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Elasticity of smecticA elastomers
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We present a fully nonlinear model of the elasticity smegtietastomers, and compare our results with a
wide range of experimental observations: extreme Poisson ratios, the in-plane modulus, the modulus before
and after threshold to layer rotation in response to stretches along the layer normal, the threshold strain, the
characteristic, and singular rotation of layers after the threshold. We calculate the x-ray scattering from rotating
layers and compare with available data. The model is derived in two ways: from geometrical constraints
imposed by layers on a nematic elastomer, and from application of statistical mechanics to a microscopic
model of the effect of crosslink points confined in a corrugated potential.
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[. INTRODUCTION larger than underlying rubber’s shear moduli which them-
selves scale with the single(sheaf modulus u

Elastomers are crosslinked networks of polymer chains~10°-1(F Pa characterizing any isotropic state of the elas-
They are capable of huge distortions, hence their elasticity isomer. At relatively small strain on a rubbery scéte5 %)
nonlinear for both geometrical and material reasons. Theyhere is an instability which causes the layers to start rotating
are soft solids in the sense that their shear moduli are mucin order to relieve the stiff layer dilation deformation in favor
less than the bulk moduli whereupon they deform at esserof lower cost rubber distortions at constant layer spacing.
tially constant volume. This third source of nonlinearity This response is the rubbery equivalent of the classical insta-
makes still further inadequate any linear continuum picturebility to avoid layer dilation predicted and observed in liquid
of most rubber elastic phenomena. smectics by Clark and Mey¢R] and which has analogy to

We present a fully nonlinear, statistical mechanical theorythe Helfrich-Hurault instability found in liquid cholesterics.
of elasticity of particularly complex elastomers—smeetic- We shall call this the CMHH instability and return to it at
(Sm-A) rubbers. Such elastomers have 1D layering order susome length in Sec. lll A, Sec. Il E {where we give a
perimposed upon the nematic rubber elasticity of the undergeometrical explanatigrand in Sec. IV D. Section IV makes
lying matrix. Thus, the material is itself complex in that it is contact with experiment; we analyze the elastic response and
both rubbery(with the capacity for elastic nonlinearity men- the x-ray datd 1] but, unlike these authors, conclude that the
tioned abovgand has an internal degree of freedom, its nem{ayers rotate rather than melt. This is consistent with the fact
atic ordering director. Its nematic order is independently mothat smectic ordering is of the order of?limes more rigid
bile but also coupled to the solid matrix. This is possiblethan the rubbery scale. The rotation is seen both in x rays and
since a rubber is liquid-like at the local molecular level optically. When the smectic modulus is large, one can think
though it cannot flow in any macroscopic sense. The directoof smectic elastomers as being two-dimensional but where
can be induced to rotate by imposed strains. Indeed its mahe orientation of these two dimensions can be mobile.
tion can cause some special shape changes to occur at zeroAlthough chains are highly mobileSm-A elastomers can
energy cost. These have been observed over huge rangessofffer huge reversible deformationsghe above evidence
strain and have a characteristic, universal strain-angle depeshows that crosslinks, which create and define the rubbery
dence. We shall see strain-induced director motion but noolid, are strongly pinned by smectic layers. It is not possible
soft elasticity—the added constraint of the layers which areo stretch along the layer normal and have the crosslinks
coupled to the solid matrix and to the director make softglide through layers. The associated modulus is therefore not
trajectories impossible in S- A later paper will deal with  rubbery; it is rather that of the smectic layers. In Sec. V we
Sm-<C elastomers which can deform softly because of theircalculate from a molecular model the consequences of this
lower point symmetry. pinning: (i) the coupling between layer and matrix displace-

Experiment can give clear guidance for theory in the limitments characterized by the modulis first introduced in
of strong coupling between smectic order and the rubbery3], which we estimate(ii) the strict geometrical constraints
matrix. Stretching along the layer nornfalee Fig. 1&)] of  when deformations are imposed crosslinks must respect the
an elastomer with strong smectic effe¢id initially has a  layer positions and hence the matrix must sense layer spac-
higher associated modulus, comparable to the smectic layégs; (i ) the layer normal and the director are rigidly iden-
modulus B~ 10'-10° Pa observed in liquid Sm: This is tified with each other.
significantly less than the bulk modulus of rubber and hence The second example of a constrained response is stretch-
distortions still have constant volume. Thus the Poissoring in one direction in the plane, see Figb)L Contraction is
ratios are initially (1/2,1/2 associated with volume- only in the perpendicular direction in the plane and not at all
conserving contractions in the essentially fluidibbery along the layer normal. Hence for small deformations where
smectic planes. On the other harl,is almost 16 times  the Poisson ratios are defined, they take the extreme values
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FIG. 1. Imposed deformatioria) stretching parallel to the layer normély) stretching perpendicular to the layer norm{a); shearing the
layers in their plane; an¢l) shear out of the planes.

(1, 0 as is known from the remarkable experiments of theformations[10]. We retain the essential ideas of nematic rub-
Finkelmann groug1,4]. Analogous response continues into ber elasticity but take account also of the rigid constraints
the nonlinear regime and the associated modulus is rubbergdded in by coupling to the smectic layers. We thus follow
Whether deformations are large or small, we essentially havihe strategy of earlier continuum approaches, in particular
a 2D rubber when smectic-matrix coupling is strong. that of[7] which gives molecular estimates of linear moduli
The third and fourth deformations we shall consider areand also discusses relative rotations in the smectic context.
imposed shears,, and \,,, Figs. Xc) and Xd), wherezis  Here however we suppress the freedom of layers and the
the layer normal and a direction in the smectic planes. nematic director to relatively rotate. Our rigidly coupled
These two shears have very different effects on the layesmectic layers have the director rigidly identified with the
orientation and spacing. We conclude Sec. Il with a generalayer normal(b, — c in the notation of 7]). Thus, there will
decomposition of deformations into components that are difbe no partial renormalization of the shear modulus that
ferentiated in their effect on the layer normal. would otherwise lead to soft elasticity in a nematic system
([7] discusses the smectic effects on this renormalization
We defer(to Sec. VJ a molecular model that shows how
Il. LARGE STRAIN MODEL OF SMECTIC- A chains strongly coupled to the layer system generate the rigid
ELASTOMERS constraints we study in this section.

Linear continuum models, using symmetrized strain ten-
sors, for smectic elastomers were developed many years ago A. Layer constraints and smectic energy
[3,5-7]. They can offer guidance, for instance through the . .
use of group-theoretical analysis of terms permitted in their If. layers are rigidly embeddeq in the network,.then defor-
invariant free energy. However, such theories suffer the esmatlons)é W'” induce I.ayer spacing changes, which We now
sential limitations of linearity mentioned above. Nonlinearc""lwl‘f’lte n a fraf“e mdependent form, in order to find the
elasticity using nonlinear symmetrized strain tensors can b ssociated smectlc_en_ergyoportlonal to the layer modulus
also be developedld]. One then expands the free energy )- Any mate_rlal point in the Iaye_r deforms a&s- ) -x. Any .
phenomenologically, say to quartic order. This is sufficient™° perpendicular unit vectors in the plarle of the smectic
for many purposes, for instance to govern instabilities thalayer,k andm say, deﬁne the layer normap=k X m. Since
arise at quadratic order. he vectors deform W_|th the plane, the cross product of the

We shall retain Cauchy deformation gradient tensors deformed vectors defines the new nornmal,
that directly show the shape change of the body and retain
information (because they are not symmetrized any rota- = (A -K) X (A -m)
tions of the reference space. It is convenient to record shape |(A k) X (A -m)|
changes of a reference space considaftat any phase tran-
sitions(with, e.g., spontaneous elongatianight have taken
place. These are the as-imposed shape chafiglesre are,
however, deep theoretical reasons that are the basis of sqﬁ
elasticity [8,9] for taking deformations with respect to the
body before symmetry breaking, see aJ4@] for an over- i -
view.) Recording rotations is also useful since they can be €apphail gj = NiepEijk = Nk Eijic- (2)
with respect to internal degrees of freedom, for instance the
director. Such relative rotations enter the nematic rubbeWe denote byA™T the transpose of the inverse pffi.e., the
elastic free energy, see for instance a continuum exampleofactor tensor, since D@f)=1]. Substituting Eq.(2) into
[11] and are also central to nematic elastomers at large dehe cross products in above and setting X m=n, gives

1)

as illustrated in Fig. 2.
Writing Det()) € = €,5,MaiNgjA ko USING Deth)=1, and
ultiplying from the right by(A™)y,, yields
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FIG. 2. The normal to the layer deforms when the vectors in the layer deform according Xox.
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Layer normals thus deform accordingXo'.

I=r-nn"+34. (8)

The order is characterized by an ordering directigriwhich
becomes) and a shape anisotropy of the chain shape distri-

We can calculate the spacing between two planes in thBUtion
deformed smectic elastomer. Consider the material paints — —
r=€,/¢, =(ROKR?). 9
andx+dgng in two adjacent planes. These transform inta L <R'2>< Y ©
and A -x+dg) -ng, respectively. Resolving along the new This single parameter is the ratio of the effective step lengths
layer normal the difference between these two deformegbarallel (¢;) and perpendiculat¢ ) to the director, them-

points gives the new layer spacing

-T

A en
d=dg(A - np) N =do(A - Ng) - |;-T n0|’
A +Ng
1
dldy= ———. 4
° |7=\_T'”o| @

Concrete examples are easy to evaluate sikceny| arose
from the normalizatior|(A-k) X (A-m)| in Eq. (1). Taking
k=x andm=y, and henceny=z, then

d_ 1 . il
do lephichiyl

©)

- | €Nyl

expressions we shall repeatedly use. The cross product e
pression that produces the new layer normal can be thoug
of geometrically as calculating the distance along the norm
between two planes, or as calculating the area of the plane
which relates to the physical constraint of constant volume.

B. Rubber elastic free energy

Smectic rubbers are capable of large, reversible sha
changes, presumably because their chains are still Gaussi
and highly mobile. Additionally the smectic has the sponta-
neous uniaxial orientational order of a nematic. Hence wél

p

selves related to the mean square chain dimensions in these
directions. One can measurdy neutron scattering directly,
or deduce it from thermal expansion measurements on going
from the isotropic to nematic/smectic states. Values ludve
been observed between 1.05-60 according to chain type in
the prolate case; oblate chains hawvel. Smectic elastomer
thermal expansiongl] suggest prolate chains with~2, an
illustrative value we shall adopt in this paper. The trace for-
mula describes a wide range of complex, nonlinear phenom-
ena in nematic elastomers including large thermal expan-
sions, singular director rotations and plateaux in stress-strain
relations over wide ranges and geometries of strain. We shall
assume that applied strains do not change the magnitude of
the nematic order, at most affecting its direction. This is a
ood assumption if we are far from the nematic-isotropic
ansition. The free energ§f) is rederived in Sec. V in the
focess of describing the smectic constraints.

IIl. RESPONSE OF A SMECTIC A ELASTOMER TO
IMPOSED STRAIN

We impose one component Rf(identified as a without
%uffixes) as in Fig. 1 and calculate the relaxation of the other
gﬂmponents—that is shape changes and rotation of the layers
and hence also of the solid. One also obtains the stress re-
uired to impose\. The free energy densitjwith the re-

expect, approximately, to have a nematic elastomer for thguced layer compression modulos B/ .)

underlying matrix, with the stringent constraints of layers
explored above. Describing shape changebgn appropri-

ate free energy density is given by the trace fornd@]

1
fa=5n T Lo AT-17, (©®)

wherel, is the shape tensor describing the distribution o
chain conformations before deformatidndescribes that af-

terward

lo=(r=Dnen' + 4, )

1
F=SpTr-lo AT I +b(didy =% (10
is minimized subject to volume conservation Dgt1 and
where the relative layer spacing change and the new director
are given by Eqs(3) and (4). The last two conditions arise

from the affine deformation of the layer system with the

strain, which we prove in Sec. V. The reduced layer modulus
can be large but presumably vanishes as one approaches the
Sm-A—-nematic transition where also the affine layer defor-
mation assumption would become invalid.
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FIG. 4. Nominal stress for a smectic elastomer stretched parallel

FIG. 3. Deformation tensor components for an impoksgdor )
to the layer normal, withh=2 andb=5.

b=5 andr=2. The sheah,, relaxes to an asymptote of {, for
largeAz. shown in Fig. 3. There is a critical, threshold value of the
elongation\ =\, when the layer rotation starts to occur. The
The specific forms given for the layer spacing and directhreshold will be shown to be a material property depending
tor are for the choiceny=2z initially, as depicted in Fig. 1, only uponb andr. The rather large threshold chosen for
which is useful for illustration; the coordinate-free forms jllustration arises from the small relative modulbsthat has

given are of complete generality. been adopted. The threshold is to a uniform sfgteen by
. Eg. (11)], see the sketch included in Fig. 4, and hence even
A. Imposed strain A, - ; . .
exists independently of clamp constraints and microstructure
In this case, Fig. (), the deformation tensor which arise in practical cases, see Sec. IV D. Thus Frank
N 0 0 elasticity has not yet been invoked for the threshold and will
> turn out to be largely irrelevant.

A={ 0 Ay O (12) Shear,, starts with a singular edge at the threshold and

Ax O X the transverse contraction,, thereafter remains constant.

I for the shean hich i | ) f The accompanying stress also divides into two distinct re-
aflows for the s €ah,, Which IS an qternatwe means o gimes with a much higher modulus before than after the
increasing thez-dimension of the solid by layer rotation transition, see Fig. 4. The layer rotation, given iy Eq
rather than layer dilation. This is the CMHH mechanism for(l4) has ’the same. sir.1gular edge and is ;;Iotted agaiﬁﬂi
_elongatlon along the layer normal in smectics. The shear Fig. 5 which also compares the calculated variation of
in the presence of a-force .Of extension would 'ea‘?' ©  orientation of the director with strain from the experiment of
torques and is not observed in smectics elastoffigrer in Nishikawa and Finkelmanfl]. The geometric reason why
the analogous nematic elastomer geometries that involve S{cheap shear does not immediately start, but only onsets
multaneous director rotation and shdd2]. The volume after a threshold, is explained in Sec. IIl E 1.

constraint, layer spacing change, and director become, re- Analytically, the solution to this model splits into two

spectively, parts: before and after the discontinuity. Before the layers
1=\, (12 50 — : . . — T
— i ,—5"6/0’ ’ i
didy = LN N +22), (13) w0l - |
)\ A I - 1
n:(_ / 2Zx 207 2XX 2) (9 30 .
V)\xx"' )‘zx v )\ + A <
o 7
The free energy density is then ol |
1 A2 + A2 )2 -/
f:_l"“[)‘ix"' 2 2+)‘§x+% /
2 )‘xx)‘ )\xx + )‘zx 10 4 N
+ (M VA2 + 22 — 1)2} , (15) S O R
0 0.1 0.2 0.3 04 0.5 0.6

. . €
where volume conservation eliminateg,.
Minimizing the free energy fixes the relaxing components FIG. 5. Comparison of the calculated orientation of the director

of the deformation tensor for a particularvalue; they are (dotted ling with the experimental points ¢fL] (circular points.
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start to rotate\,,=0. The free energy density is given by sing =1 - (\o/\)2, (24)
1 . . e .
f= —,u()\ix+ 7 + N2+ b(\ - 1)2>, (16)  which has the singular edge and distinctive form shown in
2 Ao Fig. 5 and in experiment.
and has a minimum wheiZ,=\7 =1/\. Thus before the Settingp=1/VA, in Eq. (21) gives a cubic equation for

layers start to rotate the two perpendicular directions arévr
equivalent and the material has Poisson raf%n.%) in the 3 5
(x,y) directions. The free energy and the nominal stress, Ae(r=b=1) +bAg +1=0. (25

Onom=0f10\, are . _ _
To obtain a threshold at all we requibe>r—1. Below this

_} Z 5 2 reduced layer modulus there is no instability—Ilayer dilation
f= '“( *AT+b(A 1) ) (17 is not significantly more costly than matrix distortion and it
is no longer avoided by the intercession of an instability.
1 Instead of solving Eq(25) analytically, it is more useful
(rnom:uK)\— —2> +b(\ - l)] (18) to analyze it in the physically important lardelimit. The
first few terms in an expansion yield the variation of critical
Layer rotation starts ak. Numerically it is clear that —extension with layer modulus
Ayy=1/\\ is a constant. With this assumptigto be con-

firmed below after the transition, volume conservation then N +£ (-3 1 10 1 26
requiresh,= Ao/ \. If deformations were small, then one o b r(r )b2 b3/ (26)
could say that the material now has Poisson rafig6), to
which we retum when comparing with experiment. The choice ofr andb in Figs. 3 and 4 is clearly outside the
_ If we minimize the free energy w.r.h;, then, after some  asymptotic realm of Eq(26) but allows for an exaggerated
simplification, we obtain the condition clarity in Fig. 3.
(r = DA X A\A The threshold behavior shown here occurs even for very
0=1+ r 5 2“2 ( \‘2 sz T cr 5 2)_ small values oB down to(r—21)u. This is because the way
(\er ¥ AZA9) e FAZA)TE (N A0 in which the director deforms with the matrix has been im-

(19) posed. Physically this is correct for lar§e As B is reduced

this constraint will become less rigidly enforced and the

The shean,, only appears in the following combination  crosslinks will be able to move through one layer to the next.
Thus the threshold behavior predicted for very sniailal-

p2= N2+ )‘_Czr (20) ues(~ w) is unlikely to be correct in practice. Except close to
A the SmA-N transition, experimentally one deals with large
values ofB.

which is a function only of =1, b and\,, that isp(r,b,\,),

and obeys the equation All components of induced deformation and the rotation

of layers depend solely ofthe impose@i\ and (the observ-
0=p*+(r— Drg + b(P\*")\Tr— Aoy (21) able )‘Pf’ not in any §eparate or Qetailed way on the smectic
potentialb or the anisotropy. This very tightly constrains
p is not a function of\ and thus it can be fixed at any theory since there are no free parameters and requires all
convenient value ok. For instance at the critical extension rotation-strain and relaxation-strain relations, H@2)—(24),
Aer, We havel,,=0 and hence=1/V\. The induced shear to be universal for all systems.

derives from putting thig into Eq. (20). The contractions To calculate the stress, we substitiitg back into the free
and shears after the instability are then energy and obtain the closed form
N N
M= VAN, Ny = 1WA, (22 1 (2 , . ,
f= PYa N FAGHIN =N + b= D). (27)
1 Ay “
A=\~ 3- (23 .
N A From Egs.(17) and(27) the nominal stresses, are
The shear displays the singular edge seen in Fig. 3. Both CAn2 B
signs of shear give the same dilation al@ef constant layer o= {'“()‘ A +B( - 1), A< er (28)
spacing. Both shears, and indeed all directions perpendicular MIN, N> N

to z (not justx), are required in a description of any induced

microstructurg(see Sec. IV C where this issue arises experiNote that the continuity of the nominal stress wittcan be

mentally). used to derive Eq(25). From this result it is clear that the
The director(and thus layerrotation can be derived from ratio of the two slopes is related q,, which provides an-

the explicit expressiofil4) for n. For instance the first com- other stringent constraint on theory. Thus for lalgee can

ponent gives calculate the two slopes and obtain
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r A
E"zxcr—l. (29) 0=\ sin¢<cos¢—f) X ()\Z(r—l—b)cos’-q';
. : . A 1
Experimentally one could obtain from stretching the rub- - 5C0sp—- — (33
ber in the layers, and thus obtain the anisotropy of the poly- Aer Ner

mers,r. The largeB/ u expression Eq(29) for the threshold  o\6\ided that Eq(25) is obeyed. Thus our solutiof com-
strain essentially agrees with the result of Weilepp and Brangl;,ation of the first and second factpisas a minimum. The

[6] if one neglects Frank effects. These authors, and we ifyirg factor is real only if\2b<-3/4 and therefore never
r?levant; thus the minimum was unique.

Sec. IV D, show that Frank elasticity has a small effect on
the threshold strain but does influence the length scales o
the subsequent microstructure. Referef@ldgnores the an-

isotropy of the underlying nematic network and thus the fac- B. Imposed A,

tor r is absent from their expression. We consider the deformation gradient matrix
The layer spacing of the system as a function of the im-
posed stretch is N0 A\,
A={0 Ny O | (39
E = 1 —_ )\)\XX (30) 0 O )\ZZ

%o )‘YV\'/)‘>2<X+ N VMot Ny Volume conservation is simply expressed by

Before layer rotation starts,,=0 and so the layer spacing 1=\, (35

increases asl/dy=\. After layer rotation starts we have, o ) )

from the same expressiod/dy=\.,; layer spacing remains bgcause the maitrix is upper triangular. The layer spacing and

fixed. The only cost in deforming the system is that of sheardirector are now given byd/dy=1/(\,yA) andn=(0,0, 1.

ing the rubber. This is because, as the layers rotate, the corffituitively such imposed extensions should not rotate the

ponent of the force along the layers remains constant. Futdyers since a cheap, volume-conserving response is simply

thermore, because shedas opposed to extension and tO contract ann'g/ .Ieavmg the more expen5|\zad|men§|on

contraction along principal directiongvolves the chain an- unchanged. This is one reason why we have not included

isotropy and it is the cost of this shear that is to be compare@n€ariz since from the form of the new directdtayer

with that of layer dilation, we can understand thdas well ~ hormal, Eq.(14), itis precisely this shear that induces layer

as the relative modululs) enters the expression fa,. rotation. Moreover, this shear also introduces torques from
We check that there are no other solutions by writing thethe change of shape in the presence ofxaromponent of

free energy as a function of the two variableg and tang  force which tends to eliminate the distortion. The conclusion
=—\,J/ Ay and without making any assumptions aboutOf this section is also that the other component of shear van-

A(=1/AN) ishes too, which we confirm directly.
%% X . X .
The deformation tensor substituted into the free energy,
and the volume conservation constraint eliminatig re-

1 1 :
f= E,u{)\iﬁ NI N2 tarf ¢+ (COZ ¢+ Sirf p)\? sults in
: f—1 N2, + N2 + N2+ ! +b(i—l>2 (36)
+b(\ cos¢ - 1)2]. (31) Tof |t e AAZ T A '
The shear only appears once, hence minimization yields
Minimizing with respect to\,, we obtain Az=0. Minimization of this free energy with respect xg,
gives
1 4 —
0= 2>\XX<1 -y Htarf ¢> (32) NNy~ 1=b(1 =M. (37
XX

From this equation it is clear that the limits of small and
large b correspond to\,,=1/\ (with \,,=1) and Ay =\,,
=1/y\, respectively. The material with a smadllvalue is
still a SmA in the sense that the director is constrained to lie
along the layer normal. To calculate the Poisson ratios from
this expression we make the small strain expansions

with solutions)\ixzo, +(cos¢)/N. The only physical solu-
tion is )\fx= cos¢/\. Minimizing the free energy with respect
to ¢ and substituting fon,, yields

sing¢ . .
:mﬂ\z(r - 1)sin ¢ cos¢ — ba(\ sin ¢ cos¢ Ay=1+e, (39)
~sing) AN=1+o, (39)
which can be factorized when to first order inw ande, Eq. (37) becomes
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4e+2w+b(e+ w)=0. (40)

The Poisson ratio in thedirection, v, =—€/ o, and that in the
layer direction,v, are

_2+b 2
T4+b 7T 4+b

vy (41)
The crossover from Poisson ratio$z,y)=(0,1) to
(1/2, 1/2 is thus relatively slow. However, it is clear that -
for b~60, as found1] in some experimental samples, the e Ay
material is firmly in the(0,1) class. - Ay, T

For large b where layer relaxation is suppresséx,, \ . ‘ ‘ ]
—1), the elastomer is like a classical 2D rubber. Since there 0 1 2 3 4
is no director rotationy does not enter. The free energy A
density(36) reduces to

FIG. 6. Relaxing components of the deformation tensor on im-

1 1 ing\y f bber withb=5,r=3.
f= E’“{)\z + )\sy - EM{)\2 +1N2 (42) posing\,, for a rubber wi r
as a consequence of higher layer stiffness and volume con- M 00
servation. The Young’s modulus derived from H42) is A=l 0 Ay O | (47
E, =f/9\?,=;=4u, rather than the valuep3that obtains X 0 \
Y4

for a 3D rubber. Dimensional constraints have increased the _ _
modulus. However this must remain an upper boundEgn It is lower triangular. Allowing a\,, component causes the

for reasons we discuss in Sec. |V B. elastomer to simply rotate 90° and experience an effectively
pure\,, deformation. The director and volume conservation
C. ImposedA,, are given by
Consider the deformation gradient matrix

n=——(-\,0,\), (48)

Mx O A N2+ 7\)20( %)

A=[ 0 X\, O] (43
0 0 A\, 1= oMy (49

We suppresa,, since typically the application of,, is with ~ On eliminating\,, by volume conservation, the free energy
plates that constrain the sample. Again, volume conservatiodensity is

is simply expressed b
ply exp y 1 A2 (N2 +1\?)
_ f:_ )\2+ +)\2+r)\2+¢
1 =Ny N2z (44) o[ Mxx )2(X gz 2z )\>2<x+ N2
We eliminate\,, by using the volume conservation con- 2
. . . Ao\
straint. The resulting free energy is b( Xx"zz 1) ] (50)
2 2 !
VAT A

f= §M<)\>2<x+ NZN2 Ao+ N2+ (N, 1)2>' (45 \which can be numerically minimized using the simplex al-
oo gorithm. A typical solution is illustrated in Fig. 6. Figure 7

The sheara and\,,do not couple and so the imposed shearshows the corresponding layer spacing change for imposed
cannot affecth,, Minimizing over \,, and \,, yields \,,  \,,. In this deformation we are thus effectively compressing
=\x=1 and the free energy density becomes the layers. Even for very lardg the layer spacing eventually
1 yields and begins to decrease.
f:5M3+m%. (46)
The result is for simple shear in a nematic elastomer with E. General decomposition of shear
unrotating director. The anisotropy enters in the classical Deformations can be decomposed into a minimal set of
way—for larger the effective modulus u becomes large three component deformations, an impoagd \,,, andX,,
because chains extend across several shear planes. Thigs a rotation. The choice is natural sincg by itself can
modulus is identical to that obtained after the instability ondescribe a layer compression or extensing, along with
stretching along the layer normal, E8), because then constancy of volume can describe shape changes of the

deformation is largely via shears in the rotated planes. smectic layers and,, describes out of plane shears at con-
stant layer spacing. We return shortly to the significance of
D. Imposed A,y the latter when we explain how the threshold to instability

Consider imposing the deformation in Figdl under imposed,, arises.
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1 T T T T a 0 0
1
0.8 . A= 0 — 0|, (54)
I ] - ap
| N0 B
- where
T 0ar i s Ao Aok
a=\\2 -\? pB= 7 ;X 222, = /XX Xzz.
021+ V)\XX_ A 1+ )\xz
- . Since the deformatiofb4) is now of the same form as our
0 Y S P A simple starting point Eq47), the free energy is then of the
0 ! 2 A 3 4 > same form as Eq50) and we have the decomposition of the
= mode. This decomposition is significant because it shows
FIG. 7. Relative layer spacing change on imposipgfor the  that there are only three different deformations that the
rubber of Fig. 6. sample can undergo once we have removed a trivial rotation.
This is dramatically different from the case of nematic elas-

As an example we decompose thg deformation. It is tomers.

nontrivial since, as we have seen this shear induces a layer

; . - 1. The geometrical basis of the CMHH instability
compression. It is broken up into

If shears are cheaper than layer dilations by a factor of
A=W-D, (51 1/b=w/B why is there a threshold at all for the CMHH
= = = deformations in response to an imposggP At first sight Eq.
(11) and Fig. 4 would seem to suggest that there is simply a
N\, Shear after the instability. In this frame, this is indeed true
but it is clearly accompanied by other distortions required to
keep the layer spacing constdsee the insets in Fig.)4A
w={ 0 1 O A,y Shear alone causes the layer spacing to contract.
-siny 0 cosy A decomposition can be performed on the imposed
deformation. In this case we start from E(?2) and set
tany=-\,, We can then identifyA=\,,/1+\2, This de-

where rotation and deformation of the solid matrix are

cosy 0 siny

A O 0 composition gives a geometric reason for the threshold. Sup-
1 0 Ay 1 pose that the elastomer deforms with only Xgecomponent.
D=|01 0 0 N 0 _ The free energy density is then
oo 1/l , f,,=3B(\ - 12 (55)
Az Alternatively the sample could deform by a shagy, which

leaves the layer spacing unchanged, and then rotate to ac-

The layer stretch and in-plane deformation is followed by acomplish the same.,, value. In this case the free energy
Ay, shear, which is then followed by a rotation. Overall, the gensity is

deformation gradient tensor is thus

fyz= %,u,r)\)z(zz %/ﬂ()\z -1). (56)

Mx€OSY 0 NzdAyCOSY+siny) Comparing these two energies for smaherex=1+¢, we

\ = 0 1 0 find thatf ,,~ 2Be?< f,,~ ure, provided thae<2ur/B. The
=" Mo\ sz ' latter energy is first order rather than second order in the

strain and explains why it is so costly and unphysigals
second order finally where it intercedes afigy. This de-
(52 composition also shows that an imposedis equivalent to
an imposed,, deformation plus a rotation andiaedstretch
along the layer normal such thatdy=A,). The decomposi-
: tion explains why the modulus of the sample after the thresh-
AT Ny = (sm 7'0'0037) . (siny,0,cosy), (53 oldis the same as that for an imposed deformation.

)\ZZ zz

“MxSiny 0 A, [{cOoSy—\,,Sinvy)

From this deformation we can calculate the director

) . . . . IV. COMPARISON WITH EXPERIMENT
where the final expression is the normalized director. The

rotation required to reduce this deformation to the form of an Three different types of experiments have yielded infor-
imposed\,, deformation is tary=-\,, which is what elimi-  mation on the response of Sfelastomers—strain response,
nates the upper right element »f Then, stress—strain, and rotation—strain measurements. We calculate
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detailed results in all these areas and now compare with the 150 ; ; L

relevant experiments of Nishikawa and FinkelmaN#] [1], i 00,0, ogrosa?@"®
not only the functional forms of responses but also the inter- 125 O_o_m%ﬁ,-o-om%"g"" ° .
connections between the physical variables entering our de i joo t

scription, that is layer and shear modBliand u, chain an- 100 |- . .

isotropyr, and threshold straink.,. We focus here on the two
strains imposed by NR,,, and\,,. 751
Our theory is not relevant to weakly coupled smectic elas- ¢+
tomers where there is no elastic signature of the smectico 50}~ ¢ _
layer system[13]. Such elastomers are apparently well- / 1
described by isotropic rubber elasticity as is appropriate fora 51
nematic elastic matrix where the director cannot rotaie ¢
axial strains in the layer planes were examined 0
I

(kPa)

/ . ! . ! . ! . ! .
.00 1.05 1.10 1.15 1.20 1.25
A

z7Z

A. Strain response

The Poisson ratio is a measure of transverse strain re- FIG. 8. Stress against imposed deformatiog - solid line
sponse at small strains. For imposkg, the experimental theqry, points are dgta of RdfL]. Crossover occurs at a threshold
response is isotropic and volume preserving, Poisson ratiggrain of 4% as in Fig. S.

(1/2,1/2, until the layer instability is reached. Thereafter,

the transverse relaxation is apparerilyA2, 1/x1?) froma  layer spacing change as expected from the transition from a
close inspection of the snapshot of large strain given in Figstandard SmA. Applied strain),, in one in-plane direction

4 of NF. The authors do not give a functional dependence bugould extend the correlation in S@-ordering and direct it
the figure rules out the predicted monodomain post-threshol@long the strain, allowing the rubber to extend alongt
response Eq(22) which, if strains were small would corre- lower energy cost thanp4 Tests of this type of response
spond to Poisson rati@4,0). This discrepancy is not surpris- would be: (i) The observation of in-plane induced optical
ing given that there is clearly not a monodomain aftgr  birefringence. While an untilting director remains anchored
We return to this question in our analysis of layer rotationalong the layer normal, the response should be that of a
and x-ray experiments. classical elastomer where stress induces very small birefrin-

Imposed in-plane stretches,, give predicted Poisson gence compared with that in any liquid crystal system. In
ratios comparison a de Vries elastomer would have a huge birefrin-

gence responsdii) The ratio Ee/E, is predicted to be
(ny) = (Z_J’b 2 ) ruldu=r/4. Departures from this ratio could be due to a

v 4+b'4+b low E, because of de Vries. However to some extent de
. . . Vries should also intervene B¢, SiNCe there is an element
Experimentally NF give(1,0) corresponding th>1. These ¢ iy hjane stretch in the now rotated planes. The balance
Poisson ratios agree with the stress results that show thghy een the intervention of de Vries effects in the two
smectic order is much more rigid than rubber elastic effects,, 4 /ii'is not trivial since the component of stretch in-plane

and the degree of shear acting both change with strain be-
B. Stress yond the threshold for thE g, case.

Figure 8 shows that nominal stress-stréi-1) data of

NF for imposed\ =\, along the initial layer normal direc- . .
) I C. Layer rotation and x-ray scatterin

tion. It is fitted to Eq.(28). From the data one can deduce y I ahied "9
that the ratio of the slopes is 4<110°2. We predict in Eq. Layer rotation against strain starts in a singular manner at

(28) this ratio should beur/B=r/b whereuponb=r/4.1  a threshold\ both in theory, Eq.(24), and in an Xx-ray
X 1072>1 is evidently large. In the limit of such smectic determination of layer orientation, Fig. 5. Agreement with
moduli, Eq.(29) predicts the direct connectionb=\,-1  ¢(\) is good, but a major problem of interpretation remains.
for the threshold giving here,=\.,—1=~4% which is ex- As strain increases, the x-ray intensity associated with the
tremely close to that observed in Fig. 8. rotating layer lines diminishes sharply. NF proposed that
In-plane stress and moduli in response to imposgd abovel. a diminishing fraction of the sample rotates while
were not reported by NF. The in-plane Young's modufls, ~ an increasing fraction melts to a nematic state. On energetic
is known from other work to comparable to the postthresholdyrounds this appears unlikely since the smectic energy scale
modulus,E,¢q, say. The in-plane Young's modulus was cal- is high compared with the rubber elastic scale. The entropy
culated in Sec. Il B. change found by NF for the smectic-isotropic phase transi-
Many SmA elastomers that have been investigated ardion wasAS=2.4x102JK™*g™. Thus the cost for melting
suspected to be de Vries phases, that is where there is incigit 300 K for a sample with density~1 gcni® is TASp
ent SmC ordering. This tilt is not long ranged in its order. ~7.2x 10° J m 3. To pay the cost of melting, an energy den-
The signature of this local order is that the transition to thesity of %B(Acr— 1)2~8x10* J/n? is available and is clearly
Sm-C state with long ranged order is not accompanied by aather small.
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FIG. 9. The x-ray scattering
setup. Layer normals are initially
along the stretch direction The
incoming beam is scattered
through an angle 2 having been
incident at an anglg. The final
Kk q, beam is detected on an image
- plate behind, on which a circle of
E.‘ A, spots is dotted for the cases where
\ layers are rotated through angle
The scattering vectok is along

K y the layer normal and for Bragg
! scattering matches the layer vec-
z tor, initially qp.

A more direct explanation than melting is that layers ro-which includesk, k;, ks, and g, also rotates by» and the

tate their normals towards all directions perpendicular to théayer spot rotates on the image plate to the position indicated

stretch along the original layer norm@}. Section Il A cal-
culates the contraction and shear in thdirection perpen-
dicular to original layer normat [Eqgs.(22) and(23)] and the

by ¢. Planes performing this rotation retain a satisfiable
Bragg condition and are those seen in experiment. Polydo-
main layer normal arrangements would have planes with nor-

rotation of the normal towarat [Eq. (24)], but no direction  majs forming anglep with the z axis but randomly distrib-
perpendicular to the original director is privilegéth con-  ted in their azimuthal angle aboutz, the circle in Fig. 10
trast to stripe formation in nematic elastomerd/e must \yhich gives the sphere of radilsg|=27/d, where the layer

consider all other axes perpendiculamig This breakup of  yectorsq can sit. Only those planes withcathat matches a
the sample into a microstructure of regions of tilted doma|n§< in the (y,2) plane to within their natural angular width,

IS cylindrically symmetric around the stretch axis. The re- an contribute to the scattering. In Fig. 10 a plane vector and
gions that are tilted toward the x-ray beam no longer meeﬁ

the Bragg condition for diffraction, and as a result do not'> Qza_tural width are shown. ts angiefor this d) Is clearly
ufficiently large enough to remove overlap with the scatter-

contribute intensity to the observed scattered beam. We su% : .
g vector. The contributory fraction of the plane normals

gest that the drop in x-ray intensity is simply a result of "2 T - .
polydomain formation. Additionally, the overall Poisson ra- fapidly diminishes ag initially increases. The angular sepa-

tios observed in the two, now equivalent directions perpentation, 8, of k and theq at « is sin(6/2)=sin ¢ sin(a/2).
dicular to the original layer normal afé, ) rather than the ~Only sets of planes witly such that theira angles give a
monodomain valueél,0). separations< 6,/2 from k will contribute to the scattering.
A small angle setup is sketched in Fig. 9. Scattering in NFThe critical azimuthal separatiom, is given by

is through an angle @ where 2~3°. For the shown in-
coming and final beamsk; and k;, the scattering vector
k=k¢=k; is along the layer normal. Under these circum-
stances one can satisfy the Bragg condition:

4mwsing 2w

=—, 7
~ o (57)

k=qo—

where), is the x-ray wavelength and, the layer spacing.
This fixes the angle 2 The sketched setup is not quite that
of NF since they direct the incident beam perpendicular to
the sample, i.e., along theaxis. This means th& is mis-
aligned from the layer vectog, and hence also from the
Bragg condition by an anglé. Line visibility before stretch-
ing occurred suggests that the intrinsic width of the lines is
of order 6 or more. Sincef is rather small, we continue
analyzing Fig. 9 rather than that of NF. FIG. 10. The spherical shell of layer vectarsThose with angle

Consider planes rotated clockwise gyaboutx so that ¢ sit on a circle centered about the initial layer normgl A g
their normals remain in théy, ) plane and make an ang#e  vector is at angle with respect to a scattering vectorin the (y, 2)
with the stretch directio. Clearly then the scattering plane plane.
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FIG. 12. The microstructure of a sample loaded past the thresh-
n old stress. Stripegdotted of width h are shown coarsened, the
layer normals being at¢ with respect to the extension axis,

0.25

.00 ; ' . ' . L : ' . . e .
0.0 0 10 20 30 40 50 the quasiconvexification of nematic elastomer response by

¢ the creation of polydomaingl4]. The effect of having a
distribution of g vectors with randonw on the large angle
scatteringland hence on the perceived nematic order param-
eten is more complicated and we return to that elsewhere.

FIG. 11. The experimental datg@D) of [1]. The solid curve
corresponds to 0.3/si# which ignores the intrinsic width of layer
lines; the dashed curve (8/)sin™(0.1045/sing) which accounts

for linewidth. . .
D. Microstructure after the CMHH transition

sin(ag/2) = sin(8/2)/sin ¢, (58) When elongation along the layer norma), becomes too
costly we have seen that layers rotate instead of dilating fur-

that is, plane normals in the intervabz<<a<<a, will have  ther(Fig. 4. However, the sample must be clamped in order
lines overlapping withk and thus contribute to the x-ray to apply az-extensional force and thus the rotation cannot
intensity. As¢— 0, the circle ofq at ¢ is so small that all occur uniformly throughout the sample. It must vanistz at
planes irrespective of their positienon the circle contribute =0 andz=L,, that is at the clamps, and must vary in the
to the scattering. This is clearly whef= 5./2 and indeed the direction between the valuesgt Eq. (24), sufficiently rap-
condition (58) gives sina./2=1 or a.=7 and all domains idly that large layer translations are not built up which would

contribute. The intensity foy> &,/2 is then then cost large elastic energies to satisfy the clamp con-
) straints, see Fig. 12. On the other hand, very xagariation
2 2 . _[sin(6/2) between 1 leads to a high Frank elastic energy cost. The
(@) =lg— =lg—sin{ ——— |, (59 . X
2 sing resultingx-length scale and overall energy cost arises from

optimizing the sum of these two energies. Microstructure
where the first factor stresses that a fractiag/27 of all development in layered systems with disparate moduli is a
possible sets of planes contributes. The sharp switch from thglassic problem in liquid§2]. It also occurs in thermoplastic
I(¢) above to the saturated valigfor $<5./2 is a conse- elastomers and in a wide variety of other layered materials

quence of our artificial assumption that planes either overlap15]. Here we give a short analysis to produce a first esti-
with the detector or not, rather than gradually losing theirmate.

overlap. The intensity variatioh(¢)/1, is shown in Fig. 11. Length scales emerge naturally from layer and matrix
There is qualitative agreement with the NF experimentaklastic moduliB andu competing with Frank elastic energies
points that are shown. which, for simplicity, we represent by a single constant

Several problems comparing with data arise.Ikip) plot ~ One obtains geometric quotients from Euler-Lagrange analy-
was directly available to us: the data were abstracted fromsis: £=+\'«x/u~ 108 m for the nematic penetration depth. It is
¢(e) andl(e) plots given by NF. The first data point feb  a measure of how deeply a director variation can penetrate
# 0 carries the highest burden of error since it is taken froninto the depth of a material while acting against the penalty
a ¢(e) plot of seemingly infinite gradient arourg. Second, for director rotation. It determines stripe interfacial lengths
the lines at smallp especially were conspicuously asymmet-and the seemingly instant coarsening in the analogous strain-
ric between 1. Is the attribution of intensity td(¢) am-  induced microstructure observed in nematic elastorfiezk
biguous as a result? In any event it is evident from the daténalogously, one defines the usual smectic penetration depth
that a very rapid drop in intensity frogd=0 takes place. The &,,=Vx/B=dy~10"°m which determines the penetration
residual small angléin 6) intensity about$=0, that is rep-  of distortion into a smectic structure. It is independent of the
resenting unrotated layer systems, is relatively much moreubbery elasticity and is an even smaller length suggesting
constant with strain. It is initially a very small fraction of the that smectic microstructure should also be instantly coars-
rotated layer line intensity but increases in relative impor-ened. The geometric mean of the smectic and Frank scales
tance because the layer lines diminish so quickly. It maygives an interfacial energy densithor the energy cost per
represent regions near the boundaries of the elastomer anit area of stripe formation-y,,=\«B.
near clamps. These planes rotate much later than the bulk One finds, in close analogy to the nematic stripes problem
(which is consistent with the contribution finally diminishing [12], that the threshold,,=\., found in the case of instabil-
with strain. Such heterogeneity in rotation is well known in ity to a uniform system is shifted very slightly by Frank
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effects to a higheih, =\, at which point there is a small ]
jump to a finite¢p>0. The creation of microstructure to ac-
tions and thus &smal) Frank contribution to the energy. A
litle more strain must be imposed to overcome this addi- <
tional cost.

The stripe period in the directionis "7

1
h~ VLBl 1) = (60) <

The period never diverges since=\/ =\ and rapidly
saturates to

h~ VLBl (rp) ~ V1073 X 1079 X 20 m~ 4 um,

for a sample of length.,~ 103 m. This is in the scale of

lengths which would give the strong light scattering that is . ,

actually observed. Microscopic results foare not yet avail- e DITTEeeemnie e

able as they are in the nematic case. It would be interesting

to investigate stresses and rotations the threshold region in

detail, and to examine stripes in a microscope. FIG. 13. A microscopic model of a smectic elastomer. Crosslink
points sit in a periodic potential resulting from the smectic ordering.
For clarity, the smectogens are not shown.

>

V. MATRIX-LAYER COUPLING FROM CROSSLINK . _ , _ ,
LOCALIZATION duced in [3] for layer-matrix relative translations, will

emerge explicitly as will the rigid constraints on matrix shear

We derive the underlying rubber elasticity and the rigidrelative to layer rotation, Eqg3) and (4). As the SmA to
layer-matrix constraints for a smectic elastomer where netnematic transition is approached from below, one would ex-
work crosslinks are strongly coupled to smectic order. How-pect the rigid coupling to be lost and a crossover from 2D to
ever, there is still disagreement in this still-controversial are@D rubber elasticity to occur.
as to how this coupling comes about. One argument for their Microscopic models of ordinary and nematic elastomers
being no constraint on layer motion relative to the rubberequire the probability distribution of end-to-end spans of the
matrix has been advanced by Radzihovgk]. It rests on  network polymers. The trace formul®) derives from the
the statistical spatial homogeneity of crosslink positions in aaveraged logarithm of the distribution, that is of the partition
network crosslinked in the nonsmectic stéateost probably  function conditional on fixed end-to-end distance. For a
the case of NFE On then entering the smectic state-chainsmectic elastomer both the size of the span of a polymer
spans stretch or compress during the sinking of theichain and additionally the position of its ends relative to the
crosslinked ends into the smectic potential minima. Such hosmectic layers are significant. A corrugated potential, in
mogeneity means that the energy in the smectic state is irwhich the crosslink points sit is illustrated in Fig. 13. Devia-
dependent of where the layers form relative to the rubbetion of crosslink points from these wells is penalized because
matrix. Given all positions of the layer system have identicalthe ensuing disruption of the smectic order of the layers, and
energy, there should be no modulus governing the position diecause of the steric repulsion between crosslinks and the
layers relative to the matrix. A similar argumei®,10] can  mesogeng17]. Here we ignore the additional penalty in-
be constructed in the orientational case for soft elasticity ircurred by segments of the polymer chain by virtue of their
nematic elastomers. An isotropioere, layer-freegedanken  crossing the smectic layers. This could be corrected for to
state is requiredto establish the energetic equivalent of dif- some extent by putting in an effective value of the aniso-
fering statep tropy, r. There is evidencglL8] that homopolymer networks,

We believe that despite the independence of energy owhere the smectogens are not diluted, experience a strong
layer position, there is indeed resistance to layer displacepotential[as evidenced by their extreme Poisson ratips
ment relative to the matrix if crosslinks sink into sufficiently 1)]. On the other hand, dilution takes one to the other limit,
deep minima in the smectic potential. An equilibrium layernamely a smectic elastomer where the layer modulus is too
system displaced from a given system, after being heated fow to influence the solid elasticityl8]. The interaction of
and then cooled from the nonsmectic gedanken state, wiltrosslinks with a smectic potential has been studied by Olm-
have the same energy. However, given strands may end &ted and Terentjefd7]. These authors were interested in the
different minima in the two systems but on displacing thelimit of weak potentials since they described the character of
original layer system at fixed temperature, chains may nothe nematic to Sm transition in the presence of randomness
reach their minima appropriate to the translated layer systerinduced in this manner. We explore instead the effect of
because of smectic localization, and then the energy mustrong potentials.
indeed rise. We now calculate this energetic cost in the limit Taking account of the Gaussian distribution of interlink
of strong order. The harmonic coupling constantintro-  chain configurations and the additional weight given to the
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end positions by the smectic potential, the probability distri- 3 _ 1
bution of the ends of the chaiR; andR, is 5 Q 19h-Q- SP2mr = dg - Q)? - 28(mp-dg - P)2.

(67)

When the smectic elastomer is formed deep in the smectic
phase, the specific layer that the crosslink points are in will

+2Bcoda-qg- Rz)), (61)  be a quenched variable, that is bgthandr are quenched
variables. When the crosslinks are formed the span of the

3 _
Po(R1,Rp) = eXP(‘ ZRL 1ot Ryp+2B8coge—q-Ry)

3 polymer, Q, is quenched in, and since both the ends of the
- _S° T -1lp _aT. 2 chain are fixed into a network then so must the coordirate
%}exp( 2LRlz Lo™Riz= A2 =do Ry + ) also be quenched.
We now deform the matrix by so thatP—\-P, then
—B2am-al -R,+ 2)1 62 translate it byu, and finally translate the smectic layers par-
A2mm=0o Ry + o) (62 allel to theirnewnormal byv. Only the centre of mass part
with P (and not the relative part witQ)) in the energy is

_ changed. The last term in E€67) on transforming the solid
_% Pogmn(R1,R2), (63) plus layers becomes
_qT 2
whereR;,=R;—R,, L is the arc length of a polymeq, is 2p[2mvld+mp=q"-(A-P+u)J".

the wave vector of the smectic layers,is an additional Note that the phase picked up by layer translation involves
phase if layers are displaced with respect to the matrix, anghe new spacing! rather than that before deformatio in
B=Vs/kgT defines the strength of the smectic layer potentiakhe first term and likewise in the last term it is the new wave
in which the crosslinks sit, divided bigT. Unlike [3,7,17  vector g7 that enters. To calculate the free energy of the
we are only interested in the uniforémonfluctuating dis-  system we must complete the following quenched average of

placement fields for the matrix and layers. The step lengthhis energy over the probability of the formation conditions:
definition is as in Eq(7) but without a factor of | yet taken

out as in that dimensionless form
f=- kBTf dpf dQE E PO(p,r)(PvQ)In{P(p,r)[(}__\ P
lo=4€, 8+ (£, =€, )ngng. (64) Pt

+u).A-Qll, (68)

We also assume, without loss of generality, that the first layer
in the system sits at the origin=0, i.e., there is no displace-
ment w.r.t. the backg_round. In E¢62) we h_ave tal_<en the :kLT dPdQ> D expl - EQ 15t-Q- },B(Zwr
limit of B>1 and written the probability distribution as a N b T 2L 2

sum over all the layers labelled lmyandm in which the two

different ends can sit. We have written the cosine functions  _qT. Q)2 28(7p-qJ - p)2:| (EQT-L_\T-L_l AQ
as a power series and, sing2>1, only the first term is 2L

significant. We can then bring down the summation sign B

from the exponent becauggis so large all the wells of the +=[2mr - q" -\ - QI*+ 2B[2mv/d + mp

potential are effectively decoupled. This expression is useful 2

when quenching ends into a layer at crosslinking. The com- T 5

ponent(z) along the layer normal of this probability distri- —q -QA-P+ru)ly. (69)
bution is of the formf(z) e %2, In the limit of strong _ o o
potential, the peaks are separated and one can replace tm§reN|s thg r]ormallzauon constant for the p.robablhpy dis-
function by a sum over Gaussian peak shapes displaced froffibution. This !ntegral can be separate'd out into an integral
the origin by multiples of the layer spacing and modulategover P and an integral ove®. The first gives the vital foun-

by the nematic Gaussian €xj§3/2L)z(;'z]. dations of smectic rubber elasticity—the coupling between
It is useful to convert to center of mass and relative coor/@yer and matrix displacements and the rotation of layers
dinates in both spans and layers with the deformation of the matrix. The second will give the

actual form of the smectic rubber elastic energy. We tackle

1 these two integrals one at a time.
P=S(Ri+Ry), Q=(Ri=Ry), (65) The P integral is
1
p=(n+m), r=(n-m). (66) /T/f dP>’ exf - 24(qg - P~ mp)?]
P
The Jacobian from this change of variables for the following x{2@[2mvld+ mp-qT - (A-P+ w3,

integrals cancel with the same factor in the normalization of
the probabilities. The exponent in E@2) then contains the To perform the sum ovep we first note tha3>1 so that we
following: have a very narrow Gaussian distribution and the particular
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value p=(1/7-r)qg-P is picked out. The resulting expression

3 _ 1
is J dQ; eXD(- ZQ 158Q- Eﬁ(Zwr -ag- Q)2>

1 3
X/fdP(Z,B[Zm)/d—qT-(A-P+u)+qg-P]2) X (ZQT-E-L*-;\-Q+§(2wr—qT-g -Q)2>. (73)
T L7 - _— We use the same procedure as that carried out for the previ-
=2\ (2mld-q"-u)~+ 2\ A= do)i | (70 ous integral; first the sum overis evaluated picking out the
particular valuer:(l/277)qg-Q, and then the integral ov€)

on doing theP integral as well. This expression, though an Performed. After carrying out the sum ovemwe obtain
energy density, contains in the strain term the size of the 3

system in thath direction, Z;, since the integral is not gov- f dQ exp(— —Q-
erned. The term is so large because if the layers were to 2L
rotate relative to the network in such a way as to not be

commensurate with the crosslink points, then all of the +E(QE'Q‘CIT'7=\'Q)2)-

crosslinks throughout the whole sample would be displaced

from the minimum in the smectic potential by an amountThe integral overQ can then be performed. The first term
scaling with the lineal dimension of the system, resulting in aesults in the usual trace formula expression. The second

massive energy cost. This otherwise large term can be madgrm can be evaluated using the avera(@T:QF%Llo. The
zero (minimized only if q"-A and qg are parallel. Their |aogult is then :

magnitudes can be made to agree by modifydhghich is
penalized separately by the moduBsThus the rotation of LS T T - - T T
the layers with the applied deformation is a rigid constraint ?Tr[I:O (G0 do~A -G 9 A=A 4 Go=do 0 -M].

(74)

|=61'Q>'(2_3|‘_QT'7=\T'|=_1'§'Q

q=2""do. (79
This expression can be simplified by using the definitiotyof

This result is the microscopic justification of the geometricgiven in its dimensionful form Eq64). Sincen, andq are
results (3) and (4). The total rigidity of the constraint on parallel we have

layers and shears was first obtained 3i
The first term of Eq(70) describes the penalty associated L_,B_I_ 2 2€ Sl T Ty N\T T2_77€
with a mismatch between the smectic layers and the matrix g do) € lo-A"-@-@ -A=-A"-q-Ng do !
arising from translation of one relative to the other. Multi-
plying by the number of network strands per unit volumg, _ 2_77€ Ne-a -\ (75)
; : : Mo-q -Al.
gives the associated free energy density do

2m\2 1 This expression can be rearranged into
frei= ZkBTIB(_) nfv-n- U)2 =-Alv-n- U)2 5
d 2 Lﬁ 1/2 T 2’77' -
E (Izo ‘A ‘q)_d_no\’f\\ . (76)
. 0
with
It can be seen from this expression that this constraint also
A = 1672 uVd (kg TcP). (72)  penalizes if it is not equal toA"T-qo. The resulting terms
from the Q integral are thus.
This layer-matrix coupling has been used in continuum mod- 1L 5 12
els [3,6] and in [7] where it was estimated phenomeno-  =Tr(\ .|_O.AT.|_—1)+__'8{(1(1)/2.)_\1(1)__Trno\r’g] )
logically, see als§10]. Connection can also be made roughly - 2317 = do
to the polymer scale vi& ~ Nd? whereR3~ (L has previ-
ously been introduced as a characteristic mean square dim
sion, here for a chain witlN links. Also the smectic scale
enters as/;~kgT|#1?. Then our estimate ok is

eO_ne converts these energies per strand into energy densities
tgy multiplying by the strand number density. Our final
microscopic model for smectic liquid crystal elastomers is:

_1 Ty L1n(d ?
A = 1672 uN|y?IR2. f-EMTf(L\'lO'é 1 )+§B a)—l : (77

The cost of uniform relative translation decouples from thewhere u=kgTn,. The second term is the layer compression
cost of shears and shear-layer rotation/dilation, and we dpenalty from the smectic free energy. We also make the iden-
not employ it in our nonlinear elastic analysis. tification of the layer normalg with the director,n, and

To obtain the rubber elastic part of the free energy, werigidly impose the constraing=A""-qo. This returns us to
now consider the integral over the variale(suppressing our starting point, Eq(10), but from a statistical mechanics
the normalization 1V): point of view of the system.
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ELASTICITY OF SMECTICA ELASTOMERS
VI. CONCLUSIONS

In conclusion, we have derived a model of $nelas-

PHYSICAL REVIEW E71, 021708(2005

is also predicted but has not yet been observed. Our model
also provides an explanation of the observed x-ray scattering
patterns when the appropriate microstructure is considered.

tomers from both a geometric view point and from a micro-
scopic model of the effect of a corrugated potential on the
crosslink points in the smectic elastomer. This model repro-
duces the experimentally observed elastic behavior when the We thank E. M. Terentjev for critical remarks on our
elastomer is stretched parallel or perpendicular to the layemanuscript, in particular for penetrating comments about
normal. Most notable is the correlation between thresholdec. V, R. B. Meyer for discussions on de Vries phases, and
strains and ratios of the various moduli that are found, along. M. Clarke for advice on x-ray scattering. M.W. is grateful
with the description of a characteristic, singular layer rota-for discussions about layer localization with T. C. Lubensky
tion with applied strain. The response to the two basic shearand L. Radzihovsky.
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