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Critical viscosity exponent for classical fluids
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A self-consistent mode-coupling calculation of the critical viscosity expoagrfor classical fluids is
performed by including the memory effect and the vertex corrections. The incorporation of the memory effect
is through a self-consistency procedure that evaluates the order parameter and shear momentum relaxation
rates at nonzero frequencies, thereby taking their frequency dependence into account. This approach offers
considerable simplification and efficiency in the calculation. The vertex corrections are also demonstrated to
have significant effects on the numerical value for the critical viscosity exponent, in contrast to some previous
theoretical work which indicated that the vertex corrections tend to cancel out from the final result. By carrying
out all of the integrations analytically, we have succeeded in tracing the origin of this discrepancy to an error
in earlier work. We provide a thorough treatment of the two-term epsilon expansion, as well as a complete
three-dimensional analysis of the fluctuating order-parameter and transverse hydrodynamic modes. The study
of the interactions of these modes is carried out to high order so as to arrxg=8t0679+0.0007 for
comparison with the experimentally observed value, 0.0690+0.0006.

DOI: 10.1103/PhysRevE.71.021201 PACS nuni$)er05.70.Jk, 51.26d, 62.10+s, 64.60.Ht

[. INTRODUCTION Turning now to the more complicated problem of the in-
teraction in a fluid of the fluctuations of the order-parameter
and hydrodynamic modes, we again see the essential role of

In understanding the critical temperature dependence ne#f€ correlation length. It dominates the behavior of the long
the critical point of some extended physical system that igNaveIeng'th fluctuations so that the relaxatlor} rate of wave
undergoing a second order phase transition, it is essential f#mberk is expressed, by,(k)=a,k""?. Hered is the geo-
adopt a “microscopic” framework. That is, one has to de_metric dimenSiona"ty of the system am is the critical
velop an appreciation for the thermally activated fluctuations/iscosity exponent, in the sense that the temperature depen-
that are occurring constantly and locally at every point in thedence will be expressed 7o (T—-T.)™"*, by the dynamic
medium. In the present work, the fluctuations are those of &caling rule of the replacement loby & * in the long wave-
scalar order parameter and, on the other hand, the Browniatength limit, k— 0. Similarly, the relaxation rate of the hy-
motion-type transverse hydrodynamic modes in a fluid. It isdrodynamic mode has the wave number dependence
the latter which lead to an interesting divergence in the transy;=a,k* “7. Without the contribution in the exponent af
port properties of the fluid—in particular, of the viscosity this would reduce to the normif dependence in the case of
studied in this paper. But in order to emphasize the basi@ noncritical viscosity. The critical viscosity exponent is thus
origin of such divergences, consider a simpler system, that dp be identified withz,, corresponding to a critical tempera-
interacting spins having a local density of, sayx;). Apply ~ ture dependence of “»(T-T.)"*». It is the goal of this
a magnetic fielcH concentrated at point; and consider the Paper to calculate the numerical valuezgf A simple semi-
resulting influence on niX,) at distance =|x,—x;|. Because qualitative derivation, with a quite minimal account taken of
of the interactions between neighboring spins, the thermahe interactions, is provided below in Eqd.3—~1.9. To
average ofm (X,) no longer averages to zero but is given by take_ better into account the interactions, it is necessary to this
H(m(X,)m(X,)), the angular brackets denoting the equilib- S€ction, which is a summary of the results obtained in the

fium average. Thus the total magnetization, the averag&UPSeduent sections.

value of [d®,m(x,), becomesM=H [d®(m(X;)m(X,)).

With the correlation function proportional 10177 for r <§¢, B. Basic concepts of the theory
whereé is the correlation length, and zero fior ¢, ther™77

for r=<¢&, where¢ is the correlation length, and zero for

> &, the magnetization i81=HX, with the susceptibilityX

= &7, The correlation length exhibits the critical tempera-
ture dependenc€l -T.)™", whereT, is the temperaturd at
the critical point. This yields for the susceptibility the critical

A. General critical behavior

The framework for the calculation that is set up below in
Sec. Il is straightforward, but rather complicated in its appli-
cation. The essential feature is that the interaction of fluctua-
tions which generates the order parameter decay nafe,
=a, k%%, is expressed by integrals whose integrands are in-
F versely proportional ta,. Similarly, the relaxation rate for
exponenty=(2-7)v. the hydrodynamic fluctuation of wave numbes, v

=a,7k2_zv, has integrands inversely proportionalagn Multi-
plying by a, anda,, respectively, puts these results into the
*Present address: Indian Association for the Cultivation of Sciform of a,a,=g3S anda,a,=g3S;, wheregj is a nonuniver-
ence, Jadavpur, Calcutta 700032, India. sal factor and5, andS§ are certain sums of integrals. It turns
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out that the combinatiorGEgélawaA times the factors 8 ) dp_ o

(2m)™ and Cy4 (the surface area of d-dimensional unit ?<CO§ gsir? 6 cos’ ¢>Qf o "% In(&/é),
spherg is universal in that it does not depend upon the par- p>¢* P

ticular molecular properties of a fluid. This yields for the (1.3

self-cqnastent pair of _equatlons Q5 and 1Q;. The_se where ¢ is the correlation length and, is a constant of
quantities have expansions of the form shown below in Eqs

(1.10 and (1.11) and contain parametrically the sought-for atomic size. Exponentiated, this gives

critical exponent,. The search for the numerical valuezf 29 In(&&y) = ( §/§o)z('?) -1, (1.4)
which satisfies the self-consistency, is facilitated by the fact K N

that the integrals iQ; are dominated by “divergent-type” With the low-order critical exponerig]

parts proportional ta;:l.
8
0 - _~
z, = 152" (1.5
C. Survey of the calculation om

In this paper, we present a computation of the criticalThe above low-order result represented by @cp) is based
exponentz,, for the viscosity of a fluid near its critical point. on the Ornstein-Zernike approximatiog, = q~?, to the Fou-
The calculation applies to a one-component fluid as well agier transform of the order-parameter—order-parameter corre-
to a binary liquid, as these systems belong to the same dyation function. The latter needs to be written more correctly
namic scaling universality class. They are both described b@s x*=q "7, where the small anomalous dimension critical
a scalarn=1, fluctuating order parameter. The work on exponent is
which we are reporting has been carried out over a sustained _

. S . 7=0.040, (1.6)
period of many years, following in the footsteps of the pio-
neering and path-breaking study by Siggital. [1]. The as predicted theoretically4] as well as recently established
subsequent steps in the development of this subject conséxperimentally[5]. In the Ornstein-Zernike approximation
tute a kind of successive approximations, as reflected in ththe coupling to a hydrodynamic mode of wave numkés
organization of this paper. This section, a “bare-bones” introexpressed by
duction, proceeds with a summary of what has been accom- . 1 ) ) )
plished beyond the expansion of Sec. IIl, followed by the ~ Xoz(@ = Xor (K= @) =q° = [k=q*=-k*+ 2k - g = 2k - q.
three-dimensional treatment in Sec. IV, and, finally, the (1.7
three-loop computation of Sec. V. The latter provides, we . . .
believe, a reliable theoretical numerical valuezgfto com- in the Iong_wa\_/elength limitk—0. With #0, this be-
pare with experiment. A discussion and summary are conCOMes, again wittk— 0,

tained in Sec. VI. g = v i k=qa)=a27- (k- )27

In setting the stage for the computation, it is useful to start X @ -x k=g =g (k=a) L2
with a brief discussion of the off-diagonal element of the =q2"7—q2"7<1—£(k -q)) 7
stress tensor q?

Ty Gy (1.2 =2-nqk-q. (1.8

This couples to the transverse hydrodynamic modes of th&hus Eq.(1.5 requires two factors of 1#/2, giving the first
fluid, as a consequence of fluctuations in the scéharl) order result

order parameters. These can be either fluctuations of en- 2
tropy density or of concentration, as mentioned above. Ac- 2D = <1 - 17)
cording to Zwanzid 2] the correlation function fof,, deter- K

mines the viscosity by means of a kind of Kubo formula. gecause the factog™” cancels withq?*” to leave@?, the
Representing schematically theandy components of the g stein-zernike approximation for the correlation function,
gradient ofy by cosé, and sind cos¢, respectively, yields \ye pelieve that there is no further correction fp# 0 other

2 . . .
the average forT,, averaged over all directions in {han that expressed by E€1L.9), except for a factor of 1

29, (1.9

n

d-dimension space, as +7/2 in the one-loop self-consistent decay rate that is exhib-
1 1 ited below, in Sec. IV.
(cog @sir? fcog p)g= ——— —. (1.2 The effect of the multiple interactions of the stress tensor

dd+2)[4s 15 of Eq. (1.1) with the hydrodynamic mode is described by the
That this is a relatively small number is, evidently, a directFeynman graphs of Fig. 1 of one, two, three, and more loops,
consequence of the transversality of the hydrodynami@nd is computed by the corresponding collections of inte-
modes. In view of Eq.(1.2), it is not surprising that the grals according to the expansion
critical vi_s_cosity exponent is r_ather s_mall in co_mparison \_/vith 1=Gl, -Gy +Gdlg— -+, (1.10
other critical exponents. Bringing in the critical slowing
down of the relaxing modes of wave numigeyields a loga- for the order parameter. The Feynman graph integrals for the
rithmically divergent integral, with infrared cutoff, which we hydrodynamic mode hawg, in the denominator and numera-
represent here schematically by tors Jy, J, J3,..., SO
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2 1

= 1.14
11+ (1= 4,/12)1? (1.143
which, for |I,| <12, becomes
|
G= |;1(1+|—§). (1.14h
1

This changes the reference value in Ef9) for the expo-
nent fromz(nl) to

soz(142 5w (1412 5)(1-2) 50
S T S A S 2) “r
(1.15
where§ is the small nondivergent term in the one-loop inte-
gral of Eq.(2.21) below.
With Eq. (1.10 now taken care of, all of our attention and

effort has to be directed to Eq1.11). The first term of its
right hand member yields

2 2
7 7\“1
=l1-2 =1-2] = 1.1
s ( 2) J1o0 ( 2) 15 (1.19

and

000
33
¥
oo e

J 2J 2
2V=Gy="2= (1—1’) i’z—(l—l’> 20,
I 2) 1y 2)

(1.17
FIG. 1. The one- and two-loop Feynman diagrams for the order-
parameter and the hydrodynamic mode decay rates. Solid lines al@ agreement with Eqg(1.5 and (1.9). It is convenient to
for the order parameter while wavy lines are for transverse moWwrite Eq.(1.11) as
menta. Lines with circles indicate correlation functions and lines

(1) = (1)
without circles are simply propagators. 4 =4 Fi, (1.18
where
Zn:GJl_GZ‘J2+G3‘J3_ Tt (111)
F=1-G2+G22— ...

In these equations; serves as a kind of coupling constant, ' 3 J;

the numerical value of which can be determined from Eq. 3 ] ]

(1.10. At this point an important simplification enters. In the =1+6| 2| +c22 4+ ... a2 (1.19
following three sections, it is demonstrated thatthe two- 1 1 Ji

loop vertex correction for the order parameter, is quite smal
compared tol,, the single loop integral. Furthermore, al-
though the explicit integration fdr, in Sec. IV does exhibit

Is an enhancement factor through tkieloop. In Sec. IV, we
find, for dimensionalityd=3,

some small deviation from the bare single-loop valyg ,] 2 1
they mutually cancel to have JbH==-|1-= 45 (1.20
772
= lyo= —. 112 °
8
J| G
) ) Gl—=|=—. (1.21
Thus, from the first term of the right hand member of Eq. Ji| 3

(1.10, the single-loop approximation to the coupling con-

stant is The sum over all three-loop graphs in Sec. V yields, again

for d=3,
1 1 8

G= ENE_?. (1.13

1

:é. (1.22

J3
Jz

With 1,/1, negligibly small forl =3, we can solve Eq1.10 It can be anticipated that this ratio continues for the higher
to obtain loops, giving
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[“%(g)z...}

=1+—
31-G/6

_1+G/6

T 1-Gl6’

F.=1+G

(1.23

PHYSICAL REVIEW Er1, 021201(2005

functions can also be evaluated in a perturbation expansion
from the kinetic equations to obtain
Yy(kw) = Y2 (K) + 3k 0) = (k) (2.5

and

Yk o) =y2R +]] ko) =[] ko). (2.6

In the discussion and summary of the final section, we em-

ploy this result and Eq.1.15 to obtain a numerical value for

z,

Il. KINETIC EQUATIONS AND PERTURBATION
EXPANSION

A. Self-consistent decay rates

Following Kawasak[ 6], the kinetic equations that govern
the decay of local fluctuations in the order-parametethe
specific entropy, and the transverse momentum densitg

difie Aok _ ,
P m’/’k - lgoq% (Ko = Aa)igathi—q + Ty, (2.2)
and
Bea __ 12y, | > T 1 +f
qt - "KTka |goqﬁ keplpXy (@) Yothi-q * T, .

(2.2

where?}mB:(SC,B—kakB/k2 is the transverse momentum pro-

jection operator ang, (k) =(|y4/? =1/k?7is the static order-

parameter correlation function. Note that the units have been

chosen such that.=kgT.=1. In these unitsy;(k)=1. The

Gaussian noisefspk and fjka are related to the bare conduc-
tivity and \q and 7, by the fluctuation-dissipation theorems,

respectively. The coupling constam{provides the necessary

interaction between different modes which, at the critical

point, gives rise to the critical divergence.

The last steps follow from the fact that the bare relaxation
rates;sz)(k):)\okzl x,(k) and y}o)(k): 70k? become unimpor-
tant in the long wavelength limit at the critical point. The
self-energies become dominant in this regime.

Standard perturbation procedur¢®] give these self-
energies, in the one-loop order, as

kT, -k
SOk, w)=g2> —
q X 1//( k)

* do’ , ,
Xf_x ZWGJ(q,w )Gzﬂ(k_qiw_w )y
2.7

and

%

H(l)(k, w) = 20~

29 T dlx, (@) = x; k=)
q

o d ’
X f 5-GU0.0)G k==, (28
» 27T

where the fully dressed correlation functions are used on the
right hand side in order to achieve self-consistency.

The frequency integrations in EqR.7) and(2.8) are too
complicated to perform because the self-consistency condi-

We want to evaluate the effect of the nonlinear couplingtion requires the fully dressed decay rates to be used inside
of the modes on the order parameter and transverse momep@ch integrand. Further simplifications are necessary. Intro-

tum relaxation ratesy, and y;. Define, as usual, the corre-
lation functions

(D ¥-(0)) = Gk, 1),
and
(ka0 -k(0)) = TyosGj(K, 1),

for the order parametey and transverse momentum re-
spectively. The relaxation rateg, and y; occur explicitly in
the frequency Fourier transforms

Gk w) = ﬁ% (2.9
and
Gj(k,w) = ; (2.4
—iw+ ykw)

As indicated,y,, and y; have both a wave vectdr and fre-

duce the pole approximatid®] for G, as

_ xuK
Gk w) = =7 oL

wherey,(k)=y,(k, =0), and similarly forGf’(k,w). We can
write the produciG,G; as

G,G= [Gﬁ"' (Gy - Gﬁ)][GF +(Gj - GJP)]-
It was pointed out by Bhattacharjee and Ferf6ll that the
differences are smalbrdere in the case ok expansion We
can drop the product of two differences when expanding the
above expression and get

G,Gj=- Gg,GJ-p + GﬁGj + GL/,GJP.

Now the frequency integrations in ER.7) can be carried

guencyw dependence. On the other hand, these correlationut by Cauchy’s theorem to yield
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1 N ! ’ !
Z‘rf_oc do'Gj(q,0")Gyk-0,0 - o)

1
—iw+y k=0,0+iy(@)+y(qe+iyk-09)

It is generally true thaty;> vy, near the critical point.
Therefore with the omission of,, in the denominator, the

PHYSICAL REVIEW H1, 021201(2005

order, becomes

Yok ©) = gox;; (k)f(2 )d

Xu(k=q)
—io+y(qo+iyk-9)

(2.9

order parameter decay rate, at the self-consistent one-lodpimilarly, the same procedure applied gk, ) leads to

2

9% d’g

q - T - dlxy (@) = x; (k= @) Pyl xy(k - q)

ke =o0o0)

2m)?=iw+ vy (0,0 +iy,k=0) + v k- g0 +iy, q)

(2.10

To close the loop on self-consistency, we need to evaluate the decay rates at the fregeieptk). Note that, in Eq(2.9),
the major contributions to the integration owpcome from the large region. This, together with the fag{> v,, implies that

(K, i7,() = y,(K). That is,

. - dg Xu(k=q)

ki) = 70 =GB | kT, KT 2
J 1
while
2 d -1 _ 1, 2 _
d Ty k k

3K 75(00) = % qdq k- Alxy (@) = xy (K= o) 1 x (@) xy( Q). 2.12

2d-1) J (2m) YK+ vy(@) + yy(k=q)

[
Equations(2.11) and(2.12 form a complete set of self- 1) Siré 6

consistent equations for the order-parameter and transverse (z,) = C q2 k- )2 (2.1

momentum decay rates. Although they are evaluated at non-

zero frequencies, we can still look for solutions that have th
scaling forms required by dynamic scaling, namely

yu(K) = a k7 (2.13
and
¥i(K iy, (K) =2,k 2. (2.1

Using the scaling relatiofilQ], z, +z,=4-d-», whered is
the spatial dimensionality, we can elimingeand obtain

Yu(K) = a ka2, (2.15

Substituting the above scaling forms for the decay rates

into the self-consistent equations, we get, from &ql11),
1=Gl{(z,), (2.16

whereG=gZC,/ (277)da)\a,7, with Cy4 being the surface area of
a d-dimensional unit sphere, and

4

I(2-2,/2)0(1-

9n the above expression, all momenta are scaled by the mag-

nitude ofk, makingk itself a unit vector. Similarly, from Eq.
(2.12, we obtain
1=G63(z,) (2.19

with

(1) _
i) =540

dlg  (P7-(k-q* )’ s’ 0
Ca 07"(k = 0)* 1+ g™+ (k- )]
(2.19

The integrallfjl)(z,]) can be evaluated in arbitrary dimen-
sionality to yield

72T(d-1+2,/2+75/2)

1P(z,) =

d-1T(d2T(2-di2 -7,/2 -

2.20
P2)T(d2 - 1+2,/2)0(d/2 +2,/2) (220

021201-5
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2
L + n 1
Ji=|1-= 2.2
! ( 2) d(d+2) (222
1 1 and the small correctiod as the difference between Eq.
(2.19, the complete integral, and the one obtained by taking
thek— 0 limit. The exact value ob depends on dimension-

ality and will be determined in the next two sections.

FIG. 2. Two-loop diagrams from thg* interaction. These dia- B. Two-loop vertex corrections

grams are the first contribution of th#* coupling to the order- To estimate the effect of the vertex correction diagrams,
parameter decay rate. A factor ok? is associated with each vertex one needs to carry out the perturbation expansion to two-
(with k being the momentum carried by the outgoing propagatoligop order. This is a straightforward, though rather tedious,
from that vertex In addition, the factor of 6 in Eq2.30 is be- {55k, Some of the details of this expansion are presented in
cause there are six different ways to construct the diagrams. Appendix A, with others to be found elsewhdid. Here we
collect the result of this computation. Equatiof®s16 and

and forJ.(z,) we have done an expansion in powerszpf (2.18 are augmented by adding the higher order terms,
which are proportional t&*, to become

as
1=GI{(z,) - G4z, (2.23
3 and
Wz)=>-5, (2.2 1= (z,) - GAV(z,), (2.24
7
respectivelyl fj”)(z,?) andej”)(zn) correspond to the vertex cor-
rection diagrams shown as Figgdjland Zc) in Siggiaet al.
where the leading term is found, in the limit k-0, [1] and are given by
|
9(z) = f d’p f dq[(k-p-0)> 7= (k=-p)*"l(k=p-)> 7"~ (k-q)*]
)il oy (k=p)? (k=a)* (k= p=-)*”
[k-7,-(k=q)]k -7y (k=p)]
X 2-7 ~2-Z Kk — d+z k - d+z k-p- d+z 7’ (2'25)
P~ (K= p) ™o+ (K= )T + (k= p=-q)*]
[
and C. Four-point interaction
d A (. T ) ) The last contribution we need to consider at the two-loop
J((jv)(z )= 1 f dp f M(p T QP Tipq Q) level comes from the)* interaction in the free energy,
7od-1J C4J Cq (k=p-q)*™
1
PPT-(k-p?7 (k-0 F= f ddr(§<w>2+§¢+§w“). (2.29

p*Lp* %+ (k= p)*2a] 7 g™ + (k=) *27]” _ - .
(2.26) for the order parametey. To include this interaction, one
' needs to add an additional tedegZZp,qz//pwqc//k_p_q, to Eq.
Once again, all momenta are scaled lyso thatk itself ~ (2.1). This term’s contribution to the order-parameter decay
becomes a unit vector. rate comes from the two-loop diagram shown in Fig. 2. The

The leading contribution tdg”)(z,}) can be evaluated to Self-energy is then given by

?lr:ilr% goert:izgltrary dimensionalitg, as(see Appendix A for 3 (k,w) = — BUAAKES, Xo P X Dxyk=p-0)
X
J(v)(z ) - k (2 27) yw(p) + V.p(Q) + '}’,/,(k_ p- CI)
@ Zr], . _iw+'}’w(p)+'}’¢f(Q)+7¢(k_p_CI).
where (2.30
The w=0 limit of this self-energy is simply the lowest order
- 1 1 _ (2.29 expression that gives rise to the nonzero anomalous dimen-
2 dd+2)d(d-2) sion » and thus has been taken into account through the use
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of Eg. (1.6). Only the frequency dependent part of this self-energy contributes to the dynamic effects, and it is

. dp [ d% Xo(P XD xy(k=p-0)
k,w) = S(k,w) = (K, 0) = — i wbU?y,,(K) x,(k J A A A . (2.3
02 (k, ) =2 (K, ) = 2(k,0) = = i0w6U~y,(K) x,(K) X @2m ) 2 -0+ 7y * 7o(a) + 7yk-p-0) (2.31
where we have replacedk? by YK xy(K). Equation(2.3) is then modified to read
Gk w) = Xy (2.32

—iw+yy K+ 2k o)

Using the pole approximation that was introduced earlier, the self-consistent equation for the order-parameter decay rate, Eq.
(2.23), becomes

GlP(z,) - G1Y(z,)

= , 2.33
1+ 67[Cy (2m)*PKy(z,) (233
where
d% f d’q 1
Kyz)=| — | =— . 2.3
=) f Ca J Cap?"q?(k=p=a)? 71 +p"%r+ "%+ (k= p-q)*?] (239

Once again, all momenta are scaled by the external momemtependence of the decay rates. Self-consistency is achieved
tum k, making it a unit vector. Having set up all the neces-by using nonzero frequencies, thereby significantly simplify-
sary formalism, we are ready to evaluate the critical expoing the calculations. It should also be noted that, although
nentz, next. Eq. (3.3 givesz,=0.064 when evaluated at 1, it is incom-

plete in thee? order. Higher order perturbation expansion,

namely the two-loop vertex corrections, also contribute to
lll. € EXPANSION

this order.
At the one_|00p level, it is easy to expand quO) in Of the tWO-lOOp contributions discussed in Sec. Il, the
powers ofe=4-d to yield, using the static renormalization four-point interaction contributes only to ordetand higher.
group value ofp=¢€*/54, As a result, only the order-parameter and transverse momen-

tum vertex corrections need to be included and ER3
€ Z YJ and(2.24 are sufficient.
(1 +8 - 7172 * €e-7 ) +0(9), (3.1 T;e e?/aluations of Eqg2.295 and(2.26) are made sim-

. . pler in thee expansion, since both diverge logarithmically at
where we have kept the first two terms of the expansiong=4 and we only need the leadir@(1/e) terms. We can
Equation(2.21) can also be expanded easily. But there is stilly o afore neglect the unit vectlrin comparison withp and
a0(1) term that was left out in the evaluation of the Ieadingq wherever possible. As a result, all the remainingepen-
f:ontributi_on. This contribution can_be obta_ined by integrat-yencies are in the numerators of each integrand, affording an
ing the difference between the full integral in B8.19 and  gyeraging over alk directions. The leading divergence can
t_he S|mpln‘|_ed one used in the I(_aadmg co_ntr|t_)ut|on calculatpen pe picked out by scaling one momentum, galy the
tion by takingk— 0. Details of this evaluation is left to Ap-  iher and by carrying out the integration oyefThe remain-

3
1Pz,) ==
T de- n T4y

pendix A. Here we simply state the result ing integrations can then be performed entirely analytically
1 5 2In2-1 for d=4 with no necessity for any numerical evaluation. The
IP(z,) = —(1 + —e) -———+0(e). (3.2 result that follows from the discussion in Appendix A is
24z,\" 12 32
Su_bstituting these two expression into Es10 and(2.12), |év)(zn) - 8In2-5 1 +0(1), (3.4)
z, is found to be 64 €-z,
1 1 1 2In2-1432 and, from Eqs(2.27) and (2.28),
7= —11+ —(1——)————— e+0(&) Gs(2.29 and(2.28
719 4\ 19/ 54 32 361
IP(z,) =~ +0(1). (3.5
= 1—69[1 +0.216 +O()]. (3.3 192,

The corresponding vertex correction integrals of Siggia
As a note, we emphasize that the one-loop calculatioral. [1], namely Eqs(A16) (A21), differ from our Eqs(2.25
presented in this section does not make the Markovian asnd(2.26) only by a factor of 2. Therefore it is appropriate to
sumption and thus has taken proper account of the frequena@ompare our result, Eq$2.27) and(2.28), with theirs. Tak-
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ing into account the factor 2, which is due to the difference
in the definition of the coupling constant, we see that the

numerical constant foté“ is identical with that in Eq. A22 of
Siggiaet al. However, our numerical value for the coefficient
in1$(z,), (8 n2-5/64=0.008 52, is ten times smallg1]
than that glven by Eqg. A17 of Siggkt al. With this correc-
tion to | ”(z ), these two vertex corrections will no longer
cancel each other in the final result. Instead, o]é’(i/makes

a significant contribution WItHI(U) playing a minor role. This

effect on the viscosity exponent, as seen below in(Bd).
The incorrect value org”) used by Siggiat al. resulted in a
spurious reduction o, by 10%.

Substituting Egs(3.4) and (3.5) into Eq. (2.23, we get
for G

2
4(6 z)<1_—+ifz>_‘_1n (24) 8In_2562
6 4/ 37 3\19 64
+O(e) (3.6)

and for the viscosity exponent
€

1 1) 1 2Ih2- 1432 3
R 1+
19

_<1__ 1

4 19/ 54 32 361 32
_8In2-5(24

64

(19)2}“0(62)}

€
E[l +0.352+ 0(é)].

24

Z =
19

7

o)

(3.7

In the first line of this equation, the contributions from each

source are kept separate for easy identification. The discus-
sion and comparison of these results with our earlier one-
loop ones as well as others are provided in the followmgwe

section. Finally, puttingz, back into Eq.(3.6), we find for
the constanG

G

24
_1—96—0.24762+0(62). (3.9

Another critical exponent, that for the thermal conductiv-
ity N\, can be obtained from the scaling relatigp+z, =€
- 7. The result is

7, = 1—26[1 -0.03%+0(€?)]. (3.9

A further quantity of interest is the universal amplituden
the Stokes-Einstein relation

RksT
6yt 2’

In the units that we have been working with, i.8.=kgT,
=1, we get, by substituting the asymptotic formshoéind »

Ci 1
"emiG

Using the e expansion forG found earlier at the end of
previous section, we find fdR

D=—=

(3.10

(3.11)

R=6ma,a,=6

02120

PHYSICAL REVIEW Er1, 021201(2005

R

319
_;E[1+o.19&+ o())]. (3.12

For three-dimensional space, we substitetel and getz,
=0.071 andR=0.90. Some inadequacies of thcexpansmn
have been discussed in detail by Bhattacharjee and Ferrell
[12] who argued that a loop expansion was more appropriate.
They also showed the necessity to solve the self-consistent
coupled mode equations in three dimensions in order to ob-

@am a more precise result. The following section presents the

result of this three-dimensional calculation.

IV. VISCOSITY EXPONENT IN THREE DIMENSIONS

Unlike in the e expansion of the previous section, the
mtegraIsJ(l)(z) and others will have to be calculated nu-
merically in three dimensions. The only exceptlonslj%

X(z,) which can be evaluated exactly for arbitrary dimen-
sionality as shown in Eq(2.20. For d=3, we can expand
31)(277) in powers of the small exponentgandz,. It turns
out that the linear terms in, cancel each other out, leaving
only the simple first order expression,

)

wherel,,=72/8 is the single-loop order parameter integral
for »=0. The order-parameter vertex correctiﬂﬂ(zn) is
now a convergent integral and is found numerically to have
the small value

K
2

1+

2>I10, (4.

|<31>(z,7)=|1z”7:<1+

19 =1,=0.0052. (4.2)

For the transverse momentum decay rate, the one-loop as
Il as the two-loop vertex correction diagrams have their
leading contributions proportional to 1,/ as shown by Egs.
(2.21) and(2.28 of Sec. Il. In addition to the leading con-
tributions, we will also need to estimate the first correction
for ng). This is done numerically by evaluating the differ-
ence, with the small exponenj set to zero, between the full
expression, as given by E(.19, and the simplifieck— 0
one used in the calculation of the leading contribution. The
latter is given by Eq(2.21),

2

Jj_:(l__

2
when evaluated at=3, and the value for the first correction
is found to be

21

1—5, (4.3

5=0.954% 1072 (4.9

For the transverse momentum vertex correction, we only
need the leading contribution as given by E228, evalu-
ated atd=3,

J
Wiz) =,

n

(4.5

where
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21 7 The final remaining integral i&4(z,). For this term, we
- Ui 1 . : o 7 .
J=-11 "5 a5 3" (460 will use the static renormalization group result for the fixed
point value ofu, in an e expansion,
87

Similar to the one-loop integraél), the first correction to Eq. u=-—-. (4.7
(4.5 is a constant term. Computation of this nondivergent (n+8§)

term is difficult. Its magnitude, similarly to E¢4.4), can be At three dimensionse=1. Since thisu is from ane expan-
estimated ag,5=7X 10°* and thus negligible in the subse- sion, we will evaluateéy(0) in d=4. This was done numeri-
quent work. cally to yield

KelO) _f @ d_q ! = 31 2996 + 0.0006 (4.9
) Cs ) CipPPk-p-qFLl+p*+qt+k-p-q* = -

Putting these results together, Eg.26 becomes 3 8
’ i : 2V ==10= ——=0.0540, (4.14
1+K=GIJ -Gy, (4.9 lp 157
where K =6u?C,/(2m)*]?K,(0)=0.0195. Since both;’ and
K are small, we can solve this equation féras as the lowest order single-loop approximation. The final re-

sult of the computation is therefore, to two-loop order,

+ +
=1 K<1+I—§): L K|1(1,<1+'—§)z|;g<1+|—§>,
Iy 12) 7 1+ 92 12 12 ,
(4.10 o 11

- (L - (1) —
" = Tigs L MFe2, = 1.214,) =0.0656.

so the small effect here &¢f is canceled to better than 0.1%

accuracy by the substitution af=0.04 into Eq.(4.10. Sub- (4.19
stituting Eq.(4.10 into Eq.(2.24) yields for the critical vis-

cosity exponent,

(1+ G5)Z(7]2) =GJ, - GZ‘]Z =GJF,, (4.12) V. THREE-LOOP VERTEX CORRECTIONS
where In the preceeding sections, we showed that the transverse
3, G 1 momentum vertex correction diagrams have the greatest con-
F,=1-G==1+—-=1+—=1.270 (4.12 tributions to the value o, among all the two-loop contri-

J1 3 310 butions. To estimate the higher order effect, let us concen-
is a kind of two-loop enhancement factor. From the insertiorffate on the three-loop transverse momentum vertex
of Eq. (4.4), the remaining factors in E¢4.11) are correction diagrams.

These three-loop vertex correction diagrams for the trans-
. (1 +|_2)<1_1]>2J_10~ (1+|_2>(1_ 1 verse momentum can be grouped into three general types.
1= 2 = 2 7])277 ) ; : ;
I 2/ 1o 7 Figure 3 shows one representative diagram from each type.
4.13 For the diagram shown in Fig.(®, there is a total of 18
' different variationd13]. It is a straightforward, but tedious,
where we recognize exercise to show that the sum of these 18 diagrams gives
|
5,},(3) — 1 d% d’g d’ (1 _ Xy(P) ><1 _ Xy(r) ) Xo(Q)
vod-1) @m) emt) @em\T xyk-p) xy(k=1)/ xy(k=0a)

y p-T-r(k=0q) - Tpq-qk=r) - Top-r
Y(P= @%@ =DLyyp) + vu(k= P ILyy(@) + vk = DILyy(r) + yuk=1)]°

(5.2

The contributions from the other two types of diagrams, Figk) 8nd 3c), can be shown to be small when compared with
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the first type. To illustrate this point, consider the frequency integrals involved in a typical diagram represented Ry),Fig. 3
which can be written as

f fdw"f dw” 1 1 1
27 —iow' +Xl/,(p)—l(w o)+ vy, (k-p) —iw"’+)(¢,(r)—i(w—w’”) +yyk—=r)
« 1 « 1 1
R R R TR R

1 1 1 1
= X . .
“ia (D) + 7k p) —iw* 70+ ygk-1) < “iw+ y(p-a) 1(p-l9P-0 + %@-1] 52

Compare Eq(5.2) with Eq. (5.1); a factor ofy; has replaced, in Eq. (5.1). Sincey;> v,, the contributions from this type
of diagram should be much smaller than those from Fig).. 3ntuitively, this is so because the crossed transverse momentum
propagators force one of the middle two order-parameter propagators to their time scale, which is much shorter. A similar
argument can be made for diagrams represented by Fij. 3

Having established that the only important three-loop contributions are contained (. Bgwe go back to evaluate them.
Substituting the scaling relations, it is trivial to show that

e o o oS Gy

277 p'ﬂ'r(k—Q)'Tq-p'Q(k—f)'%-r'fx 1
TR (P=)*(q-1)>7 [p™%r+ (k= ) ¥ [ g%+ (k= ) Zr][r* %2+ (k= r)®7]"
(5.9
[
wherek is a qnit vector. As With the _Iower order transverse @ _(1- 72)? 1 dde
momentum diagrams, the leading divergent part can be ob- Ji'(z,) = 2d-1) 5 C
tained by expanding the integrand in powerskoKeeping d
only the lowest order in the expansion and then averaging ir? * pdp
over all directions ok, we obtain Xsin 6 o [1+2pcog) + p2P
(1-7/2? J f f d’r d(p-r)* - p*r? r)z- pAr? d
J(3) — d’Q
d (27;) 2(d 1) Xf ! _1)
d
q- Tp+q qr- Tq+r r 0 d
(p+q)2 Z,,(q+ r)2 Z??pd+z qd+z d+z (5-4) ><sin2 o' rar . (5.5)

o (L+2rcos# +r?)?

where we have changepto —q in order to make it easier to ) o (
evaluate the integrals later. If we defieq=pqcos6), The mte_grals can be performed similarly to thoseiljﬁ (see
q-r=qrcog@’) andp-r=prcog#’), and scale botp andr  APPendix A to yield

by g, we can integrate ove, with a lower cutoff limit of 1

J

to obtain the leading contribution as IP(z,)= 2—3 (5.9
7

where
2
7\ 1 1 3
J=|1-— = , (5.
* ( 2) d(d+2)2d(d-2)? 2d(d-2) ®.7

which is the value fod; used in Eq(1.22 when evaluated at
d=3.

VI. DISCUSSION AND CONCLUSIONS
(a) ®) © . . . . .
The e-expansion calculation of the critical viscosity expo-
FIG. 3. Typical three-loop diagrams for the transverse momennent,z,=0.0071, is largely the result of underestimating the
tum modes. Diagrams of the typés) and (c) can be shown to be One- IOOp order-parameter decay rate as shown in Fig2#
small as compared with the contributions fraa. by the way of 30% smaller value d)ﬁjl in three dimensions.
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The three dimensional one-loop coupled-mode result,of
=8/157%=0.0054 also cannot be regarded as a correct pre-
diction because of the contributions from the higher loops.
The inclusion, as a first step, of the two-loop effects requires
the vertex correction diagrams, as well as #dnteraction.
However, the order-parameter decay rate is not significantly
changed by the addition of its vertex correction term because
of the smallness of,’, as shown in Eq(4.2). Furthermore, [ 1 .
the contributions to the order-parameter decay rate from the €
J/ interaction almost cancel each other as evidenced by Eq.
(4.10. Substituting Eq.(4.2), the value ofl?, into Eq. FIG. 4. One-loop integrall}” vs e=4-d, whered is the spatial
(4.10, we obtain, for the coupling consta@tin d=3, dimensionality. Solid curve shows the exact functidy. (2.20
with z, and 5 set to zer¢ with value ofl 5= 7218 indicated by the
G=0.8133. (6.1)  solid dot. The 30% error of the two-termexpansion by Siggiat

Of all the two-loop contributions, it is the transverse momen—al' [1]'is shown by the dashed curve.

tum vertex corrections that contribute most significantly to o o .
the final value ofz... that it is logarithmically divergent. As a result, we can ex-
The two-loop treatment of the critical viscosity exponentPand the numerator in powers lofind neglect it in compari-

demonstrates that the two-loop order-parameter vertex cofon Withp andq in the demoninator. From Ed2.26), we

rection is negligibly small and causes us to adopt a generdibtain

rule according to which it is permitted to neglect as well the

higher order graphs in this category. This leaves the three- ng)(z )=
i i K d-1

loop graphs for the vertex correction of the viscous mode,

which we evaluated in the previous section and found té be d% [ dgp- T ap- Tprq-ap-kk - @

of that from the two-loop graphs. If we assume that the X <. | © oz 272, 4 )2

higher order contributions for the viscous mode continue d a PUTaEApE T

with the same ratio, the enhancement faétorof Eq. (1.23 (A1)

can easily be obtained using E§.1) as

(1-7/2)?

Averaging the above over all directions lof we get

F.=1.3136. 6.2
(6.2) 0%

Equation(4.11) can easily be extended to include the three- ((p-kk-a)(p-Zy-a) = d(d+2)
loop and higher effects as

2

(dcog 6-1), (A2)

where 0 is the angle betweep and g. The other angular

207 = GIF./(1+G9), (6.3 dependent factop-7,.,-q can also be simplified to
which gives the final value foz, to be p-(p+9(P+Q -q p2e? sir?
. T+ .0=pD-0- = - i
z,=2")=0.0679 +0.0007. (6.4) P pa 7P (p+q)? (p+0)?
For comparison purposes, if we stop at the three-loop, the (A3)
value for the enhance factor i5=1.3078 and the value of J¥(z) then becomes
critical viscosity exponent isz(:‘):0.0676, which is only d
slightly smaller than the value a”. The final result of the (2 = - 1 1
theory effort[14], as expressed 77by E@6.4), can be com- d (%)= dd+2)d-1
pared to the experimentally measured critical exponent, g 422 )
0.0690+0.0006, as reported by Bezgal. [15]. o f @f d’q p°g’(d cos’ 6 - Dsir? 6
CyJ Cq (p+a)* 2™
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APPENDIX A . o .
where we have neglectet), in the remaining integral since

We provide(,)in this(z?ppendix, some details for evaluatingthe leading 12, behavior has already been captured by the
the integralsl” and J;”. Consider first the simpler of the integration overp. The integration over the radial direction
two, J&“). In the limit of z, =0, simple power counting shows of | can be carried out first since
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- i 1 (g gcos)
o (L+2 cosO+122 2sipg cos).

(A6)

The remaining integrations ovérare elementary and can be

obtained easily to yield Eq$2.27) and(2.28).

The evaluation offj”)(z,]) follows a similar line when per-

PHYSICAL REVIEW Er1, 021201(2005

we can average over all directions lofin the numerator to
obtain

(k-Tp-(k—q)k-%-(k—p)):—%qcosasinz0,

(AT)

formed as are expansion because it has the same logarithwhere ¢ is again the angle betwegnand g. Ig")(z,?) then

mic divergence atl=4. By neglecting in the denominator,

dg pgcosdsir? o (p+q)? - p?ll(p+ )% - ¢?]

becomes

1 d
ks

Once again, we can integrate over one momentumpsdy introducingl =q/p to obtain

I§(z,) = -

The integrand can be separated, using partial fraction, into simpler terms as

| cos@sin’ (1 + 2 cosd)(1 + 2 cosb)
(1+2 cosf+I13)[1+1*+ (1 + 2l cosd+1?)?]

=A+Bcosf+Ccos 6+D cos §+E cos 6+

where the coefficientd—H are functions of only. The integration ove# are familiar with the possible exception of the last

term in Eqg.(A10) which can be evaluated using

Ca P Hp + Qe+ o+ (pr g ] T O A%
1 1(t (" | cosésin® (1 + 2 cosd)(1 + 2 cos6)
— | 6 1). A
e—Znﬂ'fo d JO d (1+2 cosf+I1P)[1L+1*+(1+2 cosh+1%?] +Ol) (A9)
G+ Hcosé
(A10)

+
1+2cosf+1> 1+I1*+[ 1+2cosf+13?]’

a 1+/? 1

™ 1
dn =— 1
fo 14144+ (1+2Acos0+12)2 7 21 +12+14\1 11

and

(A11)

T | 1

. cosé
[

o 1+ +(1+2Acosh+122 21 +12+ 1444

(A12)

The remaining integration ovéris tedious but straightforward. In the end, we arrived at Bc).
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