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Virial coefficients of hard spheres and hard disks up to the ninth
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A technique for topological analysis of the Ree-Hoover diagrams is developed with the aim to calculate the
Ree-Hoover weights up to the ninth order with moderate demands on computer storage and CPU time. The
ninth virial coefficients of hard spheres and disks are calculated, and the lower virial coefficients are accurately
recalculated. The calculations require several spanning diagrams; the most important spanning chains are
generated by reptation, other spanning diagrams by the standard Metropolis Monte Carlo algorithm. The tenth
and eleventh virial coefficients for hard spheres are estimated.
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I. INTRODUCTION Ei - Bi/Vi_l.

Virial coefficients, the coefficients in the density expan- - - . :
. . These virial coefficients appear in the expansion of the com-
sion of the compressibility factor, are cornerstones of the ressibility factor in powers of the oacking fractio
statistical thermodynamics of fluids at low and medium denP y P P 9 "

sities. They are defined by exact formuldsee from any =NV/V, where N denotes the number of particles akd

approximation in terms of integrals whose integrands de- system volume.
PP . 9 9 The higher virial coefficients must be calculated numeri-
pend on intermolecular potential ener§§,2]. They can

serve for testing aporoximate theories of fluids and for de_Cally. The fifth virial coefficients for hard spheres and disks
) 'g app were calculated by Rosenbluth and Rosenblithand by
veloping equations of state.

In principle, the virial coefficients can be calculated for Kratky [8—11], the sixths by Ree and Hoovgr2], the sev-
P pI€, ) . . enths also by Ree and HooVer3], by Kim and Henderson
any order. Unfortunately, calculation of high-order coeffi- 14
X . ; - ], and by Janse van Rensburg and Toft&], and the
cients becomes increasingly difficult because both the nun{-.

ber of integrals and their dimensionality rapidly increase eighths by Janse van Rensbuffi]. As a rule, when the

. ) . N ‘higher virial coefficients were evaluated, the lower ones were
The increase in complexity of the calculation is demon-
.more accurately recalculated. Recently Vlasov, You, and

st.rated n Tgble I V\_/here the. numbers of mtegrals and the'f\/lasters[ﬂ] recalculated the seventh and the eighth virial
dimensionality for virial coefficients up to the ninth are sum- coefficients

marized. The aim of this work is to determine the ninth virial co-
The virial coefficients have been best explored for the ... . : o

. . . efficients of hard spheres and hard disks and to provide im-

systems of hard spheres and two-dimensional hard disks for

which they are known up to the eighth. The second thirdproved values of the lower virial coefficients. We use the
and fourth virial coefficients are known analytically. For hard algorithm originally developed in Reff12,13 (Ree-Hoover

spheres it holds thd8,4] diagrams and'further extended in Reiﬁl@,l?_l. Within this .
general algorithm, we propose a technique for topological
analysis of the diagrams and a technique for calculation of

B,=4, B;=10, the diagrams.

~ 27077 +[438/2 - 4131 arccod/3)]
Ba= 707

and for hard disk$5,6]

=18.364 768 4, II. THEORY
A. Basic formulas

The nth virial coefficient,B,, of particles interacting via a

_ - 16 43 spherically symmetric pair potential(r;;), is given by the
B,=2, By=—-—=3.12801775, sum of all cluster integrals corresponding to labeled irreduc-
3 77 ible f-bond diagrams witn points[18],
~ \“5 80 B.= ﬁ2| (R) (1)
B,=16-36 —+ =4.257 854 46, YRR
aa

We note that there are a number of synonymous expressions
for these diagrams in the literature, such as Mayer diagrams,
diagrams without articulation points, double connected dia-
grams, Mayer stars, cluster diagrams, blocks, etc. We will
use term “Mayer diagrams.”

*URL: http://www.vscht.cz/fch/en/people/ The cluster integraly,(R) of Mayer diagranR is

Where~Bi are the virial coefficients reduced by the molecule
“volume” V (sphere volume or disk arga
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TABLE I. Number of unlabeled and labeled Mayer and Ree-Hoover diagtaess Sec. Il B for expla-
nation and dimensionalityd of corresponding cluster integrals for hard spheres.

Mayer Ree-Hoover

n unlabeled labeled unlabeled labeled d

2 1 1 1 1 1

3 1 1 1 1 3

4 3 10 2 4 6

5 10 238 5 68 9

6 56 11 368 23 3053 12

7 468 1014 888 171 297 171 15

8 7123 166 537 616 2 606 56 671 216 18

9 194 066 50 680 432 112 81 564 21 286 987 064 21

canonical representation of Mayer diagr&nas a subdia-
(R = | - | I fydry---dry, (2)  gram. Finally,
(ij)eR
. - 1-n
where the product is over all bonds in diagrdtrnand the B,= —IE Wrp(S)1ru(S), (7)
Mayer functionf;; is given by n s
fiy = exd- pu(ry)] - 1=¢; - 1. (3  Where
Here B=1/(kgT) and g; is the Boltzmann factor. For hard lou(S) = f
= i e dry---dr,. 8

spheres and hard diskgenerally for hard-body systeins; RH(S) <i};£3 "<i£s e " ®

is either -1 if the particles overlap or O if they do not. _ _ .
Many Mayer diagrams in Eqd) differ in the numbering The RH expansion leads to a considerable reduction of the
of the nodegparticles only. Thus Eq(1) can be written in a Number of diagrams that must be evaluated, as many Mayer
more compact form, diagrams cancel out identically, see Table 1. In addition, the
computer code to implement E¢8) is much simpler and

1-n more efficient than for Eq.2).
By= =2 wu(Su(9), (4)
. S

. . B. Calculation of the Mayer and Ree-Hoover weights
where now the sum is over unlabeled Mayer diagrams and

Wy (S) denotes the Mayer weight. Each unlabeled diagram Itis easy to determine the number of irreducible diagrams
thus corresponds to the clagtiagram group of wy(S) la-  and th“e|r Mayer welghts”fon$6_ because this can be done
beled diagrams which are topologically equivaléspmor-  USiNg “pencil and paper.” The higheris, the more difficult
phic). For calculation purposes one labeled diagram from thdt Peécomes to keep relevant information under control. For-
class is chosen as its canonical representation. tunately, stat_e—of-the—art algebra computing faC|I|t|es. allow
Ree and Hoover in their pioneering wofk2] replaced ~ US to determine the numbers of relevant diagrams without a
the irreducible Mayer diagrams by the generalized diagramg'uman factor” error. o _
with f bonds ance bonds, The analysis is based anpoint diagrams with nodes la-
beled by numbers(1,2,...,n). Any diagram S can be
IT fi; = 11 fi IT 1=11 fi 11 (g - fi). (5 uniquely characterized by binary code numB¢§) with nj
(iiyes (iyes (eSS  (ijesS (ijeS :(2) binary digits. Each bit ofF(S) corresponds to some
. . . bond f;; where digit 1 denotes a presence fgf bond and
There are again a lot of synonyms used in the literature foEIigit 0 either its absencéor Mayer diagramisor the pres-
these diagrams: Ree-Hoover diagrams, modified stars, Reghce of ane; bond (for RH diagrami The choice of num-
Hoover complements, complement blocks, etc. We will us !

e . ” eoering of the bonds appearing in diagrams is in principle
theBabé);e\élr?gi?]n tESISIsatlgr?on;fl.ct in E€B), one derives the arbitrary. In this paper, the bits from the most significant,
foIIO\)//vin pformulga for the SH weiahts: 2wl to the least significant, °2 correspond to bonds

9 gnts: f10:Tom Faas -ov s Fras F13,Tom ov s Frips F1as -.r - It mea@ns that

Wei(S) = 2 (- 1S Swy (SHh(S S), (6) F(S) = = (W M+ 2% 2 g+ 26344 o). (9)

SI

This choice differs from numbering used in all previous

where the sum is over all canonical representa®n|9 papers. As shown later, it enables us to reduce considerably
denotes the number dfbonds in diagrans, andh(S,S') is  both the computer time and memory requirements. More-
the number of distinct labeled RH diagrarSshaving the over, we define the canonical representation using this num-
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bering: The canonical representation of a class of isomorphich(S,S’). The RH weights are finally calculated from E6).
labeled diagrams is the diagram S with the greatest value offhe algorithm is further optimized by sorting the diagrams in
F(S. a given class and using the property thatSIfCS, then

The algorithm starts by selecting the irreducible diagram$=(S') < F(9).
and determining their Mayer weights. The following algo-  As noted earlier, the diagrammatic analysis becomes sub-
rithm is repeated for all diagrams starting from code numbestantially complicated with increasing and the number of
2™—1 (corresponding to diagram with & bonds. diagram classes rises very rapidly. To verify the results of the

(i) Has the given diagram been analyzed? If so, continuanalysis is therefore rather problematic. We nevertheless
to the next diagram with the code number decreased by 1.compared our results with those of previous authors

(i) Is the diagram connected and irreducible? If not, con{12,13,16,17 and we got complete agreement. The numbers
tinue to the next diagram in the same manner. of the Mayer diagrams and RH diagrams also agree with

(iii) In this case, the chosen diagram is the canonical repyalues from the literature where they were publishedrfor
resentation of the next isomorphic class and its Mayer weight 9 [19,20. The condition which statdd 3]
is calculated. This is done as follows. We generatenall
labelings of the diagram, i.e., all permutations of numbers
(1,2,...,n) assigned to the nodes. For all of them, the code 2 Wrn(S) =1
numberF(S) is calculated and the number of different values s
of F(S) gives the Mayer weight of the class. Simultaneously, . ] )
all these diagrams are marked as already analyzed. In thig another independent test which was also successfully veri-
way, it is assured that all diagrams are taken into accourf{€d:
once and only once.

The proposed algorithm avoids usage of the so-called nu-
meration invariantscalled also graph determinajptnd dif-
ferent diagrammatic theorems which have been used in pre- The integrals in Eq(8) are calculated by Monte Carlo
vious paper§12,13,16,17T as characteristics enabling us to integration. To do this, a certain diagrgspanning diagrain
distinguish between different isomorphic classes. We also ref formed as a subset ¢f bonds ofSis selected. The span-
mark that the numeration invariants defined 48] are not  ning diagram must locate positions of all particlesSoand
sufficient to distinguish between all classes for diagramssimultaneously must be simple enough to enable analytical
with n>7. evaluation ofly(T). The simplest example of such a span-

There are no memory problems with this analysis for thening diagram can be the linear or nonlinear tfé&]. We
virial coefficients up toBg. However, there aré3)236 pos-  note that it is not necessary to use only trees as the spanning
sible bonds foiBy and 2° diagrams are to be analyzed. With diagrams and in some cases it even can be more efficient to
a single bit needed for each diagrdas a flag marking dia- use more complicated diagrarfil].
gram status in the algorithithis corresponds to*2bytes(8 Positions of particles for which the product bbonds in
GiB; 1 Gi=1024) of memory, which is more than is addres- T is nonzero, i.e., with overlaps of given bonds, are sampled
sable on 32-bit computers. The trick which allowed us toby the Monte Carlo method. We used two methods in depen-
proceed is based on the following stateméfitte canonical dence on the spanning diagram. For the linear chain we used
representation of any-point, n=5, Mayer diagram contains  reptation[22]. In one reptation step a particle is added at
path f,f,3f34f45. The proof of this statement is given in the random at the head of the chain so that it overlaps with the
Appendix. head particle; this particle becomes the new head while the

Consequently, in the above algorithm it is sufficient totail particle is removed. For nonlinear trees we used the stan-
consider only diagrams with the four most important bits ofdard Metropolis Monte Carlo methodd,22. In one step,
F(S set to 1. The number of diagrams to analyze thus reeach particle was subject to a trial move which was accepted
duces from 2 to 2°2 and the memory requirements to mod- if all f bonds inT were preserved and rejected otherwise.
erate half a gigabyte. At the same time, the computer time ofhe size of the move was adjustéfdr each particle inde-
the diagram analysis is considerably reduced. pendently to an acceptance ratio of about 0.4. Technical

Resulting CPU times for the analysis of Mayer diagramsdetails about the used random number generator are given in
were about 2s, 4 min, and 11 h far7, 8, and 9, respec- Appendix B of Ref[21].
tively, on a PC with a Pentium 4/2.4 GHz processof.16], The value oflg(9) is then calculated using the formula
30 min and 250 h were reported for7 and 8, respectively,
on an unspecified fast workstation. It implies that the usage
of our algorithm along with the progress in computer speed Irn(S) = 'M(T)< ) H fij , H eu‘> ' (10
enabled us to speed up the calculations by more than three pesT (pesuT /1
orders of magnitude.

The second part of the topological analysis is calculatiorwhere the brackets are mean values over all MC samples of
of the RH weights from the Mayer weights. For all classes ofT. Generally, for an unlabeled diagraBithere may exist
diagrams, we start with the canonical representation chosesgeveral isomorphic labeled RH diagratdéS, T) sharing the
in the previous analysis. Then we generate all its distincsame labeled spanning diagram Therefore, the average
labelings in the same manner as previously and calculatealue

C. Monte Carlo integration
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name | n=5 =6 n=7 n=8 =9 beled and labeled RH diagrams calculated in this way by
Linear particular spanning diagrams are listed in Table Il. We note
that the number of labeled RH diagrams for8 generated
Cross I py a linear spanning.treél 106 208 iso'morp'hs'in [17] is
incorrect, the error being caused by an insufficient number of
Y.ended rotational invariants in diagrammatic analyg28]. These er-
cross I { I { rors affected only a small portion of diagrams with marginal
impact on the final results. The virial coefficient obtained

e !
¢ {

—t—

Doubl S
cross '-H-' from strategy | is given by
FIG. 1. Spanning trees and their mnemonic names. Bn = Z ABA(T), (12
o where the sum is over spanning trees depicted in Fig. 1 in the
lgy(S) = —— > lr(U), (11) order glefined |n this figure andBp(T) i.s a contribution 'Fo
ST yisn the virial coefficient due to spanning diagramThe explicit

formula for each contribution is
can substantially improve the efficiency of the MC method. M(T)
The “unlabeling factor’y(S,T) counts the number of these A S 1 D 1-n_ n-1
. Bn(T)= (= Vexd

labelings. M(T) 5 nl

For n<5, the simplest linear spanning diagram can be

. o ENEE UST)

used for all unlabeled RH diagrams. Foe 6, it is not pos- « (= D™ wgp(S) S Hip), (13
sible (or usefu) to cover allS by one spanning diagram. The S YST) et )
spanning diagrams used are depicted in Fig. 1. In all cases _ _ _ _
Im(T)=(=Vexd™ %, Where Vg, is the excluded volumgor  whereM(T) is a number of configurations of a given span-
area of the particle. ning diagram generated during MC sampliri€y is a sum

Using these sets of spanning diagrams, two different stragver all unlabeled RH diagrams contributing to the given
egies might be used to calculate values of all RH diagramsAB,(T) (as defined aboyeandH(i,j) is 1 if theith gener-

In strategy |, used already in previous papersated configuration has the same bonds agttiéabeled dia-
[12,13,15-1F, Ixy(S) are calculated from Eq$10) and(11) ~ 9ram and O otherwise. o _
for all diagrams having the firgtinean spanning diagrari, In the actual computer code, all remainifrgt already in

as a subset, i.e(S,T,)>0. For other RH diagrams with T) f bonds are determined and then used to compose a binary

T)=0. th d - - is ch numberF similarly to Eq.(9) but now with thef bonds of
7S TY=0, the secon. spanning dlagréfg 'S chosen gnd the spanning tree omitted because they are all 1. This number
Iru(S) for ¥(S,To)>0 is calculated. This procedure is re- s ysed as an index of a look-up-table containing indices of

peated until alllg(S) are obtained. The numbers of unla- all N(T) unlabeled diagrams spanned oWlelA unity is then

TABLE Il. Numbers of unlabeled and labeled RH diagrams used in calculation for different spanning
diagramsn is the number of node@articles, T is the type of spanning diagrafeee Fig. 1, AN(T) is the
number of RH diagrams generated by the given spanning diagram that have not been sampled by any
previous spanning diagram, ahdT) is the overall number of RH diagrams generated by a given spanning

diagram.
AN(T) N(T)

n T unlabeled labeled unlabeled labeled
5 Linear 5 16 5 16

6 Linear 22 318 22 318
6 Cross 1 1 16 175
7 Linear 168 13 506 168 13 506
7 Cross 3 16 146 9715
8 Linear 2 576 1099 116 2 576 1099 116
8 Cross 29 453 2 517 885 899
8 Y-ended cross 1 1 2 466 831 866
9 Linear 81 302 173 778 502 81 302 173 778 502
9 Cross 255 15 594 80 812 150 339 039
9 Y-ended cross 6 23 77 709 143 458 475
9 Double cross 1 1 72 170 131 532 025
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TABLE Ill. Reduced virial coefficientsl?in of hard spheres calculated by different spanning tfEes

AEn(T) andén(T) denote the results of Eq&l3) and (17), respectively. The total number of MC configu-
rations for each spanning diagram is denotedvif). Values in parentheses are estimated standard errors.

n T AB(T) By(T) 10°°M(T)
5 Linear 28.224381) 28.2243831) 807
6 Linear 39.8159(11) 36.41260104) 1318
6 Cross -0.0000063) 3.4031826) 152
6 sum 39.8159111) 39.81578107) 1470
7 Linear 53.3413(062 49.36955158 16463
7 Cross 0.000149) 3.9717%26) 819
7 sum 53.3414@62 53.34130160 17282
8 Linear 68.5516101) 65.429399) 13909
8 Cross -0.011742) 2.001114) 624
8 Y-ended cross 0 1.108H 102
8 sum 68.5398.01) 68.5400100 14635
9 Linear 85.6783) 111.17376) 7611
9 Cross 0.129) 16.08716) 870
9 Y-ended cross 0.00066 -35.17513) 926
9 Double cross 0 -6.288) 399
9 sum 85.8083) 85.79979) 9806
added to the corresponing element of an array accumulating 1 M(T) 1-n

thus the last sum of E13). This efficient implementation is
based on thé ande bonds in RH diagrams and is not pos-
sible with the Mayer diagrams. Fd@y, the size of the look-

up-table(of 4-byte integersis 1 GiB.

In strategy Il,Ir4(S) are calculated as weighted averages

M(T) i1

Ba(T)=—— ) (= V™

5 WS D w9

S

> H@.j). 17)

=1

from all spanning diagrams having thej(S,T) >0, We remark in passing that both Ed43) and(17) are in

the form of MC averages and therefore their errors can be

o WST) easily estimated even though the consecutive MC configura-
(D=2 ———— > Igy(V), (14)  tions are correlated.
T ST ysn Both proposed strategies can be implemented simulta-

neously within the same Monte Carlo simulation. Generally
where theS; is over all spanning diagran®andW(S, T) is speaking, the second strategy is better than the first one. The

the weight(of diagramS in the MC set of configurations for main reason.|s thgt Eql7) uses aI_I available conflguratlons
T). It is proportional to the product of the number of con- ©f the spanning diagrams to obtain average valudgb),
figurations generated for giveR, M(T), and the unlabeling While Eq. (13) ignores the configurations belonging to the
factor ¥(S,T), diagrams c0\_/ered by previous spanning trees. For instance,
for n=6 the linear spanning diagram generates only 22 RH
diagrams out of a total 23 needed. The missing one with
bonds f1,, a3, 24, f25, fo6, f24, f25, f36 IS Sampled by a cross
(15 spanning diagram; this spanning tree generates 15 other dia-
grams.
On the other hand, the first strategy can be used to distin-
The virial coefficient obtained from this strategy is given guish between the importance of the groups of diagrams
by mapped by individual spanning diagrams. A more detailed
comparison of both strategies is given in the following sec-
tion.

WST) = MMySD
> M(T)HST)

T

B = B.(T), 16
n ; o(T) (16) lll. RESULTS AND DISCUSSION

A. Virial coefficients up to Bg

whereB(T) is a part of the virial coefficient calculated by  Virial coefficientsBs to By for hard spheres and hard disks
spanning diagrant, were calculated using both strategies described in the previ-
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TABLE IV. Reduced virial coefficients§n of hard disks calculated by different spanning trdesThe

notation is the same as in Table Ill.

PHYSICAL REVIEW E 71, 021105(2009

n T AB(T) By(T) 107°M(T)
5 Linear 5.336894®9) 5.336894869) 12843
6 Linear 6.363027(211) 6.1856656108 27465
6 Cross 0 0.17736Q17) 796
6 sum 6.363027111) 6.3630268109 28261
7 Linear 7.35208@298) 7.27259828) 24532
7 Cross 0 0.079483) 258
7 sum 7.3520828) 7.35208028) 24790
8 Linear 8.31866@%2) 8.21616162) 32435
8 Cross 0 0.093218) 356
8 Y-ended cross 0 0.0092914) 33

8 sum 8.31866®2) 8.31866862) 32824
9 Linear 9.272389) 9.1251629) 11006
9 Cross 0 0.09932) 116
9 Y-ended cross 0 0.0244@&) 31

9 Double cross 0 0.0234610) 26

9 sum 9.272389) 9.2723629) 11179

ous section. In Tables Il and 1V, we summarize the numbergense of cross trees and especialtgnded and double cross
of configuration generated for each spanning diagram antlees.

values ofAB(T) and B(T) contributing to virial coefficients An important by-product of these considerations is that
according to Eqs(12) and(16). the final values do not depend, within statistical errors, on

It is seen that substantially more configurations were genthe method even though the partial contributions to the virial
erated on the basis of the linear spanning diagrams. There a¢gefficients differ a lot. This demonstrates the consistency of
two reasons for this. First, the linear spanning diagrams wergalculations using different spanning trees.
generated by reptation while the nonlinear ones by a less The calculations were performed on a PC-cluster based on
efficient standard Monte Carlo simulation. Second, the setd dual Pentim 3 1 GHz processors and one 3 GHz hyper-
of the RH diagrams covered by the linear spanning diagraméreading Pentium 4. The total CPU time per one virial
are much more important as seen from their contributions tgoefficient (sixth to ninth was in the range 4-6 month
B,’s as well as their standard errors. processors.

For hard disks, all spanning trees but the linear one give The recommended values Bf for n=>5 ton=9 for hard
zero contributions and can be omitted. For hard spheres, tf#heres and hard disks together with their uncertainty esti-
second non-negligible contributions are based on the croddates and with the older literature results are shown in Table
spanning diagrams but they have only a small influence olY. It follows from the table that the lower virial coefficients,
the final results. Our preliminary calculations show that forn<#8, calculated in this work are more precise by more than
more dimensional systems, the other Spanning diagrams ha®&e order than the older ones. In addition, in all cases the
greater importance: the diagrams Spanned over cross treBg§w and literature values match within doubled combined
not sampled by linear trees contribute by about 30% to th&tandard errofi.e., at the 95% confidence leyel
total value ofBq for D=4. This behavior is mainly due to the
steric hindrances which occur in two and three dimensions
[12,13 but are much less important in higher dimensions.

Both strategies described in the previous section are com- A question may be posed as to whether the tenth and
pared in Tables Ill and IV. Is is seen that the second strateghigher virial coefficients can be calculated using the tech-
gives only a minor decrease in standard errors. Is is mainlypique proposed in this work and the state-of-the-art computer
due to a much smaller number of configurations generatethcilities. Let us considen=10. There aré120)245 possible
for all spanning diagrams but the linear one. The accuracponds forB,, and 2° diagrams are to be analyzed, which
gain by using all information available for hard sph@g can be reduced to*2using the trick described in this work.
(including the above-mentioned 15 diagrarssmarginal 4% It can be easily addressed on 64-bit computers both for the
and similarly for higher virial coefficients. Total efficiency analysis(1 bit needed per diagrgnand for the Monte Carlo
analysis shows that the optimum numbers of configurationsun (we used a 4-byte integer for one diagram; this number
to reach the smallest overall error with the same CPU timean be, however, reduced by more sophisticated program-
would be even more for the linear spanning trees at the exming).

B. Higher-order virial coefficients
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TABLE V. Summary of virial coeﬁicientén for hard spheres and hard disks.

n hard spheres hard disks
recommended literature recommended literature

5 28.2244510)% 28.2245126)¢ 5.3368966464)"

6 39.8155036)° 39.73956)° 6.36302611)° 6.3625632)°

7 53.341816)° 53.449)" 7.35208028)° 7.3521370)

8 68.54010)° 68.23) 8.31866862)° 8.323840)

9 85.8(8)° 9.2723629)°

WWeighted average of 28.224&5) by [8—11] and 28.224444.02) by [21].
P\Weighted average of 39.815@®) by [21] and this work.

“This work.

YReference§s8—11.

®Referencd16].

fReference{l?].

Besides computer memory, there is a computer time probsoids, etg. Finally, it can be modified to calculate virial co-
lem. Forn=9, the CPU time needed to perform topological efficients of hard-body mixtures.
analysis is about a day. The estimated time ierl0 is a Note addedRecently, a preprint appearg#5]| reporting
year. In addition, the expected error B, estimated by ex- the virial coefficients up t®,, of hard spheres in dimensions
trapolating the data of Table Ill is about £1, provided that a2 to 8 and showing that the calculation Bf, (which we
several-month processor of CPU time is available. To sumeonsidered “at the edge of current computer technolpgy”
marize, calculation oB,, for hard spheres and disks is at the feasible.
edge of current computer technology whide; is beyond. The comparison with our results for disks and spheres up
Methods to obtain the values of higher virial coefficientsto By shows an excellent agreement within combined error
generally lie in their extrapolation from the known values of bars. Our results are on average two to three times more
the lower virial coefficients using computer simulation accurate with the exception & for hard spheres where the
equation-of-statdEOS results. Using the present virial co- accuracy is about the same. Also the exact vaﬁig
efficients and thg EOS moleculgr-dynamics data from Ref-1058+0.4 of[25] compares well with our EOS-based es-
[21], we estimateB;,=106.5+0.5B,,=130+2. This is fully  timate 106.5+0.5. In addition, our four-dimensional results
consistent with the estimates based onlhe virial Co‘iﬁ'c'e”tébtained meanwhild Bs=146.246113), Bg=253.39912),
up 10 B only and the same EOS datBi=106£2,By; B 375 0g13), B;=608.116), andBy=74619)] also agree
=130+5[21]. It is important to realize that these extrapola- with those of Ref[25]
tions (and consequently error estimatese based on an im- '

-~ ) . . - Using these new virial data along with the hard-sphere
plicit assumption that the series of high@r>9) virial coef- ) ~ )
ficients behaves “regularly” as a function of which need EOS data shifts the extrapolatBg, to a bit lower value than

not be the case. obtained in Sec. Ill B, 129+2, whilB;,=155+10 is inaccu-

For a hard-disk system, there are no sufficiently preciséate. It cannot be reliably determined by this method whether
simulation data of compressibility factors to perform similar some higher virial coefficients become negative or not.
simultaneous correlation.
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A method of calculation of the virial coefficients consist-
ing in a safe determination of the Ree-Hoover weights an
effective evaluation of the cluster integrals has been pro-
posed. The method was applied to calculation of the ninth

virial coefficients of hard spheres and hard disks and accu- APPENDIX
rate recalculation of the lower virial coefficients using stan-
dard PC computers. In this appendix, we prove the following statemefhe

The method can be extended in several ways. It can beanonical representation of any n-point=rb, Mayer dia-
used to evaluate the virial coefficients@fdimensional hard gram contains path (bf,3f34f 45.
hyperspheresD >3, which are of some theoretical interest Let us first considen=5. All unlabeled Mayer diagrams
[24]. It can also be used to calculate the ninth virial coeffi-are listed, e.g., if18—11] and it is easy to number them so
cients of hard-body fluidéspherocylinders, diatomics, ellip- that such a path is obtained.
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Let us therefore assunre>5. We will build the required

PHYSICAL REVIEW E 71, 021105(2009

There exists a bonded pair in the group of the spare nodes.

path for the given unlabeled Mayer diagram. First, let usSince this bond must be connected, directly or indireGtis

choose a bond and callfi{,. Because of double connectivity,
there exists a bonded noda neighboy connected to 2 and

another spare nogleto (any of four nodes 9fthe chain 1-2-
3-4, we arrive at a chain of at least five nodésur bonds

different from 1; let us call it 3. In addition, there exists a which can be renumbered to 1-2-3-4¢6) No bonded pair

neighbor of 3 different from 2; if it differs from 1, we call it

exists in the group of the spare nodes. If there is at least one

4 and have a chain 1-2-3-4. If it does not, there must exist dond from node 1 or 4of chain 1-2-3-4 to any of the spare

neighbor of either 1, 2, or 3 anthfter renumbering we
arrive at chain 1-2-3-4 again.

Now we have at least two spafenassignednodes to add
one node to chain 1-2-3-4. Two possibilities may hapgen:

nodes, we have the fifth node for the chain. If there is no
such bond, then all the spare nodes must be connected to
nodes 2 and 3. Then chain 1(@pare node3-4 has the re-
quired properties.
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