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The spatial distribution of electrostatic potential between the metal planes in a thermal collision plasma at
atmospheric pressure has been investigated. It has been shown that the potential requirement must be calcu-
lated with respect to the bulk plasma potential, which depends on the ionization equilibrium in the plasma. It
has also been shown that the electrostatic perturbation in the plasma is detected only at distances of less than
four screening lengths. Long-range perturbation is described by the bulk plasma potential. The electrostatic
pressure on the plane as a function of boundary conditions has been found. The experimental results prove the
existence of interaction between the planes, located in the low-temperature plasma at a distance that consid-
erably exceeds the screening length, caused by changing the bulk plasma potential. The application of the
results to a complex dusty plasma has shown the diminution of-the dust component dissipation in strongly
coupled plasmas.
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I. INTRODUCTION

The regular spatial distribution of dust grains was demon-
strated by experimental research on gas-discharge dusty plas-
masf1–3g. The tendency to form ordered structures was also
observed in a plasma of solid fuel combustion productsf4,5g.
High interest in the theoretical exposition of interaction be-
tween dust grains has been notedf6–9g. But using the
Poisson-Boltzmann theory with reference to the Wigner-
Seitz modelf10g most authors make serious mistakes already
at the stage of assigning of the boundary conditions. A de-
tailed examination of the problem shows that in restricted
areas the potential and the electric field cannot be equal to
zero at the same time. Moreover, it is impossible to describe
the interaction between the grains using such an approach
f8g. In the paperf9g a flat model of interaction of charged
dust grains has been considered within the Poisson-
Boltzmann theory. The search for a solution is based on the
assumption that the number densities of electrons and ions in
the plasma can be unequal. Such a statement of the problem
has allowed for some different solutions to be obtained,
though the problem remains unresolved.

The present paper is devoted to a detailed study of grain
interaction in an equilibrium plasma using the example of
interaction between charged parallel metal planes and the
plasma bordered by them, at various values of the electronic
work function of the planes and the atom ionization potential
of the plasma.

II. STATEMENT OF THE PROBLEM

A. The Poisson-Boltzmann equation

We shall consider an equilibrium plasma, which consists
of a buffer gas at atmospheric pressure and easily ionizable
addition agents of alkali-metal atoms with number density
NA=1010–1017 cm−3. The plasma is in contact with metal
parallel planes, which border it. At the isothermal tempera-
ture T=0.1–0.3 eVsT/kB=1200–3500 Kd the formation of

free electrons in the plasma is ensured by the collision ion-
izations of the added alkali-metal atoms. If the plasma did
not interact with the planes the requirement of neutrality
would be satisfied and the total of the ions would be equal to
the quantity of electrons. However, the interfacial interaction
f11g originally charges the planes and consequently the total
of electrons in the plasma will not be equal to the quantity of
ions.

The spatial distribution of potentialwsrd in the plasma is
found using the Poisson-Boltzmann equation,

¹2w = 4pefne0 expsew/Td − ni0 exps− ew/Tdg, s1d

wherene0 andni0 are the electron and ion number densities at
the point of zero potential.

In Ref. f9g it was generally assumed thatne0Þni0 and
consequently Eq.s1d was reduced to the following form:

¹2w = 4pene0fexpsew/Td − a exps− ew/Tdg,

wherea=ni0/ne0.
However, it is possible to act in a different way. It is

evident that Eq.s1d has a trivial solution in the case when the
potential is equal to some valuew=w0, at which¹2w0=0,

w0 = sT/2edlnsni0/ne0d. s2d

Either of the two replacementswsrd=w0±fsrd reduces Eq.
s1d to the following form:

¹2f = 8peÎne0ni0 sinhsef/Td. s3d

It means that all the solutions of Eq.s1d are symmetrical
concerning Eq.s2d, and any solution different from the trivial
solution cannot touch this value in terms of the theorem of
existence and uniqueness. This means that on a restricted
area there is no point wheref8=f=0.

Equations3d is given in the dimensionless form by means
of the change of the variables
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F = ef/T, x = r/rD,

where rD
2 =T/8pe2Îne0ni0 is the square of the screening

length.
Then for a flat case from Eq.s3d it acquires the form of a

nonlinear second-order differential equation,

d2F/dx2 = sinhsFd. s4d

The constant valuew0;wpl is called the bulk potential of the
plasma and is necessary for establishing a correlation be-
tween different solutions of the Poisson-Boltzmann equation
carried out within the Wigner-Seitz model for separate dust
grainsf12,13g.

B. Boundary conditions

In order to define the boundary conditions we shall con-
sider the interphase exchange of electrons on the plane sur-
faces. The thermionic emission is described by the
Richardson-Dushman equation

je
T = − s4pemeT

2/s2p"d3d exps− W/Td,

where je
T is the density of electronic current into the plasma

andW is the electronic work function.
We study the equilibrium contact; therefore in agreement

with the principle of detailed equilibrium, the electronic back
flow stipulated by the random motion of plasma electrons
corresponds to the thermionic currentf11g,

je
abs= s1/4denesC̄e,

whereC̄e=Î8T/pme is the thermal velocity of electrons and
nes is the number density of electrons at the plane surface.

The sum of these currents allows calculating the equilib-
rium value of the surface electron number density

nes= ne exps− W/Td,

wherene=2smeT/2p"2d3/2 is the effective density of states
of electrons.

The equilibrium electron number density near the metal
surface nes does not depend on ionization processes in
plasma and is defined only by saturation pressure of elec-
trons. In the volume of plasma the ionization equilibrium is
defined by the Saha equationf14g,

nq
2 = neni = nasgi/gadne exps− I * /Td,

wherenq is the quasiunperturbed density,gi and ga are the
statistical weights of ions and atoms, andI* is the effective
ionization potential of the added atoms, which may differ
from the real ionization potential of an isolated atom.

The relation betweennes andnq determines the charge of
the plane, because, according to the Boltzmann factor,nes
=nq expsefs/Td, wherefs is the potential of the surface. If
the equilibrium at the boundary between the metal plane and
the plasma demands such a value of surface electron density
asnes,nq, then the plane is charged negatively, thus dimin-
ishing the probability of collision with the plasma electrons.
Otherwise the plane is charged positively. Finally all is re-
duced to the relation between the work function and the ion-
ization potential,

efs = I * /2 − W+ sT/2d lnsgane/ginad. s5d

Therefore, only the values of the potential on the planes
f1 andf2, to which correspond dimensionless valuesF1 and
F2, can be used as boundary conditions. These values cannot
be arbitrary, but are defined according to Eq.s5d by the in-
teraction between the planes and the plasma. We note that the
surface value of the potentialfs is calculated with respect to
wpl. The total value of the potential on the plane surface is
ws=wpl+fs.

III. THE DISTRIBUTION OF POTENTIAL

A. Preliminary study

We shall pay attention to the fact that, in view of the odd
function sinhsxd, the solution of Eq.s3d has a local minimum,
located in the half planew.wpl, and the solution has a local
maximum, located in the half planew,wpl. Hence, if the
planes are given values of the total potentialw1 and w2, so
that sgnsw1−wpld=sgnsw2−wpld is true, then the spatial dis-
tribution wsrd, having in this case an extreme value, does not
cross the linewpl, and for the electric field on the planes
sgnsE1d=−sgnsE2d is true. If the condition sgnsw1−wpld=
−sgnsw2−wpld is valid, then the spatial distributionwsrd is a
monotonically decreasing or monotonically increasing func-
tion, and for the electric field, in this case, sgnsE1d
=sgnsE2d is valid.

Thus, Eq.s3d has two sets of solutions, and the character
of the solutions depends on the relation between the bound-
ary conditionsw1,w2 and the bulk plasma potentialwpl,
which is determined by the ionization state of the plasma,
Eq. s2d.

This implies, that it is impossible to neglect the constant
value wpl as is usually done, because the constant value of
the potential does not influence the interaction of dust grains
and is determined by the electric field only. However, if we
decide to measure the potential of the planes, the zero poten-
tial will already be given, being the potential of the ground.
Suppose the measured values of the potential arew1.w2
.0. Beforehand we may not say that sgnsE1d=−sgnsE2d and
the planes repel, as is clear from the analysis above. The
ionization state of the plasma may be such that the valuewpl
ensuresw1.wpl.w2. Then sgnsE1d=sgnsE2d and the planes
are attracting.

B. The solutions

Let us lower the order of Eq.s4d:

F8 = ± 2Îsinh2sF/2d + d. s6d

The value of the constantd=0 produces Eq.s6d in the fol-
lowing form:

F8 = − 2 sinhsF/2d, s7d

which corresponds to a semi-infinite volume of the plasma,
provided thatFs`d=0.

The solution Eq.s7d is the functionf6g

F = 2 lnF1 + tanhsF1/4dexpsx1 − xd
1 − tanhsF1/4dexpsx1 − xdG . s8d
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The solutions expressed in elliptic functions, whose quali-
tative forms are given in Fig. 1, correspond to the values of
the constantdÞ0. In order to find these solutions it is nec-
essary to carry out a series of transformations. First of all, we
note that Eq.s6d is an equation with separable variables and
may be given as the integral

E
F

` dF

Îsinh2sF/2d + d
= ± 2sl − xd. s9d

Herel is a value of the coordinateson the left, before the
plane r1—see Fig. 1d which approaching the potential
asymptotically tends to infinity. Such a choice of the limits of
integration is caused by the necessity of reduction of the
integrals9d to a canonical form by means of the replacement
t=sinhsF /2d,

E
t

`

fst2 + 1dst2 + ddg−1/2dt = x − l. s10d

The solutions of Eq.s10d are represented according to
f15g in Jacobi elliptic functions, namely, for positive values
of d,

sinh
F

2
= sgnsF1d

cnsx − l,1 −dd
snsx − l,1 −dd

,

dF

dx
= − 2 sgnsF1d

dnsx − l,1 −dd
snsx − l,1 −dd

, d , 1,

sinh
F

2
= sgnsF1dÎd

cn„Îdsx − ld,1 − 1/d…

sn„Îdsx − ld,1 − 1/d…
,

dF

dx
= − 2 sgnsF1dÎd

dn„Îdsx − ld,1 − 1/d…

sn„Îdsx − ld,1 − 1/d…
, d . 1.

s11d

For negative values ofd,

sinh
F

2
= sgnsF1dÎ1 − d

dn„Î1 − d sx − ld,1/s1 − dd…

sn„Î1 − dsx − ld,1/s1 − dd…
,

dF

dx
= − 2sgnsF1dÎ1 − d

cn„Î1 − d sx − ld,1/s1 − dd…

sn„Î1 − dsx − ld,1/s1 − dd…
.

s12d

C. The limiting thickness of the plasma layer

Equationss11d and s12d feature periodic functions with
the period 4K, whereK is the complete elliptic integral of the
first kind,

Ksmd =E
0

1

fs1 − t2ds1 − mt2g−1/2dt, s13d

wherem=1−d for 1.d.0 andm=1/s1−dd for d,0.
This means that the functionss11d ands12d reach infinite

values at the distance of 2K from l. Therefore, the relations
must be evaluated for the thickness of the plasma layer be-
tween the planesL=r2−r1,

L/rD , 2K, d . 0,

L/rD , K„2/s1 − dd…, d , 0.

The thickness of the plasma layer is interesting in many
respects, as it is much greater than the screening length, i.e.,
L / rD@1, which corresponds toK@1. As it follows from the
tablesf15g for the complete elliptic integrals of the first kind,
the values of the parameterm>1 correspond to the major
values of K. For example, the value of the parameterm
=0.995 corresponds to the valueK=4, whence we obtain the
value of the constantd= ±0.005. At such small values of the
constantd it can be neglected in Eq.s6d. Thus, if the thick-
ness of the layerLù8rD, the spatial potential distribution
near the plane, with adequate accuracy, is described by the
function s8d for a semi-infinite plasma which can be given in
the following form:

F = 2 lnF1 + sgnsF1dexpsl − xd
1 − sgnsF1dexpsl − xdG , s14d

where the constantl=x1+ lnutanhsF1/4du.
In this case it is easy to spot that the potential varies from

infinity up to the value 10T/e at the distance of 0.013rD, up
to the value 1T/e at the distance of 1.4rD, and at the distance
of 4rD the potential varies from infinity up to the value
0.07T/e. This means that if the distance from the plane is
more than 4rD the electrical interaction is essentially missing
irrespective of the value of the surface potential. Hence, the
thickness of the layer 4rD is the limiting distance for propa-
gation of electrostatic perturbation in the plasma.

D. Approximation of solutions

If the layer of plasma isù4rD then the small value of the
constantd allows approximating Eqs.s11d ands12d using the

FIG. 1. Geometry of the task.
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trigonometric functionsf16g. The result obtained is as fol-
lows:

sinhSF

2
D = sgnsF1d

p

2K
cotSpsx − ld

2K
D, 1 @ d . 0,

sinhSF

2
D = sgnsF1d

pÎ1 − d

2K
FsinSpÎ1 − dsx − ld

2K
DG−1

,

0 . d @ − 1.

However, it is more convenient to use a superposition of
the solutions for a semi-infinite plasma, Eq.s14d, which it is
possible to represent as

FL = − 2 sgnsF1d lnStanh
x − l

2
D ,

FR = − 2 sgnsF2d lnStanh
l + 2K − x

2
D .

Then the spatial distribution of the potential between planes
can be described by the following expression:

F = lnFStanh
x − l

2
Dk1Stanh

l + 2K − x

2
Dk2G , s15d

providedKù4, k1=−2 sgnsF1d, andk2=−2 sgnsF2d.

E. Definition of the constants

The constantl is defined by the first boundary condition
Eq. s14d. The constantd must be defined in two ways: for
negative and positive values of the constant. In order to de-
fine the negatived− we take into account that in this case
there is a minimum of the spatial potential distributionF0.
From Eq.s6d it follows that

d− = − sinh2sF0/2d.

The minimumF0 is at the distanceK from the coordinate
l. Let us define the interval 2K. On its left this interval is
limited by the coordinatel. Its right coordinatel+2K is
defined by application of Eq.s14d to the second plane,
whence it follows thatl+2K=x2− lnutanhsF2/4du, i.e.,

2K = x2 − x1 − lnutanhsF1/4dtanhsF2/4du. s16d

The valueF0 is determined by Eq.s15d. As a result we
obtain

d− =
− 4 cosh2sKd

sinh4sKd
. s17d

For the positive value ofd=d+ the functionFsxd crosses
the zero point at the distanceK from l, and it follows from
Eqs.s6d and s15d that

d+ = sF08/2d2 = 4/sinh2sKd. s18d

We see that both Eqs.s17d and s18d coincide at major
values of K, when coshsKd>sinhsKd. Therefore we may
state that

d > − 4 sgnsF1d sgnsF2d/sinh2sKd, s19d

because atudu!1 the absolute value of the constantd does
not change with only a change of the sign ofF1 or F2.

IV. THE BULK PLASMA POTENTIAL

A. Definition of the bulk plasma potential

The obtained solutions of the Poisson-Boltzmann equa-
tion feature a spatial distribution of the potential about some
valuewpl. As follows from Eq.s2d, this value of the potential
is determined by the relation of the ion and electron number
densities at the zero point of the total potentialw=0. Let us
take the value of the floating potential of the probe, located
in the neutral gas plasma without dust grains, as the zero
point scertainly, the measuring potential of the probe with
respect to the ground will be distinct from zero because the
probe itself is a perturbing factor in the plasmad. If we add
dust grains to the plasma, the interphase interaction may
cause a change of the charged state of the plasma and then
the probe will show some other value of the potential. The
difference between the previous value and the present value
is the bulk plasma potentialwpl itself. If the interphase inter-
action does not change the charge of the plasma volume,
thenni0=ne0 and the bulk plasma potentialwpl=0.

Thus, the bulk potential of the plasma characterizes the
size of operation that is necessary for the plasma to gain
some volumetric chargeQpl. The bulk plasma potential and
the volumetric charge determine the electrostatic energy of
the plasma volume,

E =
1

2
Qplwpl.

On the other hand, the energy of the electric field produced is
determined by the equation

E =
1

8p
E

V

E2dV,

whereE is the electric field.
Hence, the bulk plasma potential in the layer between the

planes is equal to

wpl =

E
r1

r2

E2dr

4peE
r1

r2

sni − neddr

= −
T

e

E
x1

x2

sF8d2dx

F28 − F18
. s20d

B. Calculation of the bulk plasma potential

We shall consider a layer of plasma with the thickness of
L.8rD. Then for each of the planes it is possible to use the
solution Eq.s14d and Eq.s7d for the derivative; then from
Eq. s20d we obtain

wpl = − 2
T

e

cothsl + 2K − x2d − cothsx1 − ld
sinhsF2/2d − sinhsF1/2d

. s21d
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Equation s14d can be converted to the form expsl−xd
=sgnsF1dtanhsF /4d, whence we obtain cothsx−ld
=coshsF /2d for the left plane and cothsl+2K−xd
=coshsF /2d for the right plane. Then from Eq.s21d it fol-
lows that

wpl = − 2
T

e

coshsF2/2d − coshsF1/2d
sinhsF2/2d − sinhsF1/2d

= − 2
T

e
tanhSF1 + F2

4
D .

The bulk plasma potential in dimensional variables for a
layer is,

wpl = − 2
T

e
tanhSef1 + ef2

4T
D , s22d

and taking into account Eq.s5d for the surface potential,

wpl = − 2
T

e
tanhF I * − W1 − W2

4T
+

1

4
lnSgane

gina
DG .

We note that the potential of the plasma has a sign that is
opposite to the sign of the surface potentials. Therefore the
total potential is always less, in terms of absolute value, than
the Poisson-Boltzmann equation solutions.

Let us consider a specific example, when aluminum
planes sW=3.74 eVd are located in potassium plasma
sI =4.34 eVd with the number density of added agentNA

=1015 cm−3 at the temperatureT=0.17 eVsT/kB=2000 Kd.
In this case the effective density of electron statesne=4.3
31020 cm−3. In equilibrium the relative potential of the
planes is equal tof1=f2=0.67 V and the bulk plasma po-
tential is equal towpl=−0.33 V. Hence, the total potential of
the planes isw1=w2=0.34 V. This value reflects the mea-
surement with respect to the neutral plasma. The calculated
spatial potential distribution is given in Fig. 2.

Let us replace the second plane by a molybdenum one
sW=4.27 eVd. In this case the relative values of the surface
potential are also positive:f1=0.67 V, f2=0.14 V. The
bulk plasma potential iswpl=−0.28 V and the measuring in-
strument will show values of the total potential of a different
sign,w1=0.39 V andw2=−0.14 V, though a plot of the spa-

tial potential distribution in the first and second cases corre-
sponds to the valued,0 sFig. 2, Al and Mod, and the planes
must be repulsive.

V. INTERACTION OF PLANES

A. Conditions of attraction and repulsion of planes

In f17g the existence of forces between thin metal and
dielectric films in the air gas-discharge plasma at pressures
of 1.3–13 Pa has been experimentally shown.

The interaction between the planes depends on the form
of the Poisson-Boltzmann equation solution. The repulsion
of planes occurs at values of the constantd,0. For example,
in the case of two aluminum planes, as has been observed,
and in the case of an aluminum plane and a molybdenum
plane, both correspond to negative values ofd, i.e., the
planes are repulsing. The change from repulsion to attraction
of planes occurs atd=0. If the relative potentials of planes
are of different signs, the planes will attract. Such a situation
occurs if the material of the second plane is coppersW
=4.47 eVd. In this case the relative potentials have different
signs,f1=0.67 V, f2=−0.06 V, and the spatial distribution
of potential between the planes is represented by a monotoni-
cally decreasing functionsFig. 2, Cud. The derivative of the
potential does not become zero anywhere between the planes
and ensures the existence of a unidirectional force attracting
the planes.

If we take the first plane in Fig. 1, the electric field on the
left surfaceEleft is different from the electric field on the
right surfaceEright, because the plasma is unlimited on its left
sd=0d and limited on its rightsdÞ0d. This gives rise to the
electrostatic pressureP on the planef9,18g

P =
1

8p
sEleft

2 − Eright
2 d,

P =
1

8p
S T

erD
D2

fsF8dleft
2 − sF8dright

2 g

and hence, from Eq.s6d we obtain

P = −
1

8p
S T

erD
D2

d, s23d

where d is determined by Eq.s19d, which can be trans-
formed, if r2−r1@ rD, to

P =
2

p
S T

erD
D2tanhSew1 − ewpl

4T
DtanhSew2 − ewpl

4T
D

expS r2 − r1

rD
D .

s24d

The dependence of the electrostatic pressure on the rela-
tive potential of the second plane and the distance between
the planes is shown in Fig. 3. The relative potential of the
first plane is 5. Dependence 1 is calculated by means of the
computer model using Eq.s23d and dependence 2 is calcu-
lated using Eq.s24d. We can see that Eq.s24d satisfactorily

FIG. 2. The spatial distribution of the total potential.
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describes the electrostatic pressure if the distance between
the planes is more than 3rD.

B. Small values of the potential

Let us consider the case of the relative surface potentials
esf1+f2d!4T when Eq.s22d for the bulk plasma potential
is linearized:wpl>sf1+f2d /2. Then the definition of the re-
placementwsrd=wpl+fsrd produces the total surface poten-
tials

w1 = sf1 − f2d/2, w2 = sf2 − f1d/2.

This means thatw1=−w2, i.e., the measuring device will
show opposite values of the planes’ potentials with respect to
the neutral plasma at any values off1!T/e and f2!T/e.
Accordingly, the Poisson equation can have any form
of solution and the planes can either attract or repel, as
determined by the relation ofw1 and w2 to the bulk plasma
potential.

VI. THE EXPERIMENT

We have found that the measured value of the potential
depends on the values of the potential barriers on the plasma-
plane boundaries. Hence, if the measurement of a single
electrode potential gives the valuews, the introduction of a
second electrode should change this value.

A propyl hydride–air flame at the absolute temperature of
about 1200 K was used in the experiment. A 40% water
solution of potassium carbonate was injected into the air
stream. It provided for a potassium number density ofNA
=1010–1011 cm−3. In such conditions the electron and ion
equilibrium number densities arenq<106 cm−3. Then a flat
copper electrodes131 cm2d with a thermoelectric couple is
inserted into the flame along the stream. The measured val-
ues of the floating potential of the single copper electrode
with respect to the ground are given in Fig. 4.

Equations5d cannot be used for calculation of the floating
potential in this case, because the low unperturbed number
densitynq does not ensure sufficient electron current. Only

the absence of the electric current through the electrode sur-
face should be taken into account, i.e.,

je
T + je

abs+ j i
rec + ja

ion = 0, s25d

where je
T=−(4pemeT

2/(2p")3) exps2W/T) is the thermionic

emission current density;je
abs=s1/4denesC̄e is the electron

absorption current density,j i
rec=−s1/4dgsenisC̄i is the current

density of the surface recombination of ions, whereC̄i is the
thermal velocity of ions,nis=nq exps−efs/Td is the surface
number density of ions, andgs is the surface recombination

coefficient; ja
ion=s1/4dbsenasC̄a is the current density of the

surface ionization of atoms, whereC̄a is the thermal velocity

of atomssC̄i > C̄ad , nas=NA−nis is the surface number den-
sity of atoms, andbs is the surface ionization coefficient.

The surface ionization coefficient determines the prob-
ability of ionization of atoms on the electrode surfacef11g,

bs =
expsefs/Td

1 + sga/gid expfsI * − Wd/Tg
.

Accordingly, the surface recombination coefficient is

gs =
1

1 + sgi/gad expfsW− I * d/Tg
.

The solution of Eq.s25d produces the floating potentialfs
with respect to the bulk plasma potential. According to Eq.
s22d the bulk plasma potential is

wpl = − 2
T

e
tanhSefs

4T
D

and the total potential isws=fs+wpl.
All these dependencies are shown in Fig. 4. We can see

good concurrence of the measurement data and the calcula-
tions.

In the second stage of our experiment we leave the copper
electrode at the temperature of about 1020 K in the flame and
insert a similar aluminum electrode into the flame at the
distance of 3 cm from the first onesthe screening length here

FIG. 3. The dependence of the dimensionless electrostatic pres-
sureP=serD /Td2P on the relative potential of the second planef2

and the distance between the planesr2−r1. Surface 1 is the result of
the computer model; surface 2 is the solution of Eq.s24d.

FIG. 4. The calculated dependencies of the surface relative po-
tential fs, the total potentialws, the bulk plasma potentialwpl, and
the experimental points on the temperature of the single copper
electrode.
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is rD<0.1 cmd. In this case the relative surface potential of
the aluminum electrodefs2 is calculated as the solution of
Eq. s25d, but the bulk plasma potential is defined by both
potentialsfs1s1020 Kd andfs2sTd. In Fig. 5 we can see that
different signs of the relative and total potentials of the alu-
minum probe are produced. We can also see that the change
of the bulk plasma potential causes change of the total po-
tential of the first copper electrode to 0.1 V, i.e., the second
isolated electrode inserted into the flame influences the mea-
surement of the first electrode potential.

VII. APPLICATION TO DUSTY PLASMAS

The investigation of electrostatic plane interaction de-
scribed above can be applied to dusty plasmas when defining
the dynamic characteristics of the dust grain interaction. The
dynamic properties of the dust component are determined by
three dynamic parametersf19g: the nonideality parameter
sthe Coulomb coupling parameterd G=e2Z2/RWT; the struc-
ture parameterk=RW/ rD; the dynamical parameteru
=h /vd. HereZ is the charge number of the dust grain,RW
=s4pnd/3d−1/3 is the Wigner-Seitz radius,h represents the
damping rate associated with the surrounding mediumf20g,
andvd is the frequency describing the dust component. The
plasma investigated by us corresponds to the case of a com-
plex plasma, therefore the normalized nonideality parameter
G* = Gs1+k+k2/2d1/2 exps−kd should be usedf21g.

A gas containing the neutral buffer componentsaird, par-
tially ionized potassium addition agentNA=1015 cm−3, and
grains with radiusa@ rD at the equilibrium temperatureT
=0.17 eV have been considered. In this case the Debye
screening length isrD>1.6 mm; therefore it is possible to
choose the radius of dust grainsa=10 mm. At the number
density of grainsnd=53107 cm−3 the Wigner-Seitz radius is
RW>16 mm and the structure parameter isk>10. The
charge of the dust grains is defined by the following expres-
sion f6g:

Z =
2a2T

e2rD
sinhSefs

2T
D . s26d

It is possible to build the dependence of the electrostatic
pressure between the two grains using the nonideality param-
eter, using Eq.s24d and Eq.s26d, provided that both grains
have identical chargessFig. 6, curve 1d. We can see that the
pressure tends to some constant value as the parameterG*
increases. Consequently, in a strongly nonideal plasma the
interaction between the dust grains is weakly dependent on
the fluctuation of the chargespotentiald on the grain surfaces.
In order to prove it, let us examine the variation of the pres-
sure on the surface potential of one of the grains, using Eq.
s24d:

dP

dfs
=

T

2perD
2

tanhsefs/4Td
cosh2sefs/4Td

e−L, s27d

whereL=2sRW−ad / rD is the distance between the surfaces
of grains with respect to the screening length.

The result is shown in Fig. 6scurve 2d. Here it is evident
that at small values of the nonideality parameter the interac-
tion between the grains increases with the growth ofG*. In
this case Eq.s27d can be approximated as follows:

dP

dfs
>

1

8p

fs

rD
2 e−L, G * , 1. s28d

However, in a strongly nonideal plasma the interaction of
grains decreases,

dP

dfs
>

T

2perD
2

e−L

cosh2sefs/4Td
, G * @ 1. s29d

This means that in an ideal plasma the oscillation of one
dust grain strongly influences the oscillation of other grains.
As a result, all the dust components can be shaken by a
single fluctuation. In a strongly nonideal plasma the oscilla-
tion of one dust grain weakly influences the oscillation of
other grains; therefore each dust grain oscillates about an
equilibrium state irrespective of the other grains. Thus if the
tendency to form structures is characteristic of plasmasf22g,
extending the oscillations destroys it in systems with small

FIG. 5. The calculated dependencies of the surface relative po-
tentialfs2, the total potentialws2, the bulk plasma potentialwpl, and
the experimental points on the aluminum electrode temperature; the
calculated curve and the experimental points of the total potential
ws1 of the copper electrode at the absolute temperature of 1020 K.

FIG. 6. The dependencies ofP=serD /Td2P scurve 1d and D
=10serD

2 /TdsdP/dfsd scurve 2d on the normalized nonideality
parameterG*.
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Coulomb coupling. This destroying factor disappears in
strongly coupled systems, which cause the occurrence of
regular structures in the dustf5g.

The position of the maximum of curve 2 in Fig. 6 corre-
sponds to the value of the surface potential of the dust grains
fs0, which is defined by the derivative of Eq.s27d equaling
zero: sinh2sefs0/4Td=1/2. In ourcasefs0>0.5 V, to which
correspond the charge numberZ0>33104 and the nonide-
ality parameterG0

* >100.
Let us consider the behavior of the dynamical parameters.

As the damping rateh we can use the technical formulaf21g
h ss−1dCPn sTorrd / fa smmd3r sg/cm3dg, where Pn is the
gas pressuresin our case it is the atmosphered, r is the grain
density s3.5 g/cm3d, and C is a dimensionless parameter,
defined by the nature of the neutral gassfor nitrogen C
=400 is usedd. For atmospheric pressure we obtainh>8.5
3103 s−1. For the frequencyvd we use the equationvd

=Î4pe2Z2nd/md f20g.
As is evident from Fig. 7, the dynamical parameter de-

creases with the growth ofG*. Thus, if the ideal plasma is a
dissipative system, then the parameteru→0 in a strongly
nonideal plasma, and the dusty plasma can be considered as
a nondissipative system. It corresponds to the behavior
shown by the dependence in Fig. 6. The reduction of grain
interaction corresponds to the reduction of dissipation.

VIII. CONCLUSION

In a thermal collision plasma it is impossible to set arbi-
trary boundary conditions for the Poisson-Boltzmann equa-
tion in order to calculate the dust grain interaction. The
boundary conditions are defined by the surface characteris-
tics of the dust grains and the ionization state of the plasma,
which may be described using the bulk plasma potential.
Thus, the problem is self-consistent not only within the defi-
nition of the electric potential and the charge density, but
also within the definition of the boundary conditions. The
values of the surface potential are defined by the balance of
the streams of gas particles on the phase boundary, where the
potential is calculated with respect to the bulk plasma poten-
tial.

The character of the interaction of the charged dust grains,
as shown in the example with the two planes, is defined by
the form of the solution of the Poisson-Boltzmann equation.
Thus, their attraction or repulsion depends on the sign of the
constantd, which is a function of the surface value of the
relative potential.

The electrostatic perturbation in the plasma can be noted
only at distances less than 4rD from the disturbing body.
Therefore, if the distance between the planessor the dust
grainsd exceeds 8rD the potential distribution near each plane
can be described by the solution for the semi-infinite plasma.
As the experiment shows, the existence of a long-range in-
teraction can be calculated based on a change of the bulk
plasma potential, shaped by both planes.

Thus, we can assume that in a dusty plasma the change of
the potential on the surface of a single grain causes a change
of the bulk plasma potential. But it is valid only for small
charges of dust grains, which correspond to weakly coupled
plasmas, when the nonideality parameter is less than unity,
because the dependence of the bulk plasma potential on the
grain surface potential is nonlinear. In strongly coupled plas-
mas, when the nonideality parameter is greater than unity,
the influence of the surface potential fluctuation on the bulk
plasma potential decreases. As a result, in a weakly coupled
plasma all the dust components can be shaken by a single
fluctuation, in the strongly coupled plasma each dust grain
oscillates irrespective of the other grains. Thus, in collisional
thermal plasmas at atmospheric pressure ordered structures
can exist.
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