
Elasticity of smectic-A elastomers

J. M. Adams and M. Warner
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

sReceived 3 November 2004; published 23 February 2005d

We present a fully nonlinear model of the elasticity smectic-A elastomers, and compare our results with a
wide range of experimental observations: extreme Poisson ratios, the in-plane modulus, the modulus before
and after threshold to layer rotation in response to stretches along the layer normal, the threshold strain, the
characteristic, and singular rotation of layers after the threshold. We calculate the x-ray scattering from rotating
layers and compare with available data. The model is derived in two ways: from geometrical constraints
imposed by layers on a nematic elastomer, and from application of statistical mechanics to a microscopic
model of the effect of crosslink points confined in a corrugated potential.
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I. INTRODUCTION

Elastomers are crosslinked networks of polymer chains.
They are capable of huge distortions, hence their elasticity is
nonlinear for both geometrical and material reasons. They
are soft solids in the sense that their shear moduli are much
less than the bulk moduli whereupon they deform at essen-
tially constant volume. This third source of nonlinearity
makes still further inadequate any linear continuum picture
of most rubber elastic phenomena.

We present a fully nonlinear, statistical mechanical theory
of elasticity of particularly complex elastomers–smectic-A
sSm-Ad rubbers. Such elastomers have 1D layering order su-
perimposed upon the nematic rubber elasticity of the under-
lying matrix. Thus, the material is itself complex in that it is
both rubberyswith the capacity for elastic nonlinearity men-
tioned aboved and has an internal degree of freedom, its nem-
atic ordering director. Its nematic order is independently mo-
bile but also coupled to the solid matrix. This is possible
since a rubber is liquid-like at the local molecular level
though it cannot flow in any macroscopic sense. The director
can be induced to rotate by imposed strains. Indeed its mo-
tion can cause some special shape changes to occur at zero
energy cost. These have been observed over huge ranges of
strain and have a characteristic, universal strain-angle depen-
dence. We shall see strain-induced director motion but not
soft elasticity—the added constraint of the layers which are
coupled to the solid matrix and to the director make soft
trajectories impossible in Sm-A. A later paper will deal with
Sm-C elastomers which can deform softly because of their
lower point symmetry.

Experiment can give clear guidance for theory in the limit
of strong coupling between smectic order and the rubbery
matrix. Stretching along the layer normalfsee Fig. 1sadg of
an elastomer with strong smectic effectsf1g initially has a
higher associated modulus, comparable to the smectic layer
modulusB,107–108 Pa observed in liquid Sm-A. This is
significantly less than the bulk modulus of rubber and hence
distortions still have constant volume. Thus the Poisson
ratios are initially s1/2,1/2d associated with volume-
conserving contractions in the essentially fluidsrubberyd
smectic planes. On the other hand,B is almost 102 times

larger than underlying rubber’s shear moduli which them-
selves scale with the singlessheard modulus m
,105–106 Pa characterizing any isotropic state of the elas-
tomer. At relatively small strain on a rubbery scales,5%d
there is an instability which causes the layers to start rotating
in order to relieve the stiff layer dilation deformation in favor
of lower cost rubber distortions at constant layer spacing.
This response is the rubbery equivalent of the classical insta-
bility to avoid layer dilation predicted and observed in liquid
smectics by Clark and Meyerf2g and which has analogy to
the Helfrich-Hurault instability found in liquid cholesterics.
We shall call this the CMHH instability and return to it at
some length in Sec. III A, Sec. III E 1swhere we give a
geometrical explanationd and in Sec. IV D. Section IV makes
contact with experiment; we analyze the elastic response and
the x-ray dataf1g but, unlike these authors, conclude that the
layers rotate rather than melt. This is consistent with the fact
that smectic ordering is of the order of 102 times more rigid
than the rubbery scale. The rotation is seen both in x rays and
optically. When the smectic modulus is large, one can think
of smectic elastomers as being two-dimensional but where
the orientation of these two dimensions can be mobile.

Although chains are highly mobilesSm-A elastomers can
suffer huge reversible deformationsd, the above evidence
shows that crosslinks, which create and define the rubbery
solid, are strongly pinned by smectic layers. It is not possible
to stretch along the layer normal and have the crosslinks
glide through layers. The associated modulus is therefore not
rubbery; it is rather that of the smectic layers. In Sec. V we
calculate from a molecular model the consequences of this
pinning: sid the coupling between layer and matrix displace-
ments characterized by the modulusL, first introduced in
f3g, which we estimate;sii d the strict geometrical constraints
when deformations are imposed crosslinks must respect the
layer positions and hence the matrix must sense layer spac-
ings; siii d the layer normal and the director are rigidly iden-
tified with each other.

The second example of a constrained response is stretch-
ing in one direction in the plane, see Fig. 1sbd. Contraction is
only in the perpendicular direction in the plane and not at all
along the layer normal. Hence for small deformations where
the Poisson ratios are defined, they take the extreme values
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s1, 0d as is known from the remarkable experiments of the
Finkelmann groupf1,4g. Analogous response continues into
the nonlinear regime and the associated modulus is rubbery.
Whether deformations are large or small, we essentially have
a 2D rubber when smectic-matrix coupling is strong.

The third and fourth deformations we shall consider are
imposed shearslxz and lzx, Figs. 1scd and 1sdd, wherez is
the layer normal andx a direction in the smectic planes.
These two shears have very different effects on the layer
orientation and spacing. We conclude Sec. III with a general
decomposition of deformations into components that are dif-
ferentiated in their effect on the layer normal.

II. LARGE STRAIN MODEL OF SMECTIC- A
ELASTOMERS

Linear continuum models, using symmetrized strain ten-
sors, for smectic elastomers were developed many years ago
f3,5–7g. They can offer guidance, for instance through the
use of group-theoretical analysis of terms permitted in their
invariant free energy. However, such theories suffer the es-
sential limitations of linearity mentioned above. Nonlinear
elasticity using nonlinear symmetrized strain tensors can be
also be developedf8g. One then expands the free energy
phenomenologically, say to quartic order. This is sufficient
for many purposes, for instance to govern instabilities that
arise at quadratic order.

We shall retain Cauchy deformation gradient tensorsl=
that directly show the shape change of the body and retain
informationsbecause they are not symmetrizedd of any rota-
tions of the reference space. It is convenient to record shape
changes of a reference space consideredafter any phase tran-
sitionsswith, e.g., spontaneous elongationd might have taken
place. These are the as-imposed shape changes.sThere are,
however, deep theoretical reasons that are the basis of soft
elasticity f8,9g for taking deformations with respect to the
body before symmetry breaking, see alsof10g for an over-
view.d Recording rotations is also useful since they can be
with respect to internal degrees of freedom, for instance the
director. Such relative rotations enter the nematic rubber
elastic free energy, see for instance a continuum example
f11g and are also central to nematic elastomers at large de-

formationsf10g. We retain the essential ideas of nematic rub-
ber elasticity but take account also of the rigid constraints
added in by coupling to the smectic layers. We thus follow
the strategy of earlier continuum approaches, in particular
that of f7g which gives molecular estimates of linear moduli
and also discusses relative rotations in the smectic context.
Here however we suppress the freedom of layers and the
nematic director to relatively rotate. Our rigidly coupled
smectic layers have the director rigidly identified with the
layer normalsb'→` in the notation off7gd. Thus, there will
be no partial renormalization of the shear modulus that
would otherwise lead to soft elasticity in a nematic system
sf7g discusses the smectic effects on this renormalizationd.

We defersto Sec. Vd a molecular model that shows how
chains strongly coupled to the layer system generate the rigid
constraints we study in this section.

A. Layer constraints and smectic energy

If layers are rigidly embedded in the network, then defor-
mationsl= will induce layer spacing changes, which we now
calculate in a frame independent form, in order to find the
associated smectic energysproportional to the layer modulus
Bd. Any material point in the layer deforms asx→l= ·x. Any
two perpendicular unit vectors in the plane of the smectic
layer,k andm say, define the layer normaln0=k 3m. Since
the vectors deform with the plane, the cross product of the
deformed vectors defines the new normal,n,

n =
sl= ·kd 3 sl= ·md
usl= ·kd 3 sl= ·mdu

s1d

as illustrated in Fig. 2.
Writing Detsl=dei jk =eabglailb jlgk, using Detsl=d=1, and

multiplying from the right bysl=−1dkp yields

eabplailb j = lkp
−1ei jk = lpk

−Tei jk . s2d

We denote byl=−T the transpose of the inverse ofl= fi.e., the
cofactor tensor, since Detsl=d=1g. Substituting Eq.s2d into
the cross products inn above and settingk 3m=n0 gives

FIG. 1. Imposed deformation;sad stretching parallel to the layer normal;sbd stretching perpendicular to the layer normal;scd shearing the
layers in their plane; andsdd shear out of the planes.
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n =
l=−T ·n0

ul=−T ·n0u
. s3d

Layer normals thus deform according tol=−T.
We can calculate the spacing between two planes in the

deformed smectic elastomer. Consider the material pointsx
andx+d0n0 in two adjacent planes. These transform intol= ·x
and l= ·x+d0l= ·n0, respectively. Resolving along the new
layer normal the difference between these two deformed
points gives the new layer spacing

d = d0sl= ·n0d ·n = d0sl= ·n0d ·
l=−T ·n0

ul=−T ·n0u
,

d/d0 =
1

ul=−T ·n0u
. s4d

Concrete examples are easy to evaluate sinceul=−T·n0u arose
from the normalizationusl= ·kd3 sl= ·mdu in Eq. s1d. Taking
k =x andm=y, and hencen0=z, then

d

d0
=

1

uei jkl jxlkyu
, ni =

liz
−T

uei jkl jxlkyu
, s5d

expressions we shall repeatedly use. The cross product ex-
pression that produces the new layer normal can be thought
of geometrically as calculating the distance along the normal
between two planes, or as calculating the area of the plane
which relates to the physical constraint of constant volume.

B. Rubber elastic free energy

Smectic rubbers are capable of large, reversible shape
changes, presumably because their chains are still Gaussian
and highly mobile. Additionally the smectic has the sponta-
neous uniaxial orientational order of a nematic. Hence we
expect, approximately, to have a nematic elastomer for the
underlying matrix, with the stringent constraints of layers
explored above. Describing shape change byl=, an appropri-
ate free energy density is given by the trace formulaf10g

fn =
1

2
m Trsl= · l=0 · l=T · l= −1d, s6d

where l=0 is the shape tensor describing the distribution of
chain conformations before deformation;l= describes that af-
terward

l=0 = sr − 1dn0n
T + d= , s7d

l= = sr − 1dn nT + d= . s8d

The order is characterized by an ordering directionn0 swhich
becomesnd and a shape anisotropy of the chain shape distri-
bution

r = ,i/,' = kRi
2l/kR'

2 l. s9d

This single parameter is the ratio of the effective step lengths
parallel s,id and perpendiculars,'d to the director, them-
selves related to the mean square chain dimensions in these
directions. One can measurer by neutron scattering directly,
or deduce it from thermal expansion measurements on going
from the isotropic to nematic/smectic states. Values ofr have
been observed between 1.05–60 according to chain type in
the prolate case; oblate chains haver ,1. Smectic elastomer
thermal expansionsf1g suggest prolate chains withr ,2, an
illustrative value we shall adopt in this paper. The trace for-
mula describes a wide range of complex, nonlinear phenom-
ena in nematic elastomers including large thermal expan-
sions, singular director rotations and plateaux in stress-strain
relations over wide ranges and geometries of strain. We shall
assume that applied strains do not change the magnitude of
the nematic order, at most affecting its direction. This is a
good assumption if we are far from the nematic-isotropic
transition. The free energys6d is rederived in Sec. V in the
process of describing the smectic constraints.

III. RESPONSE OF A SMECTIC A ELASTOMER TO
IMPOSED STRAIN

We impose one component ofl= sidentified as al without
suffixesd as in Fig. 1 and calculate the relaxation of the other
components—that is shape changes and rotation of the layers
and hence also of the solid. One also obtains the stress re-
quired to imposel. The free energy densityswith the re-
duced layer compression modulusb=B/md

f =
1

2
mfTrsl= · l=0 · l=T · l=−1d + bsd/d0 − 1d2g s10d

is minimized subject to volume conservation Detfl=g=1 and
where the relative layer spacing change and the new director
are given by Eqs.s3d and s4d. The last two conditions arise
from the affine deformation of the layer system with the
strain, which we prove in Sec. V. The reduced layer modulus
can be large but presumably vanishes as one approaches the
Sm-A–nematic transition where also the affine layer defor-
mation assumption would become invalid.

FIG. 2. The normal to the layer deforms when the vectors in the layer deform according tox→l= ·x.
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The specific forms given for the layer spacing and direc-
tor are for the choicen0=z initially, as depicted in Fig. 1,
which is useful for illustration; the coordinate-free forms
given are of complete generality.

A. Imposed strain lzz

In this case, Fig. 1sad, the deformation tensor

l= = 1lxx 0 0

0 lyy 0

lzx 0 l
2 s11d

allows for the shearlzx which is an alternative means of
increasing thez-dimension of the solid by layer rotation
rather than layer dilation. This is the CMHH mechanism for
elongation along the layer normal in smectics. The shearlxz
in the presence of az-force of extension would lead to
torques and is not observed in smectics elastomersf1g or in
the analogous nematic elastomer geometries that involve si-
multaneous director rotation and shearf12g. The volume
constraint, layer spacing change, and director become, re-
spectively,

1 = lxxlyyl, s12d

d/d0 = 1/slyy
Îlxx

2 + lzx
2 d , s13d

n = S−
lzx

Îlxx
2 + lzx

2
,0,

lxx

Îlxx
2 + lzx

2 D . s14d

The free energy density is then

f =
1

2
mFlxx

2 +
1

lxx
2 l2 + lzx

2 +
slxx

2 + rlzx
2 dl2

lxx
2 + lzx

2

+ bsllxx/Îlxx
2 + lzx

2 − 1d2G , s15d

where volume conservation eliminateslyy.
Minimizing the free energy fixes the relaxing components

of the deformation tensor for a particularb value; they are

shown in Fig. 3. There is a critical, threshold value of the
elongationl=lcr when the layer rotation starts to occur. The
threshold will be shown to be a material property depending
only upon b and r. The rather large threshold chosen for
illustration arises from the small relative modulus,b, that has
been adopted. The threshold is to a uniform statefgiven by
Eq. s11dg, see the sketch included in Fig. 4, and hence even
exists independently of clamp constraints and microstructure
which arise in practical cases, see Sec. IV D. Thus Frank
elasticity has not yet been invoked for the threshold and will
turn out to be largely irrelevant.

Shearlzx starts with a singular edge at the threshold and
the transverse contractionlyy thereafter remains constant.
The accompanying stress also divides into two distinct re-
gimes with a much higher modulus before than after the
transition, see Fig. 4. The layer rotation, given byn, Eq.
s14d, has the same singular edge and is plotted againstl−1
in Fig. 5 which also compares the calculated variation of
orientation of the director with strain from the experiment of
Nishikawa and Finkelmannf1g. The geometric reason why
scheapd shear does not immediately start, but only onsets
after a threshold, is explained in Sec. III E 1.

Analytically, the solution to this model splits into two
parts: before and after the discontinuity. Before the layers

FIG. 3. Deformation tensor components for an imposedlzz for
b=5 andr =2. The shearlzx relaxes to an asymptote of 1/Îlcr for
largelzz.

FIG. 4. Nominal stress for a smectic elastomer stretched parallel
to the layer normal, withr =2 andb=5.

FIG. 5. Comparison of the calculated orientation of the director
sdotted lined with the experimental points off1g scircular pointsd.
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start to rotate,lzx=0. The free energy density is given by

f =
1

2
mSlxx

2 +
1

lxx
2 l2 + l2 + bsl − 1d2D , s16d

and has a minimum whenlxx
2 =lyy

2 =1/l. Thus before the
layers start to rotate the two perpendicular directions are
equivalent and the material has Poisson ratioss 1

2 , 1
2

d in the
sx,yd directions. The free energy and the nominal stress,
snom=]f /]l, are

f =
1

2
mS2

l
+ l2 + bsl − 1d2D , s17d

snom= mFSl −
1

l2D + bsl − 1dG . s18d

Layer rotation starts atlcr. Numerically it is clear that
lyy=1/Îlcr is a constant. With this assumptionsto be con-
firmed belowd after the transition, volume conservation then
requireslxx=Îlcr/l. If deformations were small, then one
could say that the material now has Poisson ratioss1,0d, to
which we return when comparing with experiment.

If we minimize the free energy w.r.t.lzx
2 then, after some

simplification, we obtain the condition

0 = 1 +
sr − 1dl4lcr

slcr + lzx
2 l2d2 + bS l3Îlcr

slcr + lzx
2 l2d3/2 −

lcrl
4

slcr + lzx
2 l2d2D .

s19d

The shearlzx only appears in the following combination

p2 = lzx
2 +

lcr

l2 s20d

which is a function only ofr −1, b andlcr, that ispsr ,b,lcrd,
and obeys the equation

0 = p4 + sr − 1dlcr + bspÎlcr − lcrd. s21d

p is not a function ofl and thus it can be fixed at any
convenient value ofl. For instance at the critical extension
lcr, we havelzx=0 and hencep=1/Îlcr. The induced shear
derives from putting thisp into Eq. s20d. The contractions
and shears after the instability are then

lxx = Îlcr/l, lyy = 1/Îlcr, s22d

lzx= ±Î 1

lcr
−

lcr

l2 . s23d

The shear displays the singular edge seen in Fig. 3. Both
signs of shear give the same dilation alongz at constant layer
spacing. Both shears, and indeed all directions perpendicular
to z snot justxd, are required in a description of any induced
microstructuressee Sec. IV C where this issue arises experi-
mentallyd.

The directorsand thus layerd rotation can be derived from
the explicit expressions14d for n. For instance the first com-
ponent gives

sinf = Î1 − slcr/ld2, s24d

which has the singular edge and distinctive form shown in
Fig. 5 and in experiment.

Settingp=1/Îlcr in Eq. s21d gives a cubic equation for
lcr

lcr
3 sr − b − 1d + blcr

2 + 1 = 0. s25d

To obtain a threshold at all we requireb. r −1. Below this
reduced layer modulus there is no instability—layer dilation
is not significantly more costly than matrix distortion and it
is no longer avoided by the intercession of an instability.

Instead of solving Eq.s25d analytically, it is more useful
to analyze it in the physically important largeb limit. The
first few terms in an expansion yield the variation of critical
extension with layer modulus

lcr = 1 +
r

b
+ rsr − 3d

1

b2 + OS 1

b3D . s26d

The choice ofr andb in Figs. 3 and 4 is clearly outside the
asymptotic realm of Eq.s26d but allows for an exaggerated
clarity in Fig. 3.

The threshold behavior shown here occurs even for very
small values ofB down to sr −1dm. This is because the way
in which the director deforms with the matrix has been im-
posed. Physically this is correct for largeB. As B is reduced
this constraint will become less rigidly enforced and the
crosslinks will be able to move through one layer to the next.
Thus the threshold behavior predicted for very smallB val-
uess,md is unlikely to be correct in practice. Except close to
the Sm-A−N transition, experimentally one deals with large
values ofB.

All components of induced deformation and the rotation
of layers depend solely onsthe imposedd l and sthe observ-
abled lcr, not in any separate or detailed way on the smectic
potentialb or the anisotropyr. This very tightly constrains
theory since there are no free parameters and requires all
rotation-strain and relaxation-strain relations, Eqs.s22d–s24d,
to be universal for all systems.

To calculate the stress, we substitutelzx back into the free
energy and obtain the closed form

f =
1

2
mS 2

lcr
+ lcr

2 + rsl2 − lcr
2 d + bslcr − 1d2D . s27d

From Eqs.s17d and s27d the nominal stresses, are

snom= Hmsl − 1/l2d + Bsl − 1d, l , lcr

mrl, l . lcr.
J s28d

Note that the continuity of the nominal stress withl can be
used to derive Eq.s25d. From this result it is clear that the
ratio of the two slopes is related tolcr, which provides an-
other stringent constraint on theory. Thus for largeb we can
calculate the two slopes and obtain
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rm

B
< lcr − 1. s29d

Experimentally one could obtainm from stretching the rub-
ber in the layers, and thus obtain the anisotropy of the poly-
mers,r. The largeB/m expression Eq.s29d for the threshold
strain essentially agrees with the result of Weilepp and Brand
f6g if one neglects Frank effects. These authors, and we in
Sec. IV D, show that Frank elasticity has a small effect on
the threshold strain but does influence the length scales of
the subsequent microstructure. Referencef6g ignores the an-
isotropy of the underlying nematic network and thus the fac-
tor r is absent from their expression.

The layer spacing of the system as a function of the im-
posed stretch is

d

d0
=

1

lyy
Îlxx

2 + lzx
2

=
llxx

Îlxx
2 + lzx

2
. s30d

Before layer rotation startslzx=0 and so the layer spacing
increases asd/d0=l. After layer rotation starts we have,
from the same expression,d/d0=lcr; layer spacing remains
fixed. The only cost in deforming the system is that of shear-
ing the rubber. This is because, as the layers rotate, the com-
ponent of the force along the layers remains constant. Fur-
thermore, because shearsas opposed to extension and
contraction along principal directionsd involves the chain an-
isotropy and it is the cost of this shear that is to be compared
with that of layer dilation, we can understand thatr sas well
as the relative modulusbd enters the expression forlcr.

We check that there are no other solutions by writing the
free energy as a function of the two variableslxx and tanf
=−lzx/lxx and without making any assumptions about
lyys;1/lxxld

f =
1

2
mFlxx

2 +
1

lxx
2 l2 + lxx

2 tan2 f + scos2 f + r sin2 fdl2

+ bsl cosf − 1d2G . s31d

Minimizing with respect tolxx we obtain

0 = 2lxxS1 −
1

l2lxx
4 + tan2 fD s32d

with solutionslxx
2 =0, ±scosfd /l. The only physical solu-

tion is lxx
2 =cosf /l. Minimizing the free energy with respect

to f and substituting forlxx yields

0 =
sinf

l cos2 f
+ l2sr − 1dsinf cosf − blsl sinf cosf

− sinfd

which can be factorized

0 = l sinfScosf −
lcr

l
D 3 Sl2sr − 1 −bdcos2 f

−
l

lcr
2 cosf −

1

lcr
D s33d

provided that Eq.s25d is obeyed. Thus our solutionsa com-
bination of the first and second factorsd was a minimum. The
third factor is real only iflcr

2 b,−3/4 and therefore never
relevant; thus the minimum was unique.

B. Imposed lxx

We consider the deformation gradient matrix

l= = 1l 0 lxz

0 lyy 0

0 0 lzz
2 . s34d

Volume conservation is simply expressed by

1 = llyylzz s35d

because the matrix is upper triangular. The layer spacing and
director are now given by:d/d0=1/slyyld and n=s0,0,1d.
Intuitively such imposed extensions should not rotate the
layers since a cheap, volume-conserving response is simply
to contract alongy leaving the more expensivez dimension
unchanged. This is one reason why we have not included
shearlzx since from the form of the new directorslayer
normald, Eq. s14d, it is precisely this shear that induces layer
rotation. Moreover, this shear also introduces torques from
the change of shape in the presence of anx component of
force which tends to eliminate the distortion. The conclusion
of this section is also that the other component of shear van-
ishes too, which we confirm directly.

The deformation tensor substituted into the free energy,
and the volume conservation constraint eliminatinglzz, re-
sults in

f =
1

2
mFlyy

2 + rlxz
2 + l2 +

1

lyy
2 l2 + bS 1

lyyl
− 1D2G . s36d

The shear only appears once, hence minimization yields
lxz=0. Minimization of this free energy with respect tolyy
gives

l2lyy
4 − 1 =bs1 − llyyd. s37d

From this equation it is clear that the limits of small and
large b correspond tolyy=1/l swith lzz=1d and lyy=lzz

=1/Îl, respectively. The material with a smallb value is
still a Sm-A in the sense that the director is constrained to lie
along the layer normal. To calculate the Poisson ratios from
this expression we make the small strain expansions

lyy = 1 +e, s38d

l = 1 +v, s39d

when to first order inv ande, Eq. s37d becomes
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4e + 2v + bse + vd = 0. s40d

The Poisson ratio in they direction,ny=−e /v, and that in the
layer direction,nz are

ny =
2 + b

4 + b
, nz =

2

4 + b
. s41d

The crossover from Poisson ratiossz,yd=s0,1d to
s1/2, 1/2d is thus relatively slow. However, it is clear that
for b,60, as foundf1g in some experimental samples, the
material is firmly in thes0,1d class.

For large b where layer relaxation is suppressedslzz

→1d, the elastomer is like a classical 2D rubber. Since there
is no director rotation,r does not enter. The free energy
densitys36d reduces to

f =
1

2
mhl2 + lyy

2 j =
1

2
mhl2 + 1/l2j s42d

as a consequence of higher layer stiffness and volume con-
servation. The Young’s modulus derived from Eq.s42d is
E'=]2f /]l2ul=1=4m, rather than the value 3µ that obtains
for a 3D rubber. Dimensional constraints have increased the
modulus. However this must remain an upper bound onE'

for reasons we discuss in Sec. IV B.

C. Imposed lxz

Consider the deformation gradient matrix

l= = 1lxx 0 l

0 lyy 0

0 0 lzz
2 . s43d

We suppresslzx since typically the application oflxz is with
plates that constrain the sample. Again, volume conservation
is simply expressed by

1 = lxxlyylzz. s44d

We eliminatelyy by using the volume conservation con-
straint. The resulting free energy is

f =
1

2
mSlxx

2 +
1

lxx
2 lzz

2 + lzz
2 + rl2 + bslzz− 1d2D . s45d

The shearsl andlzz do not couple and so the imposed shear
cannot affectlzz. Minimizing over lxx and lzz yields lzz
=lxx=1 and the free energy density becomes

f =
1

2
mh3 + rl2j. s46d

The result is for simple shear in a nematic elastomer with
unrotating director. The anisotropy enters in the classical
way—for large r the effective modulusrm becomes large
because chains extend across several shear planes. This
modulus is identical to that obtained after the instability on
stretching along the layer normal, Eq.s28d, because then
deformation is largely via shears in the rotated planes.

D. Imposed lzx

Consider imposing the deformation in Fig. 1sdd

l= = 1lxx 0 0

0 lyy 0

l 0 lzz
2 . s47d

It is lower triangular. Allowing alxz component causes the
elastomer to simply rotate 90° and experience an effectively
purelxz deformation. The director and volume conservation
are given by

n =
1

Îl2 + lxx
2

s− l,0,lxxd, s48d

1 = lxxlyylzz. s49d

On eliminatinglyy by volume conservation, the free energy
density is

f =
1

2
mFlxx

2 +
1

lxx
2 lzz

2 + l2 + rlzz
2 +

lzz
2 slxx

2 + rl2d
lxx

2 + l2

+ bS lxxlzz

Îlxx
2 + l2

− 1D2G , s50d

which can be numerically minimized using the simplex al-
gorithm. A typical solution is illustrated in Fig. 6. Figure 7
shows the corresponding layer spacing change for imposed
lzx. In this deformation we are thus effectively compressing
the layers. Even for very largeb, the layer spacing eventually
yields and begins to decrease.

E. General decomposition of shear

Deformations can be decomposed into a minimal set of
three component deformations, an imposedlxx, lxz, andlzz,
plus a rotation. The choice is natural sincelzz by itself can
describe a layer compression or extension,lxx along with
constancy of volume can describe shape changes of the
smectic layers andlxz describes out of plane shears at con-
stant layer spacing. We return shortly to the significance of
the latter when we explain how the threshold to instability
under imposedlzz arises.

FIG. 6. Relaxing components of the deformation tensor on im-
posinglzx for a rubber withb=5, r =3.
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As an example we decompose thelzx deformation. It is
nontrivial since, as we have seen this shear induces a layer
compression. It is broken up into

l= = W= ·D= , s51d

where rotation and deformation of the solid matrix are

W= = 1 cosg 0 sing

0 1 0

− sing 0 cosg
2

D= = 11 0 lxz

0 1 0

0 0 1
21

lxx 0 0

0
1

lzzlxx
0

0 0
1

lzz

2 .

The layer stretch and in-plane deformation is followed by a
lxz shear, which is then followed by a rotation. Overall, the
deformation gradient tensor is thus

l= =1
lxx cosg 0 lzzslxz cosg + singd

0
1

lxxlzz
0

− lxx sing 0 lzzscosg − lxz singd
2 .

s52d

From this deformation we can calculate the director

l=−T ·n0 = Ssing

lzz
,0,

cosg

lzz
D → ssing,0,cosgd, s53d

where the final expression is the normalized director. The
rotation required to reduce this deformation to the form of an
imposedlzx deformation is tang=−lxz which is what elimi-
nates the upper right element ofl=. Then,

l= =1
a 0 0

0
1

ab
0

l 0 b
2 , s54d

where

a = Îlxx
2 − l2, b =

lxxlzz

Îlxx
2 − l2

, l =
lxxlxz

Î1 + lxz
2

.

Since the deformations54d is now of the same form as our
simple starting point Eq.s47d, the free energy is then of the
same form as Eq.s50d and we have the decomposition of the
mode. This decomposition is significant because it shows
that there are only three different deformations that the
sample can undergo once we have removed a trivial rotation.
This is dramatically different from the case of nematic elas-
tomers.

1. The geometrical basis of the CMHH instability

If shears are cheaper than layer dilations by a factor of
1/b=m /B why is there a threshold at all for the CMHH
deformations in response to an imposedlzz? At first sight Eq.
s11d and Fig. 4 would seem to suggest that there is simply a
lzx shear after the instability. In this frame, this is indeed true
but it is clearly accompanied by other distortions required to
keep the layer spacing constantssee the insets in Fig. 4d. A
lzx shear alone causes the layer spacing to contract.

A decomposition can be performed on the imposedlzz
deformation. In this case we start from Eq.s52d and set
tang=−lxz. We can then identifyl=lzz

Î1+lxz
2 . This de-

composition gives a geometric reason for the threshold. Sup-
pose that the elastomer deforms with only thelzzcomponent.
The free energy density is then

fzz= 1
2Bsl − 1d2. s55d

Alternatively the sample could deform by a shearlxz, which
leaves the layer spacing unchanged, and then rotate to ac-
complish the samelzz value. In this case the free energy
density is

fxz= 1
2mrlxz

2 = 1
2mrsl2 − 1d. s56d

Comparing these two energies for smalle wherel=1+e, we
find that fzz,

1
2Be2, fxz,mre, provided thate,2mr /B. The

latter energy is first order rather than second order in the
strain and explains why it is so costly and unphysicalsit is
second order finally where it intercedes afterlcr. This de-
composition also shows that an imposedlzz is equivalent to
an imposedlxz deformation plus a rotation and afixedstretch
along the layer normal such thatd/d0=lcrd. The decomposi-
tion explains why the modulus of the sample after the thresh-
old is the same as that for an imposedlxz deformation.

IV. COMPARISON WITH EXPERIMENT

Three different types of experiments have yielded infor-
mation on the response of Sm-A elastomers–strain response,
stress–strain, and rotation–strain measurements. We calculate

FIG. 7. Relative layer spacing change on imposinglzx for the
rubber of Fig. 6.
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detailed results in all these areas and now compare with the
relevant experiments of Nishikawa and FinkelmannfNFg f1g,
not only the functional forms of responses but also the inter-
connections between the physical variables entering our de-
scription, that is layer and shear moduliB andm, chain an-
isotropyr, and threshold strainlcr. We focus here on the two
strains imposed by NF,lzz, andlxx.

Our theory is not relevant to weakly coupled smectic elas-
tomers where there is no elastic signature of the smectic
layer systemf13g. Such elastomers are apparently well-
described by isotropic rubber elasticity as is appropriate for a
nematic elastic matrix where the director cannot rotatesbi-
axial strains in the layer planes were examinedd.

A. Strain response

The Poisson ratio is a measure of transverse strain re-
sponse at small strains. For imposedlzz the experimental
response is isotropic and volume preserving, Poisson ratios
s1/2,1/2d, until the layer instability is reached. Thereafter,
the transverse relaxation is apparentlys1/l1/2,1 /l1/2d from a
close inspection of the snapshot of large strain given in Fig.
4 of NF. The authors do not give a functional dependence but
the figure rules out the predicted monodomain post-threshold
response Eq.s22d which, if strains were small would corre-
spond to Poisson ratioss1,0d. This discrepancy is not surpris-
ing given that there is clearly not a monodomain afterlcr.
We return to this question in our analysis of layer rotation
and x-ray experiments.

Imposed in-plane stretcheslxx give predicted Poisson
ratios

sny,nzd = S2 + b

4 + b
,

2

4 + b
D .

Experimentally NF gives1,0d corresponding tob@1. These
Poisson ratios agree with the stress results that show that
smectic order is much more rigid than rubber elastic effects.

B. Stress

Figure 8 shows that nominal stress-strainsl−1d data of
NF for imposedl=lzz along the initial layer normal direc-
tion. It is fitted to Eq.s28d. From the data one can deduce
that the ratio of the slopes is 4.1310−2. We predict in Eq.
s28d this ratio should bemr /B=r /b whereuponb=r /4.1
310−2@1 is evidently large. In the limit of such smectic
moduli, Eq. s29d predicts the direct connectionr /b=lcr−1
for the threshold giving hereecr=lcr−1<4% which is ex-
tremely close to that observed in Fig. 8.

In-plane stress and moduli in response to imposedlxx
were not reported by NF. The in-plane Young’s modulus,E',
is known from other work to comparable to the postthreshold
modulus,Eafter say. The in-plane Young’s modulus was cal-
culated in Sec. III B.

Many Sm-A elastomers that have been investigated are
suspected to be de Vries phases, that is where there is incipi-
ent Sm-C ordering. This tilt is not long ranged in its order.
The signature of this local order is that the transition to the
Sm-C state with long ranged order is not accompanied by a

layer spacing change as expected from the transition from a
standard Sm-A. Applied strainlxx in one in-plane direction
could extend the correlation in Sm-C ordering and direct it
along the strain, allowing the rubber to extend alongx at
lower energy cost than 4µ. Tests of this type of response
would be: sid The observation of in-plane induced optical
birefringence. While an untilting director remains anchored
along the layer normal, the response should be that of a
classical elastomer where stress induces very small birefrin-
gence compared with that in any liquid crystal system. In
comparison a de Vries elastomer would have a huge birefrin-
gence response.sii d The ratio Eafter/E' is predicted to be
rm /4m=r /4. Departures from this ratio could be due to a
low E' because of de Vries. However to some extent de
Vries should also intervene inEafter since there is an element
of in-plane stretch in the now rotated planes. The balance
between the intervention of de Vries effects in the two
moduli is not trivial since the component of stretch in-plane
and the degree of shear acting both change with strain be-
yond the threshold for theEafter case.

C. Layer rotation and x-ray scattering

Layer rotation against strain starts in a singular manner at
a thresholdlcr both in theory, Eq.s24d, and in an x-ray
determination of layer orientation, Fig. 5. Agreement with
fsld is good, but a major problem of interpretation remains.
As strain increases, the x-ray intensity associated with the
rotating layer lines diminishes sharply. NF proposed that
abovelcr a diminishing fraction of the sample rotates while
an increasing fraction melts to a nematic state. On energetic
grounds this appears unlikely since the smectic energy scale
is high compared with the rubber elastic scale. The entropy
change found by NF for the smectic-isotropic phase transi-
tion wasDS=2.4310−2 J K−1 g−1. Thus the cost for melting
at 300 K for a sample with densityr,1 g cm−3 is TDSr
,7.23106 J m−3. To pay the cost of melting, an energy den-
sity of 1

2Bslcr−1d2,83104 J/m3 is available and is clearly
rather small.

FIG. 8. Stress against imposed deformationlzz - solid line
theory, points are data of Ref.f1g. Crossover occurs at a threshold
strain of 4% as in Fig. 5.
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A more direct explanation than melting is that layers ro-
tate their normals towards all directions perpendicular to the
stretch along the original layer normaln0. Section III A cal-
culates the contraction and shear in thex direction perpen-
dicular to original layer normalz fEqs.s22d ands23dg and the
rotation of the normal towardx fEq. s24dg, but no direction
perpendicular to the original director is privilegedsin con-
trast to stripe formation in nematic elastomersd. We must
consider all other axes perpendicular ton0. This breakup of
the sample into a microstructure of regions of tilted domains
is cylindrically symmetric around the stretch axis. The re-
gions that are tilted toward the x-ray beam no longer meet
the Bragg condition for diffraction, and as a result do not
contribute intensity to the observed scattered beam. We sug-
gest that the drop in x-ray intensity is simply a result of
polydomain formation. Additionally, the overall Poisson ra-
tios observed in the two, now equivalent directions perpen-
dicular to the original layer normal ares 1

2 , 1
2

d rather than the
monodomain valuess1,0d.

A small angle setup is sketched in Fig. 9. Scattering in NF
is through an angle 2u where 2u,3°. For the shown in-
coming and final beams,k i and k f, the scattering vector
k =k f −k i is along the layer normal. Under these circum-
stances one can satisfy the Bragg condition:

k = q0 → 4p sinu

l0
=

2p

d0
, s57d

wherel0 is the x-ray wavelength andd0 the layer spacing.
This fixes the angle 2u. The sketched setup is not quite that
of NF since they direct the incident beam perpendicular to
the sample, i.e., along thex-axis. This means thatk is mis-
aligned from the layer vectorq0 and hence also from the
Bragg condition by an angleu. Line visibility before stretch-
ing occurred suggests that the intrinsic width of the lines is
of order u or more. Sinceu is rather small, we continue
analyzing Fig. 9 rather than that of NF.

Consider planes rotated clockwise byf aboutx so that
their normals remain in thesy,zd plane and make an anglef
with the stretch directionz. Clearly then the scattering plane

which includesk , k i , k f, and q0 also rotates byf and the
layer spot rotates on the image plate to the position indicated
by f. Planes performing this rotation retain a satisfiable
Bragg condition and are those seen in experiment. Polydo-
main layer normal arrangements would have planes with nor-
mals forming anglef with the z axis but randomly distrib-
uted in their azimuthal anglea aboutz, the circle in Fig. 10
which gives the sphere of radiusuqu=2p /d0 where the layer
vectorsq can sit. Only those planes with aq that matches a
k in the sy,zd plane to within their natural angular widthdc

can contribute to the scattering. In Fig. 10 a plane vector and
its natural width are shown. Its anglea for this f is clearly
sufficiently large enough to remove overlap with the scatter-
ing vector. The contributory fraction of the plane normals
rapidly diminishes asf initially increases. The angular sepa-
ration, d, of k and theq at a is sinsd /2d=sinf sinsa /2d.
Only sets of planes withq such that theira angles give a
separationd,dc/2 from k will contribute to the scattering.
The critical azimuthal separationac is given by

FIG. 9. The x-ray scattering
setup. Layer normals are initially
along the stretch directionz. The
incoming beam is scattered
through an angle 2u having been
incident at an angleu. The final
beam is detected on an image
plate behind, on which a circle of
spots is dotted for the cases where
layers are rotated through anglef.
The scattering vectork is along
the layer normal and for Bragg
scattering matches the layer vec-
tor, initially q0.

FIG. 10. The spherical shell of layer vectorsq. Those with angle
f sit on a circle centered about the initial layer normalno. A q
vector is at angled with respect to a scattering vectork in the sy,zd
plane.
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sinsac/2d = sinsdc/2d/sinf, s58d

that is, plane normals in the interval −ac,a,ac will have
lines overlapping withk and thus contribute to the x-ray
intensity. Asf→0, the circle ofq at f is so small that all
planes irrespective of their positiona on the circle contribute
to the scattering. This is clearly whenf=dc/2 and indeed the
condition s58d gives sinac/2=1 or ac=p and all domains
contribute. The intensity forf.dc/2 is then

Isfd = I0
2ac

2p
= I0

2

p
sin−1Ssinsdc/2d

sinf
D , s59d

where the first factor stresses that a fraction 2ac/2p of all
possible sets of planes contributes. The sharp switch from the
Isfd above to the saturated valueI0 for f,dc/2 is a conse-
quence of our artificial assumption that planes either overlap
with the detector or not, rather than gradually losing their
overlap. The intensity variationIsfd / I0 is shown in Fig. 11.
There is qualitative agreement with the NF experimental
points that are shown.

Several problems comparing with data arise. NoIsfd plot
was directly available to us: the data were abstracted from
fsed and Ised plots given by NF. The first data point forf
Þ0 carries the highest burden of error since it is taken from
a fsed plot of seemingly infinite gradient aroundec. Second,
the lines at smallf especially were conspicuously asymmet-
ric between ±f. Is the attribution of intensity toIsfd am-
biguous as a result? In any event it is evident from the data
that a very rapid drop in intensity fromf=0 takes place. The
residual small anglesin ud intensity aboutf=0, that is rep-
resenting unrotated layer systems, is relatively much more
constant with strain. It is initially a very small fraction of the
rotated layer line intensity but increases in relative impor-
tance because the layer lines diminish so quickly. It may
represent regions near the boundaries of the elastomer or
near clamps. These planes rotate much later than the bulk
swhich is consistent with the contribution finally diminishing
with straind. Such heterogeneity in rotation is well known in

the quasiconvexification of nematic elastomer response by
the creation of polydomainsf14g. The effect of having a
distribution of q vectors with randoma on the large angle
scatteringsand hence on the perceived nematic order param-
eterd is more complicated and we return to that elsewhere.

D. Microstructure after the CMHH transition

When elongation along the layer normal,lzz becomes too
costly we have seen that layers rotate instead of dilating fur-
ther sFig. 4d. However, the sample must be clamped in order
to apply az-extensional force and thus the rotation cannot
occur uniformly throughout the sample. It must vanish atz
=0 andz=Lz, that is at the clamps, and must vary in thex
direction between the values ±f, Eq. s24d, sufficiently rap-
idly that large layer translations are not built up which would
then cost large elastic energies to satisfy the clamp con-
straints, see Fig. 12. On the other hand, very fastx variation
between ±f leads to a high Frank elastic energy cost. The
resultingx-length scale and overall energy cost arises from
optimizing the sum of these two energies. Microstructure
development in layered systems with disparate moduli is a
classic problem in liquidsf2g. It also occurs in thermoplastic
elastomers and in a wide variety of other layered materials
f15g. Here we give a short analysis to produce a first esti-
mate.

Length scales emerge naturally from layer and matrix
elastic moduliB andm competing with Frank elastic energies
which, for simplicity, we represent by a single constantk.
One obtains geometric quotients from Euler-Lagrange analy-
sis:j=Îk /m,10−8 m for the nematic penetration depth. It is
a measure of how deeply a director variation can penetrate
into the depth of a material while acting against the penalty
for director rotation. It determines stripe interfacial lengths
and the seemingly instant coarsening in the analogous strain-
induced microstructure observed in nematic elastomersf12g.
Analogously, one defines the usual smectic penetration depth
jsm=Îk /B.d0,10−9 m which determines the penetration
of distortion into a smectic structure. It is independent of the
rubbery elasticity and is an even smaller length suggesting
that smectic microstructure should also be instantly coars-
ened. The geometric mean of the smectic and Frank scales
gives an interfacial energy density for the energy cost per
unit area of stripe formation—gsm=ÎkB.

One finds, in close analogy to the nematic stripes problem
f12g, that the thresholdlzz=lcr found in the case of instabil-
ity to a uniform system is shifted very slightly by Frank

FIG. 11. The experimental datassd of f1g. The solid curve
corresponds to 0.3/sinf which ignores the intrinsic width of layer
lines; the dashed curve iss2/pdsin−1s0.1045/sinfd which accounts
for linewidth.

FIG. 12. The microstructure of a sample loaded past the thresh-
old stress. Stripessdottedd of width h are shown coarsened, the
layer normals being at ±f with respect to the extension axis,z.
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effects to a higherlcr8 *lcr at which point there is a small
jump to a finitef.0. The creation of microstructure to ac-
commodate clamp constraints means there are spatial varia-
tions and thus assmalld Frank contribution to the energy. A
little more strain must be imposed to overcome this addi-
tional cost.

The stripe period in thex direction is

h , ÎLzjsmB/srmd
1

sl − lcrd1/4. s60d

The period never diverges sincelùlcr8 *lcr and rapidly
saturates to

h , ÎLzjsmB/srmd , Î10−3 3 10−9 3 20 m, 4 mm,

for a sample of lengthLz,10−3 m. This is in the scale of
lengths which would give the strong light scattering that is
actually observed. Microscopic results forh are not yet avail-
able as they are in the nematic case. It would be interesting
to investigate stresses and rotations the threshold region in
detail, and to examine stripes in a microscope.

V. MATRIX-LAYER COUPLING FROM CROSSLINK
LOCALIZATION

We derive the underlying rubber elasticity and the rigid
layer-matrix constraints for a smectic elastomer where net-
work crosslinks are strongly coupled to smectic order. How-
ever, there is still disagreement in this still-controversial area
as to how this coupling comes about. One argument for their
being no constraint on layer motion relative to the rubber
matrix has been advanced by Radzihovskyf16g. It rests on
the statistical spatial homogeneity of crosslink positions in a
network crosslinked in the nonsmectic statesmost probably
the case of NFd. On then entering the smectic state-chain
spans stretch or compress during the sinking of their
crosslinked ends into the smectic potential minima. Such ho-
mogeneity means that the energy in the smectic state is in-
dependent of where the layers form relative to the rubber
matrix. Given all positions of the layer system have identical
energy, there should be no modulus governing the position of
layers relative to the matrix. A similar argumentf9,10g can
be constructed in the orientational case for soft elasticity in
nematic elastomers. An isotropicshere, layer-freed gedanken
state is requiredsto establish the energetic equivalent of dif-
fering statesd.

We believe that despite the independence of energy on
layer position, there is indeed resistance to layer displace-
ment relative to the matrix if crosslinks sink into sufficiently
deep minima in the smectic potential. An equilibrium layer
system displaced from a given system, after being heated to
and then cooled from the nonsmectic gedanken state, will
have the same energy. However, given strands may end in
different minima in the two systems but on displacing the
original layer system at fixed temperature, chains may not
reach their minima appropriate to the translated layer system
because of smectic localization, and then the energy must
indeed rise. We now calculate this energetic cost in the limit
of strong order. The harmonic coupling constantL, intro-

duced in f3g for layer-matrix relative translations, will
emerge explicitly as will the rigid constraints on matrix shear
relative to layer rotation, Eqs.s3d and s4d. As the Sm-A to
nematic transition is approached from below, one would ex-
pect the rigid coupling to be lost and a crossover from 2D to
3D rubber elasticity to occur.

Microscopic models of ordinary and nematic elastomers
require the probability distribution of end-to-end spans of the
network polymers. The trace formulas6d derives from the
averaged logarithm of the distribution, that is of the partition
function conditional on fixed end-to-end distance. For a
smectic elastomer both the size of the span of a polymer
chain and additionally the position of its ends relative to the
smectic layers are significant. A corrugated potential, in
which the crosslink points sit is illustrated in Fig. 13. Devia-
tion of crosslink points from these wells is penalized because
the ensuing disruption of the smectic order of the layers, and
because of the steric repulsion between crosslinks and the
mesogensf17g. Here we ignore the additional penalty in-
curred by segments of the polymer chain by virtue of their
crossing the smectic layers. This could be corrected for to
some extent by putting in an effective value of the aniso-
tropy, r. There is evidencef18g that homopolymer networks,
where the smectogens are not diluted, experience a strong
potential fas evidenced by their extreme Poisson ratioss0,
1dg. On the other hand, dilution takes one to the other limit,
namely a smectic elastomer where the layer modulus is too
low to influence the solid elasticityf18g. The interaction of
crosslinks with a smectic potential has been studied by Olm-
sted and Terentjevf17g. These authors were interested in the
limit of weak potentials since they described the character of
the nematic to Sm-A transition in the presence of randomness
induced in this manner. We explore instead the effect of
strong potentials.

Taking account of the Gaussian distribution of interlink
chain configurations and the additional weight given to the

FIG. 13. A microscopic model of a smectic elastomer. Crosslink
points sit in a periodic potential resulting from the smectic ordering.
For clarity, the smectogens are not shown.
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end positions by the smectic potential, the probability distri-
bution of the ends of the chain,R1 andR2 is

P0sR1,R2d ~ expS−
3

2L
R12

T · l= 0
−1 ·R12 + 2b cossa − q0

T ·R1d

+ 2b cossa − q0
T ·R2dD , s61d

<o
n,m

expS−
3

2L
R12

T · l= 0
−1 ·R12 − bs2pn − q0

T ·R1 + ad2

− bs2pm− q0
T ·R2 + ad2D , s62d

=o
m,n

P0sm,ndsR1,R2d, s63d

whereR12=R1−R2, L is the arc length of a polymer,q0 is
the wave vector of the smectic layers,a is an additional
phase if layers are displaced with respect to the matrix, and
b=Vs/kBT defines the strength of the smectic layer potential
in which the crosslinks sit, divided bykBT. Unlike f3,7,17g
we are only interested in the uniformsnonfluctuatingd dis-
placement fields for the matrix and layers. The step length
definition is as in Eq.s7d but without a factor of,' yet taken
out as in that dimensionless form

l=0 = ,'d= + s,i − ,'dn0n0
T. s64d

We also assume, without loss of generality, that the first layer
in the system sits at the origina=0, i.e., there is no displace-
ment w.r.t. the background. In Eq.s62d we have taken the
limit of b@1 and written the probability distribution as a
sum over all the layers labelled byn andm in which the two
different ends can sit. We have written the cosine functions
as a power series and, sinceb@1, only the first term is
significant. We can then bring down the summation sign
from the exponent becauseb is so large all the wells of the
potential are effectively decoupled. This expression is useful
when quenching ends into a layer at crosslinking. The com-
ponentszd along the layer normal of this probability distri-

bution is of the formfszd~e−z2−cosszd. In the limit of strong
potential, the peaks are separated and one can replace this
function by a sum over Gaussian peak shapes displaced from
the origin by multiples of the layer spacing and modulated
by the nematic Gaussian expf−s3/2Ldz,i

−1zg.
It is useful to convert to center of mass and relative coor-

dinates in both spans and layers

P =
1

2
sR1 + R2d, Q = sR1 − R2d, s65d

p = sn + md, r = sn − md. s66d

The Jacobian from this change of variables for the following
integrals cancel with the same factor in the normalization of
the probabilities. The exponent in Eq.s62d then contains the
following:

−
3

2L
Q · l= 0

−1 ·Q −
1

2
bs2pr − q0

T ·Qd2 − 2bspp − q0
T ·Pd2.

s67d

When the smectic elastomer is formed deep in the smectic
phase, the specific layer that the crosslink points are in will
be a quenched variable, that is bothp and r are quenched
variables. When the crosslinks are formed the span of the
polymer,Q, is quenched in, and since both the ends of the
chain are fixed into a network then so must the coordinateP
also be quenched.

We now deform the matrix byl= so thatP→l= ·P, then
translate it byu, and finally translate the smectic layers par-
allel to theirnewnormal byv. Only the centre of mass part
with P sand not the relative part withQd in the energy is
changed. The last term in Eq.s67d on transforming the solid
plus layers becomes

2bf2pv/d + pp − qT · sl= ·P + udg2.

Note that the phase picked up by layer translation involves
the new spacingd rather than that before deformationd0 in
the first term and likewise in the last term it is the new wave
vector qT that enters. To calculate the free energy of the
system we must complete the following quenched average of
this energy over the probability of the formation conditions:

f = − kBTE dPE dQo
p

o
r

P0sp,rdsP,QdlnhPsp,rdfsl= ·P

+ ud,l= ·Qgj, s68d

=
kBT

N /
dPdQo

p
o

r

expF−
3

2L
Q · l= 0

−1 ·Q −
1

2
bs2pr

− q0
T ·Qd2 − 2bspp − q0

T ·Pd2GS 3

2L
QT · l=T · l= −1 · l= ·Q

+
b

2
f2pr − qT · l= ·Qg2 + 2bf2pv/d + pp

− qT · sl= ·P + udg2D . s69d

HereN is the normalization constant for the probability dis-
tribution. This integral can be separated out into an integral
overP and an integral overQ. The first gives the vital foun-
dations of smectic rubber elasticity—the coupling between
layer and matrix displacements and the rotation of layers
with the deformation of the matrix. The second will give the
actual form of the smectic rubber elastic energy. We tackle
these two integrals one at a time.

The P integral is

1

N E dPo
p

expf− 2bsq0
T ·P − ppd2g

3h2bf2pv/d + pp − qT · sl= ·P + udg2j.

To perform the sum overp we first note thatb@1 so that we
have a very narrow Gaussian distribution and the particular
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value p=s1/pdq0
T·P is picked out. The resulting expression

is

1

N E dPs2bf2pv/d − qT · sl= ·P + ud + q0
T ·Pg2d

= 2bSs2pv/d − qT ·ud2 +
Li

2

12
sqT · l= − q0

Tdi
2D , s70d

on doing theP integral as well. This expression, though an
energy density, contains in the strain term the size of the
system in theith direction,Li, since the integral is not gov-
erned. The term is so large because if the layers were to
rotate relative to the network in such a way as to not be
commensurate with the crosslink points, then all of the
crosslinks throughout the whole sample would be displaced
from the minimum in the smectic potential by an amount
scaling with the lineal dimension of the system, resulting in a
massive energy cost. This otherwise large term can be made
zero sminimizedd only if qT·l= and q0

T are parallel. Their
magnitudes can be made to agree by modifyingd which is
penalized separately by the modulusB. Thus the rotation of
the layers with the applied deformation is a rigid constraint:

q = l=−T ·q0. s71d

This result is the microscopic justification of the geometric
results s3d and s4d. The total rigidity of the constraint on
layers and shears was first obtained inf3g.

The first term of Eq.s70d describes the penalty associated
with a mismatch between the smectic layers and the matrix
arising from translation of one relative to the other. Multi-
plying by the number of network strands per unit volume,ns,
gives the associated free energy density

f rel = 2kBTbS2p

d
D2

nssv − n ·ud2 ;
1

2
Lsv − n ·ud2

with

L = 16p2mVs/skBTd2d. s72d

This layer-matrix coupling has been used in continuum mod-
els f3,6g and in f7g where it was estimated phenomeno-
logically, see alsof10g. Connection can also be made roughly
to the polymer scale viaR0

2,Nd2 whereR0
2,,L has previ-

ously been introduced as a characteristic mean square dimen-
sion, here for a chain withN links. Also the smectic scale
enters asVs,kBTucu2. Then our estimate ofL is

L = 16p2mNucu2/R0
2.

The cost of uniform relative translation decouples from the
cost of shears and shear-layer rotation/dilation, and we do
not employ it in our nonlinear elastic analysis.

To obtain the rubber elastic part of the free energy, we
now consider the integral over the variableQ ssuppressing
the normalization 1/N d:

E dQo
r

expS−
3

2L
Q · l= 0

−1 ·Q −
1

2
bs2pr − q0

T ·Qd2D
3 S 3

2L
QT · l=T · l= −1 · l= ·Q +

b

2
s2pr − qT · l= ·Qd2D . s73d

We use the same procedure as that carried out for the previ-
ous integral; first the sum overr is evaluated picking out the
particular valuer =s1/2pdq0

T·Q, and then the integral overQ
performed. After carrying out the sum overr we obtain

E dQ expS−
3

2L
Q · l= 0

−1 ·QD ·S 3

2L
QT · l=T · l= −1 · l= ·Q

+
b

2
sq0

T ·Q − qT · l= ·Qd2D .

The integral overQ can then be performed. The first term
results in the usual trace formula expression. The second
term can be evaluated using the average:kQTQl= 1

3Ll=0. The
result is then

Lb

6
Trfl=0 · sq0 ·q0

T − l=T ·q ·qT · l= − l=T ·q ·q0
T − q0 ·qT · l=dg.

s74d

This expression can be simplified by using the definition ofl=0
given in its dimensionful form Eq.s64d. Sincen0 andq0 are
parallel we have

Lb

6
TrFS2p

d0
D2

,id= − l=0 · l=T ·q ·qT · l= − l=T ·q ·n0
T2p

d0
,i

−
2p

d0
,in0 ·qT · l=G . s75d

This expression can be rearranged into

Lb

6
Ssl= 0

1/2 · l=T ·qd −
2p

d0
n0

Î,iD2

. s76d

It can be seen from this expression that this constraint also
penalizesq if it is not equal tol=−T·q0. The resulting terms
from theQ integral are thus.

1

2
Trsl= · l=0 · l=T · l=−1d +

1

2

Lb

3
Fsl=0

1/2 · l=T ·qd −
2p

d0
n0

Î,iG2

.

One converts these energies per strand into energy densities
by multiplying by the strand number densityns. Our final
microscopic model for smectic liquid crystal elastomers is:

f =
1

2
m Trsl= · l= 0 · l=T · l=−ld +

1

2
BS d

d0
− 1D2

, s77d

wherem=kBTns. The second term is the layer compression
penalty from the smectic free energy. We also make the iden-
tification of the layer normal,q with the director,n, and
rigidly impose the constraint:q=l=−T·q0. This returns us to
our starting point, Eq.s10d, but from a statistical mechanics
point of view of the system.
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VI. CONCLUSIONS

In conclusion, we have derived a model of Sm-A elas-
tomers from both a geometric view point and from a micro-
scopic model of the effect of a corrugated potential on the
crosslink points in the smectic elastomer. This model repro-
duces the experimentally observed elastic behavior when the
elastomer is stretched parallel or perpendicular to the layer
normal. Most notable is the correlation between threshold
strains and ratios of the various moduli that are found, along
with the description of a characteristic, singular layer rota-
tion with applied strain. The response to the two basic shears

is also predicted but has not yet been observed. Our model
also provides an explanation of the observed x-ray scattering
patterns when the appropriate microstructure is considered.
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