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A microscopic theory for the dependence on external strain, stress, and shear rate of the transient localization
length, elastic modulus, alpha relaxation time, shear viscosity, and other dynamic properties of glassy colloidal
suspensions is formulated and numerically applied. The approach is built on entropic barrier hopping as the
elementary physical process. The concept of an ideal glass transition plays no role, and dynamical slowing
down is a continuous, albeit precipitous, process with increasing colloid volume fraction. The relative roles of
mechanically driven motion versus thermally activated barrier hopping and transport have been studied. Vari-
ous scaling behaviors are found for the relaxation time and shear viscosity in both the controlled stress and
shear rate mode of rheological experiments. Apparent power law and/or exponential dependences of the elastic
modulus and perturbative and absolute yield stresses on colloid volume fraction are predicted. A nonmonotonic
dependence of the absolute yield strain on volume fraction is also found. Qualitative and quantitative com-
parisons of calculations with experiments on high volume fraction glassy colloidal suspensions show encour-
aging agreement, and multiple testable predictions are made. The theory is generalizable to treat nonlinear
rheological phenomena in other soft glassy complex fluids including depletion gels.
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I. INTRODUCTION

The dynamics of complex fluids such as concentrated col-
loidal suspensions, foams, slurries, pastes, emulsions, and
even granular assemblies exhibit many features normally
associated with glassy liquidsf1–4g. Their response to
mechanical perturbationssshear, stress, straind is a fascinat-
ing and poorly understood problem in nonequilibrium statis-
tical mechanics. It is also an exceptionally important prob-
lem for technologically relevant processesf2,4g. For
example, novel manufacturing schemes such as the roboti-
cally controlled direct write method employ dense particle
suspensionss“inks” d to fabricate three-dimensional hierar-
chically organized structures and devicesf5g. Strain soften-
ing of the elastic modulus, stress- and shear-induced viscos-
ity reduction, and static and dynamic yieldings“solid-to-fluid
transition”d are examples of phenomena of great interest. The
relative role of mechanically driven structural rearrange-
ments versus ultra slow thermally activated relaxation pro-
cesses is a complex and material-specific issue.

New theoretical approaches to “soft glassy rheology”
problems have appeared in recent yearsf1g. In the phenom-
enological and coarse-grained category, generic and mini-
malist “trap models”f6–8g have been developed and widely
appliedf9,10g. The elementary unit is usually a mesoscopic
fluid region, and essential elements include a postulated dis-
tribution of barriers and noise-induced hopping transport out
of locally harmonic traps. These are generally scalar models
which for technical simplicity neglect the tensorial aspects of
mechanical deformation. In a mean field spirit, nonlinearities
before yielding are not taken into account since local strains
are assumed to follow macroscopic strains and the shear rate

is modeled as spatially homogeneous. Shear or strain reduces
the barrier height for escaping a trap, and the distribution of
trap energies is taken to be unaffected by mechanical pertur-
bation. The latter simplification is of a “near equilibrium”
nature since it effectively assumes the structure of the mate-
rial is not significantly altered by strain or shear. Very recent
work has taken a first step toward a full tensorial trap model
for foams and emulsionsf11g. The trap models are math-
ematically simple, and allow a generic and useful exploration
of the rich nonlinear rheological possibilities for soft materi-
als. A drawback is their strong phenomenological nature
since a significant amount of the physics is “put in by hand”
which limits quantitative and material-specific predictive
ability f12g.

Ambitious “first principles” microscopic theories for soft
glassy rheology have been recently proposed which build on
the ideal mode coupling theorysIMCTd of hard sphere col-
loidal suspensionsf13–18g or related “schematic” dynamic
mean fieldp-spin modelsf12,19g. These approaches are for-
mulated in terms of static and dynamic two-point correlation
functions. Fuchs and Catesf16,17g have employed projection
operator techniques to derive a closed equation for the dy-
namic structure factor under steady flow. The tensorial nature
of the shear deformation has been neglected resulting in an
“isotropically sheared hard sphere model”sISHSMd version
f16,17g of IMCT. Velocity fluctuations are also not taken into
account so that the microscopic shear flow is locally identical
to the macroscopic one. Shear-induced acceleration of dy-
namics enters via the advection of cage scale fluctuations. In
essence, shear separates particles at a rateġ which kineti-
cally destroys or decorrelates the cage constraints encoded in
the dynamic memory functionf16,17g. This approach has
also been worked out in a schematic formf13g where the
wave vector dependence of vertices is ignored corresponding
to a simplified description of local fluid structuref16,17g.*Corresponding author. Electronic address: kschweiz@uiuc.edu
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Interesting results have been obtained based on the
ISHSM and schematic versions of IMCT, which appear to be
qualitatively identical to each other in most respectsf16,17g.
Noteworthy results include the prediction of shear thinning
of the viscosity, a yield stress, and “melting” of the MCT
ideal glass state at arbitrary small, but nonzero, shear rates.
Some of these results agree with the alternativep-spin sche-
matic dynamic mean field theory, and some do notf12g. In
contrast to the trap model approach, barriers and activated
hopping play no role. Moreover, as true for the correspond-
ing quiescent problem, the nonlinear behavior is controlled
by a “separation parameter”«;sf−fcd /fc which quantifies
the colloid volume fraction relative to theshypotheticald
ideal glass transition at a critical volume fractionfc.

Miyazaki and Reichman have independently constructed
an ideal MCT for sheared colloidal suspensionsf18g. It dif-
fers in several ways from the work of Refs.f16,17g including
utilization of a shear distorted structure factor, a fluctuation-
dissipation theorem, and a fluctuating hydrodynamics plus
loop expansion method of derivation. Their final expression
for the memory function in the presence of shear isidentical
to the quiescent equilibrium form except for the presence of
a time-dependent wave vector associated with the advection
of fluctuations.

Computer simulations have begun to address the problem
of nonlinear dynamics of model glassy liquidsf18–26g.
Yamamoto and co-workers discovered the surprising and im-
portant result that the shear rate dependence of static corre-
lations, and the anisotropy of particle diffusion and incoher-
ent and coherent dynamic structure factors, is extremely
small f21,22g. This is true even at high shear ratessin the
shear thinning regimed where relaxation times and transport
coefficients are dramatically affected. The various MCT
theoriesf16–18,22g appear to be in rather good agreement
with these simulations, and the inclusion of explicitly aniso-
tropic structural correlations in the memory function does
not significantly induce anisotropic dynamicsf22g. All these
studies provide strong support for the neglect of the tensorial
aspect of the problem by trap model theories and the ISHSM
version of MCT. One caveat is that the simulations have
limitations regarding the degree of supercooling that can be
studied, and are usually restricted to a “precursor” regime
where the influence of high barriers and rare activated pro-
cesses is not deeply probed. Interestingly, landscape analyses
of the molecular dynamics simulations have suggested an
alternative physical picture where shear strain causes the dis-
appearance of potential energy minima and/or reduces barri-
ers which then triggers modulus softening, shear thinning
and enhanced diffusion viairreversiblejumplike particle mo-
tions f24,25g. These studies claim the yielding process is
akin to a local mechanical instability associated with the
rearrangement of a small number of particles. The surprising
ability of two totally different theoretical pictures, MCT ver-
sus barrier hopping, to qualitatively describe some aspects of
the glassy shear thinning problem has been recently empha-
sizedf22g.

The trap models and IMCT type approaches are very dif-
ferent and have their own strengths and weaknesses. We be-
lieve simulations and experiments suggest that aspects of
both are needed in order to construct a predictive micro-

scopic theory of the nonlinear rheology of colloidal suspen-
sions. Schweizer and Saltzman recently built on a simple
version of ideal MCT for quiescent colloidal suspensions to
“go beyond” the mode coupling approach and treat entropic
barrier formation and activated transportf27,28g. An ideal
glass transition plays no role. Dynamical slowing down is a
continuous, albeit precipitous, process with increasing col-
loid volume fraction. The no adjustable parameter compari-
sons of the theoretical predictions for various single particle
dynamical properties and transport coefficients were found to
be in good agreement with the experiment. A physical pic-
ture is suggested where there is no dynamic critical point and
entropic barrier hopping is responsible for the dramatic slow-
ing down in the high volume fraction regime. Interestingly,
recent simulation studiesf29,30g of both thermal and hard
sphere glass forming liquids find that activated barrier hop-
ping does appear to commence close to the theoretically pre-
dicted MCT dynamic critical pointstemperature or volume
fractiond, and is dominant in the system parameter range
commonly associated with precursor supercooled or glassy
dynamics. These findings are in qualitative accord with our
theoretical workf27,28g.

The purpose of this paper is to generalize the beyond
MCT approachf27,28g to treat glassy nonlinear rheological
phenomena. In Sec. II the theory for quiescent hard sphere
colloidal suspensions is reviewed, and calculations of the
elastic shear modulus are presented and compared with the
experiment. Generalization of the theory to treat the conse-
quences of external stress, strain and shear is given in Sec.
III, and numerical calculations for the dependence of various
features of a “nonequilibrium” free energy on mechanical
perturbation are presented. The theory is applied to glassy
suspensions in the absence and presence of activated barrier
hopping in Secs. IV and V, respectively. Multiple model cal-
culations are presented and compared with the experiment.
Some results are also contrasted with IMCT and related ap-
proaches. The paper concludes in Sec. VI with a summary
and discussion.

II. THEORY OF ENTROPIC BARRIERS
AND ACTIVATED HOPPING

The entropic barrier hopping theory has been described in
detail elsewheref27,28g. Here the essential elements are re-
called.

A. Basics

The “naive” version of idealized mode coupling theory of
Kirkpatrick and Wolynesf31g focuses on the dynamics of a
tagged particle. The central object is the force-force time
correlation function, or dynamic friction, due to the sur-
rounding fluid

Kstd = kFW s0d ·FW stdl

=
1

3
b−2E dqW

s2pd3q2C2sqdrSsqdGssq,tdGcsq,td. s1d

Here r is the particle number density,FW std is the force ex-
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erted on a particle by the fluid at timet, andb is the inverse
thermal energy.Csqd is the Fourier transform of the direct
correlation function andSsqd the dimensionless collective
structure factor, which are calculated in the present work
using Percus-YevicksPYd integral equation theoryf32g. The
propagatorGSsq,tdfGCsq,tdg is the t=0 normalized single
particle scollectived dynamic structure factor which in fluids
decays to zero at long times, but is nonzero in a glass. The
long time nonzero values of the propagatorssDebye-Waller
factorsd describe localized single particle and collective den-
sity fluctuations in a harmonic or Einstein model of an amor-
phous solidf27,31g:

GSsq,t → `d = e−q2/4a, Gcsq,t → `d = eq2/4aSsqd. s2d

A standard ensemble averaged localization lengthf31g is the
local order parameter and it is defined as

rL
2 ; kr2l = 3/2a. s3d

Derivation of a self-consistent equation for the dynamic or-
der parameter is straightforwardf27,31g,

a =
1

2
b2Kst → `d =

1

6
E dqW

s2pd3rq2C2sqdSsqde−sq2/4adf1+S−1sqdg.

s4d

Based on PY theory input, a localization transition occurs at
a fluid volume fractionfMCT;fc=0.432 which corresponds
to the naive IMCT glass transition and lies below the full
IMCT value f13g of 0.515 based on PY input.

To treat barriers and activated events, the IMCT noner-
godicity transition is interpreted as signalingtransientlocal-
ization and the emergence of finite barriers in adynamically
definedlandscape. To move beyond MCT a stochastic equa-
tion of motion sEOMd is constructed for the single particle
dynamical order parameter, rstd, the non ensemble averaged
displacementfrom a randomly located initial position. This
reduced dynamical description is in the spirit of Kramers’
theory of activated processes or a Zwanzig-Kawasaki projec-
tion operator derivation of a nonlinear Langevin equation.
However, as previously emphasizedf27g the theory was not
rigorously derived. A nonlinear, stochastic Langevin equa-
tion is constructed guided by three ideasf27g. sid Brownian
colloids move by Fickian diffusion at short times.sii d IMCT
is assumed to correctly predict the tendency to localize in a
cage in the absence of a certain type of thermal fluctuations
or noise. In the deterministic limit the EOM is required to
recover the naive IMCT localization condition. This idea
guides the construction of adisplacement-dependenteffec-
tive cagingforce −]F /]r, which favors localization at high
particle volume fractions.F is called an “effective” or “non-
equilibrium” free energy functional, although it does not
have any rigorous equilibrium meaning and depends on
r2std;3/2astd. siii d Ergodicity restoring thermal noise de-
stroys the naive IMCT glass transition and allows for acti-
vated hopping whenf.fC. The resulting nonlinear Lange-
vin equation in the overdamped limit corresponds to a force
balancef27g

− zs
d

dt
r −

]

]r
F + df = M

d2

dt2
r = 0, s5d

wherezS is a short time friction constant due to two-particle
hydrodynamic interactionsf4g or independent binary colli-
sionsf32,33g. Based on the latter,

zs = z0gssd, z0 = kBT/D0 = 3psh0, s6d

where h0 is the solvent viscosity, andgssd is the contact
value of the radial distribution functionf27,33g. The use of
two-particle hydrodynamics to quantify the short time fric-
tion constant has been shown to yield results nearly identical
to the binary collision approachf27g. The white noise fluc-
tuating force in Eq.s5d is statistically uncorrelated with the
tagged particle position and velocity and satisfies
kdfs0ddfstdl=6b−1zsdstd.

An alternative motivation of Eq.s5d is to view rstd as a
coarse-grained and/or partially ensemble-averaged dynamic
order parameter. Then Eq.s5d is of a time-dependent
Landau-Ginzburg form or modelA of dynamic critical phe-
nomenaf34g, in the sense that the rate of change of the
dynamic order parameter is proportional to a “thermody-
namic like” force which for the glassy dynamics problem is
of nonequilibrium origin. In this interpretation, the random
noise in Eq.s5d is present to avoid trapping in a metastable
state f34g, which for our problem is the MCT ideal glass
corresponding to the local minimum ofFsrd ssee Fig. 1d.

The crucial quantity in Eq.s5d is the “nonequilibrium”
free energysin units of kBTd, whose gradient quantifies the
transient caging force. It is constructed in the spirit of density
functional theorysDFTd f35g whereFsad describes the dif-
ference between localizedsnonzeroad and delocalizedsa
=0d states. The apparently deep connection between an equi-
librium DFT and an explicit time-dependent treatment of
glassy dynamics is the central idea of the work of Kirk-
patrick and Wolynesf31g, and motivates the explicit result
f27g

FIG. 1. “Nonequilibrium free energy” or entropic trapping po-
tential sin units of kBTd as a function of reduced colloid displace-
ment at a volume fraction off=0.53 for zero stress, the absolute
yield stress, and one-half the absolute yield stress.
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Fsad =
3

2
lnsad −E dqW

s2pd3rC2sqdSsqd

3f1 + S−1sqdg−1e−sq2/4adf1+S−1sqdg

; F0 + FI . s7d

The leading “ideal” term favors the fluid state as in DFT for
a strongly localizedharmonic solid. The second “interaction”
contribution corresponds to an entropic trapping potential
favoring localization. Minimization of Eq.s7d with respect to
a, or solution of Eq.s5d in the absence of noise,by construc-
tion yields the naive IMCT localization condition of Eq.s4d.
For f.fc, an entropic barrier of magnitudeFB emerges in
Fsrd as shown in Fig. 1. Characteristic length scales include
the location of the minimums“localization length”rL as in
IMCTd, the displacement corresponding to maximum restor-
ing scagingd force R*, and the local maximumsbarrier
locationd rB. Both the localization length and displace-
ment of maximum restoring force are smalls!sd, and
decrease strongly with colloid volume fraction asrL /s
,30 exps−12.2fd andR* / s,exps−6.6fd f27g. The barrier
location increases weakly with volume fraction varying from
,0.25s to 0.4s as f increases from 0.5 to 0.62f27g. As
discussed previouslyf27g, for the sole purpose of calculating
transport coefficients a “diffusion length”LD is introduced
and defined as the displacement beyond which the interac-
tion part of the force, −]FI /]r, is negligible and Fickian dif-
fusion is recovered. Calculations findLD is nearlyf inde-
pendent and<0.8s f27g.

The caging force in Eqs.s5d and s7d evolves in time via
single particle and collective motions. However, collective
motion is treated within a simplified Vineyard type approxi-
mationf32g for the collective propagator which neglects ex-
plicitly many particle dynamics. Such an approximation is
known to be quite accurate on the local cage scalesf31,32g
of present interest. It is in this sense that the approach is a
dynamical mean field theory. The caging force is self-
consistently and nonlinearly coupled with single particle mo-
tion. Hence, for hopping transport Garrahan has suggested
the theory might be interpretable as containing some aspects
of the “dynamic facilitation” idea in the sense that the evo-
lution of the dynamic order parameter is statesdisplacementd
dependentf36g.

The mean barrier hopping timethop is expected to be
closely correlated with thea or structural relaxation time. In
the overdamped, high friction limit barrier crossing is a dif-
fusive process and Kramers’ theoryf37g yields f27g

thop

t0
=

2pgssd
ÎK0KB

eFB, s8d

where t0=s2z0/kBT is the elementary Brownian diffusion
time, andK0 andKB are the absolute magnitudes of the har-
monic curvatures of the minimum and barrier ofFsrd, re-
spectively.

A few additional comments concerning the conceptual ba-
sis and range of technical applicability of the theory are
worth making. The former involves the level of coarse grain-
ing assumed and the meaning of ensemble averages. It is

well known that MCT is not valid at very short times or
length scales since it is meant to capture the slow, longer
time collective aspects of cagingf13g. In this sense, given
that our starting point is MCT, a small amount of space and
time coarse-graining is invoked and the missing physics is
buried in the short time friction constant in Eq.s6d. Based on
the Langevin and Kramers’ theory motivation for the con-
struction of our nonlinear stochastic equation of motion,rstd
is a non-ensemble-averaged dynamic variablesto within the
aforementioned short time/distance coarse-graining caveatd.
However, the caging force is constructed using DFT-like
ideas that relate the inhomogeneous systemsanalog of the
dynamically localized stated to the homogenous system.
Thus, ensemble-averaged structural information(Ssqd ,Csqd)
is employed to quantify the effective caging force in Eq.s5d.
In the aforementioned model-A-like interpretation of Eq.s5d
the dynamic order parameterrstd is also coarse-grained and
remains stochastic due to the random force term.

The technical applicability question relates to the range of
validity of the “free energy” of Eq.s7d with regard to dy-
namic displacements. As discussed previouslyf27g, our goal
sfor both the quiescent and deformed systemsd is restricted to
the elementarydynamicalprocess of transient localization
and barrier hopping.Fsrd in Eq. s7d does not have a rigorous
equilibrium meaning, and additive constants that arise in its
equilibrium DFT analog have been dropped. A strong local-
ization approximation has been employed to construct the
ideal contributionF0srd, which is the origin of unphysical
divergence to negative infinity ofFsrd→−` as r →`. A
more accurate treatment ofF0srd is possible within a thermo-
dynamic DFT frameworkf38g; however, for displacements
r ,s /2 the far simpler Eq.s7d is accuratef38g. Given that
our interest is restricted to the elementary localization and
hopping processes, where the relevant displacements
srL ,R* , rBd areall smaller thans /2, any errors incurred by
using the strong localization form of the ideal free energy
should be minor. Finally, after completion of this manuscript
an explicit derivation of the beyond MCT approach using
dynamic density functional ideas has been achievedf39g.

B. Transport coefficients and elastic shear modulus

Transport coefficients are calculated using Green-Kubo
formulas and the MCT factorization of multipoint correla-
tions approximationf13,32g. The dynamic propagators are
determined using a generalization of the “binary collision in
a mean field”sBCMFd theory f33g to include an activated
barrier hopping contribution to the friction constant. The re-
sulting shear viscosity isf28,33g

h = h` +
kBT

120p2E
0

`

dq q2S ]

]q
ln SsqdD2 1

Ds
csqd

s9d

where the high frequency viscosity ish`=h0gssd. The cage
diffusion constant is

Dc
ssqd =

D0

Ssqdfgssddsqd−1 + szhop/z0dg
, s10d
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dsqd = f1 − j0sksd + 2j2sksdg−1, s11d

wherejk is the spherical Bessel function of orderk. The total
friction constant is taken to be the sum of short timefEq. s6dg
and hopping contributionsf28g,

zhop= kBT/Dhop= 6kBTthop/LD
2 = 6z0

thop

t0
L̃D

−2, s12d

whereLD was defined below Eq.s7d and is,0.8s f40g. For
f,fc, Eqs.s9d–s11d correspond to the BCMF theory which
is accurate in the “normal fluid” regimesf,0.45–0.5d
whereh /h0ø20–30f33g. For f.fc, the no adjustable pa-
rameter calculations of the localization length, single particle
relaxation time, viscosity, diffusion constant, and other quan-
tities are in good agreement with experiments over the entire
volume fraction regime probed experimentallysup to f
,0.56–0.58d f27,28g.

The elastic modulus is computed using the standard
Green-Kubo formulaf12,32g:

G8 =
kBT

60p2E
0

`

dqSq2 ]

]q
ln SsqdD2

e−q2/2Ssqda s13d

where the localization parametera is given by Eq.s4d. This
is the naive version of the IMCT glassy shear modulus. Cal-
culations of elastic modulus based on PY structural input are
shown in Fig. 2. An exponential volume fraction dependence
is found:

G8 = 0.000 16
kBT

s3 e26f. s14d

Since the localization length has been previously shown to
be f27g

rL > 30e−12.2fs, s15d

a direct relation between it and the elastic modulus is im-
plied:

G8 > 0.144
kBT

s3 S s

rL
D2.13

. s16d

A nearly identical relationship betweenG8 and the localiza-
tion length has been suggested based on elementary mechan-
ics argumentsf41g, and was also found theoretically for
depletion gelsf42g. The modulus calculations can alterna-
tively be well fitted over the rangef,0.5–0.65 by a power
law with a high exponent,G8~f14.

Recent experimental resultsf43g for G8 of hard sphere
suspensions at very high volume fractions are shown in Fig.
2. Given the difficulties of the experiments and moderate
polydispersity of the samples, the no adjustable parameter
calculations seem reasonable. Moreover, multiple prior ex-
perimental studies ofsneard hard sphere suspensions have
repeatedly reported exponential behaviorf44–46g, G8
~expsbfd. The absolute magnitudes ofG8 and theb values
are variable given the common experimental difficulty in
precisely defining an effective hard sphere volume fraction,
and particle “hardness” differences due to variable grafted
polymer layers or the presence of charge. For example,b
,9 for silica with long polydimethylsiloxane polymer grafts
f46g, b,28 for polymethylmethacrylate colloids with short
graftsf46g, andb,28 for f,0.4–0.6 charge stabilized near
hard sphere suspensionsf44g. For the short-range repulsion
systems, the measured values ofb are remarkably close to
the theoretical value of 26. There have also been reportsf46g
of G8 scaling with f as a high exponent power law,
G8~f10±1. The absolute value of the experimental moduli
are often in semiquantitative accord with our calculations,
especially for “simple” particles. For example,G8,10 Pa
for room temperature suspensions off=420 nm bare silica
hard spheresf47g at f=0.56 which can be compared with the
theoretical value of,16 Pa.

III. GENERALIZATION TO MECHANICALLY
DEFORMED SYSTEMS

A. Theory formulation

Our generalization to nonlinear response is motivated by a
desire for technical simplicity and several facts established
by experiments and computer simulations. Watanabeet al.
f48g and Manzano and Wagnerf49g studied the nonlinear
rheology and collective structure factor of model silicahard
spheresuspensions. Surprisingly, strong nonlinear dynamical
effects such as strain softening of the modulus and shear
thinning of the viscosity arenot accompanied by significant
anisotropy of structure in theshear thinningregime. Up to
volume fractions of 0.5, no significant changes inSsqd are
observed in the presence of shearf49g. At very high shear
rates wherespresumablyd hydrodynamically driven shear
thickening occurs, anisotropy of the structure factor does
emerge, and this regime is not treatable in our approach. As
mentioned in the Introduction, simulations of liquidssno hy-
drodynamic interactionsd f20–23g also find that even for
shear rates where the viscosity is strongly thinningsup to
ġta,103 whereta is the quiescenta relaxation timed and
self-diffusion is enhanced, the particle mean square displace-
mentssin the advected framed, intermolecular radial distribu-

FIG. 2. Elastic modulus and yield stresssboth in units of
kBT/s3d as functions of volume fraction. Open circles are the elastic
modulus at zero stress, and crosses are the corresponding linear
response experimental data of Petekidiset al. f43g. Solid diamonds
are the absolute yield stress, and solid triangles the stress at which
the elastic modulus drops by 10%sperturbative yieldd. Lines are
exponential fits discussed in the text.
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tion functions, structure factor various relaxation times, and
wave-vector-dependent dynamic structure factors remain
nearly isotropic. Hence, experiment and simulation both find
anisotropic shear perturbations induce much faster dynamics
in a surprisingly isotropic manner in the shear thinning re-
gime. In addition, simulations findf21,22g that the shear-
induced reduction of single particle and collective relaxation
times is nearly length scale independent for wave vectors
that probe cage scale dynamics.

To model how an external deformation modifies Eqs.s5d
and s7d we adopt the simplest idea that a constant applied
stress results in a constantsscalard force f on the tagged
particle. The effective nonequilibrium free energy is thus
modified as

Fsrd = Fsr ;t = 0d − fr . s17d

In analogy with prior theoretical studiesf9–12,16,17g, the
macroscopic deformation is assumed to be transmitted to the
particle level. This description is in the spirit of a “single
particle” trap model approachf9g where the local strain is
envisioned to induce a relative displacement of a colloid
from the center of its cage formed by the surrounding par-
ticles. However, given possible complications in real materi-
als associated with the transmission of a macroscopic stress
to the microscopic scalef50g, a unique quantitative connec-
tion between the microscopic forcef and the macroscopic
stresst cannot be simply written. We proceed to make the
connection via physical arguments.

In static equilibriumsbefore yieldd, stress is assumed to be
constant throughout the material. This implies that the mi-
croscopic stresstmicro equals the macroscopic forcetmacro
acting on the unit cross section of the particle network, re-
duced by the average area occupied by particles in the unit
cross section,tmicro=tmacro/f2/3. This implies that the aver-
age external force on a particle is

fmicro = ktmicroAl = tmacrokAl/f2/3, s18d

whereA is the relevant particle cross sectional area which
can be estimated in several ways. One estimate is the total
area occupied by particles divided by the number of par-
ticles, which yieldskAl=f2/3/r2/3, resulting in

fmicro = Sp

6
D2/3

s2tmacro

f2/3 . s19d

Alternatively, assumingkAl equals the average cross sec-
tional area of the spherical particle yields

fmicro =
p

6
s2tmacro

f2/3 . s20d

There is no rigorous justification of either choice, and no
doubt there are alternative arguments that yield qualitatively
the same connection between microscopic force and macro-
scopic stress. The basic form of the above connections as-
sume that virtually all stress is borne by the particle network,
not the continuous solvent phase, an assumption that is ex-
pected to be accurate at the very high volume fractions of
interestf50g. Hence, we simply parametrize theconstant nu-
merical prefactoruncertainty and write

fmicro = ls2 t

f2/3, s21d

wherel is of order unity. All calculations, figures, and dis-
cussion of numerical results presented are based onl=1. For
alternative choices ofl the quoted stress, strain, and shear
rate are simply modified by the factor ofl−1.

The final expression for the nonequilibrium free energy
sin kBT/s3 unitsd is

Fsad =
3

2
lnsad −E dqW

s2pd3rC2sqdSsqd

3f1 + S−1sqdg−1esq2/4adf1+S−1sqdg

−
t

f2/3
Î3/2a. s22d

Here, and throughout the paper, the unit of length iss and
the stress is given in units ofkBT/s3. Equationss17d–s22d
account for the effect of applied stress at the simplest “one-
body,” or external-field-like, level. Of course, steady shear
does convect particles and changes their relative separation
with time f16–18g. In MCT this is the “advection of fluctua-
tions” effect which enters at the two-point time correlation
function level. However, in the steady state situation of in-
terest, the shear rate and constant stress modes of deforma-
tion are equivalentf2g. In the strain mode of deformation,
there will be strain-driven relative displacements of pairs of
particles which in principle induce anisotropy in the radial
distribution function and structure factor. These are assumed
to be small “higher order” effects, and the same quiescent
equilibrium correlation functions are employed to quantify
the cage constraints andFsrd. The usefulness of such a sim-
plification is buttressed by the fact that we find that the ab-
solute yield point is associated with relatively small strains
and particle displacements. Ignoring deformation-induced
changes in our “trap potential”Fsrd is also in the spirit of the
phenomenological glassy soft rheology approachesf9,10g.

Applied shear, stress, or strain distorts the effective free
energy function and reduces the barrier leading to more rapid
Brownian dynamics. In the stress-controlled modet is fixed,
and G8std is directly computed from Eq.s13d. The corre-
sponding dimensionless straing follows from the generic
nonlinear stress-strain relationf2g:

g = t/G8std. s23d

The absolute yield stresstabs is the minimum stress required
to destroy the barrier inFsrd. This is equivalent to the con-
dition that the applied force is equal and opposite to the
maximum cage restoring force of the quiescent system. Since
the displacement corresponding to the latter,R*, is much
smaller thans f27g, the strong localization form ofF0srd is
reasonable. An example of the consequences of applied
stress onFsrd is shown in Fig. 1. In the absence of barrier
hopping, the absolute yield stress defines a solid-to-liquid, or
mechanical yield, transition. For a strain-controlled experi-
ment, Eq.s23d is solved in an iterative self-consistent man-
ner. For the shear-rate-controlled experiment, the appropriate
shear rate follows from the defining relationf2g
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t = ġhstd. s24d

Finally, as in the quiescent casef27g, we again emphasize
that the larger dependence ofFsrd is not relevant given our
limited focus on the preyield, small displacement regime.

B. Strain and stress dependence of the nonequilibrium
free energy

Applied stress or strain induces distinctive changes of the
characteristic length and energy scales inF(r) which are
summarized in Figs. 3–5. Figure 3sad shows that the barrier
is reduced nonlinearly with increasing stress, in a manner
qualitatively in accord with the computer simulation land-
scape analysesf24,25g. The inset shows that nondimension-
alization of the barrier by its zero stress value, and the stress
by the absolute yield stress, results in a nearly universal be-
havior. The analogous results based on strain as the mechani-
cal control variable are given in Fig. 3sbd. The barrier is
largely destroyed beyond a dimensionless strain of 15–20 %.
However, its strain dependence is different from the stress
dependence, and the inset shows that nondimensionalization
does not result in as good a collapse.

The dependence of the localization and barrier length
scales on stress and strain are presented in Fig. 4. The un-

perturbed localizationsbarrierd length decreasessincreasesd
with f. Physically one expectsrL→0 as the volume fraction
approaches the incompressible random close packing state
sf,0.63d f51g. Its failure to do so is a limitation of PY
theory for Ssqd. With increasing stress, these length scales
approach each other in a nonlinear fashion and merge at the
absolute yield stress. The strain dependence shown in the
inset is similar, although interestingly the localization length
is a nearly linear function of strain up to the mechanical yield
point. The calculated strain or stress enhancement of the lo-
calization length might be relevant to recent attempts to use
the diffusing wave light scattering echo technique to estimate
strain-induced colloidal displacementsf43g.

The strain and volume fraction dependence of the well
and barrier curvatures are presented in Fig. 5. The well cur-
vature controls the vibrational amplitude and oscillation fre-
quency in thesquasidlocalized state. It decreases monotoni-
cally with strain andsnearly linearlyd with stress. In contrast,
the barrier curvature initially increases in magnitude with
strain or stress before ultimately decreasing to zero at the

FIG. 3. sad Entropic barrier heightsin units ofkBTd as a function
of stress for three volume fractions. The inset shows the same re-
sults with the barrier height normalized by its zero stress value and
the stress normalized by the absolute yield stress.sbd Same assad
but as a function of strain. Double normalized plots are shown in
the inset.

FIG. 4. Localization lengthslower curvesd and barrier location
supper curvesd as a function of stresssmain paneld or strainsinsetd
for different volume fractions. Open circles correspond to the abso-
lute yield point where the barrier disappears and the two lengths
coincide.

FIG. 5. Curvaturessunits of kBTs−2d at the minimumsK0d and
barrier sKBd of Fsrd as a function of strain for different volume
fractions. The corresponding stress dependence is shown in the
inset.
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yield stress or strain. The rich dependence of all the features
of Fsrd, on stress, strain, and volume fraction is relevant to
the prediction of the hopping time and transport coefficients.

IV. MECHANICALLY DRIVEN REGIME

In this section the predictions of our theory in the absence
of barrier hopping are worked out. This is the naive MCT
limit where the noise term in Eq.s5d is dropped. As in the
quiescent state, delocalization and flow occur when the local
minimum and barrier inFsrd disappear. Forf.fc, this con-
dition requires an external mechanical force and first occurs,
by definition, at a critical, or absolute yield stress or strain.
Our results are the nonlinear version of the naive IMCT ideal
glass transition condition, and hence will be compared to
recent efforts to generalize the full IMCT to nonlinear rheol-
ogy f16–18,22g. Any differences between the predictions of
our approach and prior ideal MCT work reflects both our
simplification of the full IMCT to its naive version, and the
manner in which the external deformation is incorporated.
The neglect of activated hopping in this section suggests
quantitative theoretical results for the yield stress and strain
should be upper bounds to the truesbarrier hopping influ-
encedd behavior. The latter kinetic aspect is examined in Sec.
V where the dynamic yield stress is contrasted with its static
analog. Of course, given the unknown quantitative accuracy
of prior IMCT work and our present theory the issue of
whether the numerical results of this section are true upper
bounds for experimental systems cannot be definitively
known. Note that our analysis does not apply to literalT
=0 non-Brownian or granular systems.

Figure 6 shows representative results for the stress-strain
curve. Linear response occurs for strains up to a characteris-
tic value beyond which the material continuously softens un-
til the yield point is reached. The dimensionless absolute
yield stress is given in Fig. 2 and is a strongly increasing
function of volume fraction. It varies from,10 to 100 as
volume fraction increases from,0.52 to 0.63. The yield
stress is well described by an exponential law with a slope
that is smaller than found for the linear elastic shear modulus
G8 in Eq. s14d, tabs~exps19.2fd. A power law dependence

with a high exponent,tabs,17 200f11, also provides an ex-
cellent fit snot shownd. Following common experimental
practice f2,4g, a perturbative yield stress is defined as the
stress at which the linear elastic modulus is reduced by 10%.
As seen in Fig. 2,tpert,880f8.6 which corresponds to a
modestly weaker growth withf than the absolute yield
stress.

Experimentsf46g on hard-sphere-like suspensions at high
volume fractions find the yield stress grows as a power law
with an exponent,9–11. Recent rheological creep recovery
measurementsf43g on colloidal glasses composed of par-
ticles of diameter 366 nm find the absolute yield stresses are
,4–12 Pa forf,0.59–0.62. The results in Fig. 2 corre-
spond to yield stresses of,5–9 Pa for these volume frac-
tions, in apparent remarkably good agreement.

Some aspects of our yield stress results can be compared
with the ISHSM version of ideal MCTf16g which predicts
tcrit =6skBT/s3d at the MCT critical volume fraction offc

<0.515 based on PY static input. Curiously, this value of
yield stress is rather close to our result of,12 at f
,0.515. At the experimentalkinetic glass transition volume
fraction of ,0.57–0.58, our theory predicts a dimensionless
yield stress of,30. With increasing volume fraction, the
IMCT yield stress grows initially in a square root manner
f16,17g ty−tcrit >112Îf−fc, in contrast with the exponen-
tial or high power law dependence of our theory. This im-
plies any apparent near quantitative agreement between the
numbers predicted by the two approaches cannot exist over a
wide volume fraction range. Our prior work on the linear
dynamics of hard sphere suspensions also found some in-
triguing similarities between the entropic barrier hopping ap-
proach and IMCTf27,28g. We note that schematic IMCT
makes the same qualitative predictions for yield stress vol-
ume fraction dependence as the full ISHSM based theory
f16,17g.

The strain and stress dependence of the elastic modulus is
shown in Fig. 7. Modulus softening occurs at lower strain
amplitudes for denser materials. The functional dependence
of G8 on strain is gentle, and locally might be characterized
as logarithmic. Petekidiset al. f43g have recently measured
the strain dependence of the elastic modulus for very high

FIG. 6. Stress-strain relation at different volume fractions. The
discontinuous drop of the stress to zero defines the absolute yield
point.

FIG. 7. Ratio of the elastic modulus to its linear response value
as a function of strain for different volume fractions. Symbols are
experimental data by Petekidiset al. f40g. The inset shows the
corresponding stress dependence.
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volume fraction glassy colloidal suspensionssf<0.645d.
They find, for example, thatG8 is reduced by a factor of
roughly 4 at a strain of,10%. A detailed comparison of
theory with this experiment is shown in Fig. 7. The theoret-
ical calculations are in reasonable agreement with the data.

The stress dependence of the elastic modulus is shown in
the inset of Fig. 7, and is considerably stronger than the
strain dependence. The transition from the onset of discern-
able softening to absolute yielding occurs over less than an
order of magnitude in stress.

Figure 8 summarizes three measures of yield strain as a
function of colloid volume fraction. The yield strain displays
an extremelyweak dependence onf relative to the many
orders of magnitude change in the yield stress and modulus.
This implies the yield stress and shear modulus have similar
volume fraction dependences, a trend observed in many ex-
perimentsf44–46,52–54g. For f.0.53, all measures of the
yield strain decrease with volume fraction implying denser
materials are “more brittle” in a strain mode of deformation.

The absolute yield strain in Fig. 8 is computed using the
absolute yield stress and the nonlinear elastic modulus, and
varies over the narrow range of,20–27 %. Interestingly, it
is predicted to be anonmonotonicfunction of volume frac-
tion. This numerically arises from Eq.s23d as a consequence
of the subtly different dependences of yield stress and modu-
lus onf. One interpretation of the two competing processes
which underlie this nonmonotonic dependence is as follows.
With increasing volume fraction particles reside in deeper
entropic wells with larger cage restoring forcessat r =R* d.
However, the elastic modulus also strongly increases with
volume fraction due to tighter localizationssmallerrLd which
correlates with the modulus roughly asG8~ rL

−2. Given that
the strain is a ratio of stress to modulus our numerical results
suggest the maximum restoring force is decreased more
strongly with strain thanrL is at very high volume fractions.

Recent mechanical creep measurementsf43g of the yield
strain of model hard sphere glasses is shown in Fig. 8. The
absolute magnitude and gross qualitative shape are consistent
with the calculations. Qualitatively identical results are
found based on light scattering echo experimentsf43g which
probe the onset of irreversible colloid motion. We note that

Chow and Zukoskif53g observed some time ago a nonmono-
tonic yield strain for dense charged stabilized suspensions
with a maximum strain atf,0.5.

The perturbative yield strain is defined as when the elastic
modulus has decreased by 10%. Our calculations find it is
much smaller than the absolute yield strain, lying in the
range,0.8–3.6 %, and decreases monotonically with vol-
ume fraction. A third “mixed” measure of a yield strain, of-
ten employed by experimentalists, is computed as the ratio of
the absolute yield stress to the linear modulus. Results in Fig.
8 show that this yield strain is also a monotonically decreas-
ing function off and varies over the range,5–12 %. There
have been many measurements of the yield strain for near
hard sphere suspensions at high volume fractions and also
for charged latex materialsf44,46,52g. Remarkably, all these
studies find perturbative or “mixed” yield strains in the rela-
tively narrow range of,1–5 %, often with little or no sys-
tematic dependence onf. Globally, these observations are
consistent with our calculations. It is also interesting to note
that the typical perturbative or mixed yield strain for vastly
different materials is similar, for example,2–4 % for amor-
phous metalsf55g and ,3–7 % for dense depletion gels
f2,4,56,57g.

Recent IMCT calculationsf16g based on the ISHSM or
schematic versions obtain as“mixed”d yield strain of
ty/G8s0d,0.33 at the MCT critical volume fraction. This
value is larger than the experimental results discussed above,
or the,5–12 % our theory predicts forf,0.52–0.62.

Finally, numerical calculations reveal an interesting con-
nection between our computed absolute yield straingabs and
the strain-induced increase of the localization length at the
absolute yield point Dr loc; r locsgabsd−r locs0d. The ratio
Dr loc/gabs<0.18 and is nearly volume fraction independent
in the f=0.53–0.63 regime, thereby implying a direct con-
nection between strain and location of the minimum inFsrd.
Such “universality” is reminiscent of the empirical
“Lindeman criterion” r locs0d /s<0.15, for the fluid-crystal
phase transitionf32g and the ideal glass transition of MCT
f13,31g. However, the strain aspect has no analog in the latter
two phenomena. Rather, the near constancy ofDr loc/gabs can
be qualitatively understood as a consequence of the predicted
close relationship between the localization length and har-
monic curvaturesK0d of Fsrd, or equivalently a nonequilib-
rium equipartition relation, as previously discussed for qui-
escent colloidal glassesf27g and gelsf42g. Specifically, it
was shownf27,42g that K0~ r loc

−2 ~G8, which for a harmonic
Fsrd implies a strain-inducedshift of the localization length
Dr loc~t /K0~t /G8~g. The fact thatDr loc/gabs remains es-
sentially constant for stresses up to the yield point implies
the simple connections deduced in the quiescent fluid remain
accurate in the nonlinear regime.

V. EFFECT OF BARRIER HOPPING

The analysis in Sec. IV ignores thermally induced barrier
hopping, a condition where a rigorous distinction between a
liquid and solid can be made and a true yield stress can be
defined. In reality, everything flowsf58g at “long enough”
times due to slow relaxation processes. In this section the

FIG. 8. Yield strain as a function of volume fraction. Solid curve
is the absolute yield, dashed curve is the perturbative yield, and
dash-dotted curve is a “mixed” yield strain defined astabs/G8s0d.
The symbols are rheological data by Petekidiset al. f43g.
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stress, strain, and volume fraction dependences of the barrier
hopping time are studied, and a “dynamic yield stress” is
determined which separates fluid and solid states in a prac-
tical sense. An ultraslowa relaxation process may be the
elementary step for aging, creep, and/or sedimentation. Both
constant stress and shear rate conditions are examined, which
under steady state conditions are equivalent in the absence of
rheological instabilities. We note that Barnes and others have
vigorously argued that yielding phenomena should be stud-
ied using stress, not shear rate, controlled rheologyf58g, and
hence we discuss it first.

A. Stress-controlled rheology

Figure 9 shows the hopping time nondimensionalized by
the elementary Brownian timet0 as a function of stress for
several volume fractions. The elementary Brownian time
varies as the particle radius cubed, and for a particle diameter
of ,400 nm is typicallyt0<1 s f4g. The inset presents a
normalized plot which shows that the initial stress-induced
hopping time reduction occurs in a nearly volume-fraction-
independent manner. The curves “splay apart” with increas-
ing stress. A reduction by an order of magnitude requires a
dimensionless stress of,3–5, which corresponds at room
temperature to,1.5–2.5 Pa for a 200 nm colloid.

The dynamic yield stress issue is examined in Fig. 10.
The stress required for the hopping time to be a specified
value is plotted as a function of volume fraction. Since yield-
ing is now associated with particles going over the barrier,
variation of the hopping time scale is meant to mimic the
experimental observation time scale on which the glass
yields. Results for hopping times of 10, 100, and 1000 times
larger thant0 are shown. The corresponding absolute yield
stress from Fig. 2 is plotted for comparison. There are two
interesting trends. A roughly exponential dynamic yield
stress dependence is found at high volume fractions with
slopes that monotonically increase as the specified time
lengthens. At low enough volume fraction a stronger depen-
dence emerges since barriers are low and the specified time
is more commensurate with the intrinsic hopping time.

The shear viscosity normalized by its quiescent value
fcomputed using Eqs.s9d–s12dg is presented in Fig. 11sad as

a function of stress. The inset shows the previously deter-
mined linear response resultf28g sin units of the solvent
viscosityd, which has been shown to be in good agreement
with a compendium of experimentsf59g up to relative vis-
cosities of,3000 atf<0.56. Over this regime of volume
fractions the theoretical resultssand also the experimental
onesd can be fitted by many different functions including the
free volume form, the configurational-entropy-based Adams-
Gibbs form, and a critical power lawf27,28g. However, the
exceptionally wide range of viscosities in Fig. 11sad allows a
more discriminating analysissalthough beyond experimental
capabilities for colloidsd. The numerical results are well fit
by a strongly supraexponential dependence

hs0d
h0

> 8.81e1641f9.4
. s25d

The rate of change of a relaxation time or viscosity with the
system control parameter that induces vitrification is quanti-
fied by a “fragility” index m f60g. For athermal colloidal
suspensions we define the analog of the thermal fragility as

m=
]

]f
log10hs0d = 6707f8.4, s26d

which is a strongly increasing function of volume fraction. It
is interesting to contrast the predicted numerical values with
thermal liquids. From Eq. s26d, m=38,69,121 for
f=0.54,0.58,0.62. This range of fragilities largely covers the
range observed for thermal glass formers. In particular,m
=38 is representative of a relatively “strong” liquid,m=69 a
moderately “fragile” liquid, andm=121 an extremely fragile
liquid f60g. In deeply supercooled liquids thea relaxation
time or shear viscosity at the kinetic glass transition tempera-
ture is roughly 8–10 orders of magnitude larger than its value

FIG. 9. Dimensionless hopping time as a function of the applied
stress for several volume fractions. The inset shows the same results
with hopping times normalized by their zero stress values.

FIG. 10. Dynamic yield stress for three specified time scales.
The solid line is the absolute yield stress.
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at a characteristic “crossover temperature” deduced from fit-
ting MCT formulas to experimental dataf60g. Using Eq.s25d
and our theoretical crossover atfc=0.432 wherehs0d /h0
<10 f28g, a nine orders of magnitude viscosity ratio is at-
tained atf>0.627 which corresponds to a very high fragil-
ity of ,132. From this perspective, athermal colloidal sus-
pensions seem as fragile as molecular liquids or polymer
melts.

Various very different mathematical functions also fit the
numerical viscosity results. Of particular interest is one mo-

tivated by the prior surprising finding that the quiescent sus-
pension entropic barrier is extremely well describedsfor bar-
riers in excess of the thermal energyd by the formulaf27g

FB >
0.077

S0
− 3.51, s27d

whereSsq=0d;S0=s1−fd4/ s1+2fd2 is the PY dimension-
less compressibility. Since the viscosity directly correlates
with stress relaxation and hopping time, one might expect a
simple exponential relation betweenh and the barrier. Figure
11sbd shows this is indeed true since the following expres-
sion is very accurate:

hs0d
h0

> 0.245e0.092S0
−1

. s28d

The larger prefactor in the exponentialf0.092 versus 0.077 in
Eq. s27dg arises since the viscosity is qualitatively the prod-
uct of a relaxation time and a modulus. This interpretation is
supported by our finding that the hopping timesnot plottedd
is extremely well fitted over at least seven orders of magni-
tude in the range off=0.52–0.63 by

thops0d
t0

> 0.003 57e0.074S0
−1

. s29d

The accuracy of Eq.s29d reflects the relatively weak depen-
dence on volume fraction of the prefactor in Eq.s8d.

The main frame of Fig. 11sad shows the nonlinear viscos-
ity scaled by its zero stress value as a function of stress. The
shapes of the curves are quite similar to the hopping time
results in Fig. 9. Rough power law behavior can be identified
over rather narrow intervals in the intermediate stress re-
gime, and experiments are sometimes analyzed in such
terms. From Fig. 11sad we find snot plottedd apparent powers
laws h /hs0d~t−x with exponents ofx<0.7,1.6,3.0,3.9 with
increasing f. The stress-induced viscosity reduction be-
comes monotonically more abrupt with increasing volume
fraction or zero stress viscosity, a trend broadly observed in a
wide range of materialsf58g. The limiting high stress value
of the viscosity is determined by our assumption that stress
destroys barriers, but does not affect the “regular” part of the
viscosity associated with binary collisions in a mean field
cage sBCMF theory f33gd. We view this assumption as a
crude but reasonable one given the small distortion of local
structure seen in experiments and simulations even at rela-
tively high shear ratessbefore the onset of shear thickeningd.
The regular contribution to the viscosity is volume fraction
dependent as reflected by the different levels of reduced vis-
cosity and stress values at which the start of a plateau is seen
in Fig. 11sad.

It is interesting to consider the quantitative implications of
Fig. 11sad. At f=0.56 the zero stress reduced viscosity is
,10 000, and decreases to,400 at a dimensionless stress of
,10 which for a 400 nm colloid corresponds to,0.7 Pa.
For stresses below the onset of shear thickening, the theoret-
ical calculations are in good agreement with recent measure-
mentsf61g on high volume fraction hard sphere suspensions
where the zero stress relative viscosities vary in the range of
,103−106.

FIG. 11. sad Shear viscosity normalized by its zero stress value
as a function of the applied stress for several volume fractions.
Arrows along the right axis indicate the corresponding limiting
BCMF viscosity f33g. The inset shows the zero stress viscosity
scirclesd and the best fit of Eq.s25d, the BCMF model viscosity
sdashed curved, and the infinite frequency viscosityssolid curved.
sbd Relative viscosity as a function of volume fraction for zero and
several nonzero stressesssolid circlesd; a fit using Eq.s28d is also
shown. The normal or fluid part of the viscosity given by the BCMF
modelf33g is also indicated.scd Reduced differential viscosity as a
function of stress for three volume fractionssh8 is the BCMF
theory of viscosityf33gd. Curves are fits to Eq.s30d. The corre-
sponding fit parameters are t1/2=1.54,1.23,1.2 and
m=1.19,1.32,1.42 forf=0.53,0.56,0.605.
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Figure 11sbd shows the viscosity as a function of volume
fraction for different values of constant stress. At nonzero
stress the viscosity is computed only for volume fractions
above the absolute yield point. The spectacular growth of the
viscosity with f is systematically reduced with increasing
stress, an effect that could be described as a stress-induced
reduction of fragility. The BCMF result is indicated by the
solid curve and represents a lower bound or high stress limit.

Figure 11scd replots the theoretical results in Fig. 11sad in
terms of a reduced differential viscosityfhstd−h8g / fhs0d
−h8g, a format often adopted by experimentalistsf2,4g. Here
h8 is a “high frequency” limit unaffected by stress, which in
our calculation corresponds to the BCMF resultf33g. The
linear-log format of Fig. 11scd emphasizes the initial shear
thinning regime at intermediate stresses. The calculations are
fitted to the popular empirical formf2,4g

sh − h8d/shs0d − h8d > f1 + st/t1/2ddg−1, s30d

wherehst1/2d /hs0d;0.5. Experimentally, whensneard hard
sphere suspension data are analyzed in this manner the ex-
ponent deduced from fits isd<1–2, and thecharacteristic
dimensionless stress ist1/2<1–4 and usually a weakly de-
creasing function of volume fraction forf.0.5 f4,45g. The
apparent exponent and crossover stress parameters required
to fit Eq. s30d to the theoretical results are reported in the
figure caption and are consistent with experimental findings
f2,4g.

Although we do not show more figures, additional calcu-
lations indicate that all the basic trends for the viscosity ob-
tained using the Green-Kubo approach are contained in the
simple Maxwell model associated with the hopping process

hM ; G8thop. s31d

As can be understood from Eqs.s9d–s12d, or Eq. s31d, the
very strong volume fraction dependence of the Green-Kubo
viscosity arises from the relaxation time. For example, as the
volume fraction increases from 0.5 to 0.62 the linear re-
sponse Green-Kubo viscosity increases by seven orders of
magnitude while the elastic modulus increases by only one
order of magnitude.

Following prior work f28g, the stress dependence of the
self-diffusion constant can be computed using the Green-
Kubo approachfanalog of Eqs.s9d–s12dg, or even more sim-
ply sbut still rather accuratelyf28gd estimated from its hop-
ping analog

Dhop; LD
2 /6thop. s32d

In the linear response regime prior workf28g has shown that
the Stokes-Einstein relation is well obeyed,sDhd / sD0h0d
=2±1 for f.0.5. Hence, D~h−1 and no significant

translation-viscosity “decoupling”f62g is predicted, as ex-
pected given the “mean first passage time” analysis of our
theoryf27,28g. The theory has been recently generalizedf63g
to include heterogeneity associated with mesoscopic volume
fraction fluctuations under quiescent conditions, and the
same ideas can be applied to the nonlinear regime.

B. Shear rate controlled rheology

The inset of Fig. 12 shows results for the viscosity as a
function of shear rate in units of the elementary Brownian
time ġt0. As expected, with increasing volume fraction the
shear thinning process starts at smaller reduced shear rates,
and the local power law slope decreases continuously from
zero to negative unity. A plateaulike behavior emerges at
high shear rates at a viscosity level close to the “normal
fluid” contribution described by the BCMF theoryf33g.
Since D~h−1~thop

−1 , the results in Fig. 12 imply that the
diffusion constant will follow a fractional power law depen-
dence onġ in the intermediate shear rate regime,D~ġa,
where the apparent exponenta increases from zero to unity
followed by a crossover to the normal fluid diffusion con-
stant of the BCMF theoryf28,33g.

The main panel of Fig. 12 plots the viscosity normalized
by its zero shear limiths0d as a function of the shear rate
normalized by a characteristic stress relaxation time

ġr ; ġtstress, tstress; hs0dbR3, s33d

whereR is the particle radius. This normalization of shear
rate is motivated by common experimental analysis. A good
collapse of the theoretical results is obtained, as often found
experimentallyf44–46,52–54g based on the reduced shear
rate raised to a powerm,0.8–1. A characteristic critical

FIG. 12. Viscosity normalized by its zero shear rate value as a
function of reduced shear rate defined in Eq.s33d. The inset shows
the same results for the relative viscosity but with the shear rate in
units of the inverse elementary Brownian timet0.
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reduced shear rate which quantifies the onset of the shear
thinning regime can be defined as whenh /hs0d=0.5, from
which we predictġr,crit ,0.3. Alternatively, if the critical
shear rate is defined from the intersection of the high shear
power law with a zero shear horizontal line one obtains
ġr,crit ,0.4. These values can be compared to high volume
fraction experimentsf44–46,52–54g which typically find
ġr,crit >0.2–0.4. Several experimental studies indicate that
this value does not exhibit a systematicf dependence
f52,54g to within the considerable experimental uncertain-
ties, which is qualitatively consistent with the good univer-
sality seen in Fig. 12.

IMCT results forh /hs0d as a function of reduced shear
rate ġr based on the full ISHSM and its schematic analog
have been recently obtainedf16,17g. The calculations are
presented in terms of the parameter«;sf−fcd /fc which
quantifies the distance from the quiescent idealized glass
transition. For the schematic MCT, and variations of« cor-
responding to changes in reduced viscositysreduced shear
rated by five sfourd orders of magnitude, a partial collapse of
viscosity curves is found which is considerably less than in
Fig. 12; the correspondingġr,crit <0.1. For the more sophis-
ticated ISHSM version of MCT, a partial collapse of the
reduced viscosity versus reduced shear rate data is found for
a range of fluid states where the viscosity varies by roughly
seven orders of magnitude. The correspondingġr,crit <10,
which is much larger than the results of the schematic MCT
model, our theory, and experiment.

The schematicp-spin model theoryf12,19g predicts an
h~ġ−2/3 shear thinning power law at the ideal glass transi-
tion, and exponents which approach negative unity deep in
the ideal glass state. The former prediction does not appear
to agree with IMCT theory. The prediction of IMCT that an
infinitesimal shear rate melts the glass is also different than
found from the schematicp-spin modelf12,19g. These dif-
ferences are not well understoodf12g.

The corresponding flow curves of stress versus shear rate
sin bare Brownian frequency unitsd for several volume frac-
tions are given in Fig. 13sad. Low shear rate plateaus are not
predicted since no true static yield stress exists in the pres-
ence of thermal fluctuations and barrier hopping. However,
there are rather wide ranges of shear rate where the stress is
very slowly varying. The lack of convergence of the high
shear regime occurs since the normal fluidsBCMF f33gd con-
tribution is dependent on volume fraction, a feature that has
been observed in recent rheological experimentsf61g.

Motivated by experimental studies and IMCT calcula-
tions, an enlargement of the high stress and shear rate regime
is given in Fig. 13sbd. An apparent power law dependence of
the stress on shear rate,t~ġD, occurs over roughly 2–4 or-
ders of magnitudesincreases withfd in shear rate. The ef-
fective exponent decreases fromD<0.31 toD<0.13 as vol-
ume fraction increases from 0.575 to 0.635. This implies that
a power law shear thinning regime exists,h~ġ−a, wherea
<0.87–0.69 as volume fraction decreases from 0.635 to
0.575. The latter corresponds to thekinetic glass transition
volume fraction, and our theory predicts anapparentexpo-
nent of ,2/3. This exponent value is in remarkably good
agreement with the schematicp-spin MCT-like approach at
its ideal glass transition point. The reasons for such a con-

nection between the entirely different theories is unclear. For
the ISHSM ideal MCT the low shear rate dependence of the
stress at the critical volume fraction ist=tcrits1+aġDd,
where D<0.15 and a,0.9; nearly identical behavior is
found for the schematic MCTf16,17g. Curiously our expo-
nentD at very high volume fractions is similar to the MCT
value. However, the physical significance of this is unclear
since there is no true yield stress or ideal glass transition in
our theory. Moreover, the power law regime in our theory
describes the stress curve in a nonperturbative mannersnot
as a correction to a nonergodic plateaud and only over a
limited range of intermediate shear rates.

Recent work has demonstrated that schematic IMCT can
provide a good fit of computer simulations of the stress–
shear-rate behavior over a few orders of magnitude in shear
rate and stressf17g. The agreement is based on modest quan-
titative adjustments of shear rate and stress to match
the simulation results, and more importantly the use of«
;sf−fcd /fc as an adjustable fit parameter. Agreement be-
tween simulation and the schematicp-spin model approach
has also been demonstratedf12,19,26g. However, the caution
has been raisedf23,26g that activated hopping processes are
not taken into account in these theories. The apparent good
agreement with simulations may be related to strong limita-
tions of simulations regarding the small range of time scales

FIG. 13. sad Stress as a function of shear rate for several volume
fractions.sbd Expanded view ofsad in the intermediate shear rate
regime often relevant to experiments and simulations. Power law
fits t~ġD to the middle section of the curves have been madesnot
shownd and the extracted apparent exponentsD are indicated.
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and degree of slowing down that are presently feasible to
study.

VI. SUMMARY AND CONCLUSIONS

A microscopic theory for the dependence on external
strain, stress, and shear rate of the transient localization
length, elastic modulus,a relaxation time, shear viscosity,
and other dynamic properties of glassy colloidal suspensions
has been formulated and quantitatively applied. The relative
roles of mechanically driven motion, versus thermally acti-
vated barrier hopping and transport, have been studied. Vari-
ous scaling behaviors are found for the relaxation time and
viscosity in both controlled stress and shear rate rheological
experiments. Power law and/or exponential dependences of
the perturbative and yield stresses on colloid volume frac-
tion, and a nonmonotonic dependence of the absolute yield
strain on volume fraction, are predicted. The approach is
built on entropic barrier hopping as the elementary physical
process. In contrast to ideal MCT and the related schematic
p-spin approach, an ideal glass or nonergodicity transition
plays no role. Our theory does have some aspects in common
with MCT and phenomenological trap models, in terms of
both underlying ideas and predictions, but it also differs in
multiple and fundamental ways. Comparisons of several of
our calculations with experiments show encouraging agree-
ment. However, more high volume fraction measurements of
both linear and nonlinear viscoelastic properties are required
to definitively test the theory.

The theory as presently formulated seems technically and
conceptually simpler than MCT and related spin glass ap-
proaches. Qualitatively it is a microscopic and predictive
“trap model” type approach. However, the simplicity carries
limitations, such as the wave-vector-dependent collective dy-
namic structure factor is not presently amenable to study.
The incoherent dynamic structure factor, and other single
particle time correlation functions have also not been deter-
mined. These single particle quantities can be determined
using Brownian dynamics simulation to solve the stochastic
nonlinear Langevin equation of motion. All anisotropies as-
sociated with the symmetry of the deformation and colloidal
structure have been ignored. This appears to be a good first
approximation, but distinguishing between different defor-
mations such as shear, uniaxial compressive, hydrostatic, or
osmotic requires a full anisotropic generalization. The ideas
of the present paper are applicable to these explicitly aniso-
tropic situations, but extra technical effort is required since a
multidimensional Kramers activated transport problem must
be solved.

Our theory does not predict shear thickening at very high
shear rates. This is to be expected given we have ignored
many particle hydrodynamic interactions. Recent experi-
mentsf64g on large, non-Brownian particle systems suggest
shear thickening can also occur in the absence of strong hy-
drodynamic interactions. This and related experiments have
motivated the formulation of nonhydrodynamic ideas within
an empirical ideal MCT framework for describing shear
thickening f65g. Regardless of the role of hydrodynamics,
experimentsf49g have clearly shown that shear thickening in
Brownian hard sphere suspensions is accompanied by sig-
nificant flow-induced anisotropies of the structure factor, an
aspect not accounted for in our present theory.

The complex issue of a possible violation of the
fluctuation-dissipation theoremsFDTd in the nonequilibrium
sheared or stressed state has not been addressed in our work,
nor by the prior trap model or IMCT-type approaches
f9–12,16,17g. Standard Green-Kubo relations are employed
in the nonequilibrium steady state. Szamelf66g has analyzed
this issue and pointed out that the use of an equilibrium
structure approximation for the vertices in MCT is consistent
with there being no FDT violation. The former simplification
is the analog of our use of equilibrium pair correlations to
quantify the “effective free energy”Fsrd. The fact that a full
nonequilibrium stationary steady state probability distribu-
tion is not employed does have consequences concerning
FDT violation f66g, especially for MCT-like theories which
have divergent relaxation times in the quiescent state. Since
ideal glass transitions do not exist in our theory and ergod-
icity is always restored via activated barrier hopping, the
FDT violation issue seems different and of less concern.
More study of this issue is warranted.

Finally, our theory as presently formulated can be imme-
diately applied to treat highly nonlinear dynamical phenom-
ena in other soft glassy complex fluids. These include both
external force driven probe motion in dense colloidal suspen-
sionsf67g and the nonlinear rheology of depletion gels. Work
is in progress on these two problems and will be reported in
future publications.
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