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Shear flow in nematic liquid crystals: Fréedericksz transition as a bifurcation
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We numerically investigate the Fréedericksz transition for steady state plane shear flow of nematic liquid
crystals between two parallel plates in the presence of external magnetic fields. Three typical configurations
with the external field in the plane of the flow and perpendicular to it, in the plane and along the flow, and
where it is perpendicular to the plane of the flow are considered. In each case, the Fréedericksz transition is
studied as a bifurcation problem. Beginning with a steady state shear flow, solutions corresponding to slowly
increasing magnetic fields and those corresponding to fields which are suddenly turned on at a given intensity
are studied. For a typical idealized nematic, we show that the symmetric pitchfork bifurcation in the absence
of shear becomes a transcritical bifurcation from the trivial solution in one configuration while in another it
resembles a disconnected pitchfork where the turning point of the disconnected branch is a generic singularity
in the absence of symmetry or a trivial solution.
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I. INTRODUCTION In this paper we investigate the effects described above
when a nematic is subject to a steady state shear flow. In
Nematic liquid crystals exhibit long-range ordering in the particular, we assume that the lower plate is held stationary
sense that their rigid rodlike molecules arrange themselvegnhile the upper plate moves with a constant velocity. We
with their long axes parallel to each other. The direction ofconsider three different configurations where the external
alignment is usually described by a unit vectocalled the field and anchoring conditions at the plates are in conflict. In
director. Mathematical models for nematic liquid crystals areparticular, we consider two external fields which are parallel
derived generally from the work of Ericks¢fh] and Leslie and perpendicular to the flow direction while remaining in
[2]. A comprehensive discussion of the properties of nematithe plane of the liquid crystal, and an external field which is
and other liquid crystals can be found in ChandrasekBhr ~perpendicular to the plane of the flow. Our simplifying as-
deGennes and Propt], and Collings and Pat¢b]. sumptions reduce the balance laws to a single ordinary dif-
When an external magnetic field is applied to a nematiderential equation ing(z) [or 6(2)], the director angle. We
liquid crystal trapped between two parallel plates, the bas@ssume that the magnetic properties of the material are an-
configuration of the liquid crystal changes beyond a criticaliSotropic and the difference of the susceptibilities parallel
field value. This effect is called the Fréedericksz transitior@"d Perpendicular to the direction of the flow is positive. The
and is well known. For a thorough discussion see, for ex/haterial properties of the typical nematic used for numerical
ample, Ref[4]. The Fréedericksz transition can be used tonVestigations is based on Ref8,4]. We numerically show
measure the elastic constants of a liquid crytalpp. 123- 3\]/"# ther:e IS a Fr(altafq?(r:ilqksz transtljt_lonl for srr;}all slhear ;atﬁs'
128]. The orienting effect of the applied external field and en the external field is perpendicular to the plane of the

the anchoring effect of the plates conflict with each other for“qumI crystal, the applied shear plays no role and the ob-

. ) i , . ~.._served bifurcation is the perfect pitchfork of the static cases.
typical configurations used for the Fréedericksz transition P b

Leslie [6,7] posed the problem in terms of the conservatior;zv}/jhen the applied field is parallel to the flow direction, we

gy d | ¢ d dthe f gbserve a change in the bifurcation picture but it still re-
oflineéar and angufar momentum and used the Ire€ energy Qo ypjes 4 pitchfork and the critical field strength changes
the sample to determine the existence of a critical fiel

h ab hich vial soluti st Derfel lightly. In this configuration we obtain a transcritical bifur-
strength above which a nontrivial solution can exist. Er€lcation from the trivial solution. However, when the external

Tield is perpendicular to the flow direction and in the plane of
the flow, we obtain a disconnected pitchfork at a higher value
af the critical field strength. The turning point of the discon-
ected branch represents a generic singularity in the absence
of symmetry.
Y The rest of the paper is organized as follows. In Sec. I,
we outline the continuum theory for nematic liquid crystal
flows. Section Il describes the Fréedericksz transition and
its interpretation as a symmetry breaking bifurcation. Section
*Electronic address: mukherjeea@mail.montclair.edu IV introduces the boundary value problem for the director
"Electronic address: mukh&@math.psu.edu for steady state shear flows under the influence of a constant

occurs is at a pitchfork bifurcation point. Blake, Mullin, and
Tavener[9] were able to compute the critical value numeri-
cally and demonstrate that the perfect pitchfork associate
with a magnetic field which is perpendicular to the plate
becomes a disconnected pitchfork when the field is slightl
perturbed from the perpendicular.
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external magnetic field. In Sec. V, we outline the numericalderivatives, ang(x,t) is the pressure. The six Leslie coeffi-
scheme used to solve the boundary value problem. We alsgdentsq; determine the dynamics of the incompressible nem-
demonstrate the effectiveness of our scheme by computingtic and the constantg, and y, are linear combinations of
the critical field strength at which nematics undergo Fréedihe o;’s. For the few cases where experimental determination
ericksz transition and present the symmetry breaking pitchis possible, these coefficients are of comparable magnitude

fork bifurcation for this phenomenon. Finally, Sec. VI con-

and in cgs units they range in value from i@o 10 P.

tains the details of the Fréedericksz transition for nematics A magnetic fieldH making an arbitrary angle with the

under the influence of a shear.

II. DYNAMIC CONTINUUM THEORY FOR NEMATICS

The continuum theory of liquid crystals, established by

Ericksen[1,10,11 and Leslie[2], is based on the work of
Frank [12] and Oseerf13]. Nematic liquid crystals differ

from usual isotropic fluids since they exhibit a long range

orientational ordering. Following deGennes and Pfdspp.

98-105, we assume the fundamental formula for the bulk

free energy of the continuum theory for nematics as

For=3Ki| V -n2+3Kon - (V X n)2+ 3Kyln X (V X )2,

1

whereK;>0, i=1,2,3 correspond to the splay, twist, and
bend elasticity constants. Wheg, =K,=K;=K the Oseen-
Frank energy reduces to the Dirichlet enertfpiichiet
=K|Vn|? subject to the constrairin|=1. The formulation
does not distinguish betweenand . In cgs units, the free
energy For has units of energyper cn¥) and the elastic

directorn induces the magnetizatial given by

M=x H+(g-x)H-mn=x,H+x,(H-nn, (7)

where y, measures the difference between the magnetic sus-
ceptibilities parallel and perpendicular to the director and is
positive for typical nematics. In cgs electromagnetic unjts,

is approximately equal to 0. The magnetic torquE,, act-

ing on the magnetizatioM is I'y;=M X H=x,(n-H)n X H.

To include the effect of a magnetic field, we modify the
free energyFor of Eq. (1) to

H
f=fop‘f
0

1
M -dH = For— Zx, H* -

1 2
2 2Xa(n ' H) '

8

whereH=||H|. The term3x, H? is independent of the mo-
lecular orientatiom and does not play a part in our discus-
sion, while the last term in the expression $Bis minimized
whenn andH are collinear, sincg,>0. The balance laws

in the presence of an external magnetic field are given by the

constants; are expressed in dynes. Different experimentalEricksen-Leslie equation&)—(4) where 7o is replaced by
methods used to determine the elastic constants yield diffecF. We study the Eréedencksz transition for nematic IIqUId
ent values but their order of magnitude is approximatelycrystals under the influence of a plane shear and an uniform

1076 dyn.

magnetic field. The boundary value problem for the director

The equations representing balance laws for mass, linearientation under these assumptions is derived in Sec. IV.

momentum, and generalized momenta of the anisotropic
variables for an incompressible nematic are given below. In

addition ton, if we letv denote the velocity vector, andthe
density, the balance laws are

V-v=0, (2)
pv=V .o, €)
. f7~7:0|:> dF oF
nxn=V. n—-——Xn+vyQnXn
n (aVn an n
- y,An X n. (4)

In the above equations, the Cauchy stress tensisrgiven
by

FoF
=pl-Vn"
=P ovn

where the viscous stress is defined as

(5)

+ 0,

v

o,=(n-An)n@n+aN @ n+azn @ N+ A + asAn
(6)

The tensorsA and  represent the symmetric and skew-
symmetric parts of the velocity gradiedti=n-Qn is an
invariant time derivative of, n, andv denote material time

®n+agh ® An.

Il. FREEDERICKSZ TRANSITION

The simplest method for determining the elastic constants
K; is by studying the deformations of a thin layer of nematic
between two plates due to an external magnetic fibdd15.
Three typical experimental configurations of a nematic be-
tween two plates, a distandeapart, are shown in Fig. 1. The
thin nematic slice is in thez plane and the geometries are
chosen so that the orienting effect of the applied external
field competes with the restoring forces produced by the di-
rector alignment at the boundaries. As shown in the figure,
¢=¢(z) and 6=6(z) are the angles that the directormakes
with the x and z axis with ¢+ 6=m/2 andH represents the
constant external magnetic field. Specific details for the three
configurations including the boundary value problem for the
director angled or ¢ are given below.

Configuration (a) The undisturbed director orientation is
parallel to the plates and the applied magnetic field acts per-
pendicular to the plate in thexz plane. Using n
=(cos¢,0,sing), H=(0,0,H), and v=(0,0,0 in Egs.
(2)—(4) and(8), we obtain

d2¢ 1dfa[d¢
WD 2" 20| dz

with the strong anchoring boundary conditiorg—d/2)
=¢(d/2)=0, wheref,(¢)=K, cog ¢+Kssir? ¢. The mag-

(9)

2 H2
} :—XaTsin 2,
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FIG. 1. Model configurations for Fréedericksz transition. Con-
figurations (a), (b), and (c)represent different geometries and the
broken arrows o® shows the direction of the external magnetic
field H.

‘u//////////////////////////m\

netizationM =[(x,H/2)sin 2¢,0,x , H+ x,H sir? ¢], and the

. —_ _ 2 .
magnet!c torqud“,v, =(0, (XaH /2)sin 2‘1’,’0)' . L FIG. 2. Typical anticlockwisétop) and clockwisebottom) dis-
Configuration (b) The undisturbed director orientation is (,rjons of the director measured with respectdts0. For 6, the
parallel to the plates and the applied magnetic field acts peientations are reversed.

pendicular to thexz plane. Usingn=(cos¢,sin¢,0), H
=(0,H,0), andv=(0,0,0 in Eqs.(2)~(4) and(8), we obtain complicated coupling with the field. Following deGennes

¢ xaH? and Pros{4, pp. 122-123 the magnetic coherence length of
Kzg =="5sin 2¢ (10)  anematic is defined a&H)=(1/H)(K/ x,)*2 where we have
assumed;=K,=K3=K. It is well known that the thickness
with  ¢(-d/2)=¢(d/2)=0. The magnetization M of the transition layer is essentially equal to the magnetic
=((xaH/2)sin 2¢, x , H+ x,H sir? ¢,0), and the magnetic coherence length. In cgs units, takikg: 10, x,=107, and
torquel’y, =(0,0,(x,H?/2)sin 2¢). H=10" Oe, we notice tha&(H) has the order of I¢ cm or
Configuration (c) The undisturbed director orientation is 1 um. If the sample thicknesd is much larger tharg(H),
perpendicular to the plates and the applied magnetic fielthe bulk of the sample tends to align in the field direction.
acts parallel to the platésr perpendicular to the undisturbed  The trivial solution always solves the boundary value
director orientation Usingn=(sin #,0,cos6), H=(H,0,0), problems(9)—11) and there is a critical field strengtH,

andv=(0,0,0 in Egs.(2)—(4) and(8), we obtain above which the magnetic torque overcomes the restoring
2o 1di.[dol? e elastic forces and the director profile becomes distorted. The
fO)—2 42| 20 Xl 20, 11 critical field strength is
94z ZdG{dz} o SN (1)
m( K\ 2
with the strong anchoring boundary conditiom$-d/2) Hc:E - or )\c:?- (13
a

=6(d/2)=0, wheref () =K, sir’ #+K; cos 6. The magneti-

zation M=(x H+x,H s’ 6,0,(x;H/2)sin26) and the Bjake, Mullin, and Tavenef9] study this problem as a sym-
magnetic torqud’y =(0,(xaH?/2)sin 26,0). metry breaking (pitchfork) bifurcation. They assume
Configuration(b) is the simplest since it involves only the =(H siny,0,H cosy) and discuss the two cases0 [their
twist constant<,. If we assumeK;=K3=K, then the equa- computations correspond to configuratita in this case
tions for configurations(@ and (c) simplify, since f5(¢)  andy# 0. The inherent reflectional symmetry of the problem
=f.(#)=K anddf,/d¢=df./d6=0. Using these assumptions, when =0 is broken wheny is nonzero. They show that for
introducing a new scaled variat#te z/d and using primes to  H>H_, two nontrivial solutions corresponding to clockwise
denote derivatives with respect to the normalized variableand anticlockwise distortions of the director appear. Typical
we arrive at the generic boundary value problem anticlockwise and clockwise distortions of the director with
. . . _ _ respect top=0 are shown in Fig. 2. The graph @2,
uw'=-hsiny, - with u(-1/2=u1/2=0,  (12) —-d/2<z=d/2 has the shape of a flattened parabola opening
where\ = y,H?d?/2K, andu is either¢ or 6. downwards for anticlockwise distortions while it opens up-
The competition between the effects of the field and thewvards for clockwise orientations. The parabola becomes flat-
restoring forces of the boundary alignment leads to transitiotier and its vertex approaches the valued 2 as\ increases.
layers near the plates where the molecular effects have la the graph of6(z),-d/2<z=<d/2 has a parabolic shape
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] ¢’ =—N\sin2¢ with (- 1/2) = H(1/2)=0  (15)
Z-axis
A f for configuration(b), and
(a) : #"=-X\sin 20+ u(cos - 1) (16)
n ! with 6(-1/2)=6(1/2)=0 for configuration(c), where u
6(2) _ =Vdy/2K. The trivial solution still solves Eq$15) and(16),
%2) x-axis but every solution for configuratiota) with u+#0 corre-
N I ) @ sponds to a distortion of the director.
V. NUMERICAL TECHNIQUES
(c) In this section, we present the numerical techniques used
----------- -> to solve boundary value problems of the fotf#)—(16) for

the director orientationp(z) or 6(z) on the domain -1/2
<z=1/2. Two point boundary value problems can be writ-

FIG. 3. Model configurations for shear flow. The lower plate is . .
ten in standard form as a first order system,

stationary and the upper plate has constant velogity.

y'(2) =f(zy(2)) ona< z< b, (17
opening upward(respectively downwalpd then this curve
corresponds to anticlockwigeespectively clockwisedistor- with g(y(a),y(b)) =0, (18)
tion with respect tad=0 or ¢=m/2. As the field strength is
increased steadily beyortd,, the trivial solution exchanges Wherey, f, andg haven components and bothandg may
stability with one or two possible nontrivial solutions which be nonlinearsee, for example, Ascher and Rusis]). For
are equally likely to occur leading to a pitchfork bifurcation. the single second order equation we consider here2.
Beyond the critical value, the trivial solution is unstable andThere is a comprehensive body of work on efficient numeri-
the distorted branches approachr/2 asH— . When ¢ cal methods for boundary value problems of the fd(ii)
#0, the trivial solution no longer solves the boundary valueWith boundary condition$18). For an overview on available
problem and there is a distortion in the director for any fieldcodes and their interrelations, consider Shampine, Gladwell,
strength. Moreover, the bifurcation becomes a disconnecte@nd Thompsor{[17], pp. 156-167. The book by Ascher,

pitchfork with a primary and a secondary branch. Mattheij, and Russel[18] contains a more comprehensive
study and analysis of the numerical methods relevant to two-

point boundary value problems.
IV. PLANE SHEAR FLOW FIELDS A robust approach for solving the boundary value prob-
lem (17) and (18) is to choose a form of the approximate

Solution involving unknown parameters, require that this ap-

d|menS|o_naI steady state shear ﬂ.OWS betvyeen .tWO parall roximating function satisfies the boundary conditi¢h8),
plates. Figure 3 shows three typical configurations in th nd then use collocation at a sufficient number of points so

case where the flow is along the positixeaxis. USINgV a4 the parameters are determined uniquely. In particular, if
=((2),0,0 in the balance laws, .the bpundary value Pmb'a:zo<zl<zz< .--<z,=bis a mesh offia,b], the boundary
lems for the three standard configurations are only SI'gh“X/alue problem can be solved by computing a cubic function

modified from the static cases discussed in the previous se ; "
on each subintervalz,z,,]. The coefficients of the
tion. In particular, the differential equatid®) for configura- %?CtiOﬂ ) z:rel de\tlgﬂ”z]'ﬂﬁ';g by requirlinlg thas(z)

. L. 1
tion (3 now ha§ the add'ltlonal terms (dv/d2)(y, e C[a,b], g(S(a),S(b))=0, and that the piecewise cubic sat-
72 cos_2¢) or_1 the right, FTQ(lO) IS unc_hgnged, and E(LY) isfy Eqg. (17) at both endpoints and the midpoint of each
for configuration(c) acquires the additional te"%‘(‘_jv/ d2  subinterval. These conditions result in a system of nonlinear
X(y2 cos - ,) on the right. Notice that for configuration aigebraic equations in the coefficients of the piecewise cubic
(b) the addition of a shear does not change the boundarnction S(z) and it can be shown th&z) e C![a,b]. Once
value problem for determining the director. Thus the criticaly good guess of the solution is available on the initial mesh,
field strength in this case will bi.=7?/2~4.93. we use collocation to find an approximate solution on this
Assuming that the upper plate moves at a constant rate hesh, use an error estimator to estimate the error on each
V/d in the direction of increasing, v(z)=(V/d)(z+d/2), or  gybinterval, refine the mesh as indicated by the error estima-
dv/dz=V/d. Introducing a new scaled variable=z/d, re-  tor, and then solve the problem on the resulting finer mesh.
placing y; and y, by some average, and assuming that the This iterative process is repeated until the difference in the
elastic constant&; andK3 are equal tK, we arrive at the  computed solutions on two successive meshes or some simi-

normalized boundary value problems lar stopping criterion meets a predetermined error tolerance.
The error estimator used for adaptive mesh refinement re-
"= —=\sin2¢+ u(l + cos 2h) (14 quires specialized techniques. We use a Richardson extrapo-
lation based error estimator for our computations. The com-
with ¢(=1/2)=¢(1/2)=0 for configuration(a), puted solutionS(z) satisfies the equation
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S(2=f(zS2) +r(2), (19 b R R TTY
wherer(z) is the residual. For each subinterVa,z,,] of 1} I
any mesh, we associate a residual error estimator o
:f2+1||r(z)||2dz where the integral is evaluated using a five- o5} o
point Lobatto quadrature formula. We use a stopping crite- i I
rion where on each subinterval of the final mesh, the residual g
satisfies b
. -05F °
r(i °
#A(i) = R, (20) °°
ma><<|f(i)|,?) 1 °°°°o°°° III

whereR is the relative tolerance and(i) is the absolute -8

tolerance on(z,z,,]. For our computations, we choo$e
=10 and A(|):1q5_ We have checked all the numerical  rG, 4. Computed bifurcation diagram for the Fréedericksz tran-
results we report in this work with lower values of the toler- sition with shear in configuratiofb) corresponding to the boundary
ances and with a finer final mesh than the one we use for owfalue problem(12). ¢, O, andO indicate impulse field computa-
results in the paper. The difference between the reported vafions with initial guesses corresponding to I, II, and ll, respectively.
ues and the more accurate ones are insignificant. The line along the trivial branch indicates that ramped field compu-
When the boundary value problefd?) is difficult to  tations corresponding to I, Il, and Ill yield this solution branch.
solve, the method of continuation is commonly used. The
technique exploits the fact that the solution of one boundary Branch L The undistorted orientation corresponding to
value problem is a good guess for another whose parametegz) = o [respectivelyd(z) = 0].
differ only slightly. For example, we can solve any of the = gyanch |1 The positive orientation corresponding to
boundary value problemd4)—(16) for given values oh and #(2)= ¢, cod m2) [respectivelyd(z) = 6, cos w2)]. This initial

w by using a continuation on as follows. Introduce & pa- 4,655 assumes an initial anticlockwisespectively clock-
rameters into the first term of the boundary value problem wise) distortion.

and solve for6=0 (correspondinglyx=0). Using the solu- Branch lll. The negative orientation corresponding to
tion of this problem, solve successive boundary value probzﬁ(z):_qs0 cogwz) [respectively 6(z)=—6, codnz)]. This

Iﬁms fo[)|0< 5?< 52h< ++<y=1. The final ;olut{/(z/n sholves initial guess assumes an initial clockwigespectively anti-
the problem for the given parametexsand u. We have o lise distortion,

implemented these numerical methods using the available For most of our computations we assurfg=1. These

tools and functlonallty OMATLAE . A det@"ed d!scus§|on of choices are motivated by approximations of the boundary
the numerical analysis and control of bifurcations in bound-

ary value problems can be found in Doedel, Keller, andvalue problems as shown below.
Kernévez[19,20.

Given particular values of the parametersand u, we
solve the boundary value problem using two different ap- A first order approximation for the differential equation
proaches. In the first approach the solution is obtained usingl4) yields
continuation on the magnetic field parameterThis corre-

sponds to an experiment where we start with a given flow #"=-Nsin2¢+pu(l+cos2p)~-2\p+2u (21)
rate and no magnetic field and slowly ramp up the magnetigitn H(-1/2)=$(1/2)=0. Assuming ¢(z)=C cogmz) for
field to its desired value—we will refer to this as tremped e solution, we obtaiS= b= ¢b(0). Thus the solution to the
field. The process of s?arting'at the initial yalufyo, of Fhe approximate boundary value problg@l) yields anticlock-
parametei and reaching a final value with \<\; USINg  ise (respectively clockwisedistortions depending on the
continuation will be called downward ramping. When Con'sign of ¢b. Substituting this form of the solution in E¢R1)

tinuation is not used, the solution scheme corresponds to )ﬁelds o cOSTZ=2/(2N— 7?). This immediately leads to the
s_udden apphcatlon of .the magnetic f'?ld at the given Inten yical values\.=7?/2 where the solution changes nature.
sity. We will refer to this as aimpulse field Notice that the e have used this first order approximate solution to the
equations we sol_ve are pure bqur)dary value pro_ble_:ms .ar@(/)undary value problerlL4) as the initial guess for our nu-
our reference to impulse fields is just a way to distinguish

between the two methods of solving these boundar valumerical computations. The three solution branches in our bi-
problems. y furcation diagrams correspond #y=0, ¢o>0, and¢y<0.

All computations in the next section correspond to three i . . . .
different forms of the initial guess fors(z) [respectively B. Fréedericksz transition as a bifurcation
6(z)] which satisfy the boundary values. The three initial ~As a partial validity of our computational methods, Fig. 4
guesses used for our computations are as follows: shows the computed bifurcation diagram for the boundary

A. Choice of initial configurations
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value problem(12) when 0< \ < 20. This corresponds to any 15 1 ..onascsucoef
of the three configurations in Sec. IV or to the shear flow L L
configuration(b). The ramped field computations always cor- 1} a®
responds to the trivial solution branch as indicated by the a
line along this branch, even whan>\_=72/2. On the other st °
hand, the impulse field computations yield the trivial solution i
when N<\; and the corresponding nontrivial solution ° I
branch whenh>\.. Figure 4 shows all three solution < ° p
branches as plots afy,= ¢(0) [respectivelyd,=6(0)] against o
the parametem =y,H?d?/2K. For the nontrivial solution -o5f °
branches, the variables (respectivelyd) always attain their °
maximum value az=0. These observations match the find- 4l o,
ings of Blake, Mullin, and Tavend®] who use a finite ele-
ment approach based on the package Entji@fg to solve

the boundary value problems and compute the critical value

\.. Derfel [8] first showed that the static Fréedericksz tran-
sition that occurs when a magnetic field is applied normal to k. 5. Computed bifurcation diagram for the Fréedericksz tran-
the nematic[static configuration(@] arises at a pitchfork sition with shear in configuratioft) corresponding to the boundary
bifurcation point. value problem(16). ¢, [J, andO indicate impulse field computa-
tions with initial guesses corresponding to I, Il, and Ill, respectively.
VI. DISCUSSION AND RESULTS The line along the trivial branch indicates that ramped field compu-
We consider an idealized nematic with the following ma-tations corresponding to |, Il, and Il all yield this solution branch.
terial characteristicéin cgs units:
(i) the difference between the magnetic susceptibilities imssumeg=1. Although Figs. 5 and 4 look similar, there are

I

o
°°°°oooo°°

%o
°°°°°°o

N N N M N M N N N P
D 2 44936 8 10 12 14 16 18 20

approximately 10’, or y,~1077; many differences. Equatiofi6) does not have any symme-
(i) the elastic constants are equalko- 10°%; try but admits a trivial solution and Fig. 5 is an example of a
(iii ) the viscosity constantg, and y, are assumed to be transcritical bifurcation from the trivial solution. Moreover,

replaced by some average- 1071, the value of\. is only approximately7?/2. Our numerical

Justifications for the orders of magnitude and underlying asexperiments suggest that the upper branch Il breaks off from
sumptions for the material characteristics follow from ourthe trivial solution | at a slightly lower value of than the
discussions in Secs. Il and Ill. Further, the plate separation lower branch Ill. A detailed study of the structure near these
is assumed large enough so that boundary effects may hgitical values was not attempted in this work.

ignored. To this end, we taked to be of the order of Computations for impulse fields with initial guessgg)
30—80um or 10°° cm. Following purely dimensional argu- =0, cogwz), and —coéwz), are shown using®’s, 's, and
ments, if we assume a slow normalized shear ¥atef ap-  O's, respectively. The corresponding solution branches are
proximately 102 for the upper plate and a large applied ex- marked as I, I, and I1l. The continuous line along the trivial
ternal magnetic fielt ~ 10%, the assumptions underlying the pranch indicates that all upward ramped field computations
model of Sec. Il are justified. With these choices the magiie along this branch. If we start on any solution branch at
netic coherence length turns out to be smaller than the platgome nonzero value of;, and use downward ramping to
separatiord, or equivalently, 16~H>(1/d)\(K/x.)~10°.  reach a value &\;<\; the solution never leaves the
The unperturbed alignment condition derived from a balancéranch. Sinced(z) represents the angle the director makes
of the magnetic and shear induced hydrodynamic torquesith the z axis as shown in Fig. 1, solutions along branch II
102~V < (x,H?)/y~10? is also satisfied. For these param- (respectively II) represent clockwis@espectively anticlock-

eter choices the constanisand\ are approximately wise) distortions of the director from the undistorted con-
vdy 102102107 f|gurit|on where the directors are perpendicular to the plates,
p=—*t~—7——"—~1and (22) or 6=0.
2K 2X 10
XaH2d2 10710P10°6 B. Bifurcation for configuration (a)
A= K - 2x106 10. (23 Figure 6 shows the bifurcation diagram for configuration

(@) in the presence of a steady state shear withl. The

Notice that choosing/~ 1072 andV~ 10! does not change trivial solution no longer solves the boundary value problem
the estimated values afor u above. Shear configuratidh)  (14), and every value of the magnetic field strength param-
was discussed in the previous section and our observatioreter) yields a distortion. Derfe8], investigating the effects
for the other configurations are presented below. of imperfect alignment at the plates when a magnetic field is
applied normal to a static nematic, and the effects of the
magnetic field deviating slightly from normal, found similar

Figure 5 shows the bifurcation diagram for configurationdisconnected pitchforks. Blake, Mullin, and Tavef@} also
(c) in the presence of a steady state shear where we hawbtain a similar bifurcation picture by considering the nem-

A. Bifurcation for shear configuration (c)
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FIG. 6. Computed bifurcation diagram for the Fréedericksz tran-
sition with shear in configuratiot®) corresponding to the boundary ~ FIG. 7. Relationship betweex; and »=Vdy/ 2K for configura-
value problem(14). ¢, O, andO indicate impulse field computa- tion (a).
tions with initial guesses corresponding to I, I, and Ill, respectively.
The line along the lower branch indicates that ramped field compuwith undistorted initial guesses jump from the lower branch
tations Corresponding to I, Il, and Il all yleld this solution branch. to branch | at)\cz 7.9. |mpu|se field Computations corre-
The initial guesses aré(z)=*cog72) or $(2)=0. sponding to the initial guess(z)=cogwz) have a similar
atic configuration(a) without any flow, and assuming the behavipr as they switch from the I_ower branch to branch II.
magnetic field to beH =(H sin,0,H cosy), where ¢ rep- A solution stays on branch(respectlvely_ 1) for ?\>)\C when
resents the deviation of the magnetic field from the normal tflownward ramping is employed starting witg=20, and
the nematic. Their bifurcation diagram is a reflection inthe SWitches to the lower branch for<\.. The value ofk is
axis of Fig. 6. independent of the initial configurations used. Thus the tran-
The lower branch of the bifurcation diagram represent§iti0n at)\c may occur for any of the three initial orientations
impulse field computations, indicated by tt@'s, corre- of the director and we can view the turning point in Fig. 6 as
sponding to the negative initial distortions for branch Ill. @ generic singularity in the absence of both symmetry and a
Moreover, the line in Fig. 6 represents ramped field computrivial solution.
tations beginning ak;=0 and continuing upward ta;>0 Since w is directly proportional to both the normalized
for initial distortions corresponding to I, Il, and lll. This shear rate/ and the plate separatiah increases in the pa-
suggests that the stability of the trivial solution in the sym-rameteru can be viewed as increasing either the normalized
metric pitchfork of configuration(b) is transferred to this shear rate or the separation between the plates. Changing the
lower branch. Moreover,¢o=¢(0)=min_y/51/4 $(z) ap- value of the parametep changes the values. without
proaches /2 as\ —o. changing the qualitative behavior of the Fréedericksz transi-
A nematic between two plates under a steady shear arfépn for shear flows. Figure 7 shows the relationship between
with no magnetic field has a clockwise distortion gnas Acandu for Isu<7.
indicated by the value apy=¢(0) =-0.25 corresponding to
A=0in Fig. 6. Since all solutions for ramped fields lie on the
lower branch in Fig. 6, we infer that the applied external
ramped fields are unable to overcome the effects of the shear We have carefully investigated the Fréedericksz transition
and the anchoring at the plates. Our numerical experiments steady state plane shear flows of nematic liquid crystals
demonstrate that this changes when a slightly different initiabetween two parallel plates. We show numerically that when
condition which preserves the shape is chosen. In practice,tae applied magnetic field is in the plane of the flow and
Fréedericksz transition experiment including shear may inalong the direction of the flow, the critical field strength at
volve imposing the steady state shear on the sample beforehich the transition occurs is close to the critical value in the
the magnetic field is turned on. We have found that rampe@bsence of flow. However, the perfect pitchfork bifurcation
field computations corresponding to an initial clockwise con-obtained in the absence of flow is replaced by a transcritical
figuration ¢(z)=-0.25 co$nz) always remain on the lower bifurcation from the zero solution. We also demonstrate that
branch, while the impulse field computations correspondingvhen the applied magnetic field is perpendicular to the flow
to the same initial guess switch from branch Il to branch Idirection, the Fréedericksz transition occurs at a higher value
beyond\ =A.. and the bifurcation resembles a disconnected pitchfork. The
The upper portion of the bifurcation picture in Fig. 6 con- director orientation is sensitive to how the external field is
sists of the two branches | and Il represented b and changed and the initial orientation of the director, but we
['s, respectively. Branch | corresponds to impulse field com-demonstrate the occurrence of the Fréedericksz transition for
putations for undistorted initial configurations. Impulse fieldsinitial configurations corresponding to both anticlockwise

VII. CONCLUSIONS
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and clockwise distortion of the director in the presence of

shear.
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