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Strain softening, yielding, and shear thinning in glassy colloidal suspensions
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A microscopic theory for the dependence on external strain, stress, and shear rate of the transient localization
length, elastic modulus, alpha relaxation time, shear viscosity, and other dynamic properties of glassy colloidal
suspensions is formulated and numerically applied. The approach is built on entropic barrier hopping as the
elementary physical process. The concept of an ideal glass transition plays no role, and dynamical slowing
down is a continuous, albeit precipitous, process with increasing colloid volume fraction. The relative roles of
mechanically driven motion versus thermally activated barrier hopping and transport have been studied. Vari-
ous scaling behaviors are found for the relaxation time and shear viscosity in both the controlled stress and
shear rate mode of rheological experiments. Apparent power law and/or exponential dependences of the elastic
modulus and perturbative and absolute yield stresses on colloid volume fraction are predicted. A nonmonotonic
dependence of the absolute yield strain on volume fraction is also found. Qualitative and quantitative com-
parisons of calculations with experiments on high volume fraction glassy colloidal suspensions show encour-
aging agreement, and multiple testable predictions are made. The theory is generalizable to treat nonlinear
rheological phenomena in other soft glassy complex fluids including depletion gels.
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[. INTRODUCTION is modeled as spatially homogeneous. Shear or strain reduces
) ) the barrier height for escaping a trap, and the distribution of
_The dynamics of complex fluids such as concentrated colgo energies is taken to be unaffected by mechanical pertur-
loidal suspensions, foams, slurries, pastes, emulsions, angyion The latter simplification is of a “near equilibrium”
even granular assemblies exhibit many features normallyare since it effectively assumes the structure of the mate-
associated with glassy liquidgl—4]. Their response t0 iy s not significantly altered by strain or shear. Very recent

mechanical perturbationshear, stress, straiis a fascinat- ok has taken a first step toward a full tensorial trap model
ing and poorly understood problem in nonequilibrium statis-,; toams and emulsiongl1]. The trap models are math-

tical mechanics. It is also an exceptionally important prob-gmasically simple, and allow a generic and useful exploration
lem for technologically relevant processd®,4]. For

of the rich nonlinear rheological possibilities for soft materi-

example, novel manufacturing schemes such as the robotlys - o grawback is their strong phenomenological nature
cally controlled direct write method employ dense particlegince 4 significant amount of the physics is “put in by hand”

suspensiong‘inks”) to fabricate three-dimensional hierar- \yhich |imits quantitative and material-specific predictive
chically organized structures and devid¢&$. Strain soften- ability [12].

ing of the elastic modulus, stress- and shear-induced Vviscos- aqpitious

ity reduction, and static and dynamic yielditigolid-to-fluid lassy rheology have been recently proposed which build on
transition’) are examples of phenomena of great interest. Th@, o ideal mode coupling theo§MCT) of hard sphere col-
relative role of mechanically driven structural rearrange-5iqq) suspensiong13-19 or related “schematic” dynamic
ments versus ultra slow therme}IIy actiyatgd relaxation proynean fieldp-spin modelg12,19. These approaches are for-
cesses is a complex and material-specific issue. _mulated in terms of static and dynamic two-point correlation
New theoretical approaches to “soft glassy rheology’snctions. Fuchs and CatE6,17 have employed projection
problems have appeared in recent yddis In the phenom- 56 a0 techniques to derive a closed equation for the dy-

enological and coarse-grained category, generic and minfiamic structure factor under steady flow. The tensorial nature
malist “trap models6-8] have been developed and widely o the shear deformation has been neglected resulting in an

applied[9,10]. The elementary unit is usually & mesoscopiCsigotropjcally sheared hard sphere modéIBHSM) version
fluid region, and essential elements include a postulated diy g 17] of IMCT. Velocity fluctuations are also not taken into
tribution of barriers and noise-induced hopping transport oul ..o nt so that the microscopic shear flow is locally identical

of locally harmonic traps. These are generally scalar modelg, he macroscopic one. Shear-induced acceleration of dy-
which for technical simplicity neglect the tensorial aspects Ol mics enters via the advection of cage scale fluctuations. In
mechanical deformation. In a mean field spirit, nonlinearities,ggence. shear separates particles at ajratbich kineti-
before yielding are not taken into account since local straing 1y destroys or decorrelates the cage constraints encoded in
are assumed to follow macroscopic strains and the shear raffg, dynamic memory functiofil6,17. This approach has
also been worked out in a schematic fof8] where the
wave vector dependence of vertices is ignored corresponding
*Corresponding author. Electronic address: kschweiz@uiuc.eduto a simplified description of local fluid structuf&6,17.

“first principles” microscopic theories for soft
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Interesting results have been obtained based on thecopic theory of the nonlinear rheology of colloidal suspen-
ISHSM and schematic versions of IMCT, which appear to besions. Schweizer and Saltzman recently built on a simple
qualitatively identical to each other in most resp¢d#,17.  version of ideal MCT for quiescent colloidal suspensions to
Noteworthy results include the prediction of shear thinning“go beyond” the mode coupling approach and treat entropic
of the viscosity, a yield stress, and “melting” of the MCT parrier formation and activated transp§®7,28. An ideal
ideal glass state at arbitrary small, but nonzero, shear rategjass transition plays no role. Dynamical slowing down is a
Some of these results agree with the alternaihspin sche-  continuous, albeit precipitous, process with increasing col-
matic dynamic mean field theory, and some do [id]. I |5ig volume fraction. The no adjustable parameter compari-
contrast to the trap model approach, barriers and activategyns of the theoretical predictions for various single particle

hoppmg play no rolle. Mohreover,l_as true Lor t.he .CorreSpol?dc'ﬁynamical properties and transport coefficients were found to
It?gaq‘}gssg?:ttio?]rogrearpﬁeiei'&r]?;ln;?; ;eW?‘I\i/(I:?]r Iia%ci#;[ercs) €be in good agreement with the experiment. A physical pic-
tr?/e CO||(I:))id volurﬁe fraction relativce toC th&yp%thetica) tre is _suggested Wh(_are _there s no dynamic critical ppint and
ideal glass transition at a critical volume fractign. entropic b‘?‘”'ef hqpplng IS respon§|ble for_the dramatlc. slow-
g down in the high volume fraction regime. Interestingly,

Miyazaki and Reichman have independently constructe . : :
an ideal MCT for sheared colloidal suspensi¢h8]. It dif- recent simulation studiel29,39f of both thermal and hard

fers in several ways from the work of Ref&6,17] including sphere glass forming liquids find that activated bar_rier hop-
utilization of a shear distorted structure factor, a fluctuationPing does appear to commence close to the theoretically pre-
dissipation theorem, and a fluctuating hydrodynamics pluglicted MCT dynamic critical poinftemperature or volume
loop expansion method of derivation. Their final expressiorfraction, and is dominant in the system parameter range
for the memory function in the presence of sheddentical ~commonly associated with precursor supercooled or glassy
to the quiescent equilibrium form except for the presence Ofiynaml_cs. These findings are in qualitative accord with our
a time-dependent wave vector associated with the advectidheoretical wor27,28. _ _
of fluctuations. The purpose of this paper is to generalize the beyond
Computer simulations have begun to address the proble®CT approach{27,28 to treat glassy nonlinear rheological
of nonlinear dynamics of model glassy liquid$8—26. phenpmena. In Sgc. Illthe theory for quiescent hard sphere
Yamamoto and co-workers discovered the surprising and imcolloidal suspensions is reviewed, and calculations of the
portant result that the shear rate dependence of static corrlastic shear modulus are presented and compared with the
lations, and the anisotropy of particle diffusion and incoher-experiment. Generalization of the theory to treat the conse-
ent and coherent dynamic structure factors, is extremeliuences of external stress, strain and shear is given in Sec.
small[21,27. This is true even at high shear ratés the [I, and numerical calcu_lgtlpns for the dependence of various
shear thinning regimewhere relaxation times and transport features of a “nonequilibrium” free energy on mechanical
coefficients are dramatically affected. The various MCTPerturbation are presented. The theory is applied to glassy
theories[16—18,22 appear to be in rather good agreementSUSPeNsions in the absence and presence of activated barrier
with these simulations, and the inclusion of explicitly aniso-NoPPRINg in Secs. IV and V, respectively. Multiple model cal-
tropic structural correlations in the memory function doesculations are presented and compared with the experiment.
not significantly induce anisotropic dynami22]. All these Some results are also contrasted' with IMCT a_\nd related ap-
studies provide strong support for the neglect of the tensorid?roaches. The paper concludes in Sec. VI with a summary
aspect of the problem by trap model theories and the ISHSMNd discussion.
version of MCT. One caveat is that the simulations have
limitations regarding the degree of supercooling that can be Il. THEORY OF ENTROPIC BARRIERS
studied, and are usually restricted to a “precursor” regime AND ACTIVATED HOPPING
where the influence of high barriers and rare activated pro- ) ] ) ) )
cesses is not deeply probed. Interestingly, landscape analyses | N entropic barrier hopping theory has been described in
of the molecular dynamics simulations have suggested afietail elsewherg27,28. Here the essential elements are re-
alternative physical picture where shear strain causes the di€a/l€d-
appearance of potential energy minima and/or reduces barri-
ers which then triggers modulus softening, shear thinning A. Basics
and enhanced diffusion viereversiblejumplike particle mo-
tions [24,25. These studies claim the vyielding process is
akin to alocal mechanical instability associated with the
rearrangement of a small number of particles. The surprisin
ability of two totally different theoretical pictures, MCT ver-
sus barrier hopping, to qualitatively describe some aspects
the glassy shear thinning problem has been recently empha- K(t) = (F(0) - F(t))

The “naive” version of idealized mode coupling theory of
Kirkpatrick and Wolyneg31] focuses on the dynamics of a
tagged particle. The central object is the force-force time
Borrelation function, or dynamic friction, due to the sur-
6Punding fluid

sized[22]. )
The trap models and IMCT type approaches are very dif- 21, dqg ., ,
ferent and have their own strengths and weaknesses. We be- B 3'8 (277)3q Cl@pSaTa.nlc@. (1)

lieve simulations and experiments suggest that aspects of R
both are needed in order to construct a predictive microHere p is the particle number densitf(t) is the force ex-
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erted on a particle by the fluid at timeand g is the inverse 10 S | ) b e
thermal energyC(q) is the Fourier transform of the direct
correlation function andS(q) the dimensionless collective
structure factor, which are calculated in the present work
using Percus-YevickPY) integral equation theor§32]. The
propagatorl’g(q,t)[I'c(q,t)] is the t=0 normalized single
particle (collective dynamic structure factor which in fluids
decays to zero at long times, but is nonzero in a glass. The
long time nonzero values of the propagat@ebye-Waller
factor9 describe localized single particle and collective den-
sity fluctuations in a harmonic or Einstein model of an amor-
phous solid27,31]:

FS(qat - oo) = e—q2/4a, Fc(q,t — oo) = eq2/4a8(q)_ (2)

A standard ensemble averaged localization lefgfh is the FIG. 1. “Nonequilibrium free energy” or entropic trapping po-

local order parameter and it is defined as tential (in units of ksT) as a function of reduced colloid displace-
ment at a volume fraction o$=0.53 for zero stress, the absolute
rd=(r?)=3/2a 3 i :
L . yield stress, and one-half the absolute yield stress.
Derivation of a self-consistent equation for the dynamic or- g @
der parameter is straightforwaf@7,31], _,a  J .
gsdtr &F+é‘f—Mdt2r—O, (5)

1 1 dg 2 1
- =2 [ 202 —(q/4a)[1+S*(g)]
a=2p K(t— o) = 6 f (2m32Fd Cla)Sae * wheres s a short time friction constant due to two-particle
4) hydrodynamic interactionf4] or independent binary colli-
sions[32,33. Based on the latter,

Based on PY theory input, a localization transition occurs at

a fluid volume fractionpy,cr= ¢.=0.432 which corresponds {s=009(0), Lo =kgT/Do= 3momy, (6)
to the naive IMCT glass transition and lies below the full i ] ) ]
IMCT value[13] of 0.515 based on PY input. where 7, is the solvent viscosity, and(o) is the contact

To treat barriers and activated events, the IMCT nonervalue of the radial distribution functiof27,33. The use of
godicity transition is interpreted as signalitrgnsientlocal- ~ two-particle hydrodynamics to quantify the short time fric-
ization and the emergence of finite barriers idymamically ~ fion constant has_ b_een shown to yield resuIFs nea_rly identical
definedlandscape. To move beyond MCT a stochastic equat® the binary collision approacf27]. The white noise fluc-
tion of motion (EOM) is constructed for the single particle tuating force in Eq(5) is statistically uncorrelated with the
dynamical order parameter (t), the non ensemble averaged tagged partlcl_el position and velocity and satisfies
displacementrom a randomly located initial position. This (5f(0)5f(t))=6B87"¢s6(1).
reduced dynamical description is in the spirit of Kramers’ An alternative motivation of Eq(5) is to viewr(t) as a
theory of activated processes or a Zwanzig-Kawasaki projeccoarse-grained and/or partially ensemble-averaged dynamic
tion operator derivation of a nonlinear Langevin equationorder parameter. Then Eq5) is of a time-dependent
However, as previously emphasizE2V] the theory was not Landau-Ginzburg form or modé\ of dynamic critical phe-
rigorously derived. A nonlinear, stochastic Langevin equanomena[34], in the sense that the rate of change of the
tion is constructed guided by three idd2g]. (i) Brownian ~ dynamic order parameter is proportional to a “thermody-
colloids move by Fickian diffusion at short time@,) IMCT ~ namic like” force which for the glassy dynamics problem is
is assumed to correctly predict the tendency to localize in #f nonequilibrium origin. In this interpretation, the random
cage in the absence of a certain type of thermal fluctuation8oise in Eq.(5) is present to avoid trapping in a metastable
or noise. In the deterministic limit the EOM is required to state[34], which for our problem is the MCT ideal glass
recover the naive IMCT localization condition. This idea corresponding to the local minimum &fr) (see Fig. 1
guides the construction of displacement-dependegffec- The crucial quantity in Eq(5) is the “nonequilibrium”
tive cagingforce —9F/dr, which favors localization at high free energy(in units of kgT), whose gradient quantifies the
particle volume fractionst is called an “effective” or “non-  transient caging force. It is constructed in the spirit of density
equilibrium” free energy functional, although it does not functional theory(DFT) [35] whereF(«) describes the dif-
have any rigorous equilibrium meaning and depends oifierence between localizeghonzerow) and delocalized «
r’(t)=3/2a(t). (iii) Ergodicity restoring thermal noise de- =0) states. The apparently deep connection between an equi-
stroys the naive IMCT glass transition and allows for acti-librium DFT and an explicit time-dependent treatment of
vated hopping whep> ¢c. The resulting nonlinear Lange- glassy dynamics is the central idea of the work of Kirk-
vin equation in the overdamped limit corresponds to a forcepatrick and Wolyneg31], and motivates the explicit result
balance27] [27]
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3 dg 5 well known that MCT is not valid at very short times or

Fla) = E'“(a) —J (2n 3pCH()S(q) length scales since it is meant to capture the slow, longer
time collective aspects of cagifd3]. In this sense, given

x[1 +Sl(q)]‘1e‘(q2’4“)[1+5_1<q>] that our starting point is MCT, a small amount of space and

time coarse-graining is invoked and the missing physics is
=Fo+F. () buried in the short time friction constant in E&). Based on
The leading “ideal” term favors the fluid state as in DFT for the Langevin and Kramers’ theory motivation for the con-
astrongly localizecharmonic solid. The second “interaction” Struction of our nonlinear stochastic equation of motidt),
contribution corresponds to an entropic trapping potentiaiS @ hon-ensemble-averaged dynamic varigtdewithin the
favoring localization. Minimization of Ec(7) with respectto ~ aforementioned short time/distance coarse-graining caveat
a, or solution of Eq(5) in the absence of noisby construc- However, the caging force is constructed using DFT-like
tion yields the naive IMCT localization condition of E¢#).  ideas that relate the inhomogeneous systamalog of the
For ¢> ¢, an entropic barrier of magnitude; emerges in dynamically localized stajeto the homogenous system.
F(r) as shown in Fig. 1. Characteristic length scales includg hus, ensemble-averaged structural informa(isfa) , C(q))
the location of the minimung“localization length"r, as in IS émployed to quantify the effective caging force in E5).
IMCT), the displacement corresponding to maximum restorln the aforementioned modéHike interpretation of Eq(5)
ing (caging force R*, and the local maximum(barrier the dynamic order parameteft) is also coarse-grained and
location rg. Both the localization length and displace- remains stochastic due to the random force term.
ment of maximum restoring force are smdko), and The technical applicability question relates to the range of
decrease strongly with colloid volume fraction as/o  Validity of the “free energy” of Eq(7) with regard to dy-
~30 exf{—12.2$) andR*/ o~ exp(—6.6¢) [27]. The barrier namic displacements. As discussed previonpzlis], our goal
location increases weakly with volume fraction varying from (for both the quiescent and deformed systeimsestricted to
~0.25 to 0.40 as ¢ increases from 0.5 to 0.627]. As the elerr_lentarw;_/nammalprocess of transient Ioca_hzatlon
discussed previoush27], for the sole purpose of calculating @nd barrier hoppind=(r) in Eq. (7) does not have a rigorous
transport coefficients a “diffusion length’y is introduced equilibrium meaning, and additive constants that arise in its
and defined as the displacement beyond which the intera@quilibrium DFT analog have been dropped. A strong local-
tion part of the force, dF,/4r, is negligible and Fickian dif- ization approximation has been employed to construct the
fusion is recovered. Calculations firg, is nearly ¢ inde-  ideal contributionFq(r), which is the origin of unphysical
pendent and=0.8 [27]. divergence to negative infinity ofF(r)—-c asr—cw. A
The caging force in Eqg5) and(7) evolves in time via more accurate treatment Bf(r) is possible within a thermo-
single particle and collective motions. However, collectivedynamic DFT frameworK38]; however, for displacements
motion is treated within a simplified Vineyard type approxi- r <o/2 the far simpler Eq(7) is accuratg38]. Given that
mation[32] for the collective propagator which neglects ex- our interest is restricted to the elementary localization and
plicitly many particle dynamics. Such an approximation ishopping processes, where the relevant displacements
known to be quite accurate on the local cage sci8és32 (r_,R*,rg) areall smallerthano/2, any errors incurred by
of present interest. It is in this sense that the approach is asing the strong localization form of the ideal free energy
dynamical mean field theory. The caging force is self-should be minor. Finally, after completion of this manuscript
consistently and nonlinearly coupled with single particle mo-an explicit derivation of the beyond MCT approach using
tion. Hence, for hopping transport Garrahan has suggesteatiynamic density functional ideas has been achid a8l
the theory might be interpretable as containing some aspects
of the “dynamic facilitation” idea in the sense that the evo-
lution of the dynamic order parameter is stadesplacement
dependenf36]. Transport coefficients are calculated using Green-Kubo
The mean barrier hopping timer,, is expected to be formulas and the MCT factorization of multipoint correla-
closely correlated with the or structural relaxation time. In  tions approximatior{13,32. The dynamic propagators are
the overdamped, high friction limit barrier crossing is a dif- determined using a generalization of the “binary collision in

B. Transport coefficients and elastic shear modulus

fusive process and Kramers’ thedi§7] yields[27] a mean field"(BCMF) theory[33] to include an activated
barrier hopping contribution to the friction constant. The re-
Thop _ Me% (8) sulting shear viscosity 528,33
70 VKoKp ’
, o keT ([~ J 21
where 7,=0%{,/kgT is the elementary Brownian diffusion N= 17+ zf dq qz(—ln S(q)) c 9
time, andK, andKg are the absolute magnitudes of the har- 120m°Jq 79 Ds(a)

monic curvatures of the minimum and barrier efr), re- ] ) o

spectively. vx{herg the high freguency viscosity i5.= 7,0(o). The cage
Afew additional comments concerning the conceptual badiffusion constant is

sis and range of technical applicability of the theory are

worth making. The former involves the level of coarse grain- D(q) = Do (10)

ing assumed and the meaning of ensemble averages. It is ¢ S(q)[g(a)d(q)‘1+(gho;/go)]’
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T v T T T T T kBT<O_>2.13

| N G =0.1442| =

Jo . (16)

re
3 A nearly identical relationship betweds’ and the localiza-
tion length has been suggested based on elementary mechan-

ke ics argumentg41], and was also found theoretically for

ER depletion geld42]. The modulus calculations can alterna-

] tively be well fitted over the range~ 0.5-0.65 by a power

ELY law with a high exponentG’ « ¢4,

] Recent experimental resulig3] for G’ of hard sphere

) . . _ 3 suspensions at very high volume fractions are shown in Fig.

0.5 0.55 0.6 0.65 2. Given the difficulties of the experiments and moderate
¢ polydispersity of the samples, the no adjustable parameter

calculations seem reasonable. Moreover, multiple prior ex-

cperimental studies ofnea) hard sphere suspensions have

FIG. 2. Elastic modulus and yield stregboth in units of

ksT/0?) as functions of volume fraction. Open circles are the elasti

modulus at zero stress, and crosses are the corresponding Iinergrpeatedly reported exponepual behavipt4—4g, G’
response experimental data of Petekiisl. [43]. Solid diamonds 0<exp(b<_1>). The_abSO|Ute magnitudes 6f _and theb _V‘?‘lues .
are the absolute yield stress, and solid triangles the stress at whi@€ variable given the common experimental difficulty in
the elastic modulus drops by 10%perturbative yielil Lines are  Precisely defining an effective hard sphere volume fraction,
exponential fits discussed in the text. and particle “hardness” differences due to variable grafted

polymer layers or the presence of charge. For exaniple,
_ . . _ ~ 9 for silica with long polydimethylsiloxane polymer grafts
d(@) =[1 - jo(ka) + 2jz(ko)]™, (A1) [46], b~ 28 for polymethylmethacrylate colloids with short
wherej is the spherical Bessel function of orderThe total ~ grafts[46], andb~ 28 for ¢~ 0.4-0.6 charge stabilized near
friction constant is taken to be the sum of short tifEg. (6)]  hard sphere suspensiof#4]. For the short-range repulsion
and hopping contributiong28], systems, the measured valueshoéire remarkably close to
the theoretical value of 26. There have also been repéis
- - 2 _ pr Thog"-2 of G’ scaling with ¢ as a high exponent power law,
hop= ke T/Dhop = Bke T ho L = 640 7o Lo, (12 G’ « %1 The absolute value of the experimental moduli
are often in semiquantitative accord with our calculations,
especially for “simple” particles. For exampl&§’ ~ 10 Pa
for room temperature suspensionsdf420 nm bare silica

wherelp was defined below Ed7) and is~0.80 [40]. For
< &, EQs.(9)—(11) correspond to the BCMF theory which
's accurate in the “normal fluid reg|me§¢<_0.45—0_5 hard spherept7] at »=0.56 which can be compared with the
where 7/ 79<20-30[33]. For ¢> ¢, the no adjustable pa- i .qretical value of-16 Pa.

rameter calculations of the localization length, single particle
relaxation time, viscosity, diffusion constant, and other quan-
tities are in good agreement with experiments over the entire
volume fraction regime probed experimentallyp to ¢

IIl. GENERALIZATION TO MECHANICALLY
DEFORMED SYSTEMS

~0.56-0.58[27,28. A. Theory formulation
The elastic modulus is computed using the standard o . . .
Green-Kubo formuld12,32: Our generalization to nonlinear response is motivated by a

desire for technical simplicity and several facts established
. keT [ , 0 2 _R2S(aa by experiments and computer simulations. Watanatal.
G'=502) dald &—qm Sa)) e (13 [48] and Manzano and Wagn¢49] studied the nonlinear
0 rheology and collective structure factor of model silfead
where the localization parameteris given by Eq.(4). This ~ spheresuspensions. Surprisingly, strong nonlinear dynamical
is the naive version of the IMCT glassy shear modulus. Caleffects such as strain softening of the modulus and shear
culations of elastic modulus based on PY structural input aréhinning of the viscosity ar@ot accompanied by significant
shown in Fig. 2. An exponential volume fraction dependencetnisotropy of structure in thshear thinningregime. Up to

is found: volume fractions of 0.5, no significant changesS() are
observed in the presence of sh¢d8]. At very high shear
G’ =0.000 16KB—Te26¢’ (14) rates where(presumably hydrodynamically driven shear
' o’ ' thickening occurs, anisotropy of the structure factor does

) L ) emerge, and this regime is not treatable in our approach. As
Since the localization length has been previously shown t¢,antioned in the Introduction, simulations of liquiti® hy-
be [27] drodynamic interactions[20-23 also find that even for
~ 2na-12.2% shear rates where the viscosity is strongly thinning to
r.=30e ag, (15 . . . . .
yr,~10° where 7, is the quiescentr relaxation tim¢ and
a direct relation between it and the elastic modulus is im-=self-diffusion is enhanced, the particle mean square displace-
plied: ments(in the advected frameintermolecular radial distribu-
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tion functions, structure factor various relaxation times, and P

wave-vector-dependent dynamic structure factors remain fmicro= No? pres (21)
nearly isotropic. Hence, experiment and simulation both find

anisotropic shear perturbations induce much faster dynamioshere\ is of order unity. All calculations, figures, and dis-
in a surprisingly isotropic manner in the shear thinning re-cussion of numerical results presented are based=dn For
gime. In addition, simulations fin¢21,22 that the shear- alternative choices ok the quoted stress, strain, and shear
induced reduction of single particle and collective relaxationrate are simply modified by the factor nf?.

times is nearly length scale independent for wave vectors The final expression for the nonequilibrium free energy

that probe cage scale dynamics. (in kgT/ a2 units) is

To model how an external deformation modifies E@s. 3 dd
and (7) we adopt the simplest idea that a constant applied F(a) = =In(e) _J -pC%(@)S(q)
stress results in a constafgcalaj force f on the tagged 2 (2m)

particle. The effective nonequilibrium free energy is thus

10 ) T-La(0Z/4a)[1+S X(q)]
modified as X[1+Sa)] e

F(r)=F(r;r=0) - fr. (17) - @\% (22)

In analogy with prior theoretical studig9-12,16,17, the ) )
macroscopic deformation is assumed to be transmitted to tia€re, and throughout the paper, tge unit of lengtloriand
particle level. This description is in the spirit of a “single the Stress is given in units d§T/o”. Equations(17)-(22)
particle” trap model approacf®] where the local strain is account for the efl‘e_ct of_applled stress at the simplest “one-
envisioned to induce a relative displacement of a colloig?0dy,” or external-field-like, level. Of course, steady shear
from the center of its cage formed by the surrounding par_dc_Jes convect particles and changes their relative separation
ticles. However, given possible complications in real materi\With time [16-18. In MCT this is the "advection of fluctua-

als associated with the transmission of a macroscopic stre§@ns” effect which enters at the two-point time correlation

to the microscopic scalis0], a unique quantitative connec- function level. However, in the steady state situation of in-
tion between the microscopic fordeand the macroscopic t€rest, the shear rate and constant stress modes of deforma-

stressr cannot be simply written. We proceed to make thetion are equivalent2]. In the strain mode of deformation,
connection via physical arguments. there will be strain-driven relative displacements of pairs of

In static equilibrium(before yield, stress is assumed to be Particles which in principle induce anisotropy in the radial
constant throughout the material. This implies that the mi-distribution function and structure factor. These are assumed
CrOSCOpIC Stress o equals the macroscopic foreg., © P& small “higher order” effects, and the same quiescent
acting on the unit cross section of the particle network, re£duilibrium correlation functions are employed to quantify

duced by the average area occupied by particles in the urif'€ c@ge constraints arkdr). The usefulness of such a sim-
Cross Sectiongiicro= Tmacrd $2°. This implies that the aver- Plification is buttressed by the fact that we find that the ab-

age external force on a particle is solute yield point is associated with relatively small strains
oa and particle displacements. Ignoring deformation-induced
frnicro = ( Tmicrd™ = Tmacrd A 7, (18)  changes in our “trap potentiaF(r) is also in the spirit of the

whereA is the relevant particle cross sectional area whichPhenomenological glassy soft rheology approa¢Bex0].

can be estimated in several ways. One estimate is the total ~APPlied shear, stress, or strain distorts the effective free

area occupied by particles divided by the number of par€M€r9y function and reduces the barrier leading to more rapid

ticles, which yields(A)= 23/ p23, resulting in Brownian dyna_\mics. In the stress-controlled moeds fixed,
and G'(7) is directly computed from Eq(13). The corre-
m 2’3027macm sponding dimensionless strain follows from the generic
Finicro = 6 R (19 honlinear stress-strain relatigg]:
Alternatively, assuming/A) equals the average cross sec- y=1G'(7). (23
tional area of the spherical particle yields The absolute yield stressyis the minimum stress required
P to destroy the barrier ifr(r). This is equivalent to the con-
fmicrozgoz%go. (200  dition that the applied force is equal and opposite to the
¢ maximum cage restoring force of the quiescent system. Since

There is no rigorous justification of either choice, and nothe displacement corresponding to the lat®f, is much
doubt there are alternative arguments that yield qualitativelgmaller thano [27], the strong localization form df(r) is

the same connection between microscopic force and macrg¢easonable. An example of the consequences of applied
scopic stress. The basic form of the above connections astress orF(r) is shown in Fig. 1. In the absence of barrier
sume that virtually all stress is borne by the particle networkhopping, the absolute yield stress defines a solid-to-liquid, or
not the continuous solvent phase, an assumption that is exaechanical yield, transition. For a strain-controlled experi-
pected to be accurate at the very high volume fractions ofnent, Eq.(23) is solved in an iterative self-consistent man-
interest{50]. Hence, we simply parametrize tkenstant nu- ner. For the shear-rate-controlled experiment, the appropriate
merical prefactoruncertainty and write shear rate follows from the defining relatiQ2]
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FIG. 4. Localization lengthlower curve$ and barrier location
(upper curvelsas a function of stresgnain panel or strain(inse
for different volume fractions. Open circles correspond to the abso-
lute yield point where the barrier disappears and the two lengths
coincide.

perturbed localizatior{barriep length decrease@ncreases
with ¢. Physically one expects — 0 as the volume fraction
approaches the incompressible random close packing state
(¢p~0.63 [51]. Its failure to do so is a limitation of PY
theory for S(g). With increasing stress, these length scales
approach each other in a nonlinear fashion and merge at the
absolute yield stress. The strain dependence shown in the
inset is similar, although interestingly the localization length
FIG. 3. (a) Entropic barrier heightin units ofksT) as a function  is a nearly linear function of strain up to the mechanical yield
of stress for three volume fractions. The inset shows the same rgpoint. The calculated strain or stress enhancement of the lo-
sults with the barrier height normalized by its zero stress value angalization length might be relevant to recent attempts to use
the stress normalized by the absolute yield strégsSame afa)  the diffusing wave light scattering echo technique to estimate
but as a function of strain. Double normalized plots are shown instrain-induced colloidal displacemen#s3].
the inset. The strain and volume fraction dependence of the well
and barrier curvatures are presented in Fig. 5. The well cur-
=yn(7). (24) vature controls the vibrational amplitude and oscillation fre-

) ) _ ) ) quency in the(quasjlocalized state. It decreases monotoni-
Finally, as in the quiescent ca$27], we again emphasize cqjly with strain andnearly linearly with stress. In contrast,
that the large” dependence df(r) is not relevant given our - the “parrier curvature initially increases in magnitude with
limited focus on the preyield, small displacement regime.  strain or stress before ultimately decreasing to zero at the

B. Strain and stress dependence of the nonequilibrium 6000 ————T 7 T
free energy 5000-? _Sgg gﬂx:"""""""'j__
Applied stress or strain induces distinctive changes of the L | S 17
characteristic length and energy scalesFifr) which are 4000_"\ WD ey 17
summarized in Figs. 3-5. Figurd&d shows that the barrier Y fggg: IS
is reduced nonlinearly with increasing stress, in a manner KNk o ]
qualitatively in accord with the computer simulation land- 20007 N BI-10000'1‘0'2'0';0';0'55'50';0'80-
scape analysd®4,25. The inset shows that nondimension- oo ¥ 1
alization of the barrier by its zero stress value, and the stress 7
by the absolute yield stress, results in a nearly universal be-
havior. The analogous results based on strain as the mechani-

cal control variable are given in Fig.(l3. The barrier is
largely destroyed beyond a dimensionless strain of 15-20 %.
However, its strain dependence is different from the stress
dependence, and the inset shows that nondimensionalization F|G. 5. Curvaturegunits of kyTo™2) at the minimum(K,) and
does not result in as good a collapse. barrier (Kg) of F(r) as a function of strain for different volume

The dependence of the localization and barrier lengthractions. The corresponding stress dependence is shown in the
scales on stress and strain are presented in Fig. 4. The uinset.
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FIG. 6. Stress-strain relation at different volume fractions. The FIG. 7. Ratio of the elastic modulus to its linear response value

discontinuous drop of the stress to zero defines the absolute yie® 2 function of strain for different volume fractions. Symbols are
point P y experimental data by Petekidet al. [40]. The inset shows the

corresponding stress dependence.

yield stress or strain. The rich dependence of all the featurewith a high exponentr,,.~ 17 2005, also provides an ex-
of F(r), on stress, strain, and volume fraction is relevant tocellent fit (not shown. Following common experimental
the prediction of the hopping time and transport coefficientspractice[2,4], a perturbative yield stress is defined as the
stress at which the linear elastic modulus is reduced by 10%.
As seen in Fig. 2,7y~ 880¢%° which corresponds to a
modestly weaker growth withp than the absolute yield

In this section the predictions of our theory in the absencestress.
of barrier hopping are worked out. This is the naive MCT  Experimentg46] on hard-sphere-like suspensions at high
limit where the noise term in Ed5) is dropped. As in the volume fractions find the yield stress grows as a power law
quiescent state, delocalization and flow occur when the locakith an exponent-9—11. Recent rheological creep recovery
minimum and barrier irF(r) disappear. Fopp> ¢, this con-  measurement§43] on colloidal glasses composed of par-
dition requires an external mechanical force and first occurdjcles of diameter 366 nm find the absolute yield stresses are
by definition, at a critical, or absolute yield stress or strain.~4-12 Pa for¢~0.59-0.62. The results in Fig. 2 corre-
Our results are the nonlinear version of the naive IMCT ideakpond to yield stresses of5-9 Pa for these volume frac-
glass transition condition, and hence will be compared tdions, in apparent remarkably good agreement.
recent efforts to generalize the full IMCT to nonlinear rheol- Some aspects of our yield stress results can be compared
ogy [16-18,22. Any differences between the predictions of with the ISHSM version of ideal MCT16] which predicts
our approach and prior ideal MCT work reflects both our,;=6(kgT/0°) at the MCT critical volume fraction ofp,
simplification of the full IMCT to its naive version, and the =~0.515 based on PY static input. Curiously, this value of
manner in which the external deformation is incorporatedyield stress is rather close to our result efl2 at ¢
The neglect of activated hopping in this section suggests-0.515. At the experimenta&linetic glass transition volume
guantitative theoretical results for the yield stress and straiifraction of ~0.57-0.58, our theory predicts a dimensionless
should be upper bounds to the trdgarrier hopping influ-  yield stress of~30. With increasing volume fraction, the
enced behavior. The latter kinetic aspect is examined in SecIMCT vyield stress grows initially in a square root manner
V where the dynamic yield stress is contrasted with its stati¢16,17) r,— 7o =112\¢— ¢, in contrast with the exponen-
analog. Of course, given the unknown quantitative accuracyial or high power law dependence of our theory. This im-
of prior IMCT work and our present theory the issue of plies any apparent near quantitative agreement between the
whether the numerical results of this section are true uppenumbers predicted by the two approaches cannot exist over a
bounds for experimental systems cannot be definitivelywide volume fraction range. Our prior work on the linear
known. Note that our analysis does not apply to litéfal dynamics of hard sphere suspensions also found some in-
=0 non-Brownian or granular systems. triguing similarities between the entropic barrier hopping ap-

Figure 6 shows representative results for the stress-strajproach and IMCT[27,28. We note that schematic IMCT
curve. Linear response occurs for strains up to a characterisnakes the same qualitative predictions for yield stress vol-
tic value beyond which the material continuously softens unume fraction dependence as the full ISHSM based theory
til the yield point is reached. The dimensionless absolut¢16,17).
yield stress is given in Fig. 2 and is a strongly increasing The strain and stress dependence of the elastic modulus is
function of volume fraction. It varies from-10 to 100 as shown in Fig. 7. Modulus softening occurs at lower strain
volume fraction increases from-0.52 to 0.63. The yield amplitudes for denser materials. The functional dependence
stress is well described by an exponential law with a slopef G’ on strain is gentle, and locally might be characterized
that is smaller than found for the linear elastic shear moduluas logarithmic. Petekidist al. [43] have recently measured
G’ in Eq. (14), mapsxexp(19.24). A power law dependence the strain dependence of the elastic modulus for very high

IV. MECHANICALLY DRIVEN REGIME
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03— ; ; : , Chow and Zukoski53] observed some time ago a nonmono-
tonic yield strain for dense charged stabilized suspensions

0.25F . with a maximum strain at)~0.5.
I ; The perturbative yield strain is defined as when the elastic

02r . modulus has decreased by 10%. Our calculations find it is
I ] much smaller than the absolute yield strain, lying in the
range ~0.8-3.6 %, and decreases monotonically with vol-
P e o ° i ume fraction. A third “mixed” measure of a yield strain, of-
I e ol ten employed by experimentalists, is computed as the ratio of
oosk Tl i the absolute yield stress to the linear modulus. Results in Fig.
F T e : 8 show that this yield strain is also a monotonically decreas-
OG5 T Em— ing function of ¢ and varies over the range5-12 %. There
] have been many measurements of the yield strain for near
hard sphere suspensions at high volume fractions and also
FIG. 8. Yield strain as a function of volume fraction. Solid curve for charged latex materia[¢4,46,53. Remarkably, all these
is the absolute yield, dashed curve is the perturbative yield, angtudies find perturbative or “mixed” yield strains in the rela-
dash-dotted curve is a “mixed” yield strain definedgs/G’(0).  tively narrow range of~-1-5 %, often with little or no sys-
The symbols are rheological data by Petekilisal. [43]. tematic dependence o#. Globally, these observations are
consistent with our calculations. It is also interesting to note
that the typical perturbative or mixed yield strain for vastly
different materials is similar, for exampte2—4 % for amor-

>20.15 -

volume fraction glassy colloidal suspensiofé=0.645.
They find, for example, thaG’ is reduced by a factor of
roughly 4 at a strain 0f~10%. A detailed comparison of .
thegryywith this experiment is shown in Fig. 7. '?he theoret-phous metals{S5] and ~3-7% for dense depletion gels
ical calculations are in reasonable agreement with the data[2’4'56’5z' .
The stress dependence of the elastic modulus is shown in Recent IMCT calculation$16] based on the ISHSM or
the inset of Fig. 7, and is considerably stronger than théchematic versions obtain &mixed”) yield strain of
strain dependence. The transition from the onset of discerrfy/ G'(0)~0.33 at the MCT critical volume fraction. This
able softening to absolute yielding occurs over less than aMalue is larger than the experimental results discussed above,
order of magnitude in stress. or the~5—12 % our theory prediCtS f0ﬁ~052—062
Figure 8 summarizes three measures of yield strain as a Finally, numerical calculations reveal an interesting con-
function of colloid volume fraction. The yield strain displays nNection between our computed absolute yield straj and
an extreme|y\/\/eakdependence 0@5 relative to the many the Straln—ll’.]duced !ncrease Of the |Ocal|zat|0n |ength a.t the
orders of magnitude change in the yield stress and modulugbsolute yield point Arioe=rioc(Yapd ~rioc(0). The ratio
This implies the yield stress and shear modulus have similairioc/ Yabs=0.18 and is nearly volume fraction independent
volume fraction dependences, a trend observed in many e} the ¢=0.53-0.63 regime, thereby implying a direct con-
periments[44—46,52-54 For ¢>0.53, all measures of the Nection between strain and location of the minimunir{n).
yield strain decrease with volume fraction implying denserSuch “universality” is reminiscent of the empirical
materials are “more brittle” in a strain mode of deformation. “Lindeman criterion” r,(0)/~0.15, for the fluid-crystal
The absolute yield strain in Fig. 8 is computed using thephase transitioh32] and the ideal glass transition of MCT
absolute yield stress and the nonlinear elastic modulus, arild3,31. However, the strain aspect has no analog in the latter
varies over the narrow range ef20-27 %. Interestingly, it two phenomena. Rather, the near constancyref./ y,,scan
is predicted to be aonmonotonidunction of volume frac- be qualitatively understood as a consequence of the predicted
tion. This numerically arises from E3) as a consequence close relationship between the localization length and har-
of the subtly different dependences of yield stress and modunonic curvaturgKy) of F(r), or equivalently a nonequilib-
lus on ¢. One interpretation of the two competing processesium equipartition relation, as previously discussed for qui-
which underlie this nonmonotonic dependence is as followsescent colloidal glassg®27] and gels[42]. Specifically, it
With increasing volume fraction particles reside in deepemwas showr 27,42 that Koocrﬂ,zcocG’, which for a harmonic
entropic wells with larger cage restoring forced r=R*). F(r) implies a strain-inducesdhift of the localization length
However, the elastic modulus also strongly increases withAr,,.cc 7/Kyoc 7/G’ o« 9. The fact thatAr,./ ya,s Femains es-
volume fraction due to tighter localizatigemallerr,) which  sentially constant for stresses up to the yield point implies
correlates with the modulus roughly &8 ocr[z. Given that the simple connections deduced in the quiescent fluid remain
the strain is a ratio of stress to modulus our numerical resultaccurate in the nonlinear regime.
suggest the maximum restoring force is decreased more
strongly with strain. tham, is at very high volume fract_ions. V. EEFECT OF BARRIER HOPPING
Recent mechanical creep measurem@h8 of the yield
strain of model hard sphere glasses is shown in Fig. 8. The The analysis in Sec. IV ignores thermally induced barrier
absolute magnitude and gross qualitative shape are consistdrapping, a condition where a rigorous distinction between a
with the calculations. Qualitatively identical results areliquid and solid can be made and a true yield stress can be
found based on light scattering echo experim¢a8 which  defined. In reality, everything flowf58] at “long enough”
probe the onset of irreversible colloid motion. We note thattimes due to slow relaxation processes. In this section the

021401-9



V. KOBELEV AND K. S. SCHWEIZER PHYSICAL REVIEW E71, 021401(2005

T T T T T T
100
10 E
e E 3
s [o] kd 5
& — absolute
5 o0 ‘rhop/to=10
] & ‘chop/‘ro:lOO
1F ’ =
E [} A-A thopl‘ro—IOOO
[ T T T SR T

052 054 0.56 0.58 0.6 0.62 0.64

o

FIG. 9. Dimensionless hopping time as a function of the applied
stress for several volume fractions. The inset shows the same resu
with hopping times normalized by their zero stress values.

FIG. 10. Dynamic yield stress for three specified time scales.
Lf‘?'ne solid line is the absolute yield stress.

stress, strain, and volume fraction dependences of the barrigr fynction of stress. The inset shows the previously deter-
hopping time are studied, and a “dynamic yield stress” ispined linear response resyl28] (in units of the solvent

determined which separates fluid and solid states in a PraGjiscosity, which has been shown to be in good agreement
tical sense. An uItrasI(_)Wy relaxation process may be the viith a compendium of experimenf§9] up to relative vis-
elementary step for aging, creep, and/or sedimentation. Bot

i . .cosities of~3000 at¢=0.56. Over this regime of volume
constant stress and shear rate conditions are examined, Whlﬁ%
0

" : . ctions the theoretical resultand also the experimental
under steady state conditions are equivalent in the absence 9%es can be fitted by many different functions including the
rheological instabilities. We note that Barnes and others hav y Y 9

vigorously argued that yielding phenomena should be Stud_Grggbvo:ume for(rjn, the gor;ﬁgurat|o|nal—<7anztrop|_)|/-based A(:]ams—
ied using stress, not shear rate, controlled rheo[&8y, and Ibbs form, and a critica power a{\Z ' 8—"_ owever, the
hence we discuss it first. exceptionally wide range of viscosities in Fig.(&llallows a

more discriminating analysi@lthough beyond experimental
capabilities for colloids The numerical results are well fit

by a strongly supraexponential dependence
Figure 9 shows the hopping time nondimensionalized by
the elementary Brownian tim&, as a function of stress for

A. Stress-controlled rheology

several volume fractions. The elementary Brownian time 70) os
varies as the particle radius cubed, and for a particle diameter — =8.81e'%%", (25)
of ~400 nm is typicallyry=1 s [4]. The inset presents a o

normalized plot which shows that the initial stress-induced

hopping time reduction occurs in a nearly volume-fraction-

independent manner. The curves “Sp|ay apart” with increasThe rate of Change of a relaxation time or ViSCOSity with the

ing stress. A reduction by an order of magnitude requires &ystem control parameter that induces vitrification is quanti-

dimensionless stress of3-5, which corresponds at room fied by a “fragility” index m [60]. For athermal colloidal

temperature to~1.5-2.5 Pa for a 200 nm colloid. suspensions we define the analog of the thermal fragility as
The dynamic yield stress issue is examined in Fig. 10.

The stress required for the hopping time to be a specified

value is plotted as a function of volume fraction. Since yield- 9 .

ing is now associated with particles going over the barrier, m= 90 logs07(0) = 6707¢%*, (26)

variation of the hopping time scale is meant to mimic the

experimental observation time scale on which the glass

yields. Results for hopping times of 10, 100, and 1000 times . . . . . .

larger thanr, are shown. The corresponding absolute yielolWhlch is a strongly increasing function of volume fraction. It

stress from Fig. 2 is plotted for comparison. There are twdS interesting Fo contrast the predicted numerical values with
interesting trends. A roughly exponential dynamic yieldthermal liquids. -~ From  Eq. (26), m=38,69,121 for
stress dependence is found at high volume fractions witi=0-54,0.58,0.62. This range of fragilities largely covers the
slopes that monotonically increase as the specified timgange observed for thermal glass formers. In particutar,
lengthens. At low enough volume fraction a stronger depen=38 is representative of a relatively “strong” liquith=69 a
dence emerges since barriers are low and the specified tinteoderately “fragile” liquid, anadn=121 an extremely fragile
is more commensurate with the intrinsic hopping time. liquid [60]. In deeply supercooled liquids the relaxation
The shear viscosity normalized by its quiescent valudime or shear viscosity at the kinetic glass transition tempera-
[computed using Eq$9)—(12)] is presented in Fig. 14) as  ture is roughly 8—10 orders of magnitude larger than its value
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' ' R "3 tivated by the prior surprising finding that the quiescent sus-

10 M T pension entropic barrier is extremely well descrilffat bar-
nom, =y

S — riers in excess of the thermal enefdyy the formula[27]
XN
5 10° ~ 0.077
g Fg=—— —351, (27)
= S

whereS(q=0) = S,=(1-¢)*/(1+2¢)? is the PY dimension-
less compressibility. Since the viscosity directly correlates
. with stress relaxation and hopping time, one might expect a
10 GoT 0T I 0% simple exponential relation betweerand the barrier. Figure
11(b) shows this is indeed true since the following expres-
L L L B R sion is very accurate:

7O _ ) 2qg000m", (28)

o

The larger prefactor in the exponenti@l092 versus 0.077 in
Eqg. (27)] arises since the viscosity is qualitatively the prod-
uct of a relaxation time and a modulus. This interpretation is
supported by our finding that the hopping tirffreot plotted
is extremely well fitted over at least seven orders of magni-
tude in the range 0$#=0.52—-0.63 by

0 }
o0 _ ) 003 520.0745", (29)

70

The accuracy of Eq29) reflects the relatively weak depen-
dence on volume fraction of the prefactor in E§).
The main frame of Fig. 1(&) shows the nonlinear viscos-
ity scaled by its zero stress value as a function of stress. The
shapes of the curves are quite similar to the hopping time
results in Fig. 9. Rough power law behavior can be identified
2 over rather narrow intervals in the intermediate stress re-
» Ly “f?‘h,_, ] gime, and ex_periments are sometimes analyzed in such
(©) o001 01 1 10 100 terms. From Fig. 1(a) we find (not plotted apparent powers
laws 7/ 7(0) < 7% with exponents ok~0.7,1.6,3.0,3.9 with
FIG. 11. (a) Shear viscosity normalized by its zero stress valueincreasing ¢. The stress-induced viscosity reduction be-
as a function of the applied stress for several volume fractionscomes monotonically more abrupt with increasing volume
Arrows along the right axis indicate the corresponding limiting fraction or zero stress viscosity, a trend broadly observed in a
BCMF viscosity [33]. The inset shows the zero stress viscosity wide range of materialg58]. The limiting high stress value
(circles and the best fit of Eq(25), the BCMF model viscosity  of the viscosity is determined by our assumption that stress
(dashed curve and the infinite frequency viscosifgolid curve.  destroys barriers, but does not affect the “regular” part of the
(b) Relative viscosity as a function of volume fraction for zero and viscosity associated with binary collisions in a mean field
several nonzero stresselid circleg; a fit using Eq.(28) is also cage (BCMF theory [33]). We view this assumption as a
shown. The normal or fluid part of the viscosity given by the BCMF r,de but reasonable one given the small distortion of local
;”Od‘?'[%]fis also i“fdica:]ed(c) Rleduce‘fj diﬁe:ﬁe”“"_’“ viﬁcogi(t:yMas a structure seen in experiments and simulations even at rela-
unction of stress for three volume fractiorg’ is the tively high shear rateébefore the onset of shear thickenjng
;Zi;rgm‘g V'Szfs'tynggh;g\;es aarfe f';s t=01Es(11(310)2'3Tr2 cor;i- q The regular contribution to the viscosity is volume fraction
N B 12T et dependent as reflected by the different levels of reduced vis-
m=1.19,1.32,1.42 fop=0.53,0.56,0.605. . . -
cosity and stress values at which the start of a plateau is seen
at a characteristic “crossover temperature” deduced from fitinh Fig. 11(a).
ting MCT formulas to experimental dat&0]. Using Eq.(25) It is interesting to consider the quantitative implications of
and our theoretical crossover &=0.432 wheren(0)/7, Fig. 11(&. At $=0.56 the zero stress reduced viscosity is
~10[28], a nine orders of magnitude viscosity ratio is at- ~10 000, and decreases-+6400 at a dimensionless stress of
tained at¢p=0.627 which corresponds to a very high fragil- ~10 which for a 400 nm colloid corresponds t€0.7 Pa.
ity of ~132. From this perspective, athermal colloidal sus-For stresses below the onset of shear thickening, the theoret-
pensions seem as fragile as molecular liquids or polymeical calculations are in good agreement with recent measure-
melts. ments[61] on high volume fraction hard sphere suspensions
Various very different mathematical functions also fit the where the zero stress relative viscosities vary in the range of
numerical viscosity results. Of particular interest is one mo—~10°-1(F.
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Figure 11b) shows the viscosity as a function of volume T[T
fraction for different values of constant stress. At nonzero
stress the viscosity is computed only for volume fractions
above the absolute yield point. The spectacular growth of the
viscosity with ¢ is systematically reduced with increasing
stress, an effect that could be described as a stress-induced
reduction of fragility. The BCMF result is indicated by the
solid curve and represents a lower bound or high stress limit.

Figure 11c) replots the theoretical results in Fig.(&Lin
terms of a reduced differential viscosify(7)—7%']/[ 7(0)

-17'], a format often adopted by experimentali2s4]. Here L N
7' is a “high frequency” limit unaffected by stress, which in E 10° 10° 10 107 1° T=@m) 1,
our calculation corresponds to the BCMF redud8]. The 100 Lyl L Lo, L .
linear-log format of Fig. 1(c) emphasizes the initial shear 10 1 10, 10 10 10
thinning regime at intermediate stresses. The calculations are '

fitted to the popular empirical fori2,4]

FIG. 12. Viscosity normalized by its zero shear rate value as a
function of reduced shear rate defined in E2B). The inset shows

, n a1 the same results for the relative viscosity but with the shear rate in
(7= n)(90)-7n)=[1+ (7/7'1/2)6] ' (30 units of the inverse elementary Brownian timge

where 7(7y5)/ 7(0)=0.5. Experimentally, whefneay hard . qjation-viscosity “decoupling[62] is predicted, as ex-

sphere suspension data are analyzed in this manner the eﬁ%cted ; p : A ;
O - given the “mean first passage time” analysis of our
ponent deduced from fits i§~1-2, and thecharacteristic theory[27,28. The theory has been recently generaligeg]

d|mer}3|onless. stress ig,~1-4 "’?”d usually a weakly de- to include heterogeneity associated with mesoscopic volume
creasing function of volume fraction fab>0.5[4,45]. The . X ; "
fr%ctlon fluctuations under quiescent conditions, and the

apparent exponent and crossover stress parameters require . X . .
to fit Eq. (30) to the theoretical results are reported in theSaMme ideas can be applied to the nanlinear regime.
figure caption and are consistent with experimental findings
[2,4].

Although we do not show more figures, additional calcu-
lations indicate that all the basic trends for the viscosity ob- The inset of Fig. 12 shows results for the viscosity as a
tained using the Green-Kubo approach are contained in th]% )

simple Maxwell model associated with the hopping process. nction of shear rate in _un|_ts of th_e elementary Br_owman
time yr,. As expected, with increasing volume fraction the

shear thinning process starts at smaller reduced shear rates,
(31) and the local power law slope decreases continuously from

zero to negative unity. A plateaulike behavior emerges at

high shear rates at a viscosity level close to the “normal

As can be understood from Eq@)—~(12), or Eq. (31), the  fuid” contri_t;utiqrf described by the BCMF theor33].
very strong volume fraction dependence of the Green-Kub&NC€ D> 7 "* 7o, the results in Fig. 12 imply that the
viscosity arises from the relaxation time. For example, as théiffusion constant will follow a fractional power law depen-
volume fraction increases from 0.5 to 0.62 the linear re-d€nce ony in the intermediate shear rate regini2s y*,
sponse Green-Kubo viscosity increases by seven orders Yhere the apparent exponemtincreases from zero to unity
magnitude while the elastic modulus increases by only onéPllowed by a crossover to the normal fluid diffusion con-
order of magnitude. stant of thg BCMF theqr928,33. . _ _
Following prior work[28], the stress dependence of the ~ 1he main panel of Fig. 12 plots the viscosity normalized
self-diffusion constant can be computed using the GreernPY its zero shear limit7(0) as a function of the shear rate
Kubo approachianalog of Eqs(9)—~(12)], or even more sim- Normalized by a characteristic stress relaxation time
ply (but still rather accurately28]) estimated from its hop-
ping analog

B. Shear rate controlled rheology

J— !
mwm=G Thop

Y = YTstress  Tstress— U(O),BR31 (33

Dhop= L3/6Thop- (32)
whereR is the particle radius. This normalization of shear
rate is motivated by common experimental analysis. A good
In the linear response regime prior wdi8] has shown that collapse of the theoretical results is obtained, as often found
the Stokes-Einstein relation is well obeyedn)/(Dy7n,)  experimentally[44—-46,52-54 based on the reduced shear
=2+1 for ¢>0.5. Hence,Dx7! and no significant rate raised to a powem~0.8—-1. A characteristic critical
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reduced shear rate which quantifies the onset of the shear
thinning regime can be defined as whehz(0)=0.5, from
which we predicty, .,y ~0.3. Alternatively, if the critical
shear rate is defined from the intersection of the high shear
power law with a zero shear horizontal line one obtains
Y cit~ 0.4. These values can be compared to high volume
fraction experimentq44-46,52-54 which typically find

Y cit=0.2-0.4. Several experimental studies indicate that
this value does not exhibit a systematit dependence
[52,54] to within the considerable experimental uncertain-
ties, which is qualitatively consistent with the good univer-
sality seen in Fig. 12.

IMCT results for 5/ 7(0) as a function of reduced shear
rate v, based on the full ISHSM and its schematic analog
have been recently obtaindd6,17. The calculations are
presented in terms of the parameter (¢—¢.)/ p. which
quantifies the distance from the quiescent idealized glass
transition. For the schematic MCT, and variationssofor-
responding to changes in reduced viscosigduced shear
rate by five (four) orders of magnitude, a partial collapse of
viscosity curves is found which is considerably less than in
Fig. 12; the corresponding; ;= 0.1. For the more sophis-
ticated ISHSM version of MCT, a partial collapse of the
reduced viscosity versus reduced shear rate data is found for
a range of fluid states where the viscosity varies by roughly
seven orders of magnitude. The corresponding;;~ 10,
which is much larger than the results of the schematic MCT
model, our theory, and experiment.

The schematig-spin model theory{12,19 predicts an
y 2/ shear thinning power law at the ideal glass transi- FIG. 13.(a) Stress as a function of shear rate for several volume

nEy
tion, and exponents which approach negative unity deep ifractions.(b) Expanded view ofa) in the intermediate shear rate
the ideal glass state. The former prediction does not appeaggime often relevant to experiments and simulations. Power law
to agree with IMCT theory. The prediction of IMCT that an fits 73" to the middle section of the curves have been mxe
infinitesimal shear rate melts the glass is also different thaghown and the extracted apparent exponehtare indicated.
found from the schematip-spin model[12,19. These dif-
ferences are not well understoptP]. nection between the entirely different theories is unclear. For
The corresponding flow curves of stress versus shear ratbe ISHSM ideal MCT the low shear rate dependence of the
(in bare Brownian frequency unjtor several volume frac- stress at the critical volume fraction is=r.(1+ay*),
tions are given in Fig. 1@). Low shear rate plateaus are not where A=0.15 anda~0.9; nearly identical behavior is
predicted since no true static yield stress exists in the pregound for the schematic MCT16,17. Curiously our expo-
ence of thermal fluctuations and barrier hopping. HowevernentA at very high volume fractions is similar to the MCT
there are rather wide ranges of shear rate where the stressvialue. However, the physical significance of this is unclear
very slowly varying. The lack of convergence of the high since there is no true yield stress or ideal glass transition in
shear regime occurs since the normal fiBCMF [33]) con-  our theory. Moreover, the power law regime in our theory
tribution is dependent on volume fraction, a feature that haslescribes the stress curve in a nonperturbative mafmuer
been observed in recent rheological experimé¢6is. as a correction to a nonergodic plateand only over a
Motivated by experimental studies and IMCT calcula- limited range of intermediate shear rates.
tions, an enlargement of the high stress and shear rate regime Recent work has demonstrated that schematic IMCT can
is given in Fig. 18b). An apparent power law dependence of provide a good fit of computer simulations of the stress—
the stress on shear ratex *, occurs over roughly 2—4 or- shear-rate behavior over a few orders of magnitude in shear
ders of magnituddincreases withp) in shear rate. The ef- rate and stredd 7]. The agreement is based on modest quan-
fective exponent decreases fra=0.31 toA~=0.13 as vol- titative adjustments of shear rate and stress to match
ume fraction increases from 0.575 to 0.635. This implies thathe simulation results, and more importantly the usee of
a power law shear thinning regime existgx y ¢, wherea =(¢- o)/ . as an adjustable fit parameter. Agreement be-
~0.87-0.69 as volume fraction decreases from 0.635 tdween simulation and the schematiespin model approach
0.575. The latter corresponds to thimetic glass transition has also been demonstrafd@,19,26. However, the caution
volume fraction, and our theory predicts apparentexpo-  has been raise®3,26 that activated hopping processes are
nent of ~2/3. This exponent value is in remarkably good not taken into account in these theories. The apparent good
agreement with the schematiespin MCT-like approach at agreement with simulations may be related to strong limita-
its ideal glass transition point. The reasons for such a contions of simulations regarding the small range of time scales
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and degree of slowing down that are presently feasible to Our theory does not predict shear thickening at very high
study. shear rates. This is to be expected given we have ignored
many particle hydrodynamic interactions. Recent experi-

VI. SUMMARY AND CONCLUSIONS ments[64] on large, non-Brownian particle systems suggest

A microscopic theory for the dependence on externafhear thickening can also occur in the absence of strong hy-
strain, stress, and shear rate of the transient localizatiofrodynamic interactions. This and related experiments have
length, elastic modulusy relaxation time, shear viscosity, mot|vateld. the .formulatlon of nonhydrodynamic [dgas within
and other dynamic properties of glassy colloidal suspension@? €mpirical_ideal MCT framework for describing shear
has been formulated and quantitatively applied. The relativéhickening[65]. Regardless of the role of hydrodynamics,
roles of mechanically driven motion, versus thermally acti-€xPeriment$49] have clearly shown that shear thickening in
vated barrier hopping and transport, have been studied. VarBrownian hard sphere suspensions is accompanied by sig-
ous scaling behaviors are found for the relaxation time andificant flow-induced amsgtroples of the structure factor, an
viscosity in both controlled stress and shear rate rheologicgtSPECt not accounted for in our present theory.
experiments. Power law and/or exponential dependences of 1he complex issue of a possible violation of the
the perturbative and yield stresses on colloid volume fracfluctuation-dissipation theoref#DT) in the nonequilibrium
tion, and a nonmonotonic dependence of the absolute yie|aheared or stre_ssed state has not been addressed in our work,
strain on volume fraction, are predicted. The approach €0 by the prior trap model or IMCT-type approaches
built on entropic barrier hopping as the elementary physical®-12,16,11. Standard Green-Kubo relations are employed
process. In contrast to ideal MCT and the related schematit? the nonequilibrium steady state. Szarf&8] has analyzed
p-spin approach, an ideal glass or nonergodicity transitioriiS issue and pointed out that the use of an equilibrium
plays no role. Our theory does have some aspects in commdiructure approximation for the vertices in MCT is consistent
with MCT and phenomenological trap models, in terms Ofywth there being no FDT V|olat|on_._ The form_er S|mpI|f|_cat|on
both underlying ideas and predictions, but it also differs iniS the analog of our use of equilibrium pair correlations to
multiple and fundamental ways. Comparisons of several ofluantify the “effective free energyF(r). The fact that a full
our calculations with experiments show encouraging agreen.one_qumbnum stationary steady state probability d|str|bu.—
ment. However, more high volume fraction measurements ofion is not employed does have consequences concerning
both linear and nonlinear viscoelastic properties are requireGDPT Vviolation [66], especially for MCT-like theories which
to definitively test the theory. have divergent relaxation times in the quiescent state. Since

The theory as presently formulated seems technically anffleal glass transitions do not exist in our theory and ergod-
conceptually simpler than MCT and related spin glass aplCity is always restored via activated barrier hopping, the
proaches. Qualitatively it is a microscopic and predictiveFDT violation issue seems different and of less concern.
“trap model” type approach. However, the simplicity carriesMore study of this issue is warranted. .
limitations, such as the wave-vector-dependent collective dy- Finally, our theory as presently formulated can be imme-
namic structure factor is not presently amenable to studydiately applied to treat highly nonlinear dynamical phenom-
The incoherent dynamic structure factor, and other singléna in other soft glassy complex fluids. These include both
particle time correlation functions have also not been deteréxternal force driven probe motion in dense colloidal suspen-
mined. These single particle quantities can be determine@ions[67] and the nonlinear rheology of depletion gels. Work
using Brownian dynamics simulation to solve the stochastidS in progress on these two problems and will be reported in
nonlinear Langevin equation of motion. All anisotropies as-future publications.
sociated with the symmetry of the deformation and colloidal
structure have been i_gn_oreq. T_his appears to be a good first ACKNOWLEDGMENTS
approximation, but distinguishing between different defor-
mations such as shear, uniaxial compressive, hydrostatic, or We acknowledge helpful discussions with G. Petekidis,
osmotic requires a full anisotropic generalization. The ideas. A. Lewis and C. F. Zukoski, and correspondence with
of the present paper are applicable to these explicitly anisoM. Cates, M. Fuchs, and G. Szamel. This work was sup-
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