PHYSICAL REVIEW E 71, 016303(2005

Anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field:
Two-loop approximation
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The field theoretic renormalization group and operator-product expansion are applied to the model of a
passive scalar quantity advected by a non-Gaussian velocity field with finite correlation time. The velocity is
governed by the Navier-Stokes equation, subject to an external random stirring force with the correlation
function proportional tas(t—t')k*%22_ It is shown that the scalar field is intermittent already for smalts
structure functions display anomalous scaling behavior, and the corresponding exponents can be systematically
calculated as series in. The practical calculation is accomplished to ordér(two-loop approximatiop
including anisotropic sectors. As for the well-known Kraichnan rapid-change model, the anomalous scaling
results from the existence in the model of composite figmserators with negative scaling dimensions,
identified with the anomalous exponents. Thus the mechanism of the origin of anomalous scaling appears
similar for the Gaussian model with zero correlation time and the non-Gaussian model with finite correlation
time. It should be emphasized that, in contrast to Gaussian velocity ensembles with finite correlation time, the
model and the perturbation theory discussed here are manifestly Galilean covariant. The relevance of these
results for real passive advection and comparison with the Gaussian models and experiments are briefly
discussed.
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I. INTRODUCTION There, for the first time the existence of anomalous scaling

@s established on the basis of a microscopic mleand

In recent years, considerable progress has been achiev o ndin nomal XDONents. wer lculated
in the understanding of intermittency and anomalous scalin € COIrespo g anomalous exponents were caicuiate
ithin controlled approximation§9-12 and a systematic

of fluid turbulence. Both natural and numerical experiments

suggest that the deviation from the classical KomogoroVp e RN SIRECSEE 1 CRE A1 BRATTRL O e
theory [1-3] is even more strongly pronounced for a pas- P

sively advected scalar field(x)= f(t,x) (temperature, en- scalar problem and the bibliography can be found in Ref.

. . ; L [14].
tropy, density of an impurity, etgcthan for the velocity field | “ "
. ] . . . n the “zero-mode approach,” developed [#+12 (see
itself, see, e.g., Ref$3-6] and literature cited therein. Atthe 044y nontrivial anomalous exponents are related to the
same time, the problem of passive advection appears more

easily tractable theoretically: even simplified models describ—Zero modegunforced solutionsof the closed exact differen-

ing the advection by a “synthetic” velocity fiela(x) tial equations satisfied by the equal-time correlation func-

_ ith a ai G . tatisti d ttions. From the field theoretic viewpoint, this is a realization
={vi(x)} with a given Gaussian s austics reproduce many Oly¢ e \vell-known idea of self-consiste(bootstrap equa-
the anomalous features of genuine turbulent heat or ma

b qi . heref h bl ns, which involve skeleton diagrams with dressed lines
transport observed in experiments. Therefore, the problem ol 4ropped bare terms. Owing to very special features of

passive scalar advection, being of practical importance ifne rapid-change modeldinearity in the passive field and
itself, may also be viewed as a starting point in studyinge gecorrelation of the advecting figlsuch equations are
intermittency and anomalous scaling in the turbulence on th%xactly given by one-loop approximations, and the resulting
whole. . . o . . equations in the coordinate space are differen@ad not
The issue of interest is, in particular, the behavior of thejyteqra| or integro-differential as in the case of a general field
equal-time structure functions of the scalar field theory). In this sense, the model is “exactly solvable.” Fur-
S(r) ={[6(t,x) - ot xH™, r=x-x', r=]r|. thermore, in contrast to the case of nonzero correlation time,
(1.1) clo_sed equatio_ns are obtained for the equal-time correlations,
' which are Galilean invariant and, therefore, not affected by
The concept of anomalous scaling implies a power-law bethe so-called “sweeping effects” that would obscure the rel-
havior of the functiong1.1) in the inertial-convective range evant physical interactions.
of scales S, ré, with a nonlinear dependence of the expo- The second systematic analytical approach to the rapid-
nents¢, on n; see, e.g., Ref§1-6]. change model, proposed in papgt8], is based on the field
The crucial breakthrough in theoretical research is relatetheoretic renormalization grouRG) and operator product
to a simple model of a passive scalar quantity advected by expansion(OPE. There, anomalous scaling emerges as a
random Gaussian field, white in time and self-similar inconsequence of the existence in the model of composite
space, known as the Kraichnan rapid-change mdd@gl fields with negative scaling dimensio(islangerous compos-
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ite operatorsJ, identified with the anomalous exponents. random Gaussian self-similar velocity fields with finite cor-
This allows one to give alternative derivation of the anoma-elation time were also studied in Ref84—41].
lous scaling, to construct a systematic perturbation expansion As was pointed out in Ref33], the Gaussian model with
for the anomalous exponents, analogous to the famas  finite correlation time suffers from the lack of Galilean in-
pansion in the RG theory of critical behavi@ee the mono-  variance and therefore misrepresents the self-advection of
graphs[15,16 and references therginand to calculate the tyrhulent eddies. It is well known that the different-time cor-
exponents to the secori3,17 and third[18,19 orders. relations of the Eulerian velocity field are not self-similar, as
The two approaches complement each other well: the regyit of these “sweeping effects,” and depend substantially
zero-mode technique allows for exadonperturbativeso- o the integral scale. It would be much more appropriate to

. . o %pose the scaling relations fétk) andt(k) in the Lagrang-
correlation function§10,20,21 (they are nontrivial for pas- ian frame, but this is embarrassing due to the daunting task

sive vector fields or anisotropic sectors for scalar figlds of relating Eulerian and Lagrangian statistics for a flow with
while the RG approach form the basis for systematic pertur-"_ ~. . . .
bp Y P finite correlation timé.In the RG and OPE formalism, the

bative calculations of the higher-order anomalous exponent§‘. : - -
For anisotropic velocity ensembles or/and passively advectegVeePing by the large-scale eddies is related to the contribu-

vector fields, as well as for passive advection of extendedons of the composite operators built solely of the velocity
objects(polymers or membrangswvhere the calculations be- field v(x) and its temporal derivatives, as discussed in detail
come rather involved, all the existing results for higher-ordern Refs.[16,43-4§ for the case of the stochastic NS equa-
correlation functions were derived only by means of the RGion. In the Gaussian model those operators become danger-
approach and only to the leading ordersirf22—-25. ous (that is, their scaling dimensions become negatioe

From a more physical point of view, zero modes can bes=1/2, which gives rise to strong infrared divergences in
interpreted as statistical conservation laws in the dynamics dhe correlation function§29]. This means that the sweeping
particle clusterg26]. The concept of statistical conservation effects, negligible for smalk’s, become important foe
laws appears rather general, being also confirmed by numeriz1/2. In a Galilean-invariant model, such operators give no
cal simulations of Refd27,28, where the passive advection contribution to the quantities likg1.1), as explained in
in the two-dimensional Navier-Stoke@\NS) velocity field  [43—44 for the NS case. In the Gaussian case, these ir di-
[27] and a shell model of a passive scdlag] were studied. vergences persist in the structure functions, which provides
This observation is rather intriguing because in those modelgot only an upper bound for the reliability of tlkes expan-
no closed equations for equal-time quantities can be derivesion, but also a natural bound for the validity of the Gaussian
due to the fact that the advecting velocity has a finite corremodel itself(which excludes, in particular, the most realistic
lation time (for a passive field advected by a velocity with Kolmogorov values=4/3 and itsvicinity). These conclu-
given statistics, closed equations can be derived only fosions agree with the nonperturbative analysis of Réf],
different-time correlation functions, and they involve infinite where the value okt=1/2 wasreported as the threshold
diagrammatic serigs between two qualitatively different regimes for a Lagrangian

One may thus conclude that breaking the artificial as{article advected by a Gaussian velocity ensemble. The same
sumptions of the time decorrelation and Gaussianity of théhreshold value ot=1/2 wasobtained earlier in Refg§37]
velocity field is the crucial point. for a two-dimensional strongly anisotropic model.

In addition to the calculational efficiency, an important In this paper, we shall study the case of a passive scalar
advantage of the RG approach is its relative universality: it iield, advected by a non-Gaussian velocity field governed by
not bound to the aforementioned “solvability” of the rapid- the stochastic NS equation. To be precise, the advection-
change model and can also be applied to the case of finitdiffusion equation for the scalar field has the form
correlation time or non-Gaussian advecting field. In Refs. )
[29,3Q (see alsd31] for the case of compressible flow and Vif= o 0+ 1, Vi=di+vid), (1.2
[32] for a passive vector fig}dhe RG and OPE were applied' where d,=dlat, 6,=dlox, V, is the Lagrangian derivative,
to the problem of a passive scalar advected by a Gaussigy js the thermal conductivity or molecular diffusivity? is
s_elf-5|m|lar velocity with finite(and not sma}l _correlafuon_ the Laplace operator, anfi=f(x) is an artificial Gaussian
time. The energy spectrum of the velocity in the inertial .5n4om noise with zero mean and correlation function
range has the form(k) k=%, while the correlation time at
the momentunk scales ag(k) <k 2*7. It was shown that, X f(x"))y=8t-t")C(r), r=x-x". (1.3
depending on the values of the exponantmd, the model The detailed form of the functio@ is unessential; it is only

reveals various types of inertial-range scaling regimes with haC d idlv for> L wherel i
nontrivial anomalous exponents, which were explicitly de_!mportantt ak decreases rapidly for> L, whereL is some

rived to the firs29,31 and second30] orders of the double integral scalg. The noise maintains the steady state_of the
expansion ine and 7. The most interesting case i=s, system and, ifC depends on the vectorand not only on its

when the exponents can be nonuniversal through the depen-
dence on the ratio of the velocity correlation time and the Y this connection, it should be noted that, due to the time de-

turnover time of the passive scalar. correlation, in the rapid-change model there is no problem in relat-
Earlier, a similar model was proposed and studied in deing Eulerian and Lagrangian statistics of the velocity field: they are
tail (using numerical simulations, in two dimensipis[33]. identical. This allows one to perform very accurate numerical simu-

Various aspects of the transport and dispersion of particles ifations in the Lagrangian frame; see R#2].
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modulusr =|r|, is a source of large-scale anisotropy. With noall the exact relations between the correlation functions im-
loss of generality it can be assumed that the functiois  posed by the Galilean symmetfWard identitie$ are satis-
dimensionless. The absence of the time correlatiqd.ig) is  fied order by order. The renormalization procedure does not
also unessential; in a more realistic formulation, the noise/iolate the Galilean symmetry, so that the improved pertur-
can be replaced by an imposed constant gradient of the scalBation expansion, obtained with the aid of RG and OPE,
field; see Refs[11,12,29,31,3B remains covariant. This means, in particular, that the Gal-
The transversédivergence-free, due to the incompress-"ea” invariant quantities, for example, the equal—'glme struc-
ibility condition aw;=0) velocity field satisfies the NS equa- fure functions(1.1), are not affected by the sweepixigere,

tion with a random driving force the latter becomes important fer=3/2 [43]). More for-
mally, the contributions of the “dangerous” operators built of
Vi = vod?vi — P+ 1, (1.9 the velocity field and its temporal derivatives do not appear

in the OPE for invariant correlation functions; see Refs.
whereP and f; are the pressure and the transverse randorplG 43-46 for detailed discussion.

force per unit masgall these quantities depend on. We This means that the scaling relations, obtained for Gal-
assume forf a Gaussian distribution with zero mean andijean invariant quantities for sma¥, in model (1.2—~(1.6)
correlation function can be extrapolated beyond the threshotdB/2 despite the
St-t) fact that. the sweeping .becomes important therga. More physi-
(Fi0f(x)) = 5 dk P;j(k)di(kexdik - (x—x")],  cally, this means that, in contrast to the Gaussian model, the
2m® Ji=m relative motion of the fluid or impurity particles in the

(1.5  inertial-convective range of scales is not affected by overall
sweeping by the large-scale eddies. Indeed, the most recent
whereP;; (k)= & —kik;/K* is the transverse projectaty(k) is  numerical simulations of the modél.4)—(1.6) have shown
some function ok=[k| and model parameters, adds the  that the scaling relations, obtained by the RG analysis for the
dimension of thex space. The momentum=1/¢, the recip-  structure functions, remain valid feras high as=7/4[51]
rocal of another integral scalg provides ir regularization. (see also an earlier woil2]).
Its precise form is unessential; the sharp cutoff is the most For smalle, critical dimensions of all composite operators
convenient choice from purely calculational reasons. Foin the model(1.4)<1.6) are positive. As a result, the scaling
definiteness, in what follows it is always assumed that hehavior of the velocity correlation functions is not anoma-
> ¢, that is, the largest scale in the problem is the integralous, in the sense that they have a finite limit #+1/m
scale related to the scalar noise; it will be set to infinity - and the corresponding scaling exponents are multiples
whenever possible. of a single quantity(critical dimension of the velocity fie)d
The standard RG formalism is applicable to the problem However, the same numerical simulatidsd,52 suggest
(1.4 and(1.9) if the correlation function of the random force that, ase increases, the behavior of the mod#l4)—1.6)
is chosen in the power form undergoes a qualitative changeover and the scaling becomes
di(K) = D42, (1. anomalous, in the sense that the exponents of the structure
functions become different from the results of naive extrapo-
whereDy>0 is the positive amplitude factor and the expo- lation of the smalle prediction and, probably, become inde-
nent 0O<e <=2 plays a role analogous to that played bydt— pendent ofs. We shall return to this important issue in the
in the RG theory of critical behavidi5,1§. The form(1.6)  Conclusion, and in the bulk of the paper we shall concentrate
is widely used in the RG theory of turbulence since the pio-on the behavior of the passive scalar field in the model
neering work[47-5Q. The most realistic value of the expo- (1.2—1.6), which appears highly nontrivial.
nent ise=2: with an appropriate choice of the amplitude, the  We will show that, already for infinitesimal values of
function (1.6) for e —2 turns to a delta functiondi(k)  when the velocity statistics is not yet intermittent, the scalar
« §(k), which corresponds to the injection of energy to thefield, advected by such a velocity ensemble, displays anoma-
system owing to interaction with the largest turbulent eddieslous scaling behavior. The corresponding anomalous expo-

for a more detailed discussion see R¢l5,44—46. nents can be calculated within a systematic perturbation ex-
The results of the RG analysis of the mod#l4)—1.6) pansion, as a series i

are reliable and internally consistent for smallwhile the The plan of the paper is the following.

possibility of their extrapolation to the real value=2 and A detailed description of the model has already been

thus their relevance for real fluid turbulence is far from ob-given above. In Sec. Il we give the field theoretic formula-
vious; see, e.g., Ref46] for a recent discussion. We shall tion of the original stochastic problem and present the corre-
not discuss this important problem in detail and restrict oursponding diagrammatic technique. In Sec. Ill we analyze uv
selves to a few remarks which will be relevant in what fol- divergences in the model, establish its multiplicative renor-
lows. malizability, and derive the corresponding RG equations. In
The time decorrelation of the random force guaranteeSec. IV we show that the RG equations of our model have
that the full stochastic problei.2—(1.5) is Galilean invari- the only ir attractive fixed point in the physical range of
ant for all values of the model parameters, includingand  parameters; its coordinates are calculated to the second order
€. As a consequence, the ordinary perturbation theory for thef the ¢ expansion. The existence of such a fixed point
model[that is, the expansion in the nonlinearities, or, equivaimeans that the correlation functions of our model in the ir
lently, in Dy from Eq.(1.6)] is manifestly Galilean covariant: range(1/r ~k~m< A) exhibit scaling behavior with certain
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critical dimensionsAg of all the fields and parametefs.

This determines the dependence of the correlation functions fdtj dX v{ P = - f dtf dx P(dw{) = 0.

on the argumentAr (but not yet onmr). In general, the

dimensions are calculated as serieg jrbut for some basic Of course, this does not mean that the pressure contribution

quantities(velocity and scalar fields, their powers, and fre- can simply be neglected: the field acts as the transverse

quency they are found exactly. projector and selects the transverse part of the expressions to
The key role in the following is played by the composite which it is contracted in Eq2.2).

operators built of the gradients of the scalar field. They are The formulation(2.1) and(2.2) means that statistical av-

introduced in Sec. V, and the corresponding dimensidbas erages of random quantities in the original stochastic prob-

are given to the first order ia (one-loop approximation In lem can be represented as functional averages with the

Sec. VI we introduce the operator-product expansion andveight expS(®), and the generating functionals of total

demonstrate its relevance to the issue of inertial-rangéG(A)] and connectedW(A)] correlation functions of the

anomalous scaling. We show that the critical dimensions oproblem are represented by the functional integral

aforementioned composite operators can be identified with

the anomalous exponents, which describe the dependence of _ _

the correlation functions on the argument. The scalar op- GA) = expW(A) = f DO exS(@)+AP] (2.3

erators are “dangerougAr<0), which implies anomalous ) , , ) )

scaling(singular dependence anr and divergence fomr ~ With arbitrary sourced={A" ,A’,A” A% in the linear form

—.0). The anomalous exponents of anisotropic contribution® =2 dx A" ()P (x).

are determined by the critical dimensions of tensor compos- The model(2.2) corresponds to a standard Feynman dia-

ite fields and thus they also exhibit nontrivial scaling behav-grammatic technique; the bare propagatdirees in the dia-

ior. gramg in the frequency-momentuniw-k) representation
The largest Sec. VIl is devoted to the calculation of thehave the forms

anomalous exponentgritical dimensions of the composite N -

operators built of the gradients of the scalar fietd the ivfo= @{vpo= (=iw+ vk Py k),

order €2 (two-loop approximatiop The results look rather

cumbersome and are presented in a separate section, Sec. (Vi = (@® + ¥5kH) (P (K), (v{v{)=0 (2.4

VIII. A discussion of the results, their relevance for real pas-,ith d((k) from Eq. (1.6). The interaction in(2.2) corre-

sive advet_:tlon, and comparison with the Gaussian mOdel§ponds to the triple vertexv(v &)v:vi'Vijsvjvs/Z with ver-
and experiments are given in Sec. IX. tex factor

Il. FIELD THEORETIC FORMULATION Vijs =i (K65 + Ksdj) , (2.5

The field theoretic formulation and renormalization of the Wherek is the momentum argument of the field. The full
problem(1.2<(1.6) is discussed in detail in Reffl6,44,45;,  Problem(2.1) involves additional propagators
tt;g:]ow we confine ourselves to only the necessary informa- (60')0= (—iw+Kkokd) L, (06)g=C(K)(w?+ ng“)‘l,
According to the general theorefi®3], the stochastic (6'6')9=0 2.6
problem(1.2—(1.6) is equivalent to the field theoretic model 0= :
of the doubled set of fieldsb={v’,v,¢’,6} with action where C(k) is the Fourier transform of the functio8(r)

functional from Eq. (1.3); the additional vertex factor in9’(vad)6
=6'Vv;0 has the form
S@) = S,(v/,v) + 0'D,0'12 + 0'[- V + ko], (2.1) i
Vi =ik;, (2.7
where
wherek is the momentum of the field’.
S(vV',v)=v'D,p' 12 +v'[- Vi + vod*Jv (2.2
is the action functional for the stochastic problem I1l. RENORMALIZATION AND RG EQUATIONS

(1.4H—1.6), DyandD,, are the correlation functiond.3) and ) ) ) _
(1.5) of the random force§ and f;, respectively, and all the The analysis of uv divergences is based on the analysis of

required integrations ovee={t,x} and summations over the canonical dimensions. In contrast to static models, dynamical

vector indices are understood, for example, models of the typ&2.1) and(2.2) have two scales, i.e., the
canonical dimension of some quantky(a field or a param-

eter in the action functionplis described by two numbers,
v'(vdv= J dtf dx v (v;d)v; . the momentum dimensiodt and the frequency dimension
de. They are determined so th[d’f]~[L]‘dE[T]‘d$, wherelL
The auxiliary vector field is also transversgy; =0, which  is the length scale and is the time scale. The dimensions
allows us to omit the pressure term on the right-hand side oére found from the obvious normalization conditiods=
Eq. (2.2), as becomes evident after the integration by parts:—dt

016303-4



ANOMALOQOUS SCALING OF A PASSIVE SCALAR... PHYSICAL REVIEW E 71, 016303(2005

TABLE |. Canonical dimensions of the fields and parameters in the m@dbland(2.2).

F v’ \Y o' 7] v, Vg m, u, 1/L Jo g, Up, u
dk d+1 -1 d 0 -2 1 % 0
de -1 1 1/2 -1/2 1 0 0 0
de d-1 1 d+1 -1 0 1 2 0

=1,d¢=d*=0, d"=d‘=0,d°=-d®=1, and from the re- tors(66), entering into the functioriobviously, no function
quirement that each term of the action functional be dimenwith N,<0 can be constructgdTherefore, the difference
sionless(with respect to the momentum and frequency di-N, —N, is an even non-negative integer for any nonvanish-
mensions separatelyThen, based omi'; and dg, one can ing function. This is a consequence of the linearity of the
introduce the total canonical dimensidp=dt+2d¢ (in the original stochastic equatiofl.2) in the field 6.

free theory,d, #%), which plays in the theory of renormal- (iv) Galilean symmetry of our problem requires that the
ization of dynamical models the same role as the conveneounterterms to the action be invariant. In particular, the mo-
tional (momentum dimension does in static problems. nomialsv’dw, v'(vd)v, 0’46, andd (v )6 can appear only

The canonical dimensions for the probl€il) and(2.2) in the form of covariant derivatives' Vv and 'V,6.
are summarized in Table |, where we introduced the new From Table | we finddp=(d+2)-(d—1)N,,—N,+N,—(d
parameterg“coupling constants” or “charges” +1)N, and di=(d+2)-dN,, —N,-(d+2)N,. Bearing in
Uo=Dy/1, Up= /o (3.1 mind thatN(,,zNQ we fmd_that Sl_Jperf|C|aI Q|vergences can
. _ _ _ only be present in the l-irreducible functiofs'v),.; and
instead ofDy and «, and included the dimensions of renor- (g gy . and the corresponding counterterms reduce to the
malized parameters, which will appear later on. The dimens, o v’ and @' 6. The monomiale’dw and 6’ 4,6 do
sionless ratioup has the meaning of the reciprocal of the ot contain spatial derivatives and therefore they are ruled

Prandtl nl_meer. _FrO”_‘ Table | it f9|IOWS that the_ mo_(i@]l) out by the propertyii). Then the propertyiv) excludes the
and(2.2) is logarithmic(the coupling constard, is dimen- monomialsv’(vd)v and & (v3d)6 (allowed by dimensional
sionlesg ate=0, and the uv divergences have the form of theconsideration)s

pol_lt?rs] ne in tlhe correlgtlcin fgnctmng of th? fieldb. bi In the special casd=2 a new uv divergence appears in
The total canonica imension  of an arbitrary e 9 jrrequcible functiofv’v’)1,. This case requires spe-

l-irreducible correlation functiol' =(®---®), ;, is given by ial . Refs[54 qf |

h lation dp=dk+2d?=(d+2)~ SNad where N cial attention(see Re s[_ 1) and from now on we always

t_e e T T er O oD - % assumed>2. Then the inclusion of the counterterms is re-

={N;,N,,Ng,Ng} are the numbers of corresponding fields nrqqyced by the multiplicative renormalization of the action

entering into the functiorl’, and the summation over all fnctional (2.1) and (2.2) with only two independent renor-
types of the fields is implied. The total dimensidp plays  malization constantg; »:

the role of the formal index of the uv divergence: superficial ,
uv divergences, whose removal requires counterterms, can SR(®) =Sgr(V',V) + 0'D 012+ 0'[- Vi + uvZ,07]6

be present only in those functiohsfor which dr is a non- (3.2
negative integer. Analysis of the divergences in our model
should be augmented by the following considerations. and
~ (i) For any model with the Martin-Siggia-Rose-type ac- Sr(V/ V) =0’ Do’ [2 +0' [~V + vZ, P, (3.9
tion, that is, the action of the forn2.1) and (2.2), all the
1-irreducible functions wittN,,=N, =0 contain closed cir- In the one-loop approximation the renormalization con-
cuits of retarded propagators and vanish. stants have the forms

(ii) If for some reason a number of external momenta — —
occurs as an overall factor in all the diagrams of a givenz, = 1_w+0(gz), Z,= _M+ (),
Green function, the real index of divergendg is smaller 8(d+2)e 4du(u+1)e
thandy by the corresponding number of unities. The corre- (3.4)

lation function requires counterterms only df- is a non- _
negative integer. In our model, the derivativat the vertices whereS;=S,/(2m)9 andS;=2#%?/T'(d/2) is the surface area
v'(vd)v and @ (v ) can be moved onto the field$ and ¢’ of the unit sphere ird-dimensional space. Here and below,
using the integration by parts, by virtue of the transversalitywe use the minimal subtractiaiMS) scheme, in which all
of the fieldv. This decreases the real index of divergencerenormalization constants have the forms “1+only poles in
di-=dr—N, =N, =Ny, and the fields’, ¢’, and 6 enter the &.” Since the velocity field is not affected by the fieldand
counterterms only in the form of the derivative®®’ and so ', the constan, is independent ofi; the one-loop expres-
on. sion(3.4) was presented ifb0] and the two-loop calculation
(i) From the explicit form of the vertex and bare propa-was performed much later in Refgl6,55. The constan®,
gators it follows thatN, —-N,=2N, for any 1-irreducible is determined by the 1-irreducible functid@’ 6),, which
function, whereNy=0 is the total number of bare propaga- does not involve the correlation functigh.3); see itemiii )
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above. ThereforeZ, in our model coincides exactly with the Bg(9:) = Bu(g+, u) =0 4.1

corresponding renormalization constant for the case of a pas-

sive scalar without the random noise, derived in the one-loo/ith the 5 functions from Eq(3.8), while the type of a point
approximation in Ref[56] (see also Refg57]).2 is determined by the 2 matrix consisting of the elements

The renormalizationi3.2) and(3.3) can be reproduced by =19%Bg: duBy: dBu, duBu} calculated at the poing.,u:.
the following multiplicative renormalization of the param- For ir stable fixed points the matri® is positive, i.e., the

etersgp, U, and vy; real parts of all its eigenvalues are positive. In our model
duBy vanishes identically, and the eigenvalues of the matrix
Oo= g,uz*’Zg, vw=vZ, Uy=UZ, Z,=Z, Q) are simply given by its diagonal elements.
The analysis of the explicit one-loop expressions shows
Z,=2,Z;% Zy= z3. (3.5)  that, fore>0, the RG equations for our model possesses the

only IR attractive fixed point in the physical range of param-

Hereg, u, and» (without a subscriptare the renormalized  gterg(g, ,u. must be positivie The coordinates are calculated
analogs of the corresponding bare parameteith the sub- 5 series in:

script 0 and u is the reference mas@dditional arbitrary
parameter of the renormalized theprifhe last relation in g =g +g?e2+0(e%), u =u® +uPe+0(e?),
(3.5) is the consequence of the absence of renormalization of (4.2)
the term withD,, in (2.2). The amplitudeDg in the term with
D, should be expressed in renormalized parameters using théth the one-loop approximation
relationsDo=gora=gu?1°. No renormalization of the fields _ gd+2)
& and “massesin=1/¢, 1/L is needed. g = ———
Let W(ey) be some correlation function in the original 3(d-1)
model (2.1) and Wg(e,w) its analog in the renormalized
theory with action(3.2). Hereg, is the complete set of bare
parameters, and is the set of their renormalized counter-
parts. The relatiors(®,ep) =Sz(P, e, u) for the action func-
tionals yieldsW(e;) =Wg(e, 1) for any correlation function
of the fields®; the only difference is in the choice of vari-
ables and in the form of perturbation thedmy g instead of

1
' u£0):5(\’1+8(d+2)/d_1) (43)

[with S; from Eg. (3.4)] for arbitrary d>2. The two-loop
result forg- was presented if46,53: giz)z—l.O]gil) for d

=3. We have also calculated the two-loop correction for
u UM ~-0.0352 for d=3. We shall not expound on the
derivation of this result because, as we shall see below, the
two-loop corrections to the coordinatgs, u. are not needed

for the two-loop calculation of the anomalous exponents.

9o)- We useD,, to denote the differential operatiqnd, for -~ gyistence of the ir stable fixed point implies that the cor-

fixed &, and operate on both sides of this equation with it.rg|4tion functions of our model in the ir range exhibit scaling

This gives the basic RG equation behavior with definite critical dimensions: of all the fields
DrcWe(€,) =0, Dpg= D, + Bydy+ Buds= 1,D,- and parameterB. Let F be some multiplicatively renormal-

ized quantity(a field, parameter, or composite operattnat
(3.6 is, F=Z¢Fg with a certain renormalization constafyt. Then

HereDgg is the operatiorﬁﬂ expressed in the renormalized |[tls6c:£t1|il?}l)d|men3|on is given by the expressi@ee, e.g.,
variables,D, = xd, for any variablex, and the RG functions T
(the B functions and the anomalous dimensiopsare de- A[F]=Ap=dt+A, 0%+ ye, A,=2-7,, (4.9

fined as ‘ ) _ )
where df and d? are the corresponding canonical dimen-

Ve = f)M In Z for all F, (3.7)  sions, y¢ is the value of the anomalous dimensign(g)

=D,In Z¢ at the fixed point in question, antl, is the criti-
P =D =— cal dimension of frequency. Owing to the exact relation be-
Ay=Dg=d 2043yl A=Du=-uy, 39 tweenvy, and B, in Eq. (3.9), its value at the critical point is
where the relationg3.5 have been used. found exactly:A ,=2-2¢/3 (without corrections of ordes?
and highey. As a consequence, the critical dimensions of
some basis parameters, fields, and composite operators are
also found exactly:

Alv"1=nA,=n(1-2¢/3), A[6"]=nAy=n(-1+¢/3),

IV. FIXED POINT, INFRARED SCALING, AND CRITICAL
DIMENSIONS

It is well known that possible scaling regimes of a renor-
malizable model are associated with the ir stable fixed points
of the corresponding RG equations. In our model, the coor- 1 . _
dinatesg-, u. of the fixed points are found from the equa- Afp']=d-4,, A[0']=d-4A, Ap=1. (49
tions To avoid possible misunderstanding, it should be noted that

simple linear relations for the dimensions of composite fields
2In the books[16,45, there is a misprint in the expression @y~ v" and ¢" follow from the fact that these operators are not
on pages 709 and 115, respectively. It is also interesting to note th&€nNormalizedZg=1). For the powers of the velocity, this is a

the one-loop expression for this constant coincides with its analogonsequence of the Galilean symmetsge[43—-43), while
for a passive magnetic fieltkinetic regime”) derived in Refs[58]. for 6" it will be discussed below.

016303-6



ANOMALOQOUS SCALING OF A PASSIVE SCALAR... PHYSICAL REVIEW E 71, 016303(2005

Let G(r)=(F1(x)F,(x")) be, for definiteness, some equal- “tails” of the field 6 is attached to a verte®'(v3)6 (it is
time two-point quantity, for example, the pair correlation impossible to construct nontrivial, superficially divergent
function of the primary fieldsb or some multiplicatively —diagram of the desired type with all the external tails at-
renormalizable composite operators. The existence of a nortached to the vertek), at least one derivativé appears as
trivial ir stable fixed point implies that in the ir asymptotic an extra factor in the diagram, and, consequently, the real
region Ar>1 and any fixednr the functionG(r) takes on index of divergence is necessarily negative.
the form This means that the operatéf requires no counterterms

. at all, that is, it is in fact uv finites"=2Z[ 6 "]R with Z=1. It
G(r) = ngAdG(Ar)‘AGg(mr). (4.6) then follows that the critical dimension @f"(x) is simply
given by the expressiof.4) with no correction fromy*F and
therefore reduces to the sum of the critical dimensions of the
factors: A[#"]=nA,=n(-1+¢/3), as already stated in Eq.

Here the uv momentum scatlk is defined by the relations

0o=Dy/ vngze, and ¢ is a certain scaling function whose
explicit form is not determined by the RG equation itself.
The canonical dimensiordg, dg and the critical dimension (4.5N)6w let Us turn to the scalar operators
Ag of the functionG(r) are equal to the sums of the corre- P

sponding dimensions of the quantitieg ,. F. = (6,05,6)" (5.2)
. B o L o
V. RENORMALIZATION OF RELEVANT COMPOSITE with d==0, dg=-n. As we shall see below, it is their critical
OPERATORS dimensions that determine the anomalous exponents for the

structure functiong1.1) and other quantities. In this case,
In the following, an important role will be played by the from Table | and Eq(5.1) we find dr=N,~N,—(d=1)N,,
composite operators built of the fieldx) and its spatial -(d+1)N,, with the necessary conditiod,< 2n following
derivatives. from the structure of the diagrams. It is also obvious from
We recall that the term “local composite operator” refersthe analysis of the diagrams that the counterterms to these
to any monomial or polynomial built of the fields and their  operators can involve the field8, 8’ only in the form of
derivatives at a single spacetime powt{t,x}, for example,  derivativesdd,¢’, so that the real index of divergendg
6" or 6 (vd)é. has the formd;=dr—Ny—Ng =N, ==N,=(d+2)N, —dN,.
Coincidence of the field arguments in correlation func-It then follows that superficial divergences exist only in the
tions containing an operatdf gives rise to additional uv correlation functions wittN,=N, =N, =0 and anyN,= 2n,
divergences, removed by a special renormalization proceand the corresponding operator counterterms are reduced to
dure. Owing to the renormalization, the critical dimensionthe formF, with k<n. Therefore, the operatofs, can mix
Ag associated with a certain operateris not in general only with each other in renormalization, the corresponding
equal to the simple sum of critical dimensions of the fieldsinfinite renormalization matriZ-={Z,,} is in fact triangular,
and derivatives entering inté. As a rule, composite opera- z =0 for k>n, and the critical dimensions associated with
tors “mix” in renormalization, that is, an uv finite renormal- the operatorsF, are determined by the diagonal elements

ized operator is a linear combination of unrenormalized opz, =z, from Eq. (4.4) with the anomalous dimensiof,
erators, and vice versa. =D Inz
M n:

In general, counterterms to a given operdkoare deter-
mined by all possible 1-irreducible Green functions with one
operator F and arbitrary number of primary fieldsl’ Fu=d. 03 6(30060P+ -, n=1+2p, (5.3
=(F(X)D(x,)- - P(Xp))1.r- The total canonical dimension ' !

(formal index of divergencefor such quantities is given by with de=0, dg=-n/2 (note thatF,,=F,). Here the ellipses
stand for the appropriate subtractions involving the Kro-
dp = dr = > Ngdg, (5.1 necker s symbols, which ensure that the resulting expres-
@ sions are traceless with respect to any given pair of indices,
with the summation over all types of fields entering into thefor example,d;6d;6- &;dc66/d. Of course, the numbens
function and the canonical dimensions from Table I. For suandl have the same parity, that is, they can only be simulta-
perficially divergent diagramsly is a non-negative integer. neously even or odd. As for the operatq&?2), one can

Consider the simplest operators of the fosfiix) with the ~ show that the operator&.3) mix only with each other in
canonical dimensiods=-n, entering into the structure func- re_normalization,_the co_rrequnding renormal_ization r_natri_x is
tions (1.1). From Table | and Eq(5.1) we obtaindp=-n triangular, the critical dimensions are detgrmme_d by its diag-
+N,~(d-1)N,, ~N, - (d+1)N,, and from the analysis of the orlal elementsZ,,, and the anomalous dimensions ayg
diagrams it follows that the total number of the fielden-  =D,In Z.
tering into the functiod” can never exceed the number of the  One important remark is relevant here. The matrix ele-
fields 0 in the operato@" itself: N,=<n (a consequence of the mentsZ, for the operator$,, andZ,, for F, are determined
linearity of the original stochastic equationsdn Therefore, by the 1l-irreducible correlation function&6---6),, in
the divergence can only exist in the functions wNh=N,,  which the number of the field8 equals their number in the
=N, =0, and arbitrary value ahi=N,, for which the formal operatorF. It is easily seen that the corresponding Feynman
index vanishesdr=0. However, at least one &, external  diagrams do not involve the bare propagatés), from Eq.

Finally, consider irreducibl&h rank operators of the form
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(2.6), and, hence, the correlation function of the scalar ranquantity on the right-hand side of E¢.7) is uv finite (a
dom noise(1.3). As a result, the critical dimensions of the derivative of the renormalized functional with respect to the
operatorg5.2) and (5.3) are completely independent of the finite argument, and so is the operator in its left-hand side.
form of the scalar forcing in Eq1.2). We also note that for Our operatorF; does not admix in renormalization to the
the same reason the operat@s3) with equaln and different  operatoré’D,6 (F, contains too many fieldg) and to the
| do not mix in renormalization: this is forbidden by 8  operatorsV,[ #?/2] and ¢/ 6°/2] (they have the form of total
symmetry, which is present in the relevant diagrams even itlerivatives, and~; does not reduce to such a forn©n the
the correlation functiorg1.3) is anisotropic. other hand, the operata'D,6 does not admix td=q (it is

In contrast to(4.5), the critical dimensiond,, andA,, of  nonlocal, and~ is local), while the derivative¥ [ #*/2] and
the operatorg5.2) and (5.3) are nontrivial; they are calcu- 7 ¢%/2] do not admix toF; owing to the fact that each field

lated as series ia: 6 enters in the counterterms of the operatBgsonly in the
o form of the derivativedd (see above Therefore, all three

Ay=S gka® (5.4) types of operators entering into the left-hand side of(Bd)

n 1 nl are independent, and they must be uv finite separately.

) ) o Since the operatorZ,Z,F; is uv finite, it coincides with
(of course,A,=Ap with n=2p). An important exception is  ts finite part, i.e.,vZ,Z,F;=vFR, which along with the rela-
provided by the dimension of the opera®;=(d04;6), the  tion F,=Z,FR gives Z,'=2,7, and thereforey;=-y,~7,.
local dissipation rate of the scalar fluctuations, which can b&\e recall that at the fixed poing,=2¢/3 and y,=0 (the
found exactly; see below. The calculation to the ordér |atter equality follows from the relatior8,=-uy, and u.

(two-loop approximatiopwill be presented in Sec. VIl in > ) so thaty,=-2¢/3. From the relationg.4) and Table |

detail, and here we give only the first order result: one obtainsA,=2ne/3+7,. Combining these expressions
_ _ gives the desired exact resl=0. It will be used later to
+ +
AL = - nin-2)  (d+id+] 2). (5.5)  prove the absence of anomaly for the second-order structure
3(d+2)  3(d-1)(d+2) function. What is more, it can be used to essentially simplify

Expression(5.5) was already presented ii29]. It differs  the calculation of the other dimensions, to ordere?; see
only by an overall factor from its analog for Kraichnan’s Sec. VII.
model [9,29 or the Gaussian model with finite correlation
time [29].2
The resultA;=A,,=0 in Eq. (5.5 is in fact valid to all
orders ine. This can be demonstrated using the Schwinger
equation of the form The representatiof#.6) describes the behavior of the cor-
relation functionG(r) for Ar>1 and any fixed value afr.
fDCI) A 0(X)expSx(®) + AD]/60'(x) =0, (5.6 In particular, for the structure functiori&.l) using the data
from Table I, Eqg.(4.5), and the definitions(go:Dolvf’):/\28
where S is the renormalized actiof8.2) and the notation ©One obtains
introduced in(2.3) is used.(We recall that in the general — 2,0,
sense of the term, Schwinger equations are any relations stat- S(r) =Dy rngn(mr). 6.
ing that any functional integral of a total variational deriva- For our model, odd structure functions vanish, but they be-
tive vanishes; see, e.g., Rg69].) Equation(5.6) can be come nontrivial if, for example, the random force in Eq.
rewritten in the form (1.2) is replaced by an imposed constant gradient. The iner-
, tial range corresponds to the additional condition tirat
(0'Dy0 = Vi P12] + vZ, 2, ¢#12] = vZ.ZF1))a <1. The form of the functiorg(mr) is not determined by the
== Ay SWR(A)/ A, (5.7 RG equations themselves; in the theory of critical phenom-
] ) . ena, its behavior fomr— 0 is studied using the well-known
where Dy is the correlation functiorf1.3), ({---))» denotes  \wjilson operator product expansion; see, e.g., R@fs,16.
the averaging with the weight ei@x(®)+Ad®], Wi is deter-  This technique is also applicable in the theory of turbulence
mined by Eq.(2.3) with the replacement— S, and the [16,43-45.
argumentx common to all the quantities is omitted. According to the OPE, the equal-time random quantity in
The quantity((F)) is the generating functional of the the left-hand side of Eq.1) at x=(x;+x,)/2=const and
correlation functions with one operatérand any number of r=x,-x,— 0 can be represented in the form
fields @, therefore the uv finiteness of the operatoris
equivalent to the finiteness of the functiondF)),. The [6(t,%1) = 8(t,x2)]"= 2, Ce(r)F(t,x), (6.2
F

VI. OPERATOR PRODUCT EXPANSION AND COMPOSITE
OPERATORS

3More precisely, the first order result fa, in Kraichnan's model ~ Where the function€r are the Wilson coefficients regular in

is obtained from Egs(5.4) and (5.5 after the substitutions m? and F are various composite operatdrsore precisely,
—3¢/2, whereg is the exponent in the velocity-velocity correlation S€e below.

function (vv) = 8(t—t") /K. Thus for the “physical” valuege=2 In general, the operatorB entering an expansion like
and é=4/3) they coincide. (6.2) are all possible renormalized local operators, allowed
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by the symmetry of the model and the quantity in the left-
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This establishes the existence of anomalous scaling for

hand side. In practice, they can be found as the monomialthe passive scalar field in our model with the identification
which appear in the corresponding Taylor expansions, and all,,=—-2nA,+A,=n+y,; see text below Eq1.2).

possible operators that admix to them in renormalization. If

If large-scale anisotropy is introduced to the problem by

these operators have additional vector indices, they are comhe correlation function of the scalar noi€e 3), the tensor

tracted with the corresponding indices of the coeffici€Pis

operators acquire nonzero mean values and their dimensions

With no loss of generality it can be assumed that the exalso appear on the right-hand side of the expan&os). An

pansion in Eq(6.2) is made in the operators with definite
critical dimension\r. The structure functionl.l) in renor-
malized variables is obtained by averaging E32) with the
weight expS; with S; from Eq.(3.2); then the quantitied-)

Ith rank irreducible operator gives rise to a term&4mr)
proportional to the spherical harmoni¥g, for d=3 or their
analogs for general. In the special case of uniaxial aniso-
tropy, when the functiorC in Eq. (1.3) depends on a fixed

appear on the right hand side. Their asymptotic behavior founit vectorn in addition tor, they reduce to terms propor-
m— 0 is found from the corresponding RG equations and hasional to the Gegenbauer polynomid?s (Legendre polyno-

the form (F) o mAF.

Combining the operator product expansi@?) with the
asymptotic representatiab.l) we therefore find the follow-
ing expression for the scaling functioggmr) in the region
mr<<1:

fn(ml') = E AnF(mr)AF, (63)
F

with the coefficientsA,<(mr) regular in(mr)2.

mials ford=3).

Repeating the above analysis we conclude that the leading
term in thelth anisotropic sector of the scaling function
&mr) for mr<1 is determined by th&h rank tensor opera-
tor F (5.3 with the dimensiom\,, from (5.5). In particular,
for the case of uniaxial anisotropy

Sy - + Py(coSHIM I+ - (6.5

wherey,, is defined in Sec. V below E@5.3), 9 is the angle

Obviously, the leading term of the asymptotic behavior ofbetween the directions andr, and the ellipses stand for the

the function(6.3) for (mr)<1 is determined by the operator
with the minimal dimensiomMg. The following additional
considerations should be taken into account.

contributions of the other anisotropic sectors. It remains to
note that the odd functionS,,,; are nontrivial if, for ex-
ample, the random force in E¢L.2) is replaced by an im-

(i) With no loss of generality, it can be assumed that theposed constant gradient, and their leading terms are then de-
expansion(6.2) is made in irreducible traceless tensor com-termined by the vector operatofs. ;.
posite operators. In the isotropic case, the mean values of all
nonscalar irreducible operators vanish, and their dimensions

do not appear in the right-hand side of E§.3).

(i) Owing to Galilean invariance of the model and the

structure functiong1.1), only invariant operators appear in
the expansioni6.2).

(iii) The action functional2.1) and the functiong1.1)
are invariant with respect to the shifit— #+const, and the
operators on the right-hand side of H§.2) must also be
invariant. This means that they can involve the fiefdsnly
in the form of (covarianj derivativesd, 6 or V6.

(iv) Using the linearity of Eq(1.2) in the field 6, one can
show that for any operatdf that appears in an expansion
like (6.2), the number of field¥ cannot exceed their total
number on the left-hand side.

Finally, we recall thatAr=dg+O(e). Thus we may con-
clude that, at least for small the leading terms in the small-
(mr) behavior for the even functio®,, is given by one of the
operatorsF, from Eg. (5.2 with k=n. Indeed, any addi-
tional derivative or a field different fron® leads to an in-
crease of the dimensiofig; the operatord-, with k>n are
forbidden by the propertgiv), while the operators containing
more fields than derivatives are forbidden (iiy). From the
explicit form (5.5) it follows that the dimensior\, mono-
tonically decreases dsgrows. We finally conclude that the
leading term in(6.3) is given by the contribution of the op-
eratorF, from (5.2) and

Son = Dg"r 2 o(mr)dn oc 1+ (6.4)

with the dimensiony; defined above Eq5.3).

VII. CALCULATION OF THE CRITICAL DIMENSIONS
OF OPERATORS F, IN THE TWO-LOOP
APPROXIMATION

A. General scheme and the relevant diagrams

From now on, we shall consider composite operatbr3)
in the model without the scalar noise in Ed..2), that is,
with D,=0 in the action functional2.1). The stirring force in
Eq. (1.4, that is, the term witlD, in the action functional
(3.2), should be retained. Then the operat@s) are renor-
malized muItipIicativer,Fn,:ZmFﬁ; see Sec. V. The renor-
malization constantg, =Z,(g,u,d, ) are determined by the
requirement that the 1-irreducible correlation function

(FROOOXD) -+ 0% 1.ir = Zoi (Fra(X) 0(Xq) -+ 0%0)) 1.
= Z (XX, .. %) (7.1

be uv finite in renormalized theoi3.2) and(3.3), i.e., have
no poles ine when expressed in renormalized varialil@$).
This is equivalent to the uv finiteness of the product
Z'T (x; 6), in which

1
1—‘nI(X; 0) = H f dX:I. e f anFnI(X;XL ---1Xn) G(Xl) e 9(Xn)

(7.2

is a functional of the field(x). In the zeroth approximation,
the functional7.2) coincides with the operatd¥,,(x), and in
higher orders the kernél,(x; Xy, ...,X,) iS given by the sum
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Vi (x)= o"kF(X)/o"Wil(X) S AW (X). (7.4)

iy
The analysis of the diagrams shows that for any argument

Xs In the quantity(7.2), the corresponding spatial derivative

is isolated as an external factor from each diagram. Using the

integration by parts, these derivatives can be moved onto the

corresponding field®9(xy), so that the quantity7.2) can be

represented as a functional of the vector field g, 6

1 -
La(x; 9):;Jydxl...fdxnr:11m|n

X(X;le---vxn)wil(xl) : "Win(xn)- (7.9

The diagrams that determine the kerfigh (7.5 contain
only logarithmic uv divergencies. Therefore, in order to find
the constanZ.! it is sufficient to calculate the functiondl
with some special choice of its functional argumemt
namely, one can replace it by its value at the fixed pajnt

FIG. 1. Diagrams of the functiol’ from Eq.(7.2) in the one-
loop and two-loop approximations.

of diagrams shown in Fig. 1 up to the two-loop order with

their symmetry coefficigntgcogfficient; pf the diagrams 2, the argument of the operatby, in Eqs.(7.1). Now the prod-
4, and 6 are equal.to. unity, while coefficients of the diagrams;, Wil(x)"'Wi (x) can be taken outside the integrals over
8.and 9 are nontrlylal, but they are not sh'own because WQL X, in Ec'f. (7.5), so that the functional'(x; 6) turns
will not need them; see belgwThe dashed lines denote the local it rator. The intearation of the re-
propagatorg2.4), while the solid lines denote the propaga- lntq ? oca gorrlp03| € operator. ) 9 T
tors (2.6); the slashed ends correspond to the auxiliary fieldgnaining functionl’, overxy, ..., X, gives a quantity indepen-
v’ and#’, the ends without a slash correspond to the figlds dent of any coordinate variables, and its ve_ctor |nd|ce_s can
and 6. Since we are working with the renormalized theory,Only be those of Kroneckes symbols. Their contraction
the replacements,— v, x,— ur should be made in the de- With the indices of the produat; (x)---w; (x) gives rise to
nominators of Egs(2.4) and (2.6), and the amplitude in the original operatofF,(x) with some scalar coefficierit.
(vv)o should be expressed in renormalized variabBg:  The integration ovek,,...,x, means that in the Fourier rep-
=gu®1® (see text below Eq(3.5). The diagrams 1-7 in- resentation, the corresponding correlation function is calcu-
volve only the vertex2.7) while the diagrams 8 and 9 also lated with all its momenta set equal to zero, which is always
involve the vertex2.5). One dashed line attached to any of implied in what follows. The ir regularization is provided by
the verticeq2.5 must be slashed; there are two variants forthe parametem in the function(1.5). In a compact notation
the diagram 8 and three variants for diagram 9. We do nobne can write
show these variants explicitiiand do not show the slashes _
and symmetry coefficients for these diagrantsecause, as Zu=2Zs, Fuax)=F, TI'yx;0=I'=FI. (7.6
we shall see below, the total contribution of the diagrams 2,
6, 8, and 9 can be found without the practical calculation o
their individual contributions.

The thick dots in the diagrams correspond to the vertices o
of the composite operatdf, from Eq. (5.3). According to Ze=1+, 7M™, (7.7
the general rules of the universal diagrammatic technique k=1
(see, e.g., Ref59)]), for any composite operatéi(x) built of o ®_ K )
the fieldsé, the vertex withk=0 attached lines corresponds Where the coefficientg."=Z7(g,u,d) are independent of.
to the vertex factor Then for the corresponding anomalous dimensjgnfrom

the definitions(3.7) and relationg3.8) for the B8 functions
V(X Xq, - %) = SFE(X)80(Xy) - -+ 80(%). (7.3 one obtains =D, In Zg=[Bydy+ BudulIn ZF:—ZDQZS)
+terms containing poles ia (we recall thatDy=gd,). How-
ever, the pole parts must cancel each other owing to the uv
finiteness of the anomalous dimensipa We therefore ar-
rive at the expression

f In the MS scheme all renormalization constants have the
form

The arguments;---x, of the quantity(7.3) are contracted
with the arguments of the upper ends of the lif@9'),
attached to the vertex. For our operat@s3), built solely of
the gradientsv;(x) =d6(x)/ dx; at a single spacetime poirt
the factors (7:3) con'Fain the producwilé(x.—xl)---aiké(x ye=- ZDgZS:l). (7.9
-X), and the integrations oveg- - -x, are easily performed:

the derivatives move onto the upper ends of the correspondhat is, in order to find the dimensiow it is sufficient to find
ing lines (0¢'), attached to the vertex, and their argumentsthe first-order residuzle) in the expansior7.7). If desired,
X1* * - X, are substituted witlx. After the derivatives have been the higher-order residu@k) with k=2 can be calculated to
moved inside the diagram, the remaining vertex factor forcheck the aforementioned cancellati@md thus the correct-
the operatofF(x) can be understood as the usual derivative:ness of the calculations
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Now we turn tq the practicgl palculgtion of the diagrams A :tr[(S)ﬁg_'_'S r;g_;; =[S -S1], (7.12
needed to determine the coefﬁueﬂﬁ) in the constantZ,, ) )
from Eq.(7.1) to orderg? (two-loop approximation where the symbol tr denotes the contraction with respect to

all repeated indices, which will not be shown explicitly. It is
therefore necessary to express the coefficidjtdn Eq.
(7.10) in terms of the quantitie7.12). We omit the deriva-
tion, which is identical to the case of the Kraichnan model

The contribution of a specific diagram into the functional (see Ref[19] for detail§ and give only the answer:
I' in Eq. (7.5 for any composite operatdf, built of the
gradierﬂ[sx(vi :5()9i 6, is re)éreser?ted in thpe form By=2ap[dA —Axl, Bp=ap[= 24+ (d+ D)AY]

with a, =[(d-1)d(d+2)]* fork=2, (7.133

B. Scalarization of the diagrams and contractions of basic
tensor structures

L=V 120wy - (7.9
whereV,,.. is the vertex facto7.4), 125 is the “internal By =6ag[(d+2)A = 3R], By =9ag[~ 2, + (d+ 1A]
block” of the diagram with free indices, the prodwejw,; - - with ag=[(d- 1)d(d+2)(d+4) ]t for k=3.
corresponds to external lines. The numerical indices..1,2, (7.13b
will always be understood as, i,,...; their number in Eq. ’
(7.9) equals the number of the letter indicasb,... and is The next step is the contraction of the quantiﬂi@%j,’ in

determined by the number of “rays,” that is, the numbkef  Eq. (7.9 with external factors: the vertex factdfy.,... of the

lines that attach to the vertex of the operator. These lines aromposite operator and the produgiv,, - -. Again, the deri-

given by products of the propagatof@d’), from Eq.(2.6)  vation is identical to the case of the Kraichnan mogsle

and are connected by the linésv), and (vv'), from Eq.  [19] for detaily and we only give the result:

(2.4); see examples in Fig. 1. For the two-loop calculation, it - =

is sufficient to consider diagrams witt=2 and 3, because F=Fl, T :E kiB;, (7.14

the diagram 5 wittk=4 factorizes into products of the blocks '

with k=2 and, therefore, gives no contribution to the first-where we use the notatiqi7.6) and the coefficients have

order residui(Fl). [This is true only if the ir regularization in  the forms

the correlator(1.5) is provided by the sharp cutoff &=m

=1/¢, so that the one-loop integral is a pure polesinsee kp=n(n-1), k=N

Eq. (7.2 below. If the regularization is provided, e.g., by whereh, = (n-D)(d+n+1-2) fork=2,

the substitutiork? — k?+m? in Eq. (1.5), the one-loop inte- (7.153

gral contains arO(&°) term, the dia}g)ram 5 contains a first '

order pole ine and contributes thFl. However, the total o B i _

value ofZ% in the MS scheme is independent of the choice ko =n(n=1)(=2), ko=(N=2)\y fork=3.

of ir regularization (7.15b
Since the vertex facto7.4) and the productv,wy, - - are

symmetrical with respect to any permutations of their indi-

ces, the quantityi‘gf,' in Eq. (7.9 is automatically symme-

trized with respect to any permutations of the letter indices r=> pA, (7.16)

a, b,... and the numerical indices 1,2,. In what follows, i

such symmetrization will be denoted by the symiSolFor

any fixed number of rayk, the quantityS | is represented as

a linear combination Py =2a[n(N=2)(d=1) +\(],

Finally, combining Eqs(7.13 and(7.15 we express the
functionT’ in the scalar quantities;:

where

Sl :;Bis (7.10 D, = a[n(n+d)(d=1) - (d+)N] for k=2,
(7.173
of certain basis tensor structurgs=(S)23 . with certain nu-
merical coefficientsd;. There are two such structures for the p; = 6as(n—2)[n(n—4)(d- 1) +3\],
k-ray diagrams wittk=2 and 3; they have the forms

P2 =9a3(n-2)[n(n+d)(d-1) - (d+1)\;] fork=3
(7.17b

S1=S[61a6203c], S =S[0120ap03]  for k=3. with A; , from Eq. (7.12), @, 5 from Eq.(7.13, and\ =I(l
+d-2). Note that the coefficients in Eq.(7.17b vanish for
(7.11b . . . . .
n=2 (in general, the diagrams withrays give no contribu-
The quantities that will be directly calculated from the tion to the functiond" for the operator§,, with n<k). Also
diagrams are not the coefficieris themselves, but the fol- note that the coefficienp; in Eq. (7.179 vanishes forn
lowing scalar quantities related to them: =2,1=0; this fact will be important in what follows.

S =8[01a6m], $,=S[6120a] fork=2, (7.113
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C. General relations for the anomalous dimensions efficient p; in Eq. (7.173 for n=2, =0 vanishes, whilep,
remains nontrivial;p,=2/d. Thus from Eq.(7.189 we im-
mediately find the following exact answer for the quantity in
the second square brackets:

Let us denote byQEZ(Fl) the first order coefficient in the
expansion(7.7) for the renormalization constai@:. In the
perturbation theory, it is calculated as the seriBs
:E;_lgSRS in powers of the renormalized coupling constant [g-a2) + 20%a{2] = de/6. (7.19
g, with coefficientsRs depending oru andd. In their turn, . o . )
they can be written as the surﬁs,:ZkzzR(sk), WhereR(Sk) is  This means that (tlr;e(z?nly contr|but|on that survives in the
the total contribution of the diagrams withrays. As illus-  left-hand side is:g." a5/ .-, while theO(s?) contributions
trated by Fig. 1, the number of terms in the latter sum iswith giz), u?, and a(zzz) must cancel each other. In order to
always finite: fors=1, there is only the contribution witk  verify the validity of our calculations, we checked this can-
=2, fors=2, there are contributions witk=2 and 3, and so cellation for d=3. All the dependence on and| in Egs.
on. Similar decompositions can be written for the coeffi-(7.183 and(7.180 comes from the coefficients, ,, so that
cients in front of the 1¢ contributions to the scalar quanti- the expressioii7.19 determines the contribution in the sec-
ties A; in Eq. (7.12. The corresponding coefficients will be ond square brackets {7.189 for all n and|.
denoted b)aj(?, wherei =1, 2 is the number of structuresis Since forn=2 *andI:O the coefficientp; vanishes, the
the order ing, andk is the number of rays. From the defini- exact answer foly,, gives no information about the quantity
tion of the constantZ and expressionér.6) and (7.9) it in the first square brackets. However, from the explicit ex-
follows that, at the same timag) is the total contribution of p_re_ssion for the only one-loop dia_gram in Fig. 1 i_t is not
the ith structure to the quantitR(Sk), that is,R(Sk)=Eipi<k)ai(§). difficult to see thatzthe corresponding structésgvanishes
Herep are the coefficienté7.17) in which the numbers of ~ identically, so thae(?=0 in Eq.(7.189. Indeed, in the quan-
rays are explicitly shown. tity A, the upper(letten indices of the tensori‘g,, in Eq.

We shall calculate the fird®; and the secondr, terms  (7.9) are contracted with its loweinumbey indices. In the
(two-loop approximatiop which involves diagrams with one-loop diagram this leads to the contraction of the mo-
two and three rays. Using the above definitions, expression@enta at the verteg7.3) with the transverse projector in the
(7.8) and(7.173, and neglecting the terms of ordgt and  correlator(vv), from Eq. (2.4), which depends on theame
higher, we can write the following representation to the two-momentum:P;; (k)k;=0.

ray contributiony(F2> to the anomalous dimensiog = y,, at Therefore, the quantity in the first square brackets appears
the fixed point(4.1): in fact O(g?) and, as foryf'), the coordinateg- and u.
should be substituted into it only in the leading-order ap-
(7.189 It remains to note that for the diagrams 2, 6, 8, and 9 the

structuresA; also vanish; the mechanism is the same as for
the one-loop diagram. Therefore, there is no need to calcu-
late these diagrams at all: their nonvanishing contributions
Y = - 4g¥pald) + p,al} (7.18n A, are known exactly fron{7.19 without practical calcula-
tion.

with the coefficient;, , from Eq.(7.179. Similarly, for the
three-ray contribution one can write

with p; , from Eq. (7.17D. Since diagrams with three rays
appear only in ordeg?, the contribution of ordeg in the D. Calculation of the scalar quantitiesA,
latter expression is absent. We recall that the quantﬁi@s

We shall not discuss the calculation of the scalar quanti-
depend oru andd. In Egs.(7.189 and(7.18b, the substi- d

f Rt ties A; from Eg. (7.12 for the all diagrams from Fig. 1 in
tution u=u. is implied. detail, because this definitely would exceed the readers’ pa-
The quantities7.183 and(7.183t) should be calculated Up tignce  and give only examples and general ideas. It has
to the orders?. The ‘?OT‘tribUtiO”Y(F) is of orderg?, so thatin  mych in common with the analogous calculation for Kraich-
Eq. (7.18h it is sufficient to take the coordinat@s, u. of  nap's model, discussed in R¢L9] up to the three-loop level
the(l)flxed p((g)lnt in (})he (gowest-order approximatiog: iy great detail. The present calculation differs from that of
=g’e, u.=u” with gV, u” from Eq.(4.3). [We recall that  [19] in a few respects.
the upper indices fog- and u. denote the orzders of the (i) Diagrams 8 and 9 involve the propagatév), from
expansion ire; see Eq(4.2).] The c_ontributiony(F) contains  Eq. (2.4) and the vertex’vv from Eq.(2.5); they are absent
terms of ordeig andg’. Therefore, in Eq(7.189 one should  for the case of a Gaussian velocity figldcluding, of course,
take into account the leading correction terms to the coordithe case of Kraichnan's model
nates of the fixed point, denoted g’ andu!™ in Eq. (4.2). (i) Diagrams 6 and 7 are present for any Gaussian veloc-
We are going to show, however, that the quantityl83 can ity field with finite correlation time. However, for Kraich-
in fact be calculated without knowledge of the coefficientsnan’s model they effectively contain closed circuits of re-

giz), uil), a(zzl) anda2. . tarded propagator&’ 6), and therefore vanish. It is crucial
We recall that the dimensiom, for n=2,1=0 is known  here that for Kraichnan's model the velocity correlator con-

exactly: y; = y,,=—2¢/3; see the end of Sec. V. This dimen- tains the s function in time. In our case, the velocity has

sion is completely determined by the two-ray contributionfinite correlation time and these diagrams give nonvanishing

y? from Eq. (7.18a, while ¥ for n=2 vanishes. The co- contributions.
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(i) In Kraichnan’s case, the diagram 2 and, in general, 26a (d — % < 2e( _
all diagrams with the self-energy insertions are easily taken A= S G (11+k2£ = OS(p/m(d - 1)
into account: it is sufficient just to drop them, and in the 4uu+d) Jnk 8u(u+1e
remaining diagrams to replace the bare viscosijtyvith its (7.22)
exact analog; see RgR9]. This is a consequence of the fact o
that, in Kraichnan’s case, the self-ener@lyat is, nontrivial  with S, from Eq. (3.4); the pole part of this expression is
part of the 1-irreducible functiokd’ 6),.;;) is exactly given  simply obtained by the replacemefi/m)%— 1. Substitut-
by the simplest one-loop diagra(the other contain closed ing this expression int¢7.189 along with the expressions
circuits of retarded propagators and vanishhat diagram (4.3) for the fixed points gives the one-loop res(8t5).
does not depend on its frequency argument and is simply Now let us turn to the calculation of the two-loop dia-
proportional top? its squared momentum argument, andgrams 2—7 in Fig. 1. These depend on two integration mo-
thus its contribution only leads to a certain redefinition of thementak andq and two frequencies, which can always be
viscosity coefficient. assigned to the tw@v)g lines of a diagram. The integrations
In the case at hand, the one-loop self-energy diagram is @ver the frequenciegr, equivalently, the times in the time-
nontrivial function ofp and the calculation of such diagrams momentum representatipare always elementary. The result
also becomes nontrivial. In higher orders, diagrams withcan be interpreted as a sum of terms, each of which corre-
multiloop self-energy insertiongabsent for Kraichnan's sponding to one possible “temporal version” of the diagram;
case will also appear. different temporal versions correspond to all possible order-
(iv) Diagrams 3 and 4 are present and nontrivial both folings of the integration times in the diagram. To each version
our model and for Kraichnan's cas@as well as for the corresponds an “energy denominator,” given by the product
Gaussian model with finite correlation timef course, the  of the factors corresponding to all “temporal cross sections”
corresponding analytical expressions are different in thesgf the diagram; to each cross section corresponds the sum of
two cases due to the difference in the explicit forms of the‘energies” £, = vk? for all intersected(vv), or (v'v), lines
correlation functiongv’'v),. In particular, all their contribu- and &, =uk? for (96'), lines. Thus, with some experience, it
tions for the zero correlation time are expressed in terms of possible to write down the result of the temporal integra-
hypergeometric functiongsee Ref[13]) while for our case tjon without performing the actual integration. As a typical
this is no longer trugsee below. example, we give the result of temporal integration for the

(v) In Kraichnan's model, the value af. was given by quantitylel‘g corresponding to the diagram 3:
the one-loop approximation exactly; in our case, the higher-

order contributions are nontrivial and should be taken into (gu*)?
account. 12~ 4u(1 +U)(27T)2d
As we have seen in Sec. VII C, in the two-loop approxi-
mation the total effect of the diagrams 2, 6, 8, and 9 and of y ff dk dg (k+q)a(k+q)pgi;Pij(K)P12(q)
the O(e?) contribution ing. can be found from the exact (ka)®*? o?(k + )7 K2 + ucf + u(k + q)?]

1

three-loop and higher orders the itefgiy (iii ), and(v) be- +
[K*+ g+ u(k +q)°]

come nontrivial.

Consider the calculation of the one-loop diagram 1 in Fig.
1. Using the explicit forms of the propagators and vertices i
(2.6) and(2.7) and the definition we obtaiin renormalized

identity (7.19 without the practical computation, but in the 1
X — (; 7.2
{ qu} 722

ow the corresponding scalar quantitids are easily ob-
ained. It is convenient to represent the denominators as
products of simpler factors, and to combine the quantidies

variables corresponding to different diagrams; this sometimes leads to
2.3 —d-2¢ noticeable simplifications of the integrands. With only one
|ab 1[ do dk g PyK)K* exception[see Eq(7.32 below], all these quantities can be
272 ) em ) oY (02 + 2K ; o e i
reduced to linear combinations of the following “basis” sca-
1 lar integrals:
X—
2 2 _
Calidy 1 f f dkdg  (k-q)sinPd sﬁm—“sw "
2e +2¢ = 1
et K dop on 729 @07 ) ) ko 2p0ca T B 7
du(u+1) ) 2m° k (7.23

where the factor 1/2 in front of the integral is the symmetrywhere the parameteB takes different values;3=1, 8
coefficient(see Fig. 1 and the three factors in the integrand =u/(1+u), or B=[u/2(1+u)]*2, while p=1, 2, and 3, and
come from the vertex of the composite operator, the propagenotes the angle between the vectgrand k, so that
gator (vv)o of the velocity field, and the product of two (k.q)=kgcosd. (We do not discuss much simpler integrals,
propagators(6’ 6),, respectively. The second equality in e.g., those that can be factorized into two independent inte-

(7.20 is the result of elementary integration ower Obvi-  grals overk andq, and so on.The integrands in Eq.7.23
ously, A1=|g{;=o, the fact already mentioned in Sec. VII C, involve three independent parameters, the motudind g
while for A,=152 one obtains and the angle9, so that the integrals can be written as
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2(1-d)

2
aas 2),8F(1,l,d/2 +2:89),

W,(B) =

2(1-d?

B ol VS . @2
d(d+2)(d+4)'BF(1'1’d/2 +3;89,

W4(B) =

where the angular brackets denote the angular averaging over

the unit sphere i dimensions normalized such thdp=1.
Let us expand the integrands in §d.23 in B or, equiva-
lently, in the scalar produck -q) =kqcos®. In each term of

the resulting expansion, the integrations over the angles can

be computed using the following formulas:

@n-1)!!
cos"Y) = , 7.24
( ) dd+2)---(d+2n-2) ( )
with n=1,2,... The remaining integrals over the moduli

have the forms

2n+2
In(m) EJ kl+2aJ l+2£<k2+q ) =m¥l,(1).

(7.29

Using the identity

1
[,(m) =~ 2—Dmln(m), Dn=maldm, (7.26
£
which follows from the last equality in Eq7.25), the inte-

gral I,,(m) can be represented in the form

0 dk( Kk )2n+2

1 k1+s k2+1

m—4£
I,(m) =
) ==

(7.27)

that is, the number of integrations is reduced and the pole in

e is isolated explicitly. We need only the pole part of the
integral I,(1), which now is simply obtained by setting
=0 in the integrand of Eq(7.27). The resulting integral is
easily calculated:

1 (n!)? .
88(2n+1)'

In(1) = 0(&9). (7.29

2(1-d?(d+3)
d(d+ 2)(d+ 4)(d+ 6)

BF(1,1:d/2 + 487,

(7.31

Ye(B) =

and so on. The integral

f f dk dq (k - q)k? sint®
(277)2" (ka)¥? (k + @) (k + )2+ ¢* + xK]
%

J(x,d) + O(e%) (7.32
(wherex=1/u) does not reduce to the hypergeometric func-
tion and can only be expressed in the form of a single con-
vergent integral, suitable for numerical calculation, for ex-
ample,

o (1-d ! 1 _
XD =+ 2+ 4 o (1+2)(1 ot (22
+3:(1+27 Y1 +x27Y (7.33
or
_ T(dR) Jl (1-22)92
Toodh = Val((d-1)12) Jo 17+ a2

x{zz(l -2 In(l%() - z(x— 1+ 22)arcsinz

I

2(1-PAYY1-x-2)
[2(1 +x) = Z2]H?

X arctar[

42(1+x) - 22

(1+x-29 (7.34

Thus we have represented the pole part of the integral remains to note that in Eq4.3) of Ref. [30] the latter

(7.23 as infinite series with known coefficients. It is not

integral is given with a misprint.

difficult to see that these series can be reduced to the hyper-

geometric function
a(a+ 1b(b+ 1) 22
c(c+1) 2! '
(7.29

F(abcz)_1+
c

namely, for the quantitie®¥,,(3) defined in Eq(7.23 one
obtains

-I'(d/i2)I'(d/2 - 1/2 +p)
I'(d/2-1/2I'(d/2 + 1 +p)
+p; 8%,
with Euler’'sT" function. For the first special values pfthis
gives

Won(B) = BF(1,1:d/2+1

(7.30

VIIl. ANOMALOUS EXPONENTS TO ORDER  &?

Using the techniques described in the preceding section,
we have performed a complete two-loop calculation of the
critical dimensionsA,,, of the composite operators.3) for
arbitrary values ofn, I, andd and obtained the following
expression for the second coefficient in expang#):

4
9(d - 1)%(d + 2)3(d + 4)
+N]+ (n=2){68[n(n-4)(d-1) + 3\ ]
+9C[n(d+n)(d-1) - N(d+D)])
with \;=I1(d+I-2) and

(2) —
nl —

2(d+4)A[n(n-2)(d-1)

(8.1
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y (x=1-1k)(d+1) IX. DISCUSSION AND CONCLUSION
2(d+2)(1-x) We have studied a model of a passive scalar field, gov-
(d+1) 1 erned by the diffusion-advection equati¢h?2) and subject
2F3( 2) to a large-scale random forcirid.3). The advecting velocity
2d+ 4L —0x(L+x)7 "\ (x+1) field obeys the Galilean-invariant Navier-Stokes equation
2xd(d + 2) (1.4) subject to an external random force, white in time and
mﬂ(xyd). having a power-law spectrum proportional k& 9% see
Egs.(1.5 and(1.6).
(d+1) « 1 Using the RG and OPE methods, we have shown that the
B= [ 3( ) structure functions of the scalar field display anomalous scal-
3(1-x%(d+4) [ x+1 “\2(x+1) ing behavior; see Eqg6.4) and (6.5). The corresponding
1 1 2 (1 anomalous exponents, are identified with the criticalscal-
- 2F3( 2) - —F3<—)] ing) dimensions of certain composite field®peratory
(x+1) (x+1) 4 "\4 namely, powers of the local dissipation rate of scalar fluctua-
5 tions (5.2), which offers the possibility to calculate them
o=t 3x(d-1) (}) within a regular perturbation theory, as seriessinsee Eq.
9(1 - x)? 4 2\ 4 (5.4).
The calculation has been accomplished to the second or-
- x2d-1+x(d-2)] 2( 1 ) der, 2 (two-loop approximatioy) including the exponents of
(x+1) 2(x+1) anisotropic contributiongs.5). The latter are identified with

[d+1+2x(d-2)] 1 X2(d + 1) 1 the critical qlimensions of tensor composite fields built_ of the
+ > 2 e 2] " (dea 2\ scalar gradientgs5.3). The first-order expressior5.5) coin-
(x+1) (x+1) ( ) cide with the exponents of the well-known Kraichnan rapid-

4x(d+ 1) 1 change mode(up to a simple normalizatiognwhile in the
* (x+1)(d+4) 3\ 2(x+1) second order they are different. As for the rapid-change
model, the second-order structure function is not anomalous.
__AMd+D (1 8.2 Thus we have overcome two important limitations of the
(x+ 1D)*(d +4) 3 (x+1)2/]" ) previous treatments of the problem: absence of time correla-

_ _ © o (O) tions and Gaussianity of the advecting velocity field. It is
Here J(x,d) is the integral(7.34, x=1/u.” with u.” from interesting to note that both the RG mechanism of the
Eq. (4.9, andF(2=F(1,1;d/2+k;2) is the hypergeomet- anomalous scaling and the results for the exponents are, in
ric function (7.29. The values of entering into Eq(8.2) many respects, similar to the case of the rapid-change model.
can be related by the recurrent relation Let us compare our findings with those for the Gaussian

(z- DF (20 =z(d+ 2F5(2)/(d+ 4) - 1, models.

but the resulting expressions look more cumbersome and W yniversality: Independence of the forcing and relevance of

have kept b_oter apd F5 in the for_mulas. the zero-mode picture
Contributions withA, B, andC in Eq. (8.1 come from . ) ) i
the structures, with k=2, A, with k=3, andA, with k=3, As we have seen, the critical dimensions of all composite

respectively. The structur, with k=2 gives no contribution OP€rators(5.2) and (5.3), and therefore the corresponding
to Af,), as discussed in Sec. VII C in connection with Eq_anomalous exponentscluding anisotropic sectoysare in-

(7.19. For the most interesting cask=3 one obtains dependent of the forcing, specified by the correl@lod). In
particular, this means that they remain unchanged if the stir-

A=-0.90239, B=-0.135498, ring noise in Eq.(1.2) is replaced by an imposed constant
gradient, as, e.g., in Reff21,29,33. The role of the forcing
C=0.19622, J=-0.024976. (8.3 is to maintain the steady state of the system and thus to

. S . provide nonvanishing amplitudes for the power-law terms
Expression(8.1) simplifies for the most important case of the with those universal exponents. This behavior is already well

isotropic sectoKevenn and|=0): known for the passive scalar or vector fields, advected by the
n(n-2) Gaussian velocity fields with vanishing or finite correlation
A2 = 2 {2(d+4).A+6(n-4)B+9(d time.
(d-1)(d+2)%(d+4) In the language of the R@vhich is equally applicable to
+n)C}. (8.4)  the case of a zero or finite correlation time of the advecting
field) this is explained as follows: the stirring force or the
For the simplest nontrivial case=4 one obtains imposed gradient does not enter into the diagrams that deter-
A% =824 +90)/(d - 1)(d + 2)?, (8.5) mine the renormalization of the operat@fs2) and(5.3), so

that their dimensions appear forcing independent. Similar
that is, the quantity3 does not enter into the result. For  diagrams determine the contributions of those operators into
=6, all the coefficient$8.2) contribute to the result. the operator product expansio(%.2), which are nontrivial
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even for the unforced model. The difference is that for thethe linearity of our model, independence of the exponents on
unforced model, the mean values of the operators vanish, sbe random force, and the $d) symmetry of the unforced
that they give no contribution to the right-hand sides of rep-model. On the contrary, theierarchy of the exponents fol-
resentations lik€6.3). For the isotropic correlatqil.3), sca-  lows from the explicit expressions, obtained only by practi-
lar operators acquire nonzero mean values and contribute tal calculation.

the right-hand side of6.3), while for the anisotropic cor- According to the Kolmogorov-Obukhov theof¥,2], the
relator or the imposed constant gradient, the mean values @hisotropy introduced at large scales by the fordingund-
irreducible tensor operators also become nonzero and thediry conditions, geometry of an obstacle, gties out when
contributions are “activated” in representatiqiBs3). the energy is transferred down to smaller scales owing to the

For the case of a Gaussian advecting field with vanishingascade mechanis(isotropization of the developed turbu-
correlation time, when the equal-time correlation functionslence in the inertial rangeThe analytical results discussed
satisfy exact closed differential equations, the above picturabove confirm this classical concept and give a more quan-
it is easily understood in the language of the zero-mode aptative picture of the isotropization.
proach[14]: forcing terms do not affect the corresponding The hierarchical picture, derived here and in Refs.
differential operators; thus the anomalous exponents, detef21,29-32 for passively advected fields, appears unexpect-
mined by the zero modegolutions of homogeneous un- edly general, being compatible with that established recently
forced equationsalso appear forcing independent. On thein the field of NS turbulence, on the basis of numerical simu-
contrary, the amplitudes are determined by the matching dftions and natural experiments; see R¢&0] and refer-
the inertial-range zero-mode solutions with the forced largeences therein. There, the velocity structure functions were
scale solutions, which is only possible in the presence of thelecomposed in the irreducible representations of the rotation
forcing terms. group. It was shown that in each sector of the decomposition,

The exact resemblance in the RG picture of the rapidscaling behavior can be found with apparently universal ex-
change models and the finite-correlated cases suggests thminents. The amplitudes of the various contributions are
for the latter, the concept of zero modesd thus of statis- nonuniversal, through the dependence on the position in the
tical conservation lawsis also applicable, although the cor- flow, the local degree of anisotropy and inhomogeneity, and
responding equations are not differential and involve infiniteso on.
diagrammatic series. It is worth recalling here that the so-called “additive fu-
sion rules,” hypothesized for the NS turbulence in a number
of papergsee, e.g., Ref61]) and characteristic of the mod-
els with multifractal behavio(see Ref[62]), arise naturally

In the presence of large-scale anisotrdghat is, the an- in the context of the rapid-change models owing to their
isotropy introduced at scales of ordeby the forcing in Eq.  linearity. The existing results for the Burgers turbulence can
(1.2)], structure functions of the scalar field can be decom-also be interpreted naturally as a consequence of similar fu-
posed in irreducible representations of thdimensional ro-  sion rules, where only a finite number of dangerous operators
tation group S@d). Such a decomposition naturally arises contributes to each structure function; see R€8]. This is
from the corresponding OPE, provided it is made in irreductather surprising because the equations for the correlation
ible traceless tensor composite operators; the tarfla ten- ~ functions in such cases are neither closed nor isotropic and
sor operator can be used to label the terms of thédsO homogeneous. One can thus speculate that the anomalous
expansion and can be viewed as the measure of anisotropy 8¢aling for the genuine turbulence can also appear, in some
the Corresponding termsector”)_ Thus each anisotropic sec- Sense, a linear phenomenon. Of course, one should not insist
tor is characterized by its own set of scaling exponents; thé&o0 much on this bold assumption.
leading term is given by thieh-rank composite operator with
minimal critical dimension.

Explicit expressions for these dimensions, derived to sec-
ond order ine, exhibit a hierarchy related to the degree of An important issue is that of the universality of anoma-
anisotropy: the higher is the rank of the operatiie more lous exponents. As already discussed, the exponapts
anisotropic is the contributionthe larger is the correspond- =Ap(e,d) in Eq. (5.4) are independent of the forcing in the
ing dimension, and thus the less important is its contributiorscalar equatioitl.2), and thus independent of all the param-
to the inertial-range behavior. This hierarchy can be ex-eters that can appear in its correlation functi@rB).
pressed by the relationA,/dl >0, which is obvious from However, the exponents depend on the expometitat
the first-order expressio(b.5). It holds for all values ofn  enters the correlation function of the stirring for¢e5) in
andd. This picture is similar to the hierarchy relations de-the NS equatior(1.4). They also depend od, the dimen-
rived earlier for the passive scalar and magnetic fields adsionality of thex space[note that the basis dimensions re-
vected by the Gaussian velocity ensembj2s,29-32. lated to the velocity field ard independent; see Eqgt.5)].

In particular, this means that the overall leading term is Earlier, it was argued on phenomenological grounds that
given by the exponent from the isotropic sector, and it isthe anomalous exponents of the scalar field can depend on
therefore the same for the isotropic and anisotropic forcingmore characteristics of the advecting field than only the ex-
It also should be stressed that the independence of the scglenents; see, e.g., the discussion in R&4]. Indeed, ana-
ing behavior in different sectors is a direct consequence ofytical derivation of the anomalous exponents of the passive

B. Hierarchy of anisotropic contributions

C. Universality: Independence of the time scales
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scalar field, advected by a Gaussian velocity with finite corvalidity of the ¢ expansion: fore larger than certain thresh-
relation time, has revealed for some asymptotic regiftles  old value ¢, the velocity field(and hence all its powers
cal turnover exponeny’their dependence on the correlation become dangerous: their critical dimensions, known exactly
time of the velocity field(more precisely, the dimensionless due to the Gaussianity, become negative, and new strong ir
ratio of the correlation times of the scalar and velocity singularities occur in the diagrams; see the discussion in Ref.
fields); see Refs[29,30,35. [29]. This leads to a qualitative changeover in the smail-

In our case, the exponents could depend, in principle, oilbehavior of the scalar field, as demonstrated in Refs.
the analogous dimensionless parametge o/ vy from [37,38,4] using certain nonperturbative analytical methods
(3.2), the (inversg Prandtl number. After the RG resumma- and numerical experiments. Therefore, the results obtained
tion, this parameter is replaced with the corresponding inwithin the plaine expansion no longer apply.
variant variable, which has exactly the meaning of the ratio Physically, this is a manifestation of the fact that abeye
of the scalar and velocity correlation timé®r a detailed the so-called sweeping effect&inematic transfer of the
discussion of this point see R¢R29]). However, the analysis small-scale turbulent eddies by the large-scale phesome
of the RG equation shows that in the ir asymptotic range, thismportant. Thus such threshold value can also be viewed as
parameter tends to a fixed point, whose coordinatele- the upper bound of the range of validity of the model itself:
pends ond and e, but not on the initial valuely; see Egs. the lack of Galilean covariance becomes a serious shortcom-
(4.2 and(4.3). As a result, all the dimensions, includidg, ing of the synthetic Gaussian velocity ensemble when the
from Eq. (5.4), appear independent af,. In the RG lan- sweeping effects become important.
guage, the nonuniversaligthat is, the dependence on the Inthe model1.4) and(1.5), the dimensions of the powers
ratio ug or its analog of the exponents in the Gaussian modelv" are known exactlyA[v"]=nA[v]=n(1-2¢/3); they all
is a consequence of the infinite degeneracy of the ir stablbecome negative fos>e.=3/2 [43—45. Some operators,
fixed point; see the discussion [29]. In the NS model, the built of the velocity field and its temporal derivatives, also
fixed point is uniqgugnondegenerajeand the exponents ap- become dangerous fer< 2; see[44,45. Their contributions
pear universal. to the OPE for the correlation functions of the velocity and

We stress that, although the coordinates of the fixed poingécalar fields become singular; however, they can be summed
are known only in the two-loop approximatigaee the dis- out explicitly using certain infrared perturbation theory. This
cussion below Eqg4.2) and(4.3)], the statement about the indeed results in a qualitative changeover in the small-
universality is exact, that is, it holds to all orders of the behavior of the correlation functions, their strong depen-
expansion. dence on the ir scalé=1/m, and superexponential decay in

Since the degeneracy of the fixed point in the model studtime [43—-45, in agreement with the phenomenological
ied in Refs.[29,30,35 is an artifact of the Gaussianity of the analysis of Refs[64].
velocity ensemble, we believe that our result for the non- Galilean symmetry of our model guarantees, however,
Gaussian velocity ensemble, described by the Galileanthat the invariant quantities, for example, the equal-time
covariant NS equation, suggests that for the real passive adtructure functiong1.1), are not affected by the sweeping.
vection the anomalous exponents are universal, that isviore formally, the contributions of the aforementioned dan-
independent of the Prandtl number or the ratio of the scalagerous operators do not appear in the OPE for Galilean in-
and velocity correlation times. This is probably the most im-variant correlation functions; see Refd6,43-46 for de-
portant qualitative conclusion that can be inferred from ourtailed discussion. This means that in modtl2—1.6), the
analysis. It is then relevant to discuss the role played by thecaling relations obtained for smal) for Galilean invariant

Galilean symmetry of our model in the RG analysis. quantities can be extrapolated beyond the threskgldn
_ _ o spite of the fact that the sweeping becomes important there.
D. Sweeping effects and the Galilean invariance The most recent numerical simulations of the model

The results obtained within the RG and OPE approactl.4—1.6) have shown that the scaling relations, obtained by
and within thes expansion, are reliable and internally con- the RG analysis for the structure functions, remain valid for
sistent for asymptotically smal. A serious question is that € as high ag=7/4[51].
of the validity of thee expansion for finitez’'s, and the pos-

sibility of the extrapolation of those results to the physical E. Extrapolation to the physical value =2. Relevance of the

values=2. del for the real turbulent advect
For the rapid-change model, theexpansion works sur- modet for the real turbuient advection
prisingly well. It was demonstratefd 9] that the knowledge Our calculation of the anomalous exponents implied

of three terms allows one to obtain reasonable predictions fasmallness of the RG expansion parameteFor smalle, a
finite e ~ 1; even the plaire expansion captures some subtle serious flaw shared by our model with the Gaussian ones is
gualitative features of the anomalous exponents establishdtiat the advecting velocity field is nonintermittent, in con-
in the exact solutions of the zero-mode equations and itrast to the real turbulent fluid. However, numerical simula-
numerical simulations. The quantitative agreement can b#ons of Refs[51,52 suggest that, as increases, the behav-
achieved with the aid of various improvements, like the in-ior of the model (1.4—1.6) undergoes a qualitative
versee expansion or interpolation formulg49]. changeover and the scaling of the velocity field becomes
In the case of the Gaussian model with a finite correlatioranomalous: the exponents of the structure functions become
time, however, there is a natural upper bound for the range different from the results of naive extrapolation of the small-
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e prediction. In the RG language this probably means that The situation resembles that encountered for Kraichnan'’s
certain Galilean invariant operators acquire negative criticamodel. There, the one-loop results for the most realistic
dimensions for some finite values of close to the physical value ¢=4/3 arealso equal taA,=-1 andA;=-3 [see the
value e=2. Unfortunately, identification of those operators remark and footnote below E¢.5)] and essentially overes-
and calculation of their dimensions on the basis of the modefimate the real value of the exponents=-0.3 andA;
(1.4—(1.6) lies beyond the scope of the present RG tech-—~—0.7, known from the numerical simulations of Re#42].
nique: the effect takes place for finite, and not small, valuesrhe second-order correctiorialthough different from their

of &, while the dimensions of the operators are known Onlyanalogs in our modglalso appear too small to improve the

i;]. the fprm of thE first termslof tt)he ixpanﬁionsd((somg . _agreement. A better agreement is achieved if the third-order
Imensions are known exactly, but they all remain pos't'vecorrection(which is not small is taken into account, and the
for e<2). Detailed discussion of the critical dimensions of

; ) ; ! straightforward expansion i is augmented by additional
Galilean invariant operators can be found in R¢f€,44,45 ; . . . s
and the original paperEs0,65. Hopefully, the problem will considerations about its nature, convergence properties, char

be solved with the aid of an alternative perturbation theor)faCtler andtIoctattmnKof_s:;]gulénnes detlc.;thsee F_{ﬁzﬁ]. ¢
(the expansion in Id seems very promising, but so far it has I'n conhras. 0 Kraic nar?s mode Zm ere fl_s.no rzz?\_sop 0
been constructed only for Kraichnan's model and only to the?€lieve that in our case the seriesdrhave finite radii o

leading ordef10]). convergence. As in most field theoretic models, they can
If the dangerous Galilean invariant operators indeed aris€nly bé asymptotical series. Thus, one should not have ex-
in the modek1.4)—(1.6) for some finite values of, they will ~ Pected that the straightforward summation of the first (o

also contribute to the OPE’s for the structure functighd)  €ven morg terms would give a good result. In models of
of the scalar field. Physically, this corresponds to the contricritical behavior accurate theoretical predictions for the ex-
bution of the velocity to the intermittency of the scalar field, ponents imply knowledge of the large-order asymptotic be-
while the contributions of the operatos.2) and(5.3) cor-  havior of the coefficients of the expansions, obtained using
respond to the intrinsic intermittency of the scalar field itself.the instanton calculus, and special resummation procedures
Obviously, only the latter contribution can be describedfor the divergent seriegl5]. In dynamical models the corre-
within the & expansion. Since the scalar fields appear muclponding methods are in their infanf6—69: to the best of
more intermittent than the velocity field, one can assume thagur knowledge, an instanton-type solution for an action func-
this latter contribution dominates the anomalous behavior ofional of the Martin-Siggia-Rose type has been obtained only
the scalar, or, at least, it is relatively more important than th&gr a2 model whose equal-time correlation functions corre-
former. One can there_fore hope that the di_mensi@,man_d spond to a system in thermodynamic equlibri(ié8]. The
Ans take.n at the physical value=2, can be identified W|th_ instanton analysis of Ref§67], performed in Lagrangian
the leading anomalous exponents of the structure functiong, rjapleswhich implies zero correlation time of the velocity
of the re?" passllve sclala}r f'erlld' f : f field, that is, only Kraichnan’s cagelid not touch upon the
sivEXsrz:earlge]‘g[I?j gfguptr?asggttec? iztrg%zr_%] Ejnn(t:élr(m: gf t";‘“fas'_problem of the large-order coefficients of pertqrbative series;
exponentss,, with S, rén. For an even function, in our no- it has mostly been concentrated on the behavior of the expo-
fation {,n=—2nA .+ A, whereA ,=—1-+/3 from Eq.(4.5) is nent.sgn at largen. On_e can hope that f.urther developmenF of
2n o -n 0 the instanton techniques for dynamical models, combined

the critical dimension of the scalar field adg are the di- . o . L
mensions of the operator§.2), with the second-order ex- with the RG framework WI|| give the solution of this impor-
tant problem. This work is left for the future.

pression given in Eq8.4). For the physical value=2 this
gives {,n,=2n/3+A,(e=2).
The results of4—6] seem to be consistent with the Kol- ACKNOWLEDGMENTS
mogorov value{,=2/3 for the second-order function, in
agreement with our exact resllf =0. Possible deviation, if The authors thank Luca Biferale, Antonio Celani, Michal
any, can be attributed to the anisotropy of the experimentatnatich, Antti Kupiainen, Alessandra Lanotte, Andrea
setup or/and contribution of velocity’s intermittency, ne- Mazzino, and Paolo Muratore Ginanneschi for discussions.
glected in our analysis. The work was supported by the Nordic Grant for Network
From Fig. 3 presented in the most recent st[@lyone can  Cooperation with the Baltic Countries and Northwest Russia
infer A,=-0.23 andA;=-0.67, which shows clear devia- No. FIN-20/2003. N.V.A. was also supported by the Acad-
tion from the Kolmogorov valuegA,=0 for all n). Fore  emy of Finland(Grant No. 20312 L.Ts.A., N.V.A., and
=2 and d=3 the one-loop approximatiof5.5) gives A,  T.L.K.thank the Department of Physical Sciences in the Uni-
=-1 andA;=-3; the two-loop correctior8.4) appears nu- versity of Helsinki for its kind hospitality. N.V.A. and J.H.
merically very small and does not affect this result markedlythank the Organizers of the Tenth European Turbulence Con-
Admittedly, it is difficult to speak about a good quantitative ference “Advances in Turbulence XThe Norwegian Uni-
agreement with the experimental values. versity of Science and Technology, Trondheim, Noryvay

016303-18



ANOMALOQOUS SCALING OF A PASSIVE SCALAR...

[1] A. S. Monin and A. M. Yaglom Statistical Fluid Mechanics
(MIT Press, Cambridge, MA, 1975Vol. 2.

[2] U. Frisch,Turbulence: The Legacy of A. N. Kolmogo@am-
bridge University Press, Cambridge, U.K., 1995

[3] K. R. Sreenivasan and R. A. Antonia, Annu. Rev. Fluid Mech.

29, 435(1997.
[4] Z. Warhaft, Annu. Rev. Fluid Mech32, 203 (2000.

[5] R. A. Antonia, E. Hopfinger, Y. Gagne, and F. Anselmet, Phys.

Rev. A 30, 2704(1984).

PHYSICAL REVIEW E 71, 016303(2005

[26] D. Bernard, K. Gawezki, and A. Kupiainen, J. Stat. Phy80,
519(1998.

[27] A. Celani and M. Vergassola, Phys. Rev. Le36, 424(2001).

[28] I. Arad, L. Biferale, A. Celani, I. Procaccia, and M. Vergas-
sola, Phys. Rev. Lett87, 164502(2000.

[29] N. V. Antonov, Phys. Rev. B60, 6691(1999.

[30] L. Ts. Adzhemyan, N. V. Antonov, and J. Honkonen, Phys.
Rev. E 66, 036313(2002.

[31] N. V. Antonov, Physica D144, 370(2000.

[6] F. Moisy, H. Willaime, J. S. Andersen, and P. Tabeling, Phys.[32] N. V. Antonov, M. Hnatich, J. Honkonen, and M. 3i&in,

Rev. Lett. 86, 4827(200D).

[7] R. H. Kraichnan, Phys. Fluid41, 945(1968.

[8] R. H. Kraichnan, Phys. Rev. Let72, 1016(1994.

[9] K. Gawglzki and A. Kupiainen, Phys. Rev. Let5, 3834
(1995; D. Bernard, K. Gawezki, and A. Kupiainen, Phys.
Rev. E 54, 2564(1996).

[10] M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev,
Phys. Rev. E52, 4924(1995; M. Chertkov and G. Falkovich,
Phys. Rev. Lett.76, 2706(1996.

[11] A. Pumir, Europhys. Lett.34, 25 (1996; 37, 529 (1997);
Phys. Rev. E57, 2914(1998).

[12] B. I. Shraiman and E. D. Siggia, Phys. Rev. Le€if7, 2463
(1996; A. Pumir, B. I. Shraiman, and E. D. Siggia, Phys. Rev.
E 55, R1263(1997).

[13] L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil'ev, Phys.
Rev. E 58, 1823(1998); Theor. Math. Phys120, 1074(1999.

[14] G. Falkovich, K. Gawdzki, and M. Vergassola, Rev. Mod.
Phys. 73, 913(2001).

[15] J. Zinn-JustinQuantum Field Theory and Critical Phenomena
(Clarendon, Oxford, 1989

[16] A. N. Vasil'ev, The Field Theoretic Renormalization Group in
Critical Behavior Theory and Stochastic Dynam{&t. Peters-
burg Institute of Nuclear Physics, St. Petersburg, 1998
Russian [English translation Chapman & Hall/lCRC, Boca Ra-
ton, FL, 2004.

[17] L. Ts. Adzhemyan and N. V. Antonov, Phys. Rev.5B, 7381
(1998; N. V. Antonov and J. Honkonenbid. 63, 036302
(2001).

[18] L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S.
Kabrits, and A. N. Vasil'ev, Phys. Rev. B3 025303R)
(200D; 64, 019901E) (200D.

[19] L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S.
Kabrits, and A. N. Vasil'ev, Phys. Rev. B4, 056306(2001).

[20] M. Vergassola, Phys. Rev. B3, R3021(1996); |. Rogachev-
skii and N. Kleeorin,bid. 56, 417 (1997).

[21] A. Lanotte and A. Mazzino, Phys. Rev. @), R3483(1999; I.
Arad, L. Biferale, and I. Procacci#id. 61, 2654(2000.

[22] N. V. Antonov, A. Lanotte, and A. Mazzino, Phys. Rev.&,
6586(2000; N. V. Antonov, J. Honkonen, A. Mazzino, and P.
Muratore-Ginanneschibid. 62, R5891(2000; L. Ts. Adzhe-
myan, N. V. Antonov, A. Mazzino, P. Muratore-Ginanneschi,
and A. V. Runov, Europhys. Lett55, 801 (2002).

[23] L. Ts. Adzhemyan, N. V. Antonov, M. Hnatich, and S. V. No-
vikov, Phys. Rev. E63, 016309(2000; M. Hnatich, M. Jur-
¢isin, A. Mazzino, and S. Sprinc, Acta Phys. Slds2, 559
(2002.

[24] L. Ts. Adzhemyan and A. V. Runov, Vestn. Leningr. Univ.,
Ser. 4: Fiz., Khim.1, 85 (2002; L. Ts. Adzhemyan, N. V.
Antonov, and A. V. Runov, Phys. Rev. B4, 046310(2001).

[25] K. J. Wiese, J. Stat. Phyd.01, 843(2000.

Phys. Rev. E68, 046306(2003.

[33] M. Holzer and E. D. Siggia, Phys. Fluidg 1820(1994.

[34] B. I. Shraiman and E. D. Siggia, C. R. Acad. Sci., Ser. lla: Sci.
Terre Planete321, 279(1995.

[35] M. Chertkov, G. Falkovich, and V. Lebedev, Phys. Rev. Lett.
76, 3707(1996.

[36] G. Eyink, Phys. Rev. E54, 1497(1996).

[37] M. Avellaneda and A. Majda, Commun. Math. Phyi31, 381
(1990; 146 139(1992; Q. Zhang and J. Glimmipid. 146,
217(1992.

[38] A. Majda, J. Stat. Phys73, 515(1993; D. Horntrop and A.
Majda, J. Math. Sci. Univ. Tokydl, 23 (1994).

[39] K. H. Andersen and P. Muratore-Ginanneschi, Phys. Rev. E
60, 6663(1999.

[40] A. Fannjiang, Physica [136, 145(2000; 157, 16GE) (2001).

[41] M. Chaves, K. Gawezki, P. Horvai, A. Kupiainen, and M.
Vergassola, J. Stat. Phy413 643(2003.

[42] U. Frisch, A. Mazzino, and M. Vergassola, Phys. Rev. Lett.
80, 5532(1998; U. Frisch, A. Mazzino, A. Noullez, and M.
Vergassola, Phys. Fluid§l, 2178(1999; A. Mazzino and P.
Muratore-Ginanneschi, Phys. Rev.@3, 015302R) (200).

[43] L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil'ev, Zh.
Eksp. Teor. Fiz.95, 1272(1989 [Sov. Phys. JETR68, 733
(1989].

[44] L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil'ev, Usp.
Fiz. Nauk 166, 1257(1996 [Phys. Usp.39, 1193(1996)].

[45] L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasiliefhe
Field Theoretic Renormalization Group in Fully Developed
Turbulence(Gordon & Breach, London, 1999

[46] L. Ts. Adzhemyan, N. V. Antonov, M. V. Kompaniets, and A.
N. Vasil’'ev, Int. J. Mod. Phys. B17, 2137(2003.

[47] D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. Lett.
36, 867 (1976; Phys. Rev. A16, 732(1977).

[48] C. De Dominicis and P. C. Martin, Phys. Rev. A9, 419
(1979; Suppl. Prog. Theor. Phy$4, 108(1978).

[49] P. L. Sulem, J. D. Fournier, and U. Frisddynamical Critical
Phenomena and Related Topiedited by P. Enz, Lecture
Notes in Physics Vol. 104Springer, Berlin, 1979 p. 321; J.

D. Fournier and U. Frisch, Phys. Rev. 28, 1000(1983.

[50] L. Ts. Adzhemyan, A. N. Vasil'ev, and Yu. M. Pis’'mak, Theor.
Math. Phys.57, 1131(1983.

[51] L. Biferale, A. S. Lanotte, and F. Toschi, Phys. Rev. L&2,
094503 (2004); L. Biferale, M. Cencini, A. S. Lanotte, M.
Shragaglia, and F. Toschi, New J. Phys.37 (2004).

[52] A. Sain, Manu, and R. Pandit, Phys. Rev. Le8l, 4377
(1998.

[53] P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev8A
423 (1973; H. K. Janssen, Z. Phys. B3, 377 (1976; R.
Bausch, H. K. Janssen, and H. Wagribig. 24, 113(1976);

C. De Dominicis, J. PhygParig, Collog. 37, C1-247(1976.

016303-19



ADZHEMYAN et al. PHYSICAL REVIEW E 71, 016303(2005

[54] D. Ronis, Phys. Rev. A36, 3322(1987); J. Honkonen and M. R. Sreenivasan, Phys. Rev. Le&1, 5330(1999; I. Arad, L.
Yu. Nalimov, Z. Phys. B: Condens. Matt®&9, 297 (1996); M. Biferale, . Mazzitelli, and I. Procaccidid. 82, 5040(1999;
Hnatich, J. Honkonen, D. Horvath, and R. Semancik, Phys. S. Kurien, V. S. L'vov, |. Procaccia, and K. R. Sreenivasan,
Rev. E 59, 4112(1999; L. Ts. Adzhemyan, J. Honkonen, M. Phys. Rev. E61, 407(2000); L. Biferale, I. Daumont, A. Lan-
V. Kompaniets, and A. N. Vasil'evjbid. 68 055302R) otte, and T. Toschiibid. 66, 056306(2002; L. Biferale, E.
(2003; e-print nlin.CD/0407067. Calzavarini, T. Toschi, and R. Tripiccione, Europhys. Lé,

[55] L. Ts. Adzhemyan, Yu. S. Kabrits, M. V. Kompaniets, and A. 461 (2003
N. Vasil’ev, Vestn. Leningr. Univ., Ser. 4: Fiz., Khiml, 3 [61] G. L. Eyink, Phys. Lett. A172, 355(1993.
(2000 (in Russian; L. Ts. Adzhemyan, N. V. Antonov, M. V. [62] B. Duplantier and A. Ludwig, Phys. Rev. Le#6, 247(1991).
Kompaniets, and A. N. Vasil'ev, Acta Phys. Slo%2, 565 [63] M. Léassig, Phys. Rev. Lett84, 2618(2000.

(2002. [64] R. H. Kraichnan, Phys. Fluids 80, 2400(1987; S. Chen and
[56] L. Ts. Adzhemyan, A. N. Vasil’ev, and M. Hnatich, Theor. R. H. Kraichnan,bid. 1, 2019(1989.

Math. Phys.58, 47 (1984). [65] L. Ts. Adzhemyan, A. N. Vasil'ev, and M. Hnatich, Theor.
[57] V. Yakhot, and S. A. Orszag, Phys. Rev. Léif7, 1722(1986); Math. Phys. 74, 115 (1988; L. Ts. Adzhemyan, N. V. An-

J. Sci. Comput.l, 3(1986; W. P. Dannevik, V. Yakhot, and S. tonov, and T. L. Kim,ibid. 100, 1086(1994); L. Ts. Adzhe-

A. Orszag, Phys. Fluid80, 2021(198%; E. V. Teodorovich, myan, S. V. Borisenok, and V. I. Girinabid. 105 1556

Prikl. Mat. Mekh. 52, 218(1988 (in Russia. (1995; N. V. Antonov, S. V. Borisenok, and V. I. Giringid.
[58] J. D. Fournier, P. L. Sulem, and A. Pouquet, J. Phys1® 106, 75(1996; N. V. Antonov and A. N. Vasil'evjbid. 110,

1393(1982; L. Ts. Adzhemyan, A. N. Vasil’ev, and M. Hnat- 97 (1997.

ich, Theor. Math. Phys64, 777 (1985. [66] G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys.

[59] A. N. Vasiliev, Functional Methods in Quantum Field Theory Rev. E 54, 4896(1996.
and StatisticgLeningrad University Press, Leningrad, 1976 [67] M. Chertkov, Phys. Rev. ©55, 2722(1997%); E. Balkovsky and

(in Russian [English translation Gordon & Breach, London, V. Lebedev,ibid. 58, 5776(1998.
1998. [68] J. Honkonen, M. V. Komarova, and M. Yu. Nalimov, e-print
[60] I. Arad, B. Dhruva, S. Kurien, V. S. L'vov, |. Procaccia, and K. nlin.CD/0406168.

016303-20



