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Effects of anisotropy on a quantum Heisenberg spin glass
on a three-dimensional hierarchical lattice
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We study the anisotropic Heisenberg spin-glass model on a three-dimensional hierarchicaldesigeed
to approximate the cubic lattigewithin a real-space renormalization-group approach. Two different initial
probability distributions for the exchange interactidf), Gaussian and uniform, are used, with zero mean and
width J. The (kT/J) X Ao phase diagram is obtained, whérés the temperaturé) is the first moment of the
probability distribution for the uniaxial anisotropy, amdis the Boltzmann constant. For the Ising model
(Ap=1), there is a spin-glass phase at low temperat(iriggh J) and a paramagnetic phase at high temperatures
(low J). For the isotropic Heisenberg model,=0), our results indicate no spin-glass phase at finite tempera-
tures. The transition temperature between the spin-glass and paramagnetic phase decredsgasvitx-
pected, but goes to zero at a finite value of the anisotropy parameter, nagrely.~0.59. Our results
indicate that the whole transition line, between the paramagnetic and the spin-glass phasgs, gk 1,
belongs to the same universality class as the transition for the Ising spin glass.

DOI: 10.1103/PhysRevE.71.016135 PACS nunier64.60.Ak, 75.10.Hk, 64.60.Cn

[. INTRODUCTION an SG phase is expected to emerge as a result of the fact that
the anisotropy mixes the two degrees of freedom, spin and

; o ; : : irality. Therefore, in the chirality-driven mechanism the
devoted to the investigation of systems displaying spln-glang phase transition experimentally observed in a class of

(SG) order. Numerical studiefl] have revealed that the SG compounds such as CuMn is essentially governed by the CG
phase transition occurs in the three-dimensional Ising modglyeq point.

(strongly anisotropic systemindicating that the lower criti- Note, however, that some numerical results support that
cal dimension for the Ising SG would lg=2. On the other  the SG transition temperature might coincide with the CG
hand, many real materials that show SG order arqransition temperature, i.eT,=Tcg>0 [4,7], in contrast
Heisenberg-like rather than Ising-like, in the sense that theyith the results of Refd.3,6] (which show that in three di-
magnetic anisotropy is considerably weaker than the isotromensions the spin and the chirality are decoupled on suffi-
pic exchange interaction. Some Monte Carlo simulationgiently long length scales, witdi.<Tcg). Therefore, the
[2,3] have indicated that the isotropic three-dimensional claspresence of SG order in the three-dimensional short-range
sical Heisenberg SG with finite-range interaction does noHeisenberg SG is still an open question. In four or more
exhibit the conventional SG order at finite temperatures irdimensions, there is numerical evidence of a phase transition
zero field, while Lee and Younf#] found such an ordered [8], and so the lower critical dimensiah for the short-range
phase at finite temperatures for this model. Heisenberg spin glass should satisfy 8, <4.

Experiments clearly demonstrate the existence of order at On the other hand, various types of anisotropies have a
finite temperatures in Heisenberg-like SG syst¢fjswhere  profound influence on the SG phase such as Dzyaloshinski-
the chirality-driven mechanism proposed by Kawan{3;8]| Moriya (DM), dipolar coupling, and uniaxial. A weak aniso-
can be interpreted consistently to explain some of the puzzletsopy is crucially important in realizing a finite-temperature
concerning the experimentally observed SG transition in zer&G transition, which causes a crossover from the isotropic
field [5]. Note that the numerical observation of a finite- Heisenberg behavior to the anisotropic Ising behavior. The
temperature chiral-glas§CG) transition (Tcg>0) in the expected Heisenberg-to-Ising crossover, however, has not
three-dimensional classical Heisenberg SG is not inconsideen observed experimentally, and this puzzle has remained
tent with the earlier observation of the absence of the conunexplained. Using a hybrid Monte Carlo method in the
ventional SG order at finite temperatur€g=0). In Refs.  short-range & Heisenberg spin glass with random aniso-
[3,6] it is suggested that the SG-paramagnetic critical temtropy of a DM type(D) on a simple cubic lattic€9], it has
perature obeyS.<Tcq and quite possiblyT,=0 in three  been shown that for small values Df, the transition tem-
dimensions. In the presence of a small random magnetic aperature vanishes &/J=0.53D/J)*4 This result is con-
isotropy, which always exists in real experimental situationssistent with those found by Morrist al. [10] based on a

Considerable attention during the past decade has be
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scaling argument. When the spin interactions are of long- S
range Ruderman-Kittel-Kasuya-YoshidRKKY) type, the

critical temperature has a much weaker dependence on the

anisotropy, namelyT./J=[In(J/D)]"*? (D<<J) [11]. KA’
These two studies indicate that in the isotropic ligit=0)

there is no SG order at finite temperatures, ife50. How-

ever, this result has recently been challenggdTo the best %

of our knowledge, the only previous work on a spin-glass , . . . )
model with uniaxial anisotropy is the one by Matsuberal. FIG. .1. _Hlerarchlcal lattice .sunable for_ calculatl_ng the
[12], where it is speculated that this anisotropy does not Ieagfhnormahzat!on-group transform_atlons on t_h_e_ simple culqlc lattice.
i e calculation of the renormalized quantitigght-hand side of
to an SG phase at finite temperatures. the figurd is explained in the text
Another question, which is particularly significant, is the '
study of quantum effects in the theory of spin glas<Es.
From the theoretical point of view, it is well known that H=-, Jil(A - Ay (afo] + alo)) + ofa]],
guantum spin glasses, in comparison with their classical ()]
counterparts, are far from being trivial, due to the noncom-
mutativity of the spin operators involvegee, for example, Whereo;" is the component of a spin-1/2 Pauli matrix in
the discussion for the quantum transverse Ising SG modglitei and the sum is over all first-neighbor bonds on a cubic
with short- and long-range interactions, in Rdf4,15, re- lattice. In this work, we study two different initial probability
spectively. In the limit of very low temperatures the role of distributions forJ;, a Gaussian and a uniform one, respec-
quantum fluctuations in pure or disordered systems becomé#ely,
more and more important. At the critical point itself, fluctua-
tions exist over all scales. At moderate temperatures, quan- _ 2,
tum fluctuations are usually suppressed in comparison with Py) = \/—_exp(— Ji/23),
thermal ones. At low temperatures, however, quantum fluc- 2m)
tuations, especially in low-lying states, may dominate and
strongly influence the critical behavior of the system. There®"
are a few works on quantum Heisenberg SG, but only
infinite-range-interaction models have been trefi). 1
Our motivation for this work is the well known fact that P = 237
the anisotropy may change the nature of phase transitions in
a fundamental way, and may induce the appearance of an SG
phase in the three-dimensional short-range Heisenberg _
model. Also, the quantum influence in the phase diagram is whereJ is the width of the distributions. On the other hand,
matter of intrinsic interest, particularly from the experimen-the probability distribution for\;; is, initially, given by
tal point of view, with relation to high-temperature supercon-
ductor material$17]. Aharonyet al.[18] suggested a mecha- P(Aj)) = 8(Aj; — Ap).
nism in which doping by holes introduces ferromagnetic
bonds into an otherwise antiferromagnetic quantum spin-1/2\Ve use a real-space renormalization-group approach; this
Heisenberg model. These holes are localized in the inSU|ating1ethod has been successfully applied in the study of both
antiferromagnetic phase and their effect can be well approxiclassical and quantum models. The formalism is especially
mated by a quenched random distribution of ferromagnetiguitable to obtain multidimensional phase diagrams and
bonds which display an SG phase at low temperatures, asdualitative results, indicating universality classes and pos-
window between the insulating antiferromagnetic phase andible crossover phenomena. A great variety of RG methods
the superconducting phase. Physically, the SG phase in thisas been proposgd 9,2Q over the past years and applied
new superconductor compound is attributed to the presenagith success in many different quantum systé@ts22. Re-
of the random Dzyaloshinski-Moriya interactiqd8]. We  cently, an important simplification of the successful method
will show in this work that the presence of uniaxial aniso-introduced in Ref[19] has been proposd@3]; we will de-
tropy induces an SG phase at low temperatures only for gelop even further this approach in this work.
finite value of the anisotropy; for small enough values of the  Within the context of a small-cell approximation, the
anisotropy, no long-range SG order is observed, which consimple cubic lattice is represented by a hierarchical [@d4é
firm the results of Mastubaret al.[12]. depicted in Fig. 1. The use of this particular hierarchical
lattice is equivalent to a Migdal-Kadanoff approximation
[25]. The original lattice is shown on the left-hand side of
Il. METHOD Fig. 1, with different interactions<;;=J;;/kgT and aniso-
tropy parameterd; between first-neighbor sping and o;.
The main issue we want to address is the influence of ®erforming a partial trace over spins, o4, 05, and og, we
uniaxial anisotropy on the phase diagram of the quantunobtain a renormalized Hamiltonian, with parameﬂéf‘-sand
Heisenberg spin-glass, with Hamiltonian, Ai’j (right-hand side of Fig. 1

-\3i< g < V37,

0, otherwise,
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First, we have to calculate the renormalized distributions [T T T ~ 1T ~ 1T ~ T T T "1
(forcing back the distributions to their original shapes leads
to wrong result§26]). To do so, we choose the eight inter-
action parameters for the original lattide;, from the origi-
nal distribution, while allA;; are the samanitially ; then we
calculate the renormalized’ andA’. This is done a number 06
of times (usually of the order of 1 milliop to get new prob- =
ability distributions forK’” andA’. The anisotropy parameter,
although uniform in the first iteration of the renormalization %4
group, follows a disordered probability distribution, after-
wards. Also, the distribution foK’ is no longer the same as
the initial one. For the second iteration, we cho&ieand
Aj; from the renormalized distributions obtained in the first
iteration, combine them as in the left-hand side of Fig. 1, and  o;——L——b——b——l——l—
then calculat&k” andA”, i.e., the renormalized quantities for A,
the second iteration. This process is repeated until we reach a
“fixed-point” distribution. Alternatively, we can choose to  FIG. 2. Approximate phase diagram for the anisotropic Heisen-
follow the distribution functions folK and K¥=K(1-A); berg spin-glass on the cubic Iattlcﬁ_G stands for the spin-glass
we will compare below the results for both procedures, ~ Phase,P stands for the paramagnetic phase, arsfands for the

For each set ok;; and4;, the renormalized quantities are Ising transition point. The continuous line is a guide to the eye.

calculated as follows. Given a set of parameters, chosen from . q h ith th | f
a given probability distribution, we impose that temperatures, are important and, together with thermal fluc-

tuations, tend to drive the system to a disordered phase.
(mymy|p’ |[mymy) = Tr' ({m}| p({K, A} [{m}), For the Ising subspad@,=1) the fixed-point distribution

where [{m}) stands for|m;mmsm,msmg) (and in a similar for the paramagnetic phase attractor is such tH&fT=0,
way for the “bra’), p(p’) is the density matrix of the original Wwhile for the SG attractor]/kT=2. There are still possible
(renormalizedi cell (p’ is a function of the renormalized pa- fixed points at the lineA,=0 (isotropic Heisenberg spin
rameterskK’, A’, and C’), m is the eigenvalue of the?  glass but they were not found in this wortsee below For
operator at sité, Tr' means a partial trace over sping o,  anyAo#0, the attractor is found to be at the ling=1, that

os, andog, and{K, A} stands for all sixteen parameters in the is, any initial point withA, # 0 flows, upon application of the
original cell. Only three elements pf are nonzero, and this fenormalization-group procedure, to thg=1 subspace. Ex-

is the number of renormalized quantitié&;, Aj, andC’ (C'  actly at the transition line, the flow is towards the Ising
is a constant generated by the renormalization procedurdix€d-point” (point I in Fig. 2) and the whole line is at-
which is not relevant for obtaining the phase diagraBo, tracted to Fhe distribut.ion at that poi_nt. I?hysically, this means
no extra equation is needed and the procedure is exact at tHeat the critical behavior along the line is the same as for the
cluster level. One great advantage of this approach is that n§ing spin glass. Critical exponents for the Ising spin glass
expansion of the Hamiltonian is necessary; this expansioA® the same as those calculated in R27]; moreover, the
becomes cumbersome if cells with more sites are employeg¥itical probability distribution is the same as in the cited
or if models with spin 1 or greater are treated. Moreover, ouféference, for both Gaussian and uniform probability distri-

procedure recovers the same recursion relations as form@gtions. ) o o
treatmentg 19]. Some points are worth mentioning here. The distributions

for Kj; and4j;, after the first iteration, do not retain its origi-
nal form. Therefore, a more complete picture of this problem
IIl. RESULTS AND DISCUSSION would involve a flux on a space of probability distributions.
_ The phase diagram we chose to represent our results is only
Our goal is to obtain thékT/J) X Ay phase diagram. We a schematic one. On the other handAjfis different from 0
start from many different points in this diagram and follow and 1, its distribution after the first iterations is not uniform
the renormalized distributions until a given attractor isanymore. It evolves along the renormalization-group proce-
reached. In Fig. 2 this phase diagram is depic®&@stands dure and only when the number of iterations increases, the
for the spin-glass phase whiR stands for the paramagnetic distribution for A is again a delta functionP(A;;)=&(A;;
one. We expect the spin-glass phase, which is certainlyAg), with A;=1 and zero width.
present for the Ising mode{A,=1) [26], to extend for The phase diagrartFig. 2 shows that there is no spin-
smaller values ofA,. This is the case but notice that the glass phase for the isotropic spin-1/2 Heisenberg model in
transition line goes to zero at a valueXyf greater than zero. three dimensions. This result confirms those found in earlier
This behavior is analogous to the one for the antiferromagworks[9,28], indicating that the lower critical dimension for
netic anisotropic Heisenberg model on the square latticéhe isotropic spin-1/2 Heisenberg spin glass is greater than
[22], except that in the latter model a reentrant behavior ighree. On the other hand, Lee and Youdd found a spin-
obtained. The fact that the transition line does not extend tglass phase for thelassical3D isotropic Heisenberg model.
Ag=0 is usually due to quantum fluctuations which, at low As the transition takes place at low temperature, it is possible
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that quantum fluctuations, present for the spin-1/2 model, V. SUMMARY

are strong enough to eliminate the spin-glass phase. We also

find that an infinitesimal uniaxial anisotropy is not able to  We applied a quantum renormalization-group procedure
create an SG phase in a Heisenberg spin-1/2 system, in thrgg the anisotropic three-dimensional spin-1/2 Heisenberg
dimensions; this is consistent with the findings of H&2]. spin glass. A Migdal-Kadanoff approximation is used and the

Our results are qualitatively the same for both Gaussiag — ) ) .
and uniform distributions. We have also used a correlatedkT/J) X Ao phase diagram is calculated. The spin-glass

distribution for K;; and A;; [29] and the results suffer only phase, present for the Ising moded,=1), extends to
minor changes, maintaining the overall behavior. In anothesmaller values of the anisotropy parameter. The transition
approach we followed, the probability distributions for the temperature, which separates the ferromagnetic and para-
interactionsKj; andKi’}y were followed; again, the qualitative magnetic phases, goes to zero at approximatgjy0.59.
behavior is the same as when we follow the distributions forAccording to the approximation we used' the isotropic spin_
Kij a}nd Ajj. . 1/2 quantum Heisenberg spin-glass has no spin glass phase

Finally, let us mention that, contrary to what happens forat finjte temperature. The whole transition line between the
systems where only ferromagnetir antiferromagneticin- 5 phase and the paramagnetic one is found to belong to the
teractions are presefitd], there is a strong difference be- gme yniversality class of the three-dimensional Ising spin
Ita\;feernt;lree?)trlingi]ng;ieclﬁs"eealgia \ivihole or “by plecgs. t'm the glass. Our conclusions hold true for Gaussian and uniform

! 9 . g. IS seen as a combination In distributions, for correlated distributions, and when the prob-

parallel of 4 interactions, each one made of two interactions bility distributi for(K:: . Ar) or (Ki KX I-
in series. In this way, the renormalized interaction and aniso2PMty distributions Hor{i;, 4;) or (K, Kiy’) are renorma
tropy can be first calculated for each combination in seriedzed-
and then combined in parallel. For systems with no frustra-
tion [19], this is shown to introduce an error smaller than
10%, when compared to treating the eight bonds and six ACKNOWLEDGMENTS
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