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Electrostatic interaction of charged planes in the thermal collision plasma: Detailed investigation
and comparison with experiment
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The spatial distribution of electrostatic potential between the metal planes in a thermal collision plasma at
atmospheric pressure has been investigated. It has been shown that the potential requirement must be calcu-
lated with respect to the bulk plasma potential, which depends on the ionization equilibrium in the plasma. It
has also been shown that the electrostatic perturbation in the plasma is detected only at distances of less than
four screening lengths. Long-range perturbation is described by the bulk plasma potential. The electrostatic
pressure on the plane as a function of boundary conditions has been found. The experimental results prove the
existence of interaction between the planes, located in the low-temperature plasma at a distance that consid-
erably exceeds the screening length, caused by changing the bulk plasma potential. The application of the
results to a complex dusty plasma has shown the diminution of-the dust component dissipation in strongly
coupled plasmas.
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[. INTRODUCTION free electrons in the plasma is ensured by the collision ion-
The reqular spatial distribution of dust arains was demon_izations of the added alkali-metal atoms. If the plasma did

9 P g not interact with the planes the requirement of neutrality
strated by experimental research on gas-discharge dusty plas-

mas[1-3). The tendency to form ordered structures was als would be satisfied and the total of the ions would be equal to
. y ol . e guantity of electrons. However, the interfacial interaction
observed in a plasma of solid fuel combustion prod{#15].

High interest in the theoretical exposition of interaction be—[ll] originally charges the planes and consequently the total

tween dust grains has been notig-9. But using the ioofneslectrons in the plasma will not be equal to the quantity of
Poisson-Boltzmann theory with reference to the Wigner- The spatial distribution of potentia(r) in the plasma is

Seitz mode[10] most authors make serious mistakes alread)found using the Poisson-Boltzmann equation
at the stage of assigning of the boundary conditions. A de- 9 q ’
tailed examination of the problem shows that in restricted 2 _
. LT Ve = dmre[ng explee/T) — nig exp(— ee/T)], 1
areas the potential and the electric field cannot be equal to ¢ = 4melheo expleq/T) = Mo eXp~ e/ T)] @
zero at the same time. Moreover, it is impossible to describ§heren,, andn;, are the electron and ion number densities at
the interaction between the grains using such an approaghe point of zero potential.
[8]. In the papef9] a flat model of interaction of charged | Ref. [9] it was generally assumed thag,# ni, and

dust grains has been considered wi_thin. the POiSSO”consequently Eq1) was reduced to the following form:
Boltzmann theory. The search for a solution is based on the

assumption that the number densities of electrons and ions in V2 = dmeng[explee/T) — a exp(— ep/T)],

the plasma can be unequal. Such a statement of the problem

has allowed for some different solutions to be obtainedwhere a=n;q/Ng.

though the problem remains unresolved. However, it is possible to act in a different way. It is
The present paper is devoted to a detailed study of graievident that Eq(1) has a trivial solution in the case when the

interaction in an equilibrium plasma using the example ofpotential is equal to some valug= ¢, at whichV2¢,=0,

interaction between charged parallel metal planes and the

plasma bordered by them, at various values of the electronic @0 = (T/28)In(Njg/Nep) - (2
work function of the planes and the atom ionization potential .
of the plasma. Either of the two replacements(r) =gyt ¢(r) reduces Eq.

(1) to the following form:
Il. STATEMENT OF THE PROBLEM V2¢: Sﬂe\”—neonio sinh(eq/T). (3)
A. The Poisson-Boltzmann equation It means that all the solutions of E€{) are symmetrical
We shall consider an equilibrium plasma, which consistsconcerning Eq(2), and any solution different from the trivial
of a buffer gas at atmospheric pressure and easily ionizablgolution cannot touch this value in terms of the theorem of
addition agents of alkali-metal atoms with number densityexistence and uniqueness. This means that on a restricted
N,=10-10" cm 3. The plasma is in contact with metal area there is no point whei' = ¢=0.
parallel planes, which border it. At the isothermal tempera- Equation(3) is given in the dimensionless form by means
ture T=0.1-0.3 e\(T/kg=1200-3500 K the formation of of the change of the variables
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d=edlT, x=rlrp, epds=1*/2 - W+ (T/2) In(gardgin,) . (5)

where r%:T/STrezv’neonio is the square of the screening  Therefore, only the values of the potential on the planes
length. ¢1 and ¢,, to which correspond dimensionless valdesand

Then for a flat case from E@3) it acquires the form of a ®,, can be used as boundary conditions. These values cannot
nonlinear second-order differential equation, be arbitrary, but are defined according to E5). by the in-

PD/d = Sinh(d) @) teraction between the plangs a_nd the plasma._ We note that the
- ' surface value of the potentidi is calculated with respect to

The constant valug,= ¢, is called the bulk potential of the #p- The total value of the potential on the plane surface is
plasma and is necessary for establishing a correlation beks=¢pi* @
tween dlﬁerent _solutlons_ of the P_0|sson-BoItzmann equation Ill. THE DISTRIBUTION OF POTENTIAL
carried out within the Wigner-Seitz model for separate dust
grains[12,13. A. Preliminary study

B. Boundary conditions We shall pay attention to the fact that, in view of the odd
] » function sintx), the solution of Eq(3) has a local minimum,
e e e o7 emsan o e Al e el e o, and th soluon has 2 oca
faces. The t%ermionic en%ission is described pb th%axmum, located in the half plang< ;. Hence, if the
CeS. , Y &lanes are given values of the total potentigland ¢,, SO
Richardson-Dushman equation that sgrie; — @) =Sgrie,— @) is true, then the spatial dis-
il = - (4memT?(27h)3) exp(—- WIT), tribution ¢(r), having in this case an extreme value, does not
T _ ) ) cross the linegy, and for the electric field on the planes
wherej, is the density of electronic current into the p|asmasgr(E1):—sgr(E2) is true. If the condition sgi;— ¢y)=
andW is the electronic work function. -sgr{p,—¢p) is valid, then the spatial distributiop(r) is a

.We study t'he equilibri.um con;qct_; therefore in agr_eemenPnonotonically decreasing or monotonically increasing func-
with the principle of detailed equilibrium, the electronic backtioy  and for the electric field. in this case 60

flow stipulated by the random motion of plasma electronszsgr(Ez) is valid.

corresponds to the thermionic curr¢ad, Thus, Eq.(3) has two sets of solutions, and the character
jabs= (1/4)er1956 of the solutions depends on the relation between the bound-
o € ¢ ary conditions¢y,¢, and the bulk plasma potentiap,,
whereC,=8T/mm, is the thermal velocity of electrons and Which is determined by the ionization state of the plasma,

Nes iS the number density of electrons at the plane surface. EQ- (2)- o o )
The sum of these currents allows calculating the equilib- This implies, that it is impossible to neglect the constant

rium value of the surface electron number density value ¢, as is usually done, because the constant value of
the potential does not influence the interaction of dust grains
Nes= ve €Xp(— WIT), and is determined by the electric field only. However, if we

where v,=2(m,T/27%%)%? is the effective density of states decide to measure the potential of the planes, the zero poten-
tial will already be given, being the potential of the ground.
of electrons. .
[Suppose the measured values of the potential¢are ¢,

The equilibrium electron number density near the meta ~
surface n,s does not depend on ionization processes in>0' Beforehand we may not say that 881 =-sgr(E;) and

plasma and is defined only by saturation pressure of eleé-he. pla_mes repel, as is clear from the analysis above. The
trons. In the volume of plasma the ionization equilibrium is '0Nization state of the plasma may be such that the vajye
defined by the Saha equatifbd], ensuresp; > @p > ¢o. Then sglE;) =sgn(E,) and the planes
5 are attracting.
Nng = Ngh; = N, (0 -
a a(0/Ga)ve expl=1*/T), B. The solutions
wheren, is the quasiunperturbed density,and g, are the

statistical weights of ions and atoms, arfds the effective
ionization pot_entjal pf the added atoms, which may differ d' = iZ\e"WS. (6)
from the real ionization potential of an isolated atom.

The relation between,sandn, determines the charge of The value of the constan#=0 produces Eq(6) in the fol-
the plane, because, according to the Boltzmann factgr, lowing form:
=ny expleds/ T), where ¢ is the potential of the surface. If , .
theqequilibrium at the boundary between the metal plane and ©'==2sin®72), @)
the plasma demands such a value of surface electron densishich corresponds to a semi-infinite volume of the plasma,
asnegs<ng, then the plane is charged negatively, thus dimin-provided thatd(«)=0.
ishing the probability of collision with the plasma electrons.  The solution Eq(7) is the function[6]

Otherwise the plane is charged positively. Finally all is re-
duced to the relation between the work function and the ion- ®=2In 1 + tanh(®,/4)exp(x, — X) ®8)
ization potential, 1 - tani®,/4)exp(x; — X)

Let us lower the order of Eq4):
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Sinh? = Sgr((bj_)\'/r& dn(\“’/l - 5(X - )\)’ 1/(1 - 5)) |
? sn(V1-8(x=\),1(1 - 9))

ae _ 25gri®)1=5 en(V1 =58 (x=N\),1/(1 - 8))

;o dx Sn(V1 = 8(x~\),1/(1~ )’
\{ o (12)
Po> By E
] i
Ppy 2 : C. The limiting thickness of the plasma layer
A X 3 X, AM2K Equations(11) and (12) feature periodic functions with
the period &, whereK is the complete elliptic integral of the
< first kind,
2= B )
1 2 K(m) = f [(1-t)(1 -mf] ™t (13
0

FIG. 1. Geometry of the task. wherem=1-¢6 for 1>6>0 andm=1/(1-6) for §<0.

. . L . . This means that the functiori$l) and(12) reach infinite
The solutions expressed in elliptic functions, whose qualiyg)yes at the distance oi2from . Therefore, the relations

tative forms are given in Fig. 1, correspond to the values oy, st pe evaluated for the thickness of the plasma layer be-
the constan®+ 0. In order to find these solutions it is nec- yyeen the planes=r,—ry,

essary to carry out a series of transformations. First of all, we
note that Eq(6) is an equation with separable variables and L/irp<2K, 6>0,
may be given as the integral

Lirp <K(2/(1-9¢)), 6<O0.

* do
L \s’—sinﬁ(Q)IZ) + 5: £2(\ = x). © The thickness of the plasma layer is interesting in many

respects, as it is much greater than the screening length, i.e.,
Here\ is a value of the coordinat@n the left, before the L/rp>1, which corresponds ti§>1. As it follows from the
plane r,—see Fig. 1 which approaching the potential tables[15] for the complete elliptic integrals of the first kind,
asymptotically tends to infinity. Such a choice of the limits of the values of the parametenr=1 correspond to the major
integration is caused by the necessity of reduction of thevalues of K. For example, the value of the parameter
integral(9) to a canonical form by means of the replacement=0.995 corresponds to the valle-4, whence we obtain the
t=sinh(®/2), value of the constani= +£0.005. At such small values of the
. constantd it can be neglected in Eq6). Thus, if the thick-
2 2 24—\ _ ness of the layet.=8rp, the spatial potential distribution
ft [+ D"+ HIPdt=x-. (10 near the plane, with adequate accuracy, is described by the

function (8) for a semi-infinite plasma which can be given in
The solutions of Eq(10) are represented according to the following form:

[15] in Jacobi elliptic functions, namely, for positive values

of 5, ® =2 || 27 S9PIEXPA=X) | (14
@ enx=n1-5) 1 - sgrd;)exp(\ = x)
sinh = sgr(®y) SNX-N1-0)’ where the constant=x, +In|tanH®,/4)|.
' In this case it is easy to spot that the potential varies from
4P dn(x=\,1-9) infinity up to the value 10/e at the distance of 0.013, up
— =-2sgid,) ————, 6<1, to the value I/e at the distance of 1r4, and at the distance
dx snx—=\,1-9) of 4rp the potential varies from infinity up to the value
0.07T/e. This means that if the distance from the plane is
) ~en(\ax=\),1 - 1/8) more than 4 the electrical interaction is essentially missing
sth =sgn®)Vo o Ta(x - 108)] irrespective of the value of the surface potential. Hence, the
SN ' thickness of the layerr4 is the limiting distance for propa-
- gation of electrostatic perturbation in the plasma.
dod ~dn(va(x=\),1 - 1/5)

——=-2sgiP Ve — = :
dx [ S(x — _
SN(vAX =), 1 - 1/9) D. Approximation of solutions

11

(1) If the layer of plasma is=4r then the small value of the

For negative values aof, constants allows approximating Eqg11) and(12) using the
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trigonometric functiong16]. The result obtained is as fol-
lows:

AN o w(X—)\))
S|nl-<2)—sgr(d>1)2Kco(< K ) 1> 6>0,

(DY m1-6| .
S|nh<2>—sgr(d>1) oK {sm(

0>6>-1.

1= ax=\) ) } -1
2K ’

PHYSICAL REVIEW E 71, 016411(2005

8= -4 sgr®d,) sgrn(®,)/sint*(K), (19

because als| <1 the absolute value of the constahtloes
not change with only a change of the signd®f or ®,.

IV. THE BULK PLASMA POTENTIAL
A. Definition of the bulk plasma potential

The obtained solutions of the Poisson-Boltzmann equa-
tion feature a spatial distribution of the potential about some
value ¢ As follows from Eq.(2), this value of the potential

However, it is more convenient to use a superposition ofs getermined by the relation of the ion and electron number

the solutions for a semi-infinite plasma, E@4), which it is
possible to represent as

-\
O =-2 sgnd,) In(tanhXT) ,

N+ 2K -
br=-2sgrid,) In(tanhTX> .

densities at the zero point of the total potentiat0. Let us

take the value of the floating potential of the probe, located
in the neutral gas plasma without dust grains, as the zero
point (certainly, the measuring potential of the probe with
respect to the ground will be distinct from zero because the
probe itself is a perturbing factor in the plasmH we add

dust grains to the plasma, the interphase interaction may
cause a change of the charged state of the plasma and then
the probe will show some other value of the potential. The

Then the spatial distribution of the potential between planegjiference between the previous value and the present value

can be described by the following expression:
d= In{(tanhx;—)\>kl<tanh)d22¢(>kz} , (19
providedK=4, k;=-2 sgri®,), andk,=-2 sgni®,).

E. Definition of the constants

The constanh is defined by the first boundary condition
Eqg. (14). The constantd must be defined in two ways: for

negative and positive values of the constant. In order to de-
fine the negativeS_ we take into account that in this case

there is a minimum of the spatial potential distributidrg.
From Eq.(6) it follows that

6_= - sintt(Py/2).

The minimum®,, is at the distanc& from the coordinate
\. Let us define the intervalk On its left this interval is
limited by the coordinatex. Its right coordinateN +2K is
defined by application of Eq(14) to the second plane,
whence it follows thai + 2K =x,—In[tanh(®,/4)|, i.e.,

2K =X, — X1 — InjtanH(@,/4)tanh(®,/4)|. (16)

The value®, is determined by Eq(15). As a result we
obtain

_ —4cosh(K)
~ sint(K)
For the positive value 06= 4, the functiond(x) crosses
the zero point at the distand¢é from \, and it follows from
Egs.(6) and(15) that
8, = (Py/2)? = 4/sinkF(K). (18)

We see that both Eq€17) and (18) coincide at major
values ofK, when costK)=sinh(K). Therefore we may
state that

(17)

is the bulk plasma potentia,, itself. If the interphase inter-
action does not change the charge of the plasma volume,
thenni;=ng and the bulk plasma potentigl,=0.

Thus, the bulk potential of the plasma characterizes the
size of operation that is necessary for the plasma to gain
some volumetric charg®p,. The bulk plasma potential and
the volumetric charge determine the electrostatic energy of
the plasma volume,

1
&= EQpI‘PpI-

On the other hand, the energy of the electric field produced is
determined by the equation

1 2
E=—1 E=dV,
8 \Vi

whereE is the electric field.
Hence, the bulk plasma potential in the layer between the
planes is equal to

2 X2
f E%dr (d")%dx
r _ T/x

¢ (20

P " e dp-a)
dme| (n—nydr
1

B. Calculation of the bulk plasma potential

We shall consider a layer of plasma with the thickness of
L>8rp. Then for each of the planes it is possible to use the
solution Eq.(14) and Eq.(7) for the derivative; then from
Eqg. (20) we obtain

Icotm\ + 2K = X) — coth(x; = \)
e  sinh(®,/2) - sinh(®,/2)

Ppl =~ (21
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FIG. 2. The spatial distribution of the total potential.

Equation (14) can be converted to the form ep-x)
=sgnd,)tan(P/4), whence we obtain cotk—\)
=cosh®/2) for the left plane and coth+2K-x)
=cosh®/2) for the right plane. Then from Ed21) it fol-
lows that

_ . Tcosh®,/2) - coshi®,/2) _ T ’_<<1>1 (DZ)
Pl e Sinh(@,/2) - sinh(®,/2) 4
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tial potential distribution in the first and second cases corre-
sponds to the valué< 0 (Fig. 2, Al and M9, and the planes
must be repulsive.

V. INTERACTION OF PLANES
A. Conditions of attraction and repulsion of planes

In [17] the existence of forces between thin metal and
dielectric films in the air gas-discharge plasma at pressures
of 1.3-13 Pa has been experimentally shown.

The interaction between the planes depends on the form
of the Poisson-Boltzmann equation solution. The repulsion
of planes occurs at values of the constést0. For example,
in the case of two aluminum planes, as has been observed,
and in the case of an aluminum plane and a molybdenum
plane, both correspond to negative values &fi.e., the
planes are repulsing. The change from repulsion to attraction
of planes occurs af=0. If the relative potentials of planes
are of different signs, the planes will attract. Such a situation
occurs if the material of the second plane is coppaft
=4.47 e\}. In this case the relative potentials have different
signs, $,=0.67 V, ¢,=—-0.06 V, and the spatial distribution
of potential between the planes is represented by a monotoni-
cally decreasing functiofFig. 2, Cy. The derivative of the
potential does not become zero anywhere between the planes
and ensures the existence of a unidirectional force attracting
the planes.

The bulk plasma potential in dimensional variables for a ¢\ e take the first plane in Fig. 1, the electric field on the

layer is,

Op = o1 Stan r<e¢14“;e¢2> (22

and taking into account Ed@5) for the surface potential,

T [*-=W;-W, 1
==L LW 3 G|
e 4T 4 gina

We note that the potential of the plasma has a sign that is 8
opposite to the sign of the surface potentials. Therefore th

left surfaceE.y; is different from the electric field on the
right surfacek gy, because the plasma is unlimited on its left
(6=0) and limited on its right 8+ 0). This gives rise to the
electrostatic pressure on the pland9,18|

87T(Eleft rlght)

P=i< ! ) (@)= (@ )ignd

erp

&nd hence, from Eq6) we obtain

total potential is always less, in terms of absolute value, than

the Poisson-Boltzmann equation solutions.

1( 7T

2
Let us consider a specific example, when aluminum P:'Q(e_r,)) 5, (23

planes (W=3.74 e\} are located in potassium plasma
(1=4.34 eV} with the number density of added ageNf
=10 cm® at the temperaturd=0.17 eT/kz=2000 K).

where § is determined by Eq(19), which can be trans-
formed, ifr,—r;>rp, to

In this case the effective density of electron statgs4.3

X 10%°° cm 3. In equilibrium the relative potential of the

planes is equal t@,=¢,=0.67 V and the bulk plasma po- pP= E(l)
tential is equal tap,=-0.33 V. Hence, the total potential of m\elp o p(rz- M)

the planes isp;=¢,=0.34 V. This value reflects the mea- o

surement with respect to the neutral plasma. The calculated (24)
spatial potential distribution is given in Fig. 2.

s

Let us replace the second plane by a molybdenum one The dependence of the electrostatic pressure on the rela-
(W=4.27 eV. In this case the relative values of the surfacetive potential of the second plane and the distance between

potential are also positive$;=0.67 V, $,=0.14 V. The the planes is shown in Fig. 3. The relative potential of the
bulk plasma potential i, =-0.28 V and the measuring in- first plane is 5. Dependence 1 is calculated by means of the
strument will show values of the total potential of a different computer model using Eq23) and dependence 2 is calcu-
sign, ¢;=0.39 V andg,=-0.14 V, though a plot of the spa- lated using Eq(24). We can see that E¢24) satisfactorily
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FIG. 3. The dependence of the dimensionless electrostatic pres-
surell=(erp/T)?P on the relative potential of the second plape FIG. 4. The calculated dependencies of the surface relative po-
and the distance between the plangsr;. Surface 1 is the result of tential ¢, the total potentialps, the bulk plasma potentiag,, and
the computer model; surface 2 is the solution of EX). the experimental points on the temperature of the single copper
electrode.

describes the electrostatic pressure if the distance between
the planes is more tharrg the absence of the electric current through the electrode sur-
face should be taken into account, i.e.,

B. Small values of the potential jo+jabstjrectjon=q, (25)
Let us consider the case of the relative surface potentialwhere ] =-(4memT%/(271)%) exp(—W/T) is the thermionic
&(¢1+ o) <4T when Eq.(22) for the bulk plasma potential gmjission current densityi2°s=(1/4)en.C, is the electron
is linearized:p, = (¢, + ¢p,)/ 2. Then the definition of the re- : rec =
w absorption current densitjf*=—(1/4) yensC; is the current
placementy(r) =@, + ¢(r) produces the total surface poten- ) S ' -
density of the surface recombination of ions, wh€rés the

tials
thermal velocity of ionspis=ny exp(—e¢,/T) is the surface
e1= (1= )2, @= (= P1)/2. number density of ions, angl is the surface recombination
This means thatp,=—¢,, i.e., the measuring device will coefficient;j?"=(1/4)BenC, is the current density of the
show opposite values of the planes’ potentials with respect teurface ionization of atoms, whe; is the thermal velocity
the neutral plasma at any values pf<T/e and ¢,<T/e. of atoms(C;=C,), n,&=Na—n;s is the surface number den-

Accordingly, the Poisson equation can have any forMjy, of atoms, angs; is the surface ionization coefficient.

of solution andhthe Iplgnes can either ar:tract”?r Irepel, 8S The surface ionization coefficient determines the prob-
determined by the relation af; and ¢, to the bulk plasma  ,pijity of jonization of atoms on the electrode surfdaa],

potential.
_ expeddT)
Pe= 1+ (adg) exsl(1 =~ WyiT]

Accordingly, the surface recombination coefficient is
We have found that the measured value of the potential 9y

VI. THE EXPERIMENT

depends on the values of the potential barriers on the plasma- _ 1

plane boundarigs. I-!ence, if the measgrement_of a single Ys= 1+(g/g,) exd(W—-1*)/T]’

electrode potential gives the valug, the introduction of a . ) ]
second electrode should change this value. The solution of Eq(25) produces the floating potentigl,

A propyl hydride—air flame at the absolute temperature ofVith respect to the bulk plasma potential. According to Eq.
about 1200 K was used in the experiment. A 40% watef22) the bulk plasma potential is
solution of potassium carbonate was injected into the air T eds
stream. It provided for a potassium number densityNgf Pp =~ 2=~ tan%( )
=10'%-10" cm™3. In such conditions the electron and ion €
equilibrium number densities arg~10° cm™. Then a flat  and the total potential is= ds+ ¢y
copper electrodél X 1 cn?) with a thermoelectric couple is All these dependencies are shown in Fig. 4. We can see
inserted into the flame along the stream. The measured vagood concurrence of the measurement data and the calcula-
ues of the floating potential of the single copper electrodeions.
with respect to the ground are given in Fig. 4. In the second stage of our experiment we leave the copper

Equation(5) cannot be used for calculation of the floating electrode at the temperature of about 1020 K in the flame and
potential in this case, because the low unperturbed numbénsert a similar aluminum electrode into the flame at the
densityn, does not ensure sufficient electron current. Onlydistance of 3 cm from the first oriéhe screening length here
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FIG. 6. The dependencies éf=(erp/T)?P (curve 1 and A

FIG. 5. The calculated dependencies of the surface relative po= 10(er3/T)(8P/ 64y (curve 2 on the normalized nonideality
tential ¢, the total potentials,, the bulk plasma potential,,, and parameted™.
the experimental points on the aluminum electrode temperature; the
calculated curve and the experimental points of the total potential 2a2T r( e ¢S>

¢g Of the copper electrode at the absolute temperature of 1020 K. Z= ? sin oT (26)
D
is rp=0.1 cm. In this case the relative surface potential of It is possible to build the dependence of the electrostatic
the aluminum electrodeés, is calculated as the solution of pressure between the two grains using the nonideality param-
Eq. (25), but the bulk plasma potential is defined by botheter, using Eq(24) and Eq.(26), provided that both grains
potentialsgg (1020 K) and ¢,(T). In Fig. 5 we can see that have identical charge$ig. 6, curve 1. We can see that the
different signs of the relative and total potentials of the alu-pressure tends to some constant value as the parairteter
minum probe are produced. We can also see that the changigcreases. Consequently, in a strongly nonideal plasma the
of the bulk plasma potential causes change of the total panteraction between the dust grains is weakly dependent on
tential of the first copper electrode to 0.1V, i.e., the secondhe fluctuation of the charg@otentia) on the grain surfaces.
isolated electrode inserted into the flame influences the medn order to prove it, let us examine the variation of the pres-
surement of the first electrode potential. sure on the surface potential of one of the grains, using Eg.
(24):
oP T tanhe¢d4T) |
VII. APPLICATION TO DUSTY PLASMAS - = > e, (27)
Sps  2merd cost(epdaT)
The investigation of electrostatic plane interaction de-yherelL=2(R,~a)/rp, is the distance between the surfaces

scribed above can be applied to dusty plasmas when defining grains with respect to the screening length.
the dynamic characteristics of the dust grain interaction. The The result is shown in Fig. Gcurve 2. Here it is evident

dynamic properties of the dust component are determined by,at at small values of the nonideality parameter the interac-

three dynamic parametefd9]: the nonideality parameter tion petween the grains increases with the growtii™afin

(the Coulomb coupling parameel’ =e?Z2/RyT; the struc-  ihjs case Eq(27) can be approximated as follows:

ture parameterk=Ry/rp; the dynamical parameterd

=7l wy. HereZ is the charge number of the dust graiy oP 1o | r* <1 29)

=(4mny/3)"Y3 is the Wigner-Seitz radiusy represents the Sbs 877['%8 ' '

damping rate associated with the surrounding medi26, i _ _ )

and wg is the frequency describing the dust component. Thd{OWever, in a strongly nonideal plasma the interaction of

plasma investigated by us corresponds to the case of a corf[&ins decreases,

plex plasma, t?erelflcznre the normalized nonideality parameter SP T et

I'*=T(1+k+k°/2)"*exp(-«) should be use@@21]. = ,
A gas containing the neutral buffer componéair), par- 645 2merp costi(ed4T)

tially ionized potassium addition ageh,=10" cmi 3, and This means that in an ideal plasma the oscillation of one

grains with radiusa>rp at the equilibrium temperatur€  dust grain strongly influences the oscillation of other grains.

=0.17 eV have been considered. In this case the DebyAs a result, all the dust components can be shaken by a

screening length isp=1.6 um; therefore it is possible to single fluctuation. In a strongly nonideal plasma the oscilla-

choose the radius of dust graias10 um. At the number tion of one dust grain weakly influences the oscillation of

density of grains1y=5x 10" cm™ the Wigner-Seitz radius is other grains; therefore each dust grain oscillates about an

Ry=16 um and the structure parameter is=10. The equilibrium state irrespective of the other grains. Thus if the

charge of the dust grains is defined by the following exprestendency to form structures is characteristic of plasf@ag

sion[6]: extending the oscillations destroys it in systems with small

r==1. (29
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FIG. 7. The dependence of the dynamical paraméten the
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0.01

Coulomb coupling. This destroying factor disappears i
strongly coupled systems, which cause the occurrence

regular structures in the duig].

The position of the maximum of curve 2 in Fig. 6 corre-
sponds to the value of the surface potential of the dust grai

b, Which is defined by the derivative of ER7) equaling
zero: sinf(epy/4T)=1/2. In ourcasedy=0.5 V, to which

correspond the charge numhigy=3x 10* and the nonide-

ality parametei’;=100.

n
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VIIl. CONCLUSION

In a thermal collision plasma it is impossible to set arbi-
trary boundary conditions for the Poisson-Boltzmann equa-
tion in order to calculate the dust grain interaction. The
boundary conditions are defined by the surface characteris-
tics of the dust grains and the ionization state of the plasma,
which may be described using the bulk plasma potential.
Thus, the problem is self-consistent not only within the defi-
nition of the electric potential and the charge density, but
also within the definition of the boundary conditions. The
values of the surface potential are defined by the balance of
the streams of gas particles on the phase boundary, where the
potential is calculated with respect to the bulk plasma poten-
tial.

The character of the interaction of the charged dust grains,
as shown in the example with the two planes, is defined by
the form of the solution of the Poisson-Boltzmann equation.
Thus, their attraction or repulsion depends on the sign of the
ocronstanté, which is a function of the surface value of the
relative potential.

The electrostatic perturbation in the plasma can be noted
only at distances less thamrgfrom the disturbing body.

Mherefore, if the distance between the plares the dust

graing exceeds 8, the potential distribution near each plane

can be described by the solution for the semi-infinite plasma.
As the experiment shows, the existence of a long-range in-
teraction can be calculated based on a change of the bulk

Let us consider the behavior of the dynamical parameterslasma potential, shaped by both planes.

As the damping ratey we can use the technical formyl21]
7 (sHCP, (Torn/[a (um) X p (g/cm?)], where P, is the
gas pressurén our case it is the atmosphere is the grain

Thus, we can assume that in a dusty plasma the change of
the potential on the surface of a single grain causes a change
of the bulk plasma potential. But it is valid only for small

density (3.5 g/cnf), and C is a dimensionless parameter, charges of dust grains, which correspond to weakly coupled

defined by the nature of the neutral gésr nitrogen C
=400 is usel For atmospheric pressure we obtajr= 8.5
X 10° s71. For the frequencywy we use the equatiomy
=\4me?Zng/ my [20].

plasmas, when the nonideality parameter is less than unity,
because the dependence of the bulk plasma potential on the
grain surface potential is nonlinear. In strongly coupled plas-
mas, when the nonideality parameter is greater than unity,

As is evident from Fig. 7, the dynamical parameter de-the influence of the surface potential fluctuation on the bulk
creases with the growth df*. Thus, if the ideal plasma is a plasma potential decreases. As a result, in a weakly coupled

dissipative system, then the parameter-0 in a strongly

plasma all the dust components can be shaken by a single

nonideal plasma, and the dusty plasma can be considered thsctuation, in the strongly coupled plasma each dust grain
a nondissipative system. It corresponds to the behaviooscillates irrespective of the other grains. Thus, in collisional
shown by the dependence in Fig. 6. The reduction of grainhermal plasmas at atmospheric pressure ordered structures

interaction corresponds to the reduction of dissipation.

can exist.
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