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A self-consistent mode-coupling calculation of the critical viscosity exponentzh for classical fluids is
performed by including the memory effect and the vertex corrections. The incorporation of the memory effect
is through a self-consistency procedure that evaluates the order parameter and shear momentum relaxation
rates at nonzero frequencies, thereby taking their frequency dependence into account. This approach offers
considerable simplification and efficiency in the calculation. The vertex corrections are also demonstrated to
have significant effects on the numerical value for the critical viscosity exponent, in contrast to some previous
theoretical work which indicated that the vertex corrections tend to cancel out from the final result. By carrying
out all of the integrations analytically, we have succeeded in tracing the origin of this discrepancy to an error
in earlier work. We provide a thorough treatment of the two-term epsilon expansion, as well as a complete
three-dimensional analysis of the fluctuating order-parameter and transverse hydrodynamic modes. The study
of the interactions of these modes is carried out to high order so as to arrive atzh=0.0679±0.0007 for
comparison with the experimentally observed value, 0.0690±0.0006.
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I. INTRODUCTION

A. General critical behavior

In understanding the critical temperature dependence near
the critical point of some extended physical system that is
undergoing a second order phase transition, it is essential to
adopt a “microscopic” framework. That is, one has to de-
velop an appreciation for the thermally activated fluctuations
that are occurring constantly and locally at every point in the
medium. In the present work, the fluctuations are those of a
scalar order parameter and, on the other hand, the Brownian-
motion-type transverse hydrodynamic modes in a fluid. It is
the latter which lead to an interesting divergence in the trans-
port properties of the fluid—in particular, of the viscosity
studied in this paper. But in order to emphasize the basic
origin of such divergences, consider a simpler system, that of
interacting spins having a local density of, say,msxW1d. Apply
a magnetic fieldH concentrated at pointxW1 and consider the
resulting influence on msxW2d at distancer = ux2−x1u. Because
of the interactions between neighboring spins, the thermal
average ofm sxW2d no longer averages to zero but is given by
HkmsxW1dmsxW2dl, the angular brackets denoting the equilib-
rium average. Thus the total magnetization, the average
value of ed3xW2msx2d, becomes M =Hed3x2kmsxW1dmsxW2dl.
With the correlation function proportional tor−1−h for r øj,
wherej is the correlation length, and zero forr .j, ther−1−h

for r øj, wherej is the correlation length, and zero forr
.j, the magnetization isM =HX, with the susceptibilityX
~j2−h. The correlation length exhibits the critical tempera-
ture dependencesT−Tcd−n, whereTc is the temperatureT at
the critical point. This yields for the susceptibility the critical
exponentg=s2−hdn.

Turning now to the more complicated problem of the in-
teraction in a fluid of the fluctuations of the order-parameter
and hydrodynamic modes, we again see the essential role of
the correlation length. It dominates the behavior of the long
wavelength fluctuations so that the relaxation rate of wave
numberk is expressed, bygcskd=alkd+zh. Hered is the geo-
metric dimensionality of the system andzh is the critical
viscosity exponent, in the sense that the temperature depen-
dence will be expressed byj zh ~ sT−Tcd−nzh, by the dynamic
scaling rule of the replacement ofk by j−1 in the long wave-
length limit, k→0. Similarly, the relaxation rate of the hy-
drodynamic mode has the wave number dependence
g j =ahk2−zh. Without the contribution in the exponent ofzh

this would reduce to the normalk2 dependence in the case of
a noncritical viscosity. The critical viscosity exponent is thus
to be identified withzh, corresponding to a critical tempera-
ture dependence ofj zh ~ sT−Tcd−nzh. It is the goal of this
paper to calculate the numerical value ofzh. A simple semi-
qualitative derivation, with a quite minimal account taken of
the interactions, is provided below in Eqs.s1.3d–s1.5d. To
take better into account the interactions, it is necessary to this
section, which is a summary of the results obtained in the
subsequent sections.

B. Basic concepts of the theory

The framework for the calculation that is set up below in
Sec. II is straightforward, but rather complicated in its appli-
cation. The essential feature is that the interaction of fluctua-
tions which generates the order parameter decay rate,gc

=alkd+zh, is expressed by integrals whose integrands are in-
versely proportional toah. Similarly, the relaxation rate for
the hydrodynamic fluctuation of wave numberk, g j
=ahk2−zh, has integrands inversely proportional toah. Multi-
plying by ac andal, respectively, puts these results into the
form of acal=g0

2Sj andacal=g0
2Sj, whereg0

2 is a nonuniver-
sal factor andSc andSj are certain sums of integrals. It turns
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out that the combinationG;g0
2/acal times the factors

s2pd−d and Cd sthe surface area of ad-dimensional unit
sphered is universal in that it does not depend upon the par-
ticular molecular properties of a fluid. This yields for the
self-consistent pair of equations 1=Qw and 1=Qj. These
quantities have expansions of the form shown below in Eqs.
s1.10d and s1.11d and contain parametrically the sought-for
critical exponentzh. The search for the numerical value ofzh

which satisfies the self-consistency, is facilitated by the fact
that the integrals inQj are dominated by “divergent-type”
parts proportional tozh

−1.

C. Survey of the calculation

In this paper, we present a computation of the critical
exponentzh for the viscosity of a fluid near its critical point.
The calculation applies to a one-component fluid as well as
to a binary liquid, as these systems belong to the same dy-
namic scaling universality class. They are both described by
a scalarn=1, fluctuating order parameter. The work on
which we are reporting has been carried out over a sustained
period of many years, following in the footsteps of the pio-
neering and path-breaking study by Siggiaet al. f1g. The
subsequent steps in the development of this subject consti-
tute a kind of successive approximations, as reflected in the
organization of this paper. This section, a “bare-bones” intro-
duction, proceeds with a summary of what has been accom-
plished beyond thee expansion of Sec. III, followed by the
three-dimensional treatment in Sec. IV, and, finally, the
three-loop computation of Sec. V. The latter provides, we
believe, a reliable theoretical numerical value ofzh to com-
pare with experiment. A discussion and summary are con-
tained in Sec. VI.

In setting the stage for the computation, it is useful to start
with a brief discussion of the off-diagonal element of the
stress tensor

Txy ~ ]x]yc. s1.1d

This couples to the transverse hydrodynamic modes of the
fluid, as a consequence of fluctuations in the scalarsn=1d
order parameterc. These can be either fluctuations of en-
tropy density or of concentration, as mentioned above. Ac-
cording to Zwanzigf2g the correlation function forTxy deter-
mines the viscosity by means of a kind of Kubo formula.
Representing schematically thex and y components of the
gradient ofc by cosu, and sinu cosf, respectively, yields
the average forTxy

2 , averaged over all directions in
d-dimension space, as

kcos2 u sin2 u cos2 flV = U 1

dsd + 2d
U

d=3
=

1

15
. s1.2d

That this is a relatively small number is, evidently, a direct
consequence of the transversality of the hydrodynamic
modes. In view of Eq.s1.2d, it is not surprising that the
critical viscosity exponent is rather small in comparison with
other critical exponents. Bringing in the critical slowing
down of the relaxing modes of wave numberp yields a loga-
rithmically divergent integral, with infrared cutoff, which we
represent here schematically by

8

p2kcos2 u sin2 u cos2 flVE
p.j−1

dp

p
= zh

s0d lnsj/j0d,

s1.3d

where j is the correlation length andj0 is a constant of
atomic size. Exponentiated, this gives

zh
s0d lnsj/j0d . sj/j0dzh

s0d
− 1, s1.4d

with the low-order critical exponentf3g

zh
s0d =

8

15p2 . s1.5d

The above low-order result represented by Eq.s1.5d is based
on the Ornstein-Zernike approximationxoz~q−2, to the Fou-
rier transform of the order-parameter–order-parameter corre-
lation function. The latter needs to be written more correctly
as x~q−2+h, where the small anomalous dimension critical
exponent is

h = 0.040, s1.6d

as predicted theoreticallyf4g as well as recently established
experimentallyf5g. In the Ornstein-Zernike approximation
the coupling to a hydrodynamic mode of wave numberk is
expressed by

xoz
−1sqd − xoz

−1sk − qd = q2 − uk − qu2 = − k2 + 2k ·q . 2k ·q.

s1.7d

in the long wavelength limit,k→0. With hÞ0, this be-
comes, again withk→0,

x−1sqd − x−1sk − qd = q2−h − sk − qd2−h

= q2−h − q2−hS1 −
2

q2sk ·qdD1−h/2

. s2 − hdq−hk ·q. s1.8d

Thus Eq.s1.5d requires two factors of 1−h /2, giving the first
order result

zh
s1d = S1 −

h

2
D2

zh
s0d. s1.9d

Because the factorq−h cancels withq2+h to leaveq2, the
Ornstein-Zernike approximation for the correlation function,
we believe that there is no further correction forhÞ0 other
than that expressed by Eq.s1.9d, except for a factor of 1
+h /2 in the one-loop self-consistent decay rate that is exhib-
ited below, in Sec. IV.

The effect of the multiple interactions of the stress tensor
of Eq. s1.1d with the hydrodynamic mode is described by the
Feynman graphs of Fig. 1 of one, two, three, and more loops,
and is computed by the corresponding collections of inte-
grals according to the expansion

1 = GI1 − G2I2 + G3I3 − ¯ , s1.10d

for the order parameter. The Feynman graph integrals for the
hydrodynamic mode havezh in the denominator and numera-
tors J1, J2, J3, . . ., so
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zh = GJ1 − G2J2 + G3J3 − ¯ . s1.11d

In these equations,G serves as a kind of coupling constant,
the numerical value of which can be determined from Eq.
s1.10d. At this point an important simplification enters. In the
following three sections, it is demonstrated thatI2, the two-
loop vertex correction for the order parameter, is quite small
compared toI1, the single loop integral. Furthermore, al-
though the explicit integration forI1 in Sec. IV does exhibit
some small deviation from the bare single-loop valueI10,
they mutually cancel to have

I1 . I10 =
p2

8
. s1.12d

Thus, from the first term of the right hand member of Eq.
s1.10d, the single-loop approximation to the coupling con-
stant is

G =
1

I1
.

1

I10
=

8

p2 . s1.13d

With I l / I1 negligibly small forl ù3, we can solve Eq.s1.10d
to obtain

G =
2

I1

1

1 + s1 − 4I2/I1
2d1/2 s1.14ad

which, for uI2u! I1
2, becomes

G . I1
−1S1 +

I2

I1
2D . s1.14bd

This changes the reference value in Eq.s1.9d for the expo-
nent fromzh

s1d to

z̃h
s1d = S1 +

I2

I1
2 − dDzh

s1d = S1 +
I2

I1
2 − dDS1 −

h

2
D2

zh
s0d,

s1.15d

whered is the small nondivergent term in the one-loop inte-
gral of Eq.s2.21d below.

With Eq. s1.10d now taken care of, all of our attention and
effort has to be directed to Eq.s1.11d. The first term of its
right hand member yields

J1 = S1 −
h

2
D2

J10 = S1 −
h

2
D2 1

15
s1.16d

and

zh
s1d = GJ1 =

J1

I1
= S1 −

h

2
D2 J10

I10
= − S1 −

h

2
D2

zh
s0d,

s1.17d

in agreement with Eqs.s1.5d and s1.9d. It is convenient to
write Eq. s1.11d as

zh
s1d = zh

s1dFl , s1.18d

where

Fl = 1 −G
J2

J1
+ G2J3

J1
− ¯

= 1 +GUJ2

J1
U + G2J3

J1
+ ¯ + GlU Jl

J1
U s1.19d

is an enhancement factor through thelth loop. In Sec. IV, we
find, for dimensionalityd=3,

J2 = − S1 −
h

2
D2 1

45
, s1.20d

so

GUJ2

J1
U =

G

3
. s1.21d

The sum over all three-loop graphs in Sec. V yields, again
for d=3,

UJ3

J2
U =

1

6
. s1.22d

It can be anticipated that this ratio continues for the higher
loops, giving

FIG. 1. The one- and two-loop Feynman diagrams for the order-
parameter and the hydrodynamic mode decay rates. Solid lines are
for the order parameter while wavy lines are for transverse mo-
menta. Lines with circles indicate correlation functions and lines
without circles are simply propagators.
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F` . 1 + GUJ2

J1
UF1 +

G

6
+ SG

6
D2

+ ¯ G
= 1 +

G

3

1

1 − G/6

=
1 + G/6

1 − G/6
. s1.23d

In the discussion and summary of the final section, we em-
ploy this result and Eq.s1.15d to obtain a numerical value for
zh.

II. KINETIC EQUATIONS AND PERTURBATION
EXPANSION

A. Self-consistent decay rates

Following Kawasakif6g, the kinetic equations that govern
the decay of local fluctuations in the order-parameterc, the
specific entropy, and the transverse momentum densityj are

dck

dt
= −

l0k
2

xcskd
ck − ig0o

q,a
ska − qad jqack−q + fck

s2.1d

and

djka

dt
= − h0k

2jka − ig0o
q,b

Tkabqbxc
−1sqdcqck−q + f jka

,

s2.2d

whereTkab=dab−kakb /k2 is the transverse momentum pro-
jection operator andxcskd=kucku2l=1/k2−h is the static order-
parameter correlation function. Note that the units have been
chosen such thatrc=kBTc=1. In these units,x jskd=1. The
Gaussian noisesfck

and f jka
are related to the bare conduc-

tivity and l0 andh0 by the fluctuation-dissipation theorems,
respectively. The coupling constantg0 provides the necessary
interaction between different modes which, at the critical
point, gives rise to the critical divergence.

We want to evaluate the effect of the nonlinear coupling
of the modes on the order parameter and transverse momen-
tum relaxation rates,gc and g j. Define, as usual, the corre-
lation functions

kckstdc−ks0dl = Gcsk,td,

and

k jkastd j−kbs0dl = TkabGjsk,td,

for the order parameterc and transverse momentumj , re-
spectively. The relaxation ratesgc andg j occur explicitly in
the frequency Fourier transforms

Gcsk,vd =
xcskd

− iv + gcsk,vd
, s2.3d

and

Gjsk,vd =
1

− iv + g jsk,vd
. s2.4d

As indicated,gc andg j have both a wave vectork and fre-
quencyv dependence. On the other hand, these correlation

functions can also be evaluated in a perturbation expansion
from the kinetic equations to obtain

gcsk,vd = gc
s0dskd + Ssk,vd . Ssk,vd s2.5d

and

g jsk,vd = g j
s0dskd + p sk,vd . p sk,vd. s2.6d

The last steps follow from the fact that the bare relaxation
ratesgc

s0dskd=l0k
2/xcskd andg j

s0dskd=h0k
2 become unimpor-

tant in the long wavelength limit at the critical point. The
self-energies become dominant in this regime.

Standard perturbation proceduresf7g give these self-
energies, in the one-loop order, as

Ss1dsk,vd = g0
2o

q

k ·Tq ·k

xcskd

3E
−`

` dv8

2p
Gjsq,v8dGcsk − q,v − v8d,

s2.7d

and

Ps1dsk,vd =
g0

2

2sd − 1doq

q ·Tk ·qfxc
−1sqd − xc

−1sk − qdg2

3 E
−`

` dv8

2p
Gcsq,v8dGcsk − q,v − v8d, s2.8d

where the fully dressed correlation functions are used on the
right hand side in order to achieve self-consistency.

The frequency integrations in Eqs.s2.7d ands2.8d are too
complicated to perform because the self-consistency condi-
tion requires the fully dressed decay rates to be used inside
each integrand. Further simplifications are necessary. Intro-
duce the pole approximationf8g for Gc as

Gc
psk,vd =

xcskd
− iv + gcskd

,

wheregcskd=gcsk,v=0d, and similarly forGj
psk,vd. We can

write the productGcGj as

GcGj = fGc
p + sGc − Gc

pdgfGj
p + sGj − Gj

pdg.

It was pointed out by Bhattacharjee and Ferrellf9g that the
differences are smallsordere in the case ofe expansiond. We
can drop the product of two differences when expanding the
above expression and get

GcGj . − Gc
pGj

p + Gc
pGj + GcGj

p.

Now the frequency integrations in Eq.s2.7d can be carried
out by Cauchy’s theorem to yield
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1

2p
E

−`

`

dv8Gjsq,v8dGcsk − q,v − v8d

.
1

− iv + gc„k − q,v + ig jsqd… + g j„q,v + igcsk − qd…
.

It is generally true thatg j @gc near the critical point.
Therefore with the omission ofgc in the denominator, the
order parameter decay rate, at the self-consistent one-loop

order, becomes

gcsk,vd = g0
2xc

−1skd E ddq

s2pddk ·Tq ·k

3
xcsk − qd

− iv + g j„q,v + igcsk − qd…
. s2.9d

Similarly, the same procedure applied tog jsk,vd leads to

g jsk,vd =
g0

2

2sd − 1d E ddq

s2pdd

q ·Tk ·qfxc
−1sqd − xc

−1sk − qdg2xcsqdxcsk − qd
− iv + gc„q,v + igcsk − qd… + gc„k − q,v + igcsqd…

. s2.10d

To close the loop on self-consistency, we need to evaluate the decay rates at the frequencyv= igcskd. Note that, in Eq.s2.9d,
the major contributions to the integration overq come from the largeq region. This, together with the factg j @gc, implies that
gc(k, igcskd).gcskd. That is,

gc„k,igcskd… . gcskd . g0
2xc

−1skd E ddq

s2pddk ·Tq ·k
xcsk − qd

g j„q,igcsqd…
, s2.11d

while

g j„k,igcskd… =
g0

2

2sd − 1d E ddq

s2pdd

q ·Tk ·qfxc
−1sqd − xc

−1sk − qdg2xcsqdxcsk − qd
gcskd + gcsqd + gcsk − qd

. s2.12d

Equationss2.11d and s2.12d form a complete set of self-
consistent equations for the order-parameter and transverse
momentum decay rates. Although they are evaluated at non-
zero frequencies, we can still look for solutions that have the
scaling forms required by dynamic scaling, namely

gcskd = alk4−h+zl s2.13d

and

g j„k,igcskd… = ahk2−zh. s2.14d

Using the scaling relationf10g, zl+zh=4−d−h, whered is
the spatial dimensionality, we can eliminatezl and obtain

gcskd = alkd+zh. s2.15d

Substituting the above scaling forms for the decay rates
into the self-consistent equations, we get, from Eq.s2.11d,

1 = GId
s1dszhd, s2.16d

whereG=g0
2Cd/ s2pddalah, with Cd being the surface area of

a d-dimensional unit sphere, and

Id
s1dszhd =E ddq

Cd

sin2 u

q2−zhsk − qd2−h . s2.17d

In the above expression, all momenta are scaled by the mag-
nitude ofk, makingk itself a unit vector. Similarly, from Eq.
s2.12d, we obtain

1 = GJd
s1dszhd s2.18d

with

Jd
s1dszhd =

1

2sd − 1d

3E ddq

Cd

sq2−h − sk − qd2−hd2q2 sin2 u

q2−hsk − qd2−hf1 + qd+zh + sk − qdd+zhg
.

s2.19d

The integralId
s1dszhd can be evaluated in arbitrary dimen-

sionality to yield

Id
s1dszhd =

4

d − 1

Gs2 − zh /2dGs1 − h/2dGsd − 1 +zh /2 + h/2d
Gsd/2dGs2 − d/2 − zh /2 − h/2dGsd/2 − 1 +zh /2dGsd/2 + zh /2d

s2.20d
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and forJd
s1dszhd we have done an expansion in powers ofzh

as

Jd
s1dszhd =

J1

zh

− d, s2.21d

where the leading term is found, in the limit ofk→0,

J1 = S1 −
h

2
D2 1

dsd + 2d
s2.22d

and the small correctiond as the difference between Eq.
s2.19d, the complete integral, and the one obtained by taking
the k→0 limit. The exact value ofd depends on dimension-
ality and will be determined in the next two sections.

B. Two-loop vertex corrections

To estimate the effect of the vertex correction diagrams,
one needs to carry out the perturbation expansion to two-
loop order. This is a straightforward, though rather tedious,
task. Some of the details of this expansion are presented in
Appendix A, with others to be found elsewheref7g. Here we
collect the result of this computation. Equationss2.16d and
s2.18d are augmented by adding the higher order terms,
which are proportional toG2, to become

1 = GId
s1dszhd − G2Id

sydszhd s2.23d

and

1 = GJd
s1dszhd − G2Jd

sydszhd, s2.24d

respectively.Id
sydszhd andJd

sydszhd correspond to the vertex cor-
rection diagrams shown as Figs. 1sdd and 2scd in Siggiaet al.
f1g and are given by

Id
sydszhd =E ddp

Cd
E ddq

Cd

fsk − p − qd2−h − sk − pd2−hgfsk − p − qd2−h − sk − qd2−hg
sk − pd2−hsk − qd2−hsk − p − qd2−h

3
fk ·Tp · sk − qdgfk ·Tq · sk − pdg

p2−zhq2−zhfsk − pdd+zh + sk − qdd+zh + sk − p − qdd+zhg
, s2.25d

and

Jd
sydszhd =

1

d − 1
E ddp

Cd
E ddq

Cd

sp ·Tk ·qdsp ·Tk−p−q ·qd
sk − p − qd2−zh

3
p2−h − sk − pd2−h

p2−hfpd+zh + sk − pdd+zhg
q2−h − sk − qd2−h

q2−hfqd+zh + sk − qdd+zhg
.

s2.26d

Once again, all momenta are scaled byk so that k itself
becomes a unit vector.

The leading contribution toJd
sydszhd can be evaluated to

yield, for arbitrary dimensionalityd, asssee Appendix A for
more detailsd

Jd
sydszhd =

J2

zh

, s2.27d

where

J2 = −
1

dsd + 2d
1

dsd − 2d
. s2.28d

C. Four-point interaction

The last contribution we need to consider at the two-loop
level comes from thec4 interaction in the free energy,

F =E ddrS1

2
s¹cd2 +

r

2
c2 +

u

4
c4D , s2.29d

for the order parameterc. To include this interaction, one
needs to add an additional term,lk2op,qcpcqck−p−q, to Eq.
s2.1d. This term’s contribution to the order-parameter decay
rate comes from the two-loop diagram shown in Fig. 2. The
self-energy is then given by

Ssk,vd = − 6u2lk2o
p,q

xcspdxcsqdxcsk − p − qd

3
gcspd + gcsqd + gcsk − p − qd

− iv + gcspd + gcsqd + gcsk − p − qd
.

s2.30d

The v=0 limit of this self-energy is simply the lowest order
expression that gives rise to the nonzero anomalous dimen-
sion h and thus has been taken into account through the use

FIG. 2. Two-loop diagrams from thec4 interaction. These dia-
grams are the first contribution of thec4 coupling to the order-
parameter decay rate. A factor oflk2 is associated with each vertex
swith k being the momentum carried by the outgoing propagator
from that vertexd. In addition, the factor of 6 in Eq.s2.30d is be-
cause there are six different ways to construct the diagrams.
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of Eq. s1.6d. Only the frequency dependent part of this self-energy contributes to the dynamic effects, and it is

dSsk,vd = Ssk,vd − Ssk,0d = − iv6u2gcskdxcskd 3E ddp

s2pdd E ddq

s2pdd

xcspdxcsqdxcsk − p − qd
− iv + gcspd + gcsqd + gcsk − p − qd

, s2.31d

where we have replacedlk2 by gcskdxcskd. Equations2.3d is then modified to read

Gcsk,vd =
xcskd

− iv + gcskd + dSsk,vd
. s2.32d

Using the pole approximation that was introduced earlier, the self-consistent equation for the order-parameter decay rate, Eq.
s2.23d, becomes

1 =
GId

s1dszhd − G2Id
sydszhd

1 + 6u2fCd/s2pddg2Kdszhd
, s2.33d

where

Kdszhd =E ddp

Cd
E ddq

Cd

1

p2−hq2−hsk − p − qd2−hf1 + pd+zh + qd+zh + sk − p − qdd+zhg
. s2.34d

Once again, all momenta are scaled by the external momen-
tum k, making it a unit vector. Having set up all the neces-
sary formalism, we are ready to evaluate the critical expo-
nentzh next.

III. e EXPANSION

At the one-loop level, it is easy to expand Eq.s2.20d in
powers ofe=4−d to yield, using the static renormalization
group value ofh=e2/54,

Id
s1dszhd =

3

4

1

e − zh
S1 +

e

6
−

zh

4
+

h

e − zh
D + Osed, s3.1d

where we have kept the first two terms of the expansion.
Equations2.21d can also be expanded easily. But there is still
a Os1d term that was left out in the evaluation of the leading
contribution. This contribution can be obtained by integrat-
ing the difference between the full integral in Eq.s2.19d and
the simplified one used in the leading contribution calcula-
tion by takingk→0. Details of this evaluation is left to Ap-
pendix A. Here we simply state the result

Jd
s1dszhd =

1

24zh
S1 +

5

12
eD −

2 ln 2 − 1

32
+ Osed. s3.2d

Substituting these two expression into Eqs.s2.10d ands2.12d,
zh is found to be

zh =
e

19
H1 +F1

4
S1 −

1

192D −
1

54
−

2 ln 2 − 1

32

432

361
Ge + Ose2dJ

=
e

19
f1 + 0.216e + Ose2dg. s3.3d

As a note, we emphasize that the one-loop calculation
presented in this section does not make the Markovian as-
sumption and thus has taken proper account of the frequency

dependence of the decay rates. Self-consistency is achieved
by using nonzero frequencies, thereby significantly simplify-
ing the calculations. It should also be noted that, although
Eq. s3.3d giveszh=0.064 when evaluated ate=1, it is incom-
plete in thee2 order. Higher order perturbation expansion,
namely the two-loop vertex corrections, also contribute to
this order.

Of the two-loop contributions discussed in Sec. II, the
four-point interaction contributes only to ordere3 and higher.
As a result, only the order-parameter and transverse momen-
tum vertex corrections need to be included and Eqs.s2.23d
and s2.24d are sufficient.

The evaluations of Eqs.s2.25d and s2.26d are made sim-
pler in thee expansion, since both diverge logarithmically at
d=4 and we only need the leadingOs1/ed terms. We can
therefore neglect the unit vectork in comparison withp and
q wherever possible. As a result, all the remainingk depen-
dencies are in the numerators of each integrand, affording an
averaging over allk directions. The leading divergence can
then be picked out by scaling one momentum, sayq, by the
other and by carrying out the integration overp. The remain-
ing integrations can then be performed entirely analytically
for d=4 with no necessity for any numerical evaluation. The
result that follows from the discussion in Appendix A is

Id
sydszhd = −

8 ln 2 − 5

64

1

e − zh

+ Os1d, s3.4d

and, from Eqs.s2.27d and s2.28d,

Jd
sydszhd = −

1

192zh

+ Os1d. s3.5d

The corresponding vertex correction integrals of Siggiaet
al. f1g, namely Eqs.sA16d sA21d, differ from our Eqs.s2.25d
ands2.26d only by a factor of 2. Therefore it is appropriate to
compare our result, Eqs.s2.27d and s2.28d, with theirs. Tak-
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ing into account the factor 2, which is due to the difference
in the definition of the coupling constant, we see that the
numerical constant forJd

syd is identical with that in Eq. A22 of
Siggiaet al.However, our numerical value for the coefficient
in Id

sydszhd, s8 ln 2–5d /64=0.008 52, is ten times smallerf11g
than that given by Eq. A17 of Siggiaet al. With this correc-
tion to Id

sydszhd, these two vertex corrections will no longer
cancel each other in the final result. Instead, onlyJd

syd makes
a significant contribution withId

syd playing a minor role. This
vertex correction for the order parameter has less than 0.5%
effect on the viscosity exponent, as seen below in Eq.s3.7d.
The incorrect value ofId

syd used by Siggiaet al. resulted in a
spurious reduction ofzh by 10%.

Substituting Eqs.s3.4d and s3.5d into Eq. s2.23d, we get
for G

G =
4

3
se − zhdS1 −

e

6
+

zh

4
D −

4

3
h −

4

3
S24

19
D28 ln 2 − 5

64
e2

+ Ose3d s3.6d

and for the viscosity exponent

zh =
e

19
H1 +F1

4
S1 −

1

192D −
1

54
−

2 ln 2 − 1

32

432

361
+

3

32
S24

19
D2

−
8 ln 2 − 5

64
S24

19
D2Ge + Ose2dJ

=
e

19
f1 + 0.352e + Ose2dg. s3.7d

In the first line of this equation, the contributions from each
source are kept separate for easy identification. The discus-
sion and comparison of these results with our earlier one-
loop ones as well as others are provided in the following
section. Finally, puttingzh back into Eq.s3.6d, we find for
the constantG

G =
24

19
e − 0.247e2 + Ose2d. s3.8d

Another critical exponent, that for the thermal conductiv-
ity l, can be obtained from the scaling relationzl+zh=e
−h. The result is

zl =
18

19
ef1 − 0.039e + Ose2dg. s3.9d

A further quantity of interest is the universal amplitudeR in
the Stokes-Einstein relation

D =
l

cp
=

RkBT

6phjd−2 . s3.10d

In the units that we have been working with, i.e.,rc=kBTc
=1, we get, by substituting the asymptotic forms ofl andh

R= 6palah = 6p
Cd

s2pdd

1

G
. s3.11d

Using the e expansion forG found earlier at the end of
previous section, we find forR

R=
3

p

19

24e
f1 + 0.196e + Ose2dg. s3.12d

For three-dimensional space, we substitutee=1 and getzh

=0.071 andR=0.90. Some inadequacies of thee expansion
have been discussed in detail by Bhattacharjee and Ferrell
f12g who argued that a loop expansion was more appropriate.
They also showed the necessity to solve the self-consistent
coupled mode equations in three dimensions in order to ob-
tain a more precise result. The following section presents the
result of this three-dimensional calculation.

IV. VISCOSITY EXPONENT IN THREE DIMENSIONS

Unlike in the e expansion of the previous section, the
integralsJd

s1dszhd and others will have to be calculated nu-
merically in three dimensions. The only exceptions isId

s1d

3szhd which can be evaluated exactly for arbitrary dimen-
sionality as shown in Eq.s2.20d. For d=3, we can expand
Id

s1dszhd in powers of the small exponentsh and zh. It turns
out that the linear terms inzh cancel each other out, leaving
only the simple first order expression,

I3
s1dszhd = I1 .

p2

8
S1 +

h

2
D = S1 +

h

2
DI10, s4.1d

where I10=p2/8 is the single-loop order parameter integral
for h=0. The order-parameter vertex correctionI3

sydszhd is
now a convergent integral and is found numerically to have
the small value

I3
syd = I2 . 0.0052. s4.2d

For the transverse momentum decay rate, the one-loop as
well as the two-loop vertex correction diagrams have their
leading contributions proportional to 1/zh as shown by Eqs.
s2.21d and s2.28d of Sec. II. In addition to the leading con-
tributions, we will also need to estimate the first correction
for J3

s1d. This is done numerically by evaluating the differ-
ence, with the small exponentzh set to zero, between the full
expression, as given by Eq.s2.19d, and the simplifiedk→0
one used in the calculation of the leading contribution. The
latter is given by Eq.s2.21d,

J1 = S1 −
h

2
D2 1

15
, s4.3d

when evaluated atd=3, and the value for the first correction
is found to be

d = 0.9543 10−2 s4.4d

For the transverse momentum vertex correction, we only
need the leading contribution as given by Eq.s2.28d, evalu-
ated atd=3,

J3
sydszhd =

J2

zh

, s4.5d

where
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J2 = − S1 −
h

2
D2 1

45
=

J1

3
. s4.6d

Similar to the one-loop integralJ3
s1d, the first correction to Eq.

s4.5d is a constant term. Computation of this nondivergent
term is difficult. Its magnitude, similarly to Eq.s4.4d, can be
estimated aszhd.7310−4 and thus negligible in the subse-
quent work.

The final remaining integral isKdszhd. For this term, we
will use the static renormalization group result for the fixed
point value ofu, in an e expansion,

u =
8p2e

sn + 8d2 . s4.7d

At three dimensions,e=1. Since thisu is from ane expan-
sion, we will evaluateKds0d in d=4. This was done numeri-
cally to yield

K4s0d =E d4p

C4
E dq

C4

1

p2q2sk − p − qd2f1 + p4 + q4 + sk − p − qd4g
=

2

p21.2996 ± 0.0006. s4.8d

Putting these results together, Eq.s2.26d becomes

1 + K = GI3
s1d − G2I3

syd, s4.9d

whereK=6u2fC4/ s2pd4g2K4s0d=0.0195. Since bothI3
syd and

K are small, we can solve this equation forG as

G .
1 + K

I1
S1 +

I2

I1
2D =

1 + K

1 + h/2
I10
−1S1 +

I2

I1
2D . I10

−1S1 +
I2

I1
2D ,

s4.10d

so the small effect here ofK is canceled to better than 0.1%
accuracy by the substitution ofh=0.04 into Eq.s4.10d. Sub-
stituting Eq.s4.10d into Eq. s2.24d yields for the critical vis-
cosity exponent,

s1 + Gddzh
s2d = GJ1 − G2J2 = GJ1F2, s4.11d

where

F2 = 1 −G
J2

J1
= 1 +

G

3
= 1 +

1

3I10
= 1.270 s4.12d

is a kind of two-loop enhancement factor. From the insertion
of Eq. s4.4d, the remaining factors in Eq.s4.11d are

GJ1 = S1 +
I2

I1
2DS1 −

h

2
D2J10

I10
. S1 +

I2

I1
2Ds1 − hdzh

s1d,

s4.13d

where we recognize

zh
s1d =

J10

I10
=

8

15p2 = 0.0540, s4.14d

as the lowest order single-loop approximation. The final re-
sult of the computation is therefore, to two-loop order,

zh
s2d .

1 + I2/I1
2

1 + Gd
s1 − hdF2zh

s1d = 1.214zh
s1d = 0.0656.

s4.15d

V. THREE-LOOP VERTEX CORRECTIONS

In the preceeding sections, we showed that the transverse
momentum vertex correction diagrams have the greatest con-
tributions to the value ofzh among all the two-loop contri-
butions. To estimate the higher order effect, let us concen-
trate on the three-loop transverse momentum vertex
correction diagrams.

These three-loop vertex correction diagrams for the trans-
verse momentum can be grouped into three general types.
Figure 3 shows one representative diagram from each type.
For the diagram shown in Fig. 3sad, there is a total of 18
different variationsf13g. It is a straightforward, but tedious,
exercise to show that the sum of these 18 diagrams gives

dgc
s3d =

1

d − 1
E ddp

s2pdd E ddq

s2pdd E ddr

s2pddS1 −
xcspd

xcsk − pdDS1 −
xcsrd

xcsk − rdD xcsqd
xcsk − qd

3
p ·Tk · rsk − qd ·Tp−q ·qsk − rd ·Tq−r · r

g jsp − qdg jsq − rdfgcspd + gcsk − pdgfgcsqd + gcsk − qdgfgcsrd + gcsk − rdg
. s5.1d

The contributions from the other two types of diagrams, Figs. 3sbd and 3scd, can be shown to be small when compared with
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the first type. To illustrate this point, consider the frequency integrals involved in a typical diagram represented by Fig. 3sbd,
which can be written as

E dv8

2p
E dv9

2p
E dv-

2p

1

− iv8 + xcspd
1

− isv − v8d + gcsk − pd
3

1

− iv- + xcsrd
1

− isv − v-d + gcsk − rd

3
1

− iv9 + xcsqd
1

− isv − v8 + v9 − v-d + gcsk − p + q − rd
3

1

− isv8 − v9d + x jsp − qd
1

− isv9 − v-d + g jsq − rd

.
1

− iv + gcspd + gcsk − pd
1

− iv + gcsrd + gcsk − rd
3

1

− iv + g jsp − qd
1

g jsp − qdfg jsp − qd + g jsq − rdg
. s5.2d

Compare Eq.s5.2d with Eq. s5.1d; a factor ofg j has replacedgc in Eq. s5.1d. Sinceg j @gc, the contributions from this type
of diagram should be much smaller than those from Fig. 3sad. Intuitively, this is so because the crossed transverse momentum
propagators force one of the middle two order-parameter propagators to their time scale, which is much shorter. A similar
argument can be made for diagrams represented by Fig. 3scd.

Having established that the only important three-loop contributions are contained in Eq.s5.1d, we go back to evaluate them.
Substituting the scaling relations, it is trivial to show that

Jd
s3d =

1

d − 1
E ddp

Cd
E ddq

Cd
E ddr

Cd
S1 −

sk − pd2−h

p2−h DS1 −
sk − rd2−h

r2−h D
3

q2−h

sk − qd2−h

p ·Tk · rsk − qd ·Tq−p ·qsk − rd ·Tq−r · r

sp − qd2−zhsq − rd2−zh
3

1

fpd+zh + sk − qdd+zhgfqd+zh + sk − qdd+zhgfrd+zh + sk − rdd+zhg
,

s5.3d

wherek is a unit vector. As with the lower order transverse
momentum diagrams, the leading divergent part can be ob-
tained by expanding the integrand in powers ofk. Keeping
only the lowest order in the expansion and then averaging
over all directions ofk, we obtain

Jd
s3dszhd =

s1 − h/2d2

2sd − 1d E ddp

Cd
E ddq

Cd
E ddr

Cd

dsp · rd2 − p2r2

p2r2

3
q ·Tp+q ·qr ·Tq+r · r

sp + qd2−zhsq + rd2−zhpd+zhqd+zhrd+zh
s5.4d

where we have changedq to −q in order to make it easier to
evaluate the integrals later. If we definep·q=pqcossud,
q·r =qr cossu8d andp·r =pr cossu9d, and scale bothp and r
by q, we can integrate overq, with a lower cutoff limit of 1
to obtain the leading contribution as

Jd
s3dszhd =

s1 − h/2d2

2sd − 1d
1

zh
E ddVp

Cd

3sin2 uE
0

` pdp

f1 + 2p cossud + p2g2

3E ddVr

Cd
sd cos2 u9 − 1d

3sin2 u8E
0

` rdr

s1 + 2r cosu8 + r2d2 . s5.5d

The integrals can be performed similarly to those inJd
syd ssee

Appendix Ad to yield

Jd
s3dszhd =

J3

zh

, s5.6d

where

J3 = S1 −
h

2
D2 1

dsd + 2d
1

2d2sd − 2d2 =
J2

2dsd − 2d
, s5.7d

which is the value forJ3 used in Eq.s1.22d when evaluated at
d=3.

VI. DISCUSSION AND CONCLUSIONS

Thee-expansion calculation of the critical viscosity expo-
nent,zh=0.0071, is largely the result of underestimating the
one-loop order-parameter decay rate as shown in Fig. 4f12g
by the way of 30% smaller value ofId

s1d in three dimensions.

FIG. 3. Typical three-loop diagrams for the transverse momen-
tum modes. Diagrams of the typessbd and scd can be shown to be
small as compared with the contributions fromsad.
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The three dimensional one-loop coupled-mode result ofzh

=8/15p2=0.0054 also cannot be regarded as a correct pre-
diction because of the contributions from the higher loops.
The inclusion, as a first step, of the two-loop effects requires
the vertex correction diagrams, as well as thec4 interaction.
However, the order-parameter decay rate is not significantly
changed by the addition of its vertex correction term because
of the smallness ofI3

syd, as shown in Eq.s4.2d. Furthermore,
the contributions to the order-parameter decay rate from the
c4 interaction almost cancel each other as evidenced by Eq.
s4.10d. Substituting Eq.s4.2d, the value of I3

syd, into Eq.
s4.10d, we obtain, for the coupling constantG in d=3,

G = 0.8133. s6.1d

Of all the two-loop contributions, it is the transverse momen-
tum vertex corrections that contribute most significantly to
the final value ofzh.

The two-loop treatment of the critical viscosity exponent
demonstrates that the two-loop order-parameter vertex cor-
rection is negligibly small and causes us to adopt a general
rule according to which it is permitted to neglect as well the
higher order graphs in this category. This leaves the three-
loop graphs for the vertex correction of the viscous mode,
which we evaluated in the previous section and found to be1

6
of that from the two-loop graphs. If we assume that the
higher order contributions for the viscous mode continue
with the same ratio, the enhancement factorF` of Eq. s1.23d
can easily be obtained using Eq.s6.1d as

F` = 1.3136. s6.2d

Equations4.11d can easily be extended to include the three-
loop and higher effects as

zh
s`d = GJ1F`/s1 + Gdd, s6.3d

which gives the final value forzh to be

zh = zh
s`d = 0.0679 ± 0.0007. s6.4d

For comparison purposes, if we stop at the three-loop, the
value for the enhance factor isF3=1.3078 and the value of
critical viscosity exponent iszh

s3d=0.0676, which is only
slightly smaller than the value ofzh

s`d. The final result of the
theory effort f14g, as expressed by Eq.s6.4d, can be com-
pared to the experimentally measured critical exponent,
0.0690±0.0006, as reported by Berget al. f15g.
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APPENDIX A

We provide, in this appendix, some details for evaluating
the integralsId

syd and Jd
syd. Consider first the simpler of the

two, Jd
syd. In the limit of zh=0, simple power counting shows

that it is logarithmically divergent. As a result, we can ex-
pand the numerator in powers ofk and neglect it in compari-
son with p and q in the demoninator. From Eq.s2.26d, we
obtain

Jd
sydszhd .

s1 − h/2d2

d − 1

3E ddp

Cd
E ddq

Cd

p ·Tk ·qp ·Tp+q ·qp ·kk ·q

p2+d+zhq2+d+zhsp + qd2−zh
.

sA1d

Averaging the above over all directions ofk, we get

ksp ·k k ·qdsp ·Tk ·qdl =
p2q2

dsd + 2d
sd cos2 u − 1d, sA2d

where u is the angle betweenp and q. The other angular
dependent factorp·Tp+q·q can also be simplified to

p ·Tp+q ·q = p ·q −
p · sp + qdsp + qd ·q

sp + qd2 = −
p2q2 sin2 u

sp + qd2 .

sA3d

Jd
sydszhd then becomes

Jd
sydszhd = −

1

dsd + 2d
1

d − 1

3E ddp

Cd
E ddq

Cd

p2q2sd cos2 u − 1dsin2 u

sp + qd4−zhpd+zhqd+zh
.

sA4d

If we scaleq by p so thatl =q/p, the integration overp can
then carried out with a lower cutoff of 1 forp to yield

Jd
sydszhd . −

1

dsd + 2d
1

d − 1

1

zh
E ddl

Cd

l2sd cos2 u − 1dsin2 u

s1 + 2l cosu + l2d2ld
,

sA5d

where we have neglectedzh in the remaining integral since
the leading 1/zh behavior has already been captured by the
integration overp. The integration over the radial direction
of l can be carried out first since

FIG. 4. One-loop integralId
s1d vs e=4−d, whered is the spatial

dimensionality. Solid curve shows the exact functionfEq. s2.20d
with zh andh set to zerog with value of I10=p2/8 indicated by the
solid dot. The 30% error of the two-terme expansion by Siggiaet
al. f1g is shown by the dashed curve.

CRITICAL VISCOSITY EXPONENT FOR CLASSICAL FLUIDS PHYSICAL REVIEW E71, 021201s2005d

021201-11



E
0

` ldl

s1 + 2l cosu + l2d2 =
1

2 sin3 u
ssinu − u cosud.

sA6d

The remaining integrations overu are elementary and can be
obtained easily to yield Eqs.s2.27d and s2.28d.

The evaluation ofId
sydszhd follows a similar line when per-

formed as ane expansion because it has the same logarith-
mic divergence atd=4. By neglectingk in the denominator,

we can average over all directions ofk in the numerator to
obtain

kk ·Tp · sk − qdk ·Tq · sk − pdl = −
pq

d
cosu sin2 u,

sA7d

where u is again the angle betweenp and q. Id
sydszhd then

becomes

Id
sydszhd = −

1

d
E ddp

Cd
E ddq

Cd

pqcosu sin2 ufsp + qd2 − p2gfsp + qd2 − q2g
p4−zhq4−zhsp + qd2fpd+zh + qd+zh + sp + qdd+zhg

+ Os1d. sA8d

Once again, we can integrate over one momentum, sayp, by introducingl =q/p to obtain

Id
sydszhd = −

1

e − zh

1

p
E

0

1

dlE
0

p

du
l cosu sin4 usl + 2 cosuds1 + 2l cosud

s1 + 2l cosu + l2df1 + l4 + s1 + 2l cosu + l2d2g
+ Os1d. sA9d

The integrand can be separated, using partial fraction, into simpler terms as

l cosu sin4 usl + 2 cosuds1 + 2l cosud
s1 + 2l cosu + l2df1 + l4 + sl + 2l cosu + l2d2g

= A + B cosu + C cos2 u + D cos3 u + E cos4 u +
F

1 + 2l cosu + l2
+

G + H cosu

1 + l4 + fs1 + 2l cosu + l2d2g
, sA10d

where the coefficientsA–H are functions ofl only. The integration overu are familiar with the possible exception of the last
term in Eq.sA10d which can be evaluated using

E
0

p

du
1

1 + l4 + s1 + 2l cosu + l2d2 =
p

2

1 + l2

1 + l2 + l4
1

Î1 + l4
, sA11d

and

E
0

p

du
cosu

1 + l4 + s1 + 2l cosu + l2d2 = −
p

2

l

1 + l2 + l4
1

Î1 + l4
. sA12d

The remaining integration overl is tedious but straightforward. In the end, we arrived at Eq.s3.4d.
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