the map sFig. 4d are thenci
T and cj

T at time tn=nT
of the nth+1 stimulus, defined byxn;ci

Tstnd and yn

;svsr/vidcj
Tstnd where bothxn andyn are in units ofmM, and

the APD corresponding to this stimulus,An+1.
The map is obtained by extending the restitution map to

include the effect of calcium on the APD and by integrating
the calcium flux equations

ċi
T = I rel − Iup − ICa+ INaCa, s10d

ċj
T = svi/vsrds− I rel + Iupd, s11d

from time tn to time tn+1. This yields

An+1 = FsDn,xn,ynd, s12d

xn+1 = xn + Rn − Un + Dn, s13d

yn+1 = yn − Rn + Un, s14d

respectively, whereRn, Un, and Dn are the integrals of
I rel, Iup, and −ICa+ INaCa over the time intervalftn,tn+1g, re-

FIG. 3. Stability boundaries in the ionic model for positive
sdashed line;g=0.7d and negativessolid line; g=1.5d coupling.T
=300 ms. Examples of steady-state dynamics close to the stability
boundaries are illustrated by plots of peak calcium concentration
sci

peakd vs APD for a few labeled points. Higher order periodicities
and irregular dynamics are observed further away from these
boundaries.

FIG. 4. Definition of map variables.
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spectively, and are functions ofsDn,xn,ynd for a fixed pacing
period; viRn and viUn are the total amount of calcium re-
leased from and pumped into the SR over one beat, respec-
tively, and viDn is the net total calcium entry into the cell
over one beat which can be positivesnegatived if the ex-
changer extrudes moreslessd calcium from the cell thanICa
brings into the cell.

B. Stability analysis

To make contact with the numerical stability boundaries
in Fig. 3, we study the stability of the fixed point of the
iterated map. The fixed point will be denoted bysA* ,x* ,y*d.
To begin, we exploit the fact that the total amount of calcium
inside the cell is approximately constant during steady-state
pacing. Hence, we can approximate the three-dimensional
s3Dd map fEqs. s12d–s14dg by a 2D map by assuming that
zn<z* , wherevizn;visxn+ynd is the total calcium in the cell
at time tn. This 2D map is given by Eqs.s12d and s13d with
Dn=T−An, Dn=0, andyn=z* −xn. A linear stability analysis
of this 2D map yields the eigenvalues

l± =
1

2
f− lv − lc ± Îslc − lvd2 + 4Cg, s15d

where we have defined the quantities

lv =
]F

]Dn
, s16d

lc = − 1 −
]sRn − Und

]xn
+

]sRn − Und
]yn

, s17d

C =
]sRn − Und

]Dn
S ]F

]yn
−

]F

]xn
D , s18d

which are evaluated at the fixed point of the map. Here,lv
and lc govern the degree of instability of the voltage and
calcium systems, respectively, whileC determines the sign
of the coupling between the two systems. Making APD
restitutions]F /]Dnd or the relationship between release and
SR loads]Rn/]ynd steeper by increasingt f andu in the ionic
model is equivalent to increasinglv and lc, respectively.
Graded release implies that]sRn−Und /]Dn is positive for
high pacing rates whereICa depends onDn, such that the
sign of C is governed by]F /]yn−]F /]xn where the latter
reflects the effect of the magnitude of the calcium transient
on APD via ICa and INaCa sFig. 2d. The periodic fixed point
undergoes a period-doubling bifurcation whenul−u=1 and
a Hopf bifurcation forslv−lcd2+4C,0 when the pair of
complex eigenvaluesl±=reisp±vd, with r =Îlclv−C and
tanv=Î−4C−slc−lvd2/ slc+lvd, crosses the unit circle
sr =1d. For the latter case, the beat-to-beat oscillations of
voltage and calcium are modulated with a period 2p /v. Ex-
amination of the eigenvectors forC,0 reveals that alternans
are discordant whenl− is real andlc.lv.

In Fig. 5 we plot the corresponding stability boundaries
for positive and negative coupling in theslc,lvd plane. We
find that the boundaries of stability are remarkably isomor-

phic to that obtained by simulations of the ionic model in the
su,t fd plane of Fig. 3. Note that we have not used explicit
functional forms for the map terms, but only exploited the
basic structure of the map given by Eqs.s12d–s14d, along
with the important assumption that total calcium is constant
from beat to beat. This agreement shows that the coupled
dynamics of voltage and calcium can be understood qualita-
tively in terms of the basic features of the system.

V. CONCLUSION

The numerical study of both the ionic model and the map
in the nonlinear regime reveals the existence of a rich dy-
namical behavior including higher order periodicitiess3:3,
4:4, etc.d as well as transitions to chaos mediated by a
period-doubling cascade or intermittency depending on the
parameters. Moreover, this model naturally contains memory
f21,23g due to the slow change of total calcium concentration
over several beats. Both of these aspects will be discussed in
more detail elsewhere.

In conclusion, we have outlined the essential three-
dimensional parameter space that controls dynamic instabil-
ity of membrane voltage coupled to calcium cycling, and we
have presented a theoretical framework in which to interpret
experiments beyond the limitations of the one-dimensional
restitution relationship. The main axes of this parameter
space are the degree of instability of the voltage and calcium
systems, and the sign of the coupling between the two sys-
tems, which is an important parameter to emerge from this
work. These results provide a starting point to explore the
role of calcium cycling in the spatiotemporal dynamics of
tissue scale phenomenon. For instance, it will be interesting
to see how the more complex single cell dynamics presented
here, influences the dynamics of spiral waves in tissue. Stud-
ies in this direction may shed light on the role of calcium
cycling on cardiac rhythm disorders.
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FIG. 5. Stability boundaries from the map analysis for positive
coupling C=0.1 with concordant alternans along the dashed line,
and negative couplingC=−0.1 ssolid lined, with concordant altern-
ans, discordant alternans, and quasiperiodicity along the segments
a-b,c-d, and b-c,respectively.
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