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Non-Markovian dynamics of quantum systems. Il. Decay rate, capture, and pure states
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On the basis of a master equation for the reduced density matrix of open quantum systems, we study the
influence of time-dependent friction and diffusion coefficients on the decay rate from a potential well and the
capture probability into a potential well. Taking into account the mixed diffusion coeffiCigptthe quasis-
tationary decay rates are compared with the analytically derived Kramers-type formulas for different tempera-
tures and frictions. The diffusion coefficients supplying the purity of states are derived for a non-Markovian

dynamics.
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I. INTRODUCTION

This paper is the continuation of the first pagpaper )
where we developed the formalisf]. Here we apply the

theoretical results to decay rates, capture, and pure states.
In order to describe the evolution of a quantum system in

some relevant collective coordinagewhich is coupled with

PACS nuni$)er05.30—d, 03.65—-w, 24.60—k

at any time. This holds true for the caBg,(t)=0. This oc-
curs in spite of the violation of the constraint for time-
independent diffusion and friction constafis—-21],
72Ny + N\g)?
_p2 = p T g
DppPoa~Dgp= 16 ' 3)

many other degrees of freedofanvironmen), one needs which is at any time a sufficient condition for time-
stohastic forces and a density matrix formalism. As wasndependent diffusion and friction coefficients in order that
found in Refs[2-14], the dynamics of the quantum system the uncertainty inequality holds:

in the presence of dissipation and diffusion strongly depends
on the coupling with the environment. The Hamiltonkdrof

the total system can be written

H=H,+Hy+ Hep, (1)  Here, opp=TH(p=P)°p], 0qq=Tr(A=A)?p], 04p=0.5 TH[(p

: -p)(a-a)+(q-a)(p=p)]p}, p=Tr(pp), andq=Tr(gp). If the
where He=p?/(2u)+U(q) is related to the relevant sub- coupling H, with the environment is proportional tp as

system with the coordinaigand momentunp, Hy, describes  \ye|| as g, then all friction and diffusion coefficients in Eq.

the environment, andi,, describes the coupling between () are different from zer¢1] and satisfy the constrairg).

of a large set of harmonic oscillators andHf is linear ind,  gependence of the friction and diffusion coefficients derived
the method developed in Refl] yields the friction and dif- iy Ref. [1], with H, proportional only tog [fully coupled

fusion coefficients\y(t) =0, A4(t) =0 andDp(t) >0, Dgp(t),  (FC) oscillatod, on the results obtained with E¢R). The

hZ
- -
0 =0pp0qq~ Tpqg=

Dq(t) =0, respectively. _ . role of the nondiagonal diffusion coefficieBt,, is especially
The reduced density matrpx[15-21] obeys the following  investigated. As an example, we calculate the flow rate
equation: through a potential barrier in an anharmonic potential with
d - i these transport coefficients. The calculated results are com-
d_lt) =- g[HoP] - Z)\p(t)[q'(pp +pp)] pared with the ones obtained with the analytical expressions

derived in Ref[13] for the probability rate through a barrier
i 1 as well as with the results obtained with a “classic” set of
+ E)\q(t)[p,(pq +qp)] - ﬁDpp(t)[q,[q,p]] diffusion coefficients.
The master equatiof2) describes the dissipative quantum
1 dynamics approximately for anharmonic systems. However,
- ﬁqu(t)[p’[p’P]] in our case we consider only the initial sta@hort time of
the evolution of a system up to the moment when the flow

+ D[P a1+ [, [ppl)), @

whereﬁczpzl(ZMHD(q) is renormalized collective Hamil-
tonian. Since in Ref[1] the friction and diffusion coeffi-

rate reaches the quasistationary regime. For example, in the
case of the decay process the system wave function is local-
ized mainly in the initial pocket which can be nicely approxi-
mated by a harmonic oscillator. So we can suppose that the
influence of higher-order fluctuations on the evolution of sys-

cients were self-consistently calculated, this set of coeffitems in the considered stage of the processes is small. If the
cients should secure the non-negativity of the density matrixlistribution function spreads out a more complicated poten-
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tial, its long-time behavior is defined by the general master 030l
equation with coordinate- and time-dependent transport co-
efficients. Without a coordinate dependence of the transport & 025}
coefficients the regime of weak dissipation and high tem- ‘Zg 020}
perature is suitable for anharmonic systems. :’& o.1sh
R 0.0l
II. TIME-DEPENDENT FRICTION AND DIFFUSION 0.05
COEFFICIENTS

The expressions for the FC oscillator obtained in REF. 0.02}
for the friction and diffusion coefficients contain three pa-
rametersw, A, andy. The value ofy, which characterizes the a3 0.00
width of the environment states, should satisfy the condition £ g0l
v>w. We sethy=12 MeV in our calculations. Heray is =
the frequency of the oscillator which after renormalization 2 oot
w—  approximates the potential around the minimum. Due ook
to the interaction with the environment, the potentidf)) is )
renormalized because there is no compensating term in Eq.
(1) as in Ref[8]. In the applications in which we are inter-
ested, this renormalization leads to a weak dependence of the 04}
frequencyw(t) on time until it reaches the asymptotic value
. The values of parameteksand w are set so as to obtain 13
a given asymptoticgo=w(*) and A,=\y(«) at fixed tem- e 02
peratureT. For u=50m, (M, is the mass of nuclegrand ’
fiw=3 MeV, the time dependence of the friction and diffu-
sion coefficients is presented in Fig. 1 at the initial conditions
)\P(tzo')zo, Dpp(t=0)='0,' anqup(t:O):Q. After some tran- 0.00 . 3 F . s :
sient time 7 the coefficients reach their asymptotic values ~
Ap(®), Dpp(0), andDy(2). While N, andD,,,, are positive at ot

any time, Dy, is positive during a short initial time and be- £ 1 Time dependent diffusion coefficierdg () andDgp(t)
comes negative for large times. The transient time is quitgng friction coefficients\,(t)/@— 0.33 calculated foh@=3 MeV,
short: 7< 2w/ w. As follows from the analytical expressions , =5om,, andT/(%%)=0.033.

[1], Dpp(=) is proportional to () and the value 0Dg()
decreases with increasing(«) and increases witff.
The asymptotic valu®,,() obtained in Ref[22] is al-

most the same as the valuef, in Ref.[1] and here. Due _ . _
to the simplifications made in Ref22], the value ofD,, ~ Comparing the results obtained with Edd) and (6), one
<0 obtained there is about 25% smaller than our value ofan conclude on the role @, in the evolution of the sys-

(i) Dppl®), Dgg) =0, Ay(t). (6)

D). tem. The results obtained with these sets of friction and dif-
Since the friction and diffusion coefficients were derived

with a linear coupling in the coordinate between the collec- 5
tive subsystem and environment, we hdvg=0 and\,=0
at any time. In the present paper we restrict ourselves to this o capture
coupling and use three sets of friction and diffusion coeffi- o} _
cients in the numerical examples. The first set is the time-  —
dependent set of the coefficients derived in the pdree %
Egs. (33)«(35), (57), and (58) in Ref. [1]] and shown for = sl |
Ap(®*)=1 MeV andT=0.1 MeV in Fig. 1: 1D

(i) Dppt),  Dgp(t),  Np(t). (4)

-10f _

The second set contains the asymptotic values of these coef-
ficients[see Eqs(59) and(60) in Ref.[1]]: : : : -

(“) Dpp(oo), qu(oo), )\p(oo)_ (5) q (fm)

Comparing the results obtained with Edg) and (5), one FIG. 2. Bistable potential8). The schematically shown Gauss-
can elucidate the role of the dependence of the friction anghn packet in the left well decays into the right-hand potential well.
diffusion on time. The third set of coefficients coincides with The left-hand packet approaching the barrier from the right-hand
the first set but the coefficiel, is assumed to be zero:  side is partly captured.
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FIG. 3. Time dependence of the varianegg(t), oqp(t), andoyy(t) for the decay of the initially Gaussian packet from the left-hand well

of the potential8) at u=50my andZzw=3 MeV for the temperatureb/ (A w)=0.033(left side and 0.33(right side and friction coefficients
)\p/Z)=O.17(soIid lineg, 0.33(dashed lines 0.50 (dotted line$, and 0.66(dash-dotted lings

fusion coefficients can be compared with the widely usedsider two values of the mass parametgr50m, and 448n,

classic diffusion coefficients corresponding to the frequency at the left potential minima,
. . hwn,=3 MeV and Ziw,=1 MeV, respectively. The initial
(iv) Dpp=mNpT*, Dgq=Dgp=0, (7)  Gaussian distribution is centered gt and has the square

where the effective temperature is T* root of the variance|o,4(0)=0.35 fm and\s’aqq(O)=O.2 fm

=0.5i@ cotAa/ (2T)] b for u=50m, and 448n,, respectively. The variances,,(0)

are chosen from the uncertainty relation witd,=0:
Tpp(0) :ﬁzl[4a'qq(0)].
Ill. DECAY RATE FROM THE POTENTIAL WELL The calculated time-dependent varianegg(t), oqq(t),
and ogq(t) are presented in Figs. 3 and 4 for the different
mass values. Fdr>44/MeV, o,,(t) reaches the asymptotic
Let us study the escape of a Gaussian packet from a shalalue, when the equilibrium in momentum is established in
low well to a deeper well of an asymmetric bistable potentialthe bistable-type potential. With smaller mass and friction

A. Asymmetric bistable potential

(Fig. 2) presented by a polynom of the fourth order: the quantitieso,,(t) and oqy(t) have more oscillations in
time. For a larger mass, the relative increase of the values of
U(q) =- 60RVL o AQLtaRVL 5 3V q* variances with temperature is larger. At large time the value

of ogy(t) changes slowly. Since the initial Gaussian state is
®) destroyed l:_)ecause of the escape Qf the packe't intp thg right

well (see Fig. 2 the value ofo(t) increases with time in
where g, and gg are the positions of the left and right the considered time interval. While the valuesogf(t) and
minima, respectively, an¥l, is the depth of the left minima. o (t) increase with\, for smaller mass, they decrease with
Note that the barrier is aj=0,=0. For the calculations, we increasing\, for larger mass. This occurs due to the balance
setV, =4 MeV, q_.=-1.67 fm, andgg=2.5 fm. With these between the diffusion and friction. For small mass, the dif-
parameters the depth of the right well is 11.8 MeV. We con-usion can overcompensate the decrease of the escape rate

@(20r—-q) o -200) g2(20r-q)
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FIG. 4. Time dependence of the varianegsg(t), oqp(t), andoyy(t) for the decay of the initially Gaussian packet from the left-hand well
of the potential(8) at u=448m, andZw=1 MeV for the temperature§/ (Ziw)=0.5 (left side and 1.5(right side and friction coefficients
N/ ®=0.5(solid lines, 1.0 (dashed lines 1.5 (dotted line$, and 2.0(dash-dotted lings

due to the friction. With the second s@) of friction and 025

diffusion coefficients the time dependence of the variances

seems to be similar, especially at large time. Therefore, in 0.20
many applications one can disregard the time dependence of
the friction and diffusion coefficients and use the asymptotic
values of\p, Dy, andDgp.

In spite of the violation of inequality3) the use of the
friction and diffusion coefficient$4) does not lead to a vio-
lation of the uncertainty relation due to the about 1.5 times
larger coefficientD,, in comparison to the classic value of
Dgp in Eqg. (7). With the diffusion coefficientg7) one can
observe a violation of the uncertainty relation at the initial
time (Fig. 5).

2

u (units of #°)

0.15

0.10

0.05

0.00 H

B. Definition of decay rate P

Solving the master equatid@) with the above mentioned ot
sets of friction and diffusion coefficients, one can obtainthe 5 5 Time dependence of the uncertainty relatioft)
time-dependent density matrixq,t)=(q|p(t)|q) in coordi- =0y ogq(t) —02(1) =42/ 4 at the beginning of the decay process
nate representation and find the probabiftt) of penetra-  from the left well of the potential8) with diffusion coefficients4)
bility of a particle with massu through a barrier which has (solid line) and (7) (dashed ling The calculations are performed
its top atq=qy: with ©=448m, iw=1 MeV, \p/®=1, andT/(hw)=0.1.
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FIG. 6. Time dependences of the decay raAtg)/» from the left well in the potential8) at u=50m, (left-hand sidg w=448m,
(right-hand sidg \,/®=1/(hw), and T/(hw)=1/(hw). The results obtained with the time-dependent diffusion coefficiehis their
asymptotic values5) and the diffusion coefficient&) are presented by solid, dashed, and dotted lines, respectively. The results obtained
with the “classic” diffusion coefficient§7) are presented by dash-dotted lines.

o b obtain the same rate for the case@f,=0, we should de-
P(t) =J ddlp(q,t) = p(q,t=0)] f dap(q.0), (9  crease the diffusion coefficiel,, by a factor ofx<1 and
G e useD,=«Dy,in (6) instead oD, The dependence afon
A, is presented in Fig. 7. Fdr\,> 1.5 MeV, x weakly de-
as well as a time-dependent value of the probability rate  P€Nds om\, and is sensitive to the temperature.
The time dependence of(t) is presented for different
frictions and temperatures in Fig. 8. The value /aft) in-
1 dP®) creases WitlT. For smaller friction and masg,(t) is a more
1-P(t) Tdt (10 oscillating function oft. While for a large frequency (small
) ) ) _ w) the stationary probability rate can increase with it
Equation(2) is solved as described in Refdl1,13 by  gecreases for a small frequeriy(large ) and largeT with
using an oscillator basis. This method allows us to0 obtain gncreasingy, within the considered interval of,. This result
solution for p from Eq. (2) for any continuous potential and for A s in agreement with the result of RefL3] and is
any set of friction and diffusion coefficients. explained by the larger role of prohibiting diffusion in
comparison to the minor role of suppressing friction. The
dependence of the quasistationarypn T and), is presented
in Fig. 9 for two values ofo. When the system is near to the
The time dependence of the probability ratét) with underdamped regime, the qua}sistationary probability rate in-
respect td over the barrier in the potentiéB) for the three ~ Cré@ses withy, within a large interval ofn,. However, the
sets (4)—(6) of the friction and diffusion coefficients are further increase o, finally leads to a smalle. In the
shown in Fig. 6 forfi\,=1 MeV and T=1 MeV for two overdamped regime t_he qua_3|stat|onary probability rate al-
different masses. One can see a minor influence of the timdays decreases with increasing
dependence of the friction and diffusion at latgdhe sets
(4) and(5) lead to the same stationary value of the probabil- 1.0 . . . ; ; ; .
ity rate A(t). For small timesA(t) is larger with the time-
dependent set becauBg(t) initially increases and exceeds
its asymptotic value. The probability rate(t) has more os-
cillations in time for a smaller(largepy mass (frequency
w)—i.e., when the system approaches to the underdamped 0.8t
regime. The classic sé%) of diffusion coefficients leads to
slightly smaller asymptotic values of. The similarity of the
asymptoticA obtained with the diffusion coefficient&), 0.7F
(5), and (7) confirms the applicability of the classic set of
diffusion coefficients to the problems of the barrier penetra- 0.6Ls , , , , , , ,
bility in the case of a linear coupling ig with the environ- 05 10 15 20 25 30 35 40
ment. xp/&
With the set(6) of diffusion coefficients the probability
rate is larger in Fig. 6 than for the s@) since the negative FIG. 7. Dependence of the factaron \y/®, for T/(hw)=1.0
value ofDg, of set(4) keeps the raté (t) smaller. In order to  (solid line) and 0.1(dashed ling

At) =

C. lllustrative calculations

0.9}
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FIG. 8. Time dependence of decay rat&)/ o from the left well in the potential8) for x=50m, (left side) and u=448m, (right side
and the indicated temperatures. In the calculations the diffusion coeffi¢rase used with the friction coefficienls%/'d;:O.SI(h?u) (solid
lines), 1.0/(Aw) (dashed lines 1.5/(Aw) (dotted lineg, and 2.0(hw) (dash-dotted lines

D. Comparison with Kramers-type expressions and qu, These formulas were tested f&qp:O and qu

# 0 to estimate the quasistationary probability rate through
In Ref.[13] we derived two variants of the Kramers-type the barrier for a known potential and friction. In the case of
formula in the presence of all diffusion coefficiems,, D Dyq=0 andDg,# 0 the first variant of the formula is

qp
0.016 T T i TS S—
0.008 | .
0.012}
13
. il I OO
< 0.008 } 0.004 | ___,.-""'_-_—- 4
< u=50m, =50m,
0.004 F 0] " o
#5=3 MeV #=3 MeV
0.2 0.3 0.4 0.55 0.2 0.4 0.6 0.8 1.0
0.008} 0.008} ™~ p=448m_ |
T hi=1 MeV
0.006 0.006 T 1
= S0l ——
Z 0.004} 0.004 i
ho=1 MeV
0.000 s s s 0.000 - - - -
0.50 0.75 1.00 1.25 1.50 0.5 1.0 15 2.0 25 3.0
T/AG) A J&

FIG. 9. Quasistationary value of the probability ratét)/ from the left well in the potentia(8) for x=50m, (upper pant and u
=448m, (lower par} as a function ofT/(fw) and \,/®. The temperature dependence is presented for the friction coefficigris
=0.5/(hw) (solid lineg, 1.0/(hw) (dashed lings 1.5/(Aw) (dotted lineg, and 2.0(#w) (dash-dotted lings The dependence ok,/w is
shown for the temperaturdd (2w)=0.1/(Aw) (solid line), 0.5/(Aw) (dashed ling and 1.0(%Aw) MeV (dotted ling in the upper part and
T/(hw)=0.5/(Aw) (solid line), 0.75(A®) (dashed ling 1.0/(Aw) (dotted ling, and 1.5(7w) (dash-dotted lingin the lower part.
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— DPPZ)
= 2D Dot 2D 0.012}
o h 1/2 0.008 <.
Np— 24kt + 0.004}
h(Dpp+ Z,u)\qup) : : . .
Xexp[— Mp_} | a1 ‘\0.2 _ 04 06
Dpp+ 2uN,Dgp N 7 =1 MeV

0.009F J+. >«

. T/(h@) = 1.5 ]
where h=-\,/2+(\2/4+w})*? and w, is the frequency of 1o ]

the inverted oscillator approximating the barrier. The second 2 0.008]
variant is a Kramers-type formula given by < 0007
N = h 12 0.006}
2m| Dpp 2“%qu(l_ZDQP/TGﬁ) +h "\\ ' Ho=1MeV
uTeff hT eff 25x10° L el T/hE) =05 |
Xexp|:— TV:”:| , (12) 2.0)&104 -/"\\f\ J
1.5x10°t ]
where T eM=(Dpp+ uNyDgp)/ (1)) aznd , h .
=N/ 2 ~Dpp/ (T ) +{[\p/ 2= D/ (T 1) [+ (1~ 4D/ X053 L0 Is 20
Te)}2 For Dg,p=0, Egs.(11) and (12) are simplified to XP/GJ
the known Kramers formul@23] for the probability of es-
cape over the potential barrier: FIG. 10. Quasistationary decay raté® through the barriers in
- the potential presented in Fig. 2 far=50m; (Aw=3 MeV) and n
AKr = k_“’ exp{— Vi } (13) =448m, (hw=1 MeV) as a function oh/ with the initial Gauss-
2 ILLZ)ZO'qq ' ian packet at the left-hand minimum for the indicated temperatures

T/(fw). The numerically calculated results obtained from Bd)

- 2 2\11/2_

WherEk_[1+)‘p/(Afwb)] )‘p/(z“’!?)' ) ) by solving Eq.(2) with the set(4) of diffusion coefficients are
For the potential8), the quasistationary value$ with  presented by solid lines. The results obtained with Eg$) and

respect tow calculated from the solution of Ed2) with (1) are presented by the dashed and dotted lines, respectively.
asymptotic values of the diffusion coefficien®® are com-

pared in Fig. 10 with the results obtained with E¢kl) and
(12). Note that Eqg.(11) holds good when the condition
@T/V <\, is valid [13]. This occurs forik,>0.25T at
hw=1 MeV and forfik,>0.75T at zw=3 MeV. For large
, the quantityV, —Aw/2 is relatively small in the consid-
ered potential8). Then the assumption of a long-living sta- .
tionary state at the minimum of the potential becomes less D(t) =—2 Ti{p(t)p(t)]
justified. Therefore, in comparison to the treatment with a

state. The purity of states decreases with increasing linear
entropy. We can calculate the rate of entropy production
from the master equatiaf2), assuming that the state remains
approximately purg?(t) = p(t):

P ' - 4
small frequencyw, we find larger deviations oA between ~ —[Dgq() (1) + D) 0q(t) = 2D (D) orgp(1)]
the analytical and numerical resultSig. 10. However, for h
i\, between 1 and 2 MeV, the disagreement is only within a —[\p(H) + Ag(]. (15)

factor of 2 which is acceptable for many applications, espe-
cially in nuclear physics. The correspondence of numerical . ) 5 _
results obtained from the solution of E®) to the results T D()=0 and Tfp*(0)]=1, then TEp“()]=1 at all timest
following from the analytical expressioii$1) and(12) dem-  =>0. This condition is necessary and sufficient to have
onstrates the validity of these expressions for the case g ()=p(t) all times. This means thai(t) represents a pure
Dgp# 0. state for t=0. Under the special conditiono(t)
=0opp(t) ogq(t) —o‘gq(t):ﬁ2/4, the set of diffusion coefficients,
IV. PURE STATES, UNCERTAINTY RELATION,
AND DECOHERENCE 1
The linear entropy Daalt) = 5[0 + Ag(V)JorgqV),
D(t) =1 - Tp?(1)] (14)

can be considered as a measure of the purity of states. Since D, (1) = }D\ (1) + Ag(D)]oyuD),
Tr[pA(t)]<1, D(t) is positive and equal to zero for a pure PR 2HTP a2 ee

016122-7
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Daplt) = [0 + A0 g0, (16)

satisfies the pure state conditi@{t)=0, at which the pure A
states remain pure for all times. With Eq%6) the condition

(3) is fulfilled. If the variances of the pure state are assume
to be constantr;(t)=oy;(0)=o3j() (i,j=q,p) and hold the
minimum uncertainty equality(t)=#2/4, then we obtain the

following diffusion coefficients for pure states in the case of %[ )
a harmonic oscillator from Eq$27)—(29) of paper I[1]: 06}
1 04t 1
qu(t) = )\q(t)O'qq(O) - —O'qp(O) ) 02k pmmm e — — — ]

m(t)

3 JB=2.0
24 6 8 10 12 14

0.0
0

Dpp(t) = )\p(t)o'pp(o) + f(t)O'qp(O),

1 1 FIG. 11. Time dependence of the linear entrdpit) (upper
Dgy(t) = _<[)\ (1) + Ng(1)]ogp(0) + &) 0gg(0) = — 0 (0))_ par) and of the von Neumann entro(t) (lower par} for the
ap 2\7°F a ap 4 m(t) PP wave packet initially being in the left-hand well of the potential
(17) presented in Fig. 2 fon=448m, (hwo=1 MeV), T/(fw)=0.1, and
. the indicated values of,/@. The results obtained with the diffusion
Using Egs.(17), we can show that the equali®(t)=0 is c.oefficients(4)., (6), and(7) are shown by solid, dotted, and dashed
fulfilled at any time for the pure states. To form the pure!ines. respectively.
state, the random and dissipative forces must satisfy the fol-
lowing equationgsee Eq(14) of [1]]: . K2 | h2.
, , o(t) = = 2[\p(1) + Ng(D)]] o(t) = 21t ?D(t)'
Joa = (1 -Ad)ogq(0) — Bfopp(0) — 2AB 0,(0),
One can see that the rate @ft) is explicitly connected with
I =(1-N2 0) = M20-.(0) = 2N:M 0), the rate of entropy production. An important consequence of
po = (1~ Ni)opp(0) = Miiorgg(0) tMiop(0) Eq. (20) is the fact thato=7%2/4 is fulfilled for any state
(pure or mixturg if o(0)=#?/4:

1
E(thpt + thqt) =(1-AN;- BtMt)qu(O) - AtMtU'qq(o) Dpp(t)()‘qq(t) + qu(t)()'pp(t) - 2qu(t)0'qp(t)
2
— BiNy(0). (18) =) (21)

The explanations of all notations in Eq4.7) and (18) are
given in Ref.[1]. For the particular case of a pure state of theFor t— < we have, from Eqs(20),

FC oscillator(\q=0q,=0), we obtain, from Eqs(17), D22 (%) + D22 0ipp(22) = 2Dg(22) (%)

Dad(t) =0, = 0()[Ap(%) + Ng(0)]. (22
B The relation(21) is the generalization of the inequality for
Dpp(t) = A p()op(0), Markovian dynamics to the case of non-Markovian dynam-
ics.
1 1 The problem of entropy production has been addressed in
Dap(t) ) &) oqq(0) - ;‘Tpp(o) ' (19 Refs.[25-30. Figure 11 shows the linear entropy for the

potential(8) and diffusion coefficient$d). It starts from zero
where &(=) = uw?. This set of diffusion coefficients was also because we set a nearly pure state in the left well as the
derived in Ref.[24] in a completely different way but the initial condition for the solution of Eq(2) and it has a posi-
assurance of the purity of states with them was not mentive value for all time of the evolution. In the case of the

tioned. classic diffusion coefficient&7), D(t) can be negative during
The equation foir(t) in the case of a harmonic oscillator a short initial time interval that correlates with the negativity
follows from Eqgs.(26) of [1]: of u(t) in Fig. 5. The linear entropydecoherengehas larger
) values for largefT and\,. Since the potential8) is not the
a(t) = = 2INp(t) + Ng(D) ]o(t) + 2 Dp(t) 0gq(t) + Dgg(t) opp(t) harmonic oscillatorD(t) can oscillate and is always positive
= 2Dgp(Doge(D)]- (200  with diffusion coefficients4). The time behavior of the non-

diagonal components of the density matrix is correlated with
If the state remains approximately puig(t)=p(t)], then, the time dependence of the linear entropy.
from Egs.(15) and (20), We also calculate the von Neumann entropy
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1.5 [ T T T T T T ] 0.8 T
/ q,=1.0 fm
L4t / ]
45
~ 1.3} g
E 3.6 12,1
=Ll - 020
= 075
26 / 3]
1.1¢ -2. 1]
* e -1.7 /
1o} / . . . ]
3 4 5

o 1 2 6 7

E. (MeV)
FIG. 12. Dependence of the average initial total endggyin

MeV of the Gaussian packet on its positigp and kinetic energy
Ein in the potential shown in Fig. 2.

S(t) = - Tr{p(t)In[p(t) ]}

One can see from Fig. 11 that the time dependencestpf
and D(t) are almost the same. After the initial exponential
increases the entropy becomes lineat at 0.5<wt<2. At
larger time,wt>4, the quasistationary regime is settled in
the example considered an§(t) [D(t)] increases very
slowly. This increase with small rate contains the
Kolmogorov-Sinai regimg25-30. Since in the considered
example only small fractiorfless than 1% of the system

wave function is in the region of barrier where the Lyapunov 0.2}

exponent is positive, the Kolmogorov-Sinai regime is not , , . . : .
pronounced. In a forthcoming publication we will treat the 04 06 08 1.0 1.2 1.4
inverted oscillator for which the rate of von Neumann en- A f&

tropy coincides with the Kolmogorov-Sinai entropy after the ’

system becomes Markovian. For the inverted oscillator, the FIG. 13. The capture probability of the Gaussian packet into the

Kolmogorov-Sinai regime is expected to be very pro-left-hand well of the potential8) as a function of timgupper two

nounced. figures atgo=1 and 1.5 fm foru=50my and\,/@=0.33. The de-

pendence of the asymptotic capture probability\gfiw shown in

the lowest figure. The results fd,;,=6.7, 3.8, 1.8, and 0.4 MeV

are presented by solid, dotted, dashed, and dot-dashed lines,
Let us study the capture of an initially Gaussian packefespectively.

moving towards the barrier &=0 from the right-hand side

with some kinetic energy into the left-hand w&dee Fig. 2  as well. One can see that even for energies exceeding the

The capture probabilityP.(t) is defined in analogy to the barrier only a part of the packet is captured and, therefore,

V. CAPTURE PROBABILITY

probability of the penetrability in Eq9): P.<1. For the energies near the barrier, the dependence of
% - P.() on A\, is rather weak. For the energies well above the

Pe(t) =f dap(q,t) —p(q,t=0)] f dq p(g,0). barrier, the friction suppresses the capture stronger. There-

— U fore, the present results can be useful for calculating capture

23) cross sections in the nucleus-nucleus collisions where the
capture occurs into a shallow well of the potential.

When the packet approaches the barrier, the valuB. @
increases up to the quasistationary vaRewhich defines
the part of the initial packet captured in the left-hand well. VI. SUMMARY
Due to the friction, the value oP. depends on the initial With the exact numerical solution of E¢) for the re-
position g of the packet as well as on the initial kinetic gyced density matrix we found a minor role of the time
energyE,=py/ (2u). The dependence of the average initial gependence of the friction and diffusion coefficients in the
total _energy Eo=Tr(pH,) of the Gaussian packet with escape rate from a potential well. Since the used friction and
V04q(0)=0.35 fm anda,,(0)=%%/[40,4(0)] is presented as diffusion coefficients were self-consistently under certain ap-
function of gy and E, in Fig. 12 for the potentia(8). The  proximations derived, they preserve the positivity of the den-
capture probabilitied(t) are presented for variouf, and  sity matrix at any time. The diffusion coefficieDl,, leads to
Eyin in Fig. 13. The asymptotic valug%(«) on\, are shown a decrease of the escape rate. Since the used valDg, @
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larger than the one following from a classic treatment, theefficients. We demonstrated that the uncertainty funcsi@n
obtained escape rate is close to the rate calculated with thg related to the linear entropy. The diffusion coefficients
classic set of diffusion coefficients. If the regime of motion is supplying the purity of states were elaborated for the non-
close to the underdamped case or the temperature is smalllarkovian dynamics. The obtained dependences of the cap-
the quasistationary escape rate can increase with frictionure probability on the friction proves that the quantum na-
This is explained by the larger role of the increasing diffu-ture of this process should be taken into consideration when
sion in the decay process. The agreement of the escape raige calculates the capture cross section in nucleus-nucleus
obtained with the analytical expressions in comparison taollisions.

numerically calculated data depends on the characteristics of

the considered system. The agreement is better in the over- ACKNOWLEDGMENTS

damped regime. However, for any regime the deviations are

not larger than in the case of the classical Kramers formula. This work was supported in part by Volkswagen-Stiftung
Therefore, the analytical expressions can be applied in éHannovey, DFG (Bonn, RFBR (Moscow), and STCU
large range of parameters for the potential and diffusion cotTashkenk
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