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On the basis of a master equation for the reduced density matrix of open quantum systems, we study the
influence of time-dependent friction and diffusion coefficients on the decay rate from a potential well and the
capture probability into a potential well. Taking into account the mixed diffusion coefficientDqp, the quasis-
tationary decay rates are compared with the analytically derived Kramers-type formulas for different tempera-
tures and frictions. The diffusion coefficients supplying the purity of states are derived for a non-Markovian
dynamics.
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I. INTRODUCTION

This paper is the continuation of the first paperspaper Id
where we developed the formalismf1g. Here we apply the
theoretical results to decay rates, capture, and pure states.

In order to describe the evolution of a quantum system in
some relevant collective coordinateq which is coupled with
many other degrees of freedomsenvironmentd, one needs
stohastic forces and a density matrix formalism. As was
found in Refs.f2–14g, the dynamics of the quantum system
in the presence of dissipation and diffusion strongly depends
on the coupling with the environment. The HamiltonianH of
the total system can be written

H = Hc + Hb + Hcb, s1d

where Hc=p2/ s2md+Usqd is related to the relevant sub-
system with the coordinateq and momentump, Hb describes
the environment, andHcb describes the coupling between
these two systems. If we assume an environment consisting
of a large set of harmonic oscillators and ifHc is linear inq,
the method developed in Ref.f1g yields the friction and dif-
fusion coefficientslpstdù0, lqstd;0 andDppstd.0, Dqpstd,
Dqqstd;0, respectively.

The reduced density matrixr f15–21g obeys the following
equation:

dr

dt
= −

i

"
fH̃c,rg −

i

2"
lpstdfq,srp + prdg

+
i

2"
lqstdfp,srq + qrdg −

1

"2Dppstdfq,fq,rgg

−
1

"2Dqqstdfp,fp,rgg

+
1

"2Dqpstdsfp,fq,rgg + fq,fp,rggd, s2d

whereH̃c=p2/ s2md+Ũsqd is renormalized collective Hamil-
tonian. Since in Ref.f1g the friction and diffusion coeffi-
cients were self-consistently calculated, this set of coeffi-
cients should secure the non-negativity of the density matrix

at any time. This holds true for the caseDqqstd=0. This oc-
curs in spite of the violation of the constraint for time-
independent diffusion and friction constantsf17–21g,

DppDqq − Dqp
2 ù

"2slp + lqd2

16
, s3d

which is at any time a sufficient condition for time-
independent diffusion and friction coefficients in order that
the uncertainty inequality holds:

s = sppsqq − spq
2 ù

"2

4
.

Here, spp=Trfsp− p̄d2rg, sqq=Trfsq− q̄d2rg, sqp=0.5 Trhfsp
− p̄dsq− q̄d+sq− q̄dsp− p̄dgrj, p̄=Trsprd, andq̄=Trsqrd. If the
coupling Hcb with the environment is proportional top as
well as q, then all friction and diffusion coefficients in Eq.
s2d are different from zerof1g and satisfy the constraints3d.

In the present paper we study the influence of the time
dependence of the friction and diffusion coefficients derived
in Ref. f1g, with Hcb proportional only toq ffully coupled
sFCd oscillatorg, on the results obtained with Eq.s2d. The
role of the nondiagonal diffusion coefficientDqp is especially
investigated. As an example, we calculate the flow rate
through a potential barrier in an anharmonic potential with
these transport coefficients. The calculated results are com-
pared with the ones obtained with the analytical expressions
derived in Ref.f13g for the probability rate through a barrier
as well as with the results obtained with a “classic” set of
diffusion coefficients.

The master equations2d describes the dissipative quantum
dynamics approximately for anharmonic systems. However,
in our case we consider only the initial stagesshort timed of
the evolution of a system up to the moment when the flow
rate reaches the quasistationary regime. For example, in the
case of the decay process the system wave function is local-
ized mainly in the initial pocket which can be nicely approxi-
mated by a harmonic oscillator. So we can suppose that the
influence of higher-order fluctuations on the evolution of sys-
tems in the considered stage of the processes is small. If the
distribution function spreads out a more complicated poten-
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tial, its long-time behavior is defined by the general master
equation with coordinate- and time-dependent transport co-
efficients. Without a coordinate dependence of the transport
coefficients the regime of weak dissipation and high tem-
perature is suitable for anharmonic systems.

II. TIME-DEPENDENT FRICTION AND DIFFUSION
COEFFICIENTS

The expressions for the FC oscillator obtained in Ref.f1g
for the friction and diffusion coefficients contain three pa-
rametersv, l, andg. The value ofg, which characterizes the
width of the environment states, should satisfy the condition
g@v. We set"g=12 MeV in our calculations. Here,v is
the frequency of the oscillator which after renormalization
v→ ṽ approximates the potential around the minimum. Due
to the interaction with the environment, the potentialUsqd is
renormalized because there is no compensating term in Eq.
s1d as in Ref.f8g. In the applications in which we are inter-
ested, this renormalization leads to a weak dependence of the
frequencyvstd on time until it reaches the asymptotic value
ṽ. The values of parametersl andv are set so as to obtain
a given asymptoticsṽ=vs`d and lp=lps`d at fixed tem-
peratureT. For m=50m0 sm0 is the mass of nucleond and
"ṽ=3 MeV, the time dependence of the friction and diffu-
sion coefficients is presented in Fig. 1 at the initial conditions
lpst=0d=0, Dppst=0d=0, andDqpst=0d=0. After some tran-
sient timet the coefficients reach their asymptotic values
lps`d, Dpps`d, andDqps`d. While lp andDpp are positive at
any time,Dqp is positive during a short initial time and be-
comes negative for large times. The transient time is quite
short:t!2p / ṽ. As follows from the analytical expressions
f1g, Dpps`d is proportional tolps`d and the value ofDqps`d
decreases with increasinglps`d and increases withT.

The asymptotic valueDpps`d obtained in Ref.f22g is al-
most the same as the value ofDpp in Ref. f1g and here. Due
to the simplifications made in Ref.f22g, the value ofDqp
,0 obtained there is about 25% smaller than our value of
Dqps`d.

Since the friction and diffusion coefficients were derived
with a linear coupling in the coordinate between the collec-
tive subsystem and environment, we haveDqq=0 andlp=0
at any time. In the present paper we restrict ourselves to this
coupling and use three sets of friction and diffusion coeffi-
cients in the numerical examples. The first set is the time-
dependent set of the coefficients derived in the part Ifsee
Eqs. s33d–s35d, s57d, and s58d in Ref. f1gg and shown for
lps`d=1 MeV andT=0.1 MeV in Fig. 1:

sid Dppstd, Dqpstd, lpstd. s4d

The second set contains the asymptotic values of these coef-
ficients fsee Eqs.s59d and s60d in Ref. f1gg:

sii d Dpps`d, Dqps`d, lps`d. s5d

Comparing the results obtained with Eqs.s4d and s5d, one
can elucidate the role of the dependence of the friction and
diffusion on time. The third set of coefficients coincides with
the first set but the coefficientDqp is assumed to be zero:

siii d Dppstd, Dqpstd ; 0, lpstd. s6d

Comparing the results obtained with Eqs.s4d and s6d, one
can conclude on the role ofDqp in the evolution of the sys-
tem. The results obtained with these sets of friction and dif-

FIG. 1. Time dependent diffusion coefficientsDppstd andDqpstd
and friction coefficientslpstd / ṽ→0.33 calculated for"ṽ=3 MeV,
m=50m0, andT/ s"ṽd=0.033.

FIG. 2. Bistable potentials8d. The schematically shown Gauss-
ian packet in the left well decays into the right-hand potential well.
The left-hand packet approaching the barrier from the right-hand
side is partly captured.
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fusion coefficients can be compared with the widely used
classic diffusion coefficients

sivd Dpp
c = mlpT * , Dqq = Dqp = 0, s7d

where the effective temperature is T*
=0.5"ṽ cothf"ṽ / s2Tdg.

III. DECAY RATE FROM THE POTENTIAL WELL

A. Asymmetric bistable potential

Let us study the escape of a Gaussian packet from a shal-
low well to a deeper well of an asymmetric bistable potential
sFig. 2d presented by a polynom of the fourth order:

Ũsqd = −
6qRVL

qL
2s2qR − qLd

q2 −
4sqL + qRdVL

qL
3sqL − 2qRd

q3 −
3VL

qL
3s2qR − qLd

q4,

s8d

where qL and qR are the positions of the left and right
minima, respectively, andVL is the depth of the left minima.
Note that the barrier is atq=qb=0. For the calculations, we
set VL=4 MeV, qL=−1.67 fm, andqR=2.5 fm. With these
parameters the depth of the right well is 11.8 MeV. We con-

sider two values of the mass parameterm, 50m0 and 448m0,
corresponding to the frequency at the left potential minima,
"ṽm=3 MeV and "ṽm=1 MeV, respectively. The initial
Gaussian distribution is centered atqL and has the square
root of the varianceÎsqqs0d=0.35 fm andÎsqqs0d=0.2 fm
for m=50m0 and 448m0, respectively. The variancesspps0d
are chosen from the uncertainty relation withsqp=0:
spps0d="2/ f4sqqs0dg.

The calculated time-dependent variancessppstd, sqpstd,
and sqqstd are presented in Figs. 3 and 4 for the different
mass values. Fort.4" /MeV, sppstd reaches the asymptotic
value, when the equilibrium in momentum is established in
the bistable-type potential. With smaller mass and friction
the quantitiessppstd and sqpstd have more oscillations in
time. For a larger mass, the relative increase of the values of
variances with temperature is larger. At large time the value
of sqpstd changes slowly. Since the initial Gaussian state is
destroyed because of the escape of the packet into the right
well ssee Fig. 2d, the value ofsqqstd increases with time in
the considered time interval. While the values ofsqqstd and
sqpstd increase withlp for smaller mass, they decrease with
increasinglp for larger mass. This occurs due to the balance
between the diffusion and friction. For small mass, the dif-
fusion can overcompensate the decrease of the escape rate

FIG. 3. Time dependence of the variancessppstd, sqpstd, andsqqstd for the decay of the initially Gaussian packet from the left-hand well
of the potentials8d at m=50m0 and"ṽ=3 MeV for the temperaturesT/ s"ṽd=0.033sleft sided and 0.33sright sided and friction coefficients
lp/ ṽ=0.17 ssolid linesd, 0.33 sdashed linesd, 0.50 sdotted linesd, and 0.66sdash-dotted linesd.
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due to the friction. With the second sets5d of friction and
diffusion coefficients the time dependence of the variances
seems to be similar, especially at large time. Therefore, in
many applications one can disregard the time dependence of
the friction and diffusion coefficients and use the asymptotic
values oflp, Dpp, andDqp.

In spite of the violation of inequalitys3d the use of the
friction and diffusion coefficientss4d does not lead to a vio-
lation of the uncertainty relation due to the about 1.5 times
larger coefficientDpp in comparison to the classic value of
Dpp

c in Eq. s7d. With the diffusion coefficientss7d one can
observe a violation of the uncertainty relation at the initial
time sFig. 5d.

B. Definition of decay rate

Solving the master equations2d with the above mentioned
sets of friction and diffusion coefficients, one can obtain the
time-dependent density matrixrsq,td=kqur̂stduql in coordi-
nate representation and find the probabilityPstd of penetra-
bility of a particle with massm through a barrier which has
its top atq=qb:

FIG. 4. Time dependence of the variancessppstd, sqpstd, andsqqstd for the decay of the initially Gaussian packet from the left-hand well
of the potentials8d at m=448m0 and"ṽ=1 MeV for the temperaturesT/ s"ṽd=0.5 sleft sided and 1.5sright sided and friction coefficients
lp/ ṽ=0.5 ssolid linesd, 1.0 sdashed linesd, 1.5 sdotted linesd, and 2.0sdash-dotted linesd.

FIG. 5. Time dependence of the uncertainty relationustd
=sppstdsqqstd−sqp

2 std−"2/4 at the beginning of the decay process
from the left well of the potentials8d with diffusion coefficientss4d
ssolid lined and s7d sdashed lined. The calculations are performed
with m=448m0, "ṽ=1 MeV, lp/ ṽ=1, andT/ s"ṽd=0.1.
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Pstd =E
qb

`

dqfrsq,td − rsq,t = 0dgYE
−`

qb

dq rsq,0d, s9d

as well as a time-dependent value of the probability rate

Lstd =
1

1 − Pstd
dPstd

dt
. s10d

Equation s2d is solved as described in Refs.f11,12g by
using an oscillator basis. This method allows us to obtain a
solution forr from Eq. s2d for any continuous potential and
any set of friction and diffusion coefficients.

C. Illustrative calculations

The time dependence of the probability rateLstd with
respect toṽ over the barrier in the potentials8d for the three
sets s4d–s6d of the friction and diffusion coefficients are
shown in Fig. 6 for"lp=1 MeV and T=1 MeV for two
different masses. One can see a minor influence of the time
dependence of the friction and diffusion at larget. The sets
s4d ands5d lead to the same stationary value of the probabil-
ity rate Lstd. For small times,Lstd is larger with the time-
dependent set becauseDppstd initially increases and exceeds
its asymptotic value. The probability rateLstd has more os-
cillations in time for a smallerslargerd mass sfrequency
ṽd—i.e., when the system approaches to the underdamped
regime. The classic sets7d of diffusion coefficients leads to
slightly smaller asymptotic values ofL. The similarity of the
asymptoticL obtained with the diffusion coefficientss4d,
s5d, and s7d confirms the applicability of the classic set of
diffusion coefficients to the problems of the barrier penetra-
bility in the case of a linear coupling inq with the environ-
ment.

With the sets6d of diffusion coefficients the probability
rate is larger in Fig. 6 than for the sets4d since the negative
value ofDqp of sets4d keeps the rateLstd smaller. In order to

obtain the same rate for the case ofDqp=0, we should de-
crease the diffusion coefficientDpp by a factor ofk,1 and
useDpp8 =kDpp in s6d instead ofDpp. The dependence ofk on
lp is presented in Fig. 7. For"lp.1.5 MeV, k weakly de-
pends onlp and is sensitive to the temperature.

The time dependence ofLstd is presented for different
frictions and temperatures in Fig. 8. The value ofLstd in-
creases withT. For smaller friction and mass,Lstd is a more
oscillating function oft. While for a large frequencyṽ ssmall
md the stationary probability rate can increase withlp, it
decreases for a small frequencyṽ slargemd and largeT with
increasinglp within the considered interval oflp. This result
for L is in agreement with the result of Ref.f13g and is
explained by the larger role of prohibiting diffusion in
comparison to the minor role of suppressing friction. The
dependence of the quasistationaryL on T andlp is presented
in Fig. 9 for two values ofṽ. When the system is near to the
underdamped regime, the quasistationary probability rate in-
creases withlp within a large interval oflp. However, the
further increase oflp finally leads to a smallerL. In the
overdamped regime the quasistationary probability rate al-
ways decreases with increasinglp.

FIG. 6. Time dependences of the decay rateLstd / ṽ from the left well in the potentials8d at m=50m0 sleft-hand sided, m=448m0

sright-hand sided, lp/ ṽ=1/s"ṽd, and T/ s"ṽd=1/s"ṽd. The results obtained with the time-dependent diffusion coefficientss4d, their
asymptotic valuess5d and the diffusion coefficientss6d are presented by solid, dashed, and dotted lines, respectively. The results obtained
with the “classic” diffusion coefficientss7d are presented by dash-dotted lines.

FIG. 7. Dependence of the factork on lp/ ṽ, for T/ s"ṽd=1.0
ssolid lined and 0.1sdashed lined.
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D. Comparison with Kramers-type expressions

In Ref. f13g we derived two variants of the Kramers-type
formula in the presence of all diffusion coefficientsDpp, Dqp,

and Dqq. These formulas were tested forDqp=0 and Dqq
Þ0 to estimate the quasistationary probability rate through
the barrier for a known potential and friction. In the case of
Dqq=0 andDqpÞ0 the first variant of the formula is

FIG. 8. Time dependence of decay rateLstd / ṽ from the left well in the potentials8d for m=50m0 sleft sided andm=448m0 sright sided
and the indicated temperatures. In the calculations the diffusion coefficientss4d are used with the friction coefficientslp/ ṽ=0.5/s"ṽd ssolid
linesd, 1.0/s"ṽd sdashed linesd, 1.5/s"ṽd sdotted linesd, and 2.0/s"ṽd sdash-dotted linesd.

FIG. 9. Quasistationary value of the probability rateLstd / ṽ from the left well in the potentials8d for m=50m0 supper partd and m
=448m0 slower partd as a function ofT/ s"ṽd and lp/ ṽ. The temperature dependence is presented for the friction coefficientslp/ ṽ
=0.5/s"ṽd ssolid linesd, 1.0/s"ṽd sdashed linesd, 1.5/s"ṽd sdotted linesd, and 2.0/s"ṽd sdash-dotted linesd. The dependence onlp/ ṽ is
shown for the temperaturesT/ s"ṽd=0.1/s"ṽd ssolid lined, 0.5/s"ṽd sdashed lined, and 1.0/s"ṽd MeV sdotted lined in the upper part and
T/ s"ṽd=0.5/s"ṽd ssolid lined, 0.75/s"ṽd sdashed lined, 1.0/s"ṽd sdotted lined, and 1.5/s"ṽd sdash-dotted lined in the lower part.
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L =
Dppṽ

2pÎDppsDpp + 2mlpDqpd

31 h

lp −
2mlpvb

2Dqp

hsDpp + 2mlpDqpd
+ h2

1/2

3expF−
VLmlp

Dpp + 2mlpDqp
G , s11d

where h=−lp/2+slp
2/4+vb

2d1/2 and vb is the frequency of
the inverted oscillator approximating the barrier. The second
variant is a Kramers-type formula given by

L =
ṽ

2p1 h

Dpp

mT ef f −
2vb

2Dqps1 − 2Dqp/T
ef fd

hT ef f + h2
1/2

3expF−
VL

T ef fG , s12d

where T ef f=sDpp+mlpDqpd / smlpd and h
=lp/2−Dpp/ smT ef fd+hflp/2−Dpp/ smT ef f dg2+vb

2s1−4Dqp
2 /

T ef f 2
dj1/2. For Dqp=0, Eqs.s11d and s12d are simplified to

the known Kramers formulaf23g for the probability of es-
cape over the potential barrier:

LKr =
kṽ

2p
expF−

VL

mṽ2sqq
G , s13d

wherek=f1+lp
2/ s4vb

2dg1/2−lp/ s2vbd.
For the potentials8d, the quasistationary valuesL with

respect toṽ calculated from the solution of Eq.s2d with
asymptotic values of the diffusion coefficientss5d are com-
pared in Fig. 10 with the results obtained with Eqs.s11d and
s12d. Note that Eq.s11d holds good when the condition
ṽT/VL,lp is valid f13g. This occurs for"lp.0.25T at
"v=1 MeV and for"lp.0.75T at "ṽ=3 MeV. For large
ṽ, the quantityVL−"ṽ /2 is relatively small in the consid-
ered potentials8d. Then the assumption of a long-living sta-
tionary state at the minimum of the potential becomes less
justified. Therefore, in comparison to the treatment with a
small frequencyṽ, we find larger deviations ofL between
the analytical and numerical resultssFig. 10d. However, for
"lp between 1 and 2 MeV, the disagreement is only within a
factor of 2 which is acceptable for many applications, espe-
cially in nuclear physics. The correspondence of numerical
results obtained from the solution of Eq.s2d to the results
following from the analytical expressionss11d ands12d dem-
onstrates the validity of these expressions for the case of
DqpÞ0.

IV. PURE STATES, UNCERTAINTY RELATION,
AND DECOHERENCE

The linear entropy

Dstd = 1 − Trfr2stdg s14d

can be considered as a measure of the purity of states. Since
Trfr2stdgø1, Dstd is positive and equal to zero for a pure

state. The purity of states decreases with increasing linear
entropy. We can calculate the rate of entropy production
from the master equations2d, assuming that the state remains
approximately purer2std<rstd:

Ḋstd = − 2 Trfrstdṙstdg

<
4

"2fDqqstdsppstd + Dppstdsqqstd − 2Dqpstdsqpstdg

− flpstd + lqstdg. s15d

If Ḋstd=0 and Trfr2s0dg=1, then Trfr2stdg=1 at all timest
.0. This condition is necessary and sufficient to have
r2std=rstd all times. This means thatrstd represents a pure
state for tù0. Under the special conditionsstd
=sppstdsqqstd−spq

2 std="2/4, the set of diffusion coefficients,

Dqqstd =
1

2
flpstd + lqstdgsqqstd,

Dppstd =
1

2
flpstd + lqstdgsppstd,

FIG. 10. Quasistationary decay rateL / ṽ through the barriers in
the potential presented in Fig. 2 form=50m0 s"ṽ=3 MeVd andm
=448m0 s"ṽ=1 MeVd as a function oflp/ ṽ with the initial Gauss-
ian packet at the left-hand minimum for the indicated temperatures
T/ s"ṽd. The numerically calculated results obtained from Eq.s10d
by solving Eq. s2d with the sets4d of diffusion coefficients are
presented by solid lines. The results obtained with Eqs.s11d and
s12d are presented by the dashed and dotted lines, respectively.
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Dqpstd =
1

2
flpstd + lqstdgsqpstd, s16d

satisfies the pure state conditionḊstd=0, at which the pure
states remain pure for all times. With Eqs.s16d the condition
s3d is fulfilled. If the variances of the pure state are assumed
to be constantsi jstd=si js0d=si js`d si , j =q,pd and hold the
minimum uncertainty equalitysstd="2/4, then we obtain the
following diffusion coefficients for pure states in the case of
a harmonic oscillator from Eqs.s27d–s29d of paper If1g:

Dqqstd = lqstdsqqs0d −
1

mstd
sqps0d,

Dppstd = lpstdspps0d + jstdsqps0d,

Dqpstd =
1

2
Sflpstd + lqstdgsqps0d + jstdsqqs0d −

1

mstd
spps0dD .

s17d

Using Eqs.s17d, we can show that the equalityḊstd=0 is
fulfilled at any time for the pure states. To form the pure
state, the random and dissipative forces must satisfy the fol-
lowing equationsfsee Eq.s14d of f1gg:

Jqtqt
= s1 − At

2dsqqs0d − Bt
2spps0d − 2AtBtsqps0d,

Jptpt
= s1 − Nt

2dspps0d − Mt
2sqqs0d − 2NtMtsqps0d,

1

2
sJqtpt

+ Jptqt
d = s1 − AtNt − BtMtdsqps0d − AtMtsqqs0d

− BtNtspps0d. s18d

The explanations of all notations in Eqs.s17d and s18d are
given in Ref.f1g. For the particular case of a pure state of the
FC oscillatorslq=sqp=0d, we obtain, from Eqs.s17d,

Dqqstd = 0,

Dppstd = lpstdspps0d,

Dqpstd =
1

2
Fjstdsqqs0d −

1

m
spps0dG , s19d

wherejs`d=mṽ2. This set of diffusion coefficients was also
derived in Ref.f24g in a completely different way but the
assurance of the purity of states with them was not men-
tioned.

The equation forṡstd in the case of a harmonic oscillator
follows from Eqs.s26d of f1g:

ṡstd = − 2flpstd + lqstdgsstd + 2fDppstdsqqstd + Dqqstdsppstd

− 2Dqpstdsqpstdg. s20d

If the state remains approximately purefr2std<rstdg, then,
from Eqs.s15d and s20d,

ṡstd < − 2flpstd + lqstdgFsstd −
"2

4
G +

"2

2
Ḋstd.

One can see that the rate ofsstd is explicitly connected with
the rate of entropy production. An important consequence of
Eq. s20d is the fact thatsù"2/4 is fulfilled for any state
spure or mixtured if ss0dù"2/4:

Dppstdsqqstd + Dqqstdsppstd − 2Dqpstdsqpstd

ù
"2

4
flpstd + lqstdg. s21d

For t→` we have, from Eqs.s20d,

Dpps`dsqqs`d + Dqqs`dspps`d − 2Dqps`dsqps`d

= ss`dflps`d + lqs`dg. s22d

The relations21d is the generalization of the inequality for
Markovian dynamics to the case of non-Markovian dynam-
ics.

The problem of entropy production has been addressed in
Refs. f25–30g. Figure 11 shows the linear entropy for the
potentials8d and diffusion coefficientss4d. It starts from zero
because we set a nearly pure state in the left well as the
initial condition for the solution of Eq.s2d and it has a posi-
tive value for all time of the evolution. In the case of the
classic diffusion coefficientss7d, Dstd can be negative during
a short initial time interval that correlates with the negativity
of ustd in Fig. 5. The linear entropysdecoherenced has larger
values for largerT andlp. Since the potentials8d is not the
harmonic oscillator,Dstd can oscillate and is always positive
with diffusion coefficientss4d. The time behavior of the non-
diagonal components of the density matrix is correlated with
the time dependence of the linear entropy.

We also calculate the von Neumann entropy

FIG. 11. Time dependence of the linear entropyDstd supper
partd and of the von Neumann entropySstd slower partd for the
wave packet initially being in the left-hand well of the potential
presented in Fig. 2 form=448m0 s"ṽ=1 MeVd, T/ s"ṽd=0.1, and
the indicated values oflp/ ṽ. The results obtained with the diffusion
coefficientss4d, s6d, ands7d are shown by solid, dotted, and dashed
lines, respectively.
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Sstd = − Trhrstdlnfrstdgj.

One can see from Fig. 11 that the time dependences ofSstd
and Dstd are almost the same. After the initial exponential
increases the entropy becomes linear int at 0.5øṽtø2. At
larger time,ṽt.4, the quasistationary regime is settled in
the example considered andSstd fDstdg increases very
slowly. This increase with small rate contains the
Kolmogorov-Sinai regimef25–30g. Since in the considered
example only small fractionsless than 1%d of the system
wave function is in the region of barrier where the Lyapunov
exponent is positive, the Kolmogorov-Sinai regime is not
pronounced. In a forthcoming publication we will treat the
inverted oscillator for which the rate of von Neumann en-
tropy coincides with the Kolmogorov-Sinai entropy after the
system becomes Markovian. For the inverted oscillator, the
Kolmogorov-Sinai regime is expected to be very pro-
nounced.

V. CAPTURE PROBABILITY

Let us study the capture of an initially Gaussian packet
moving towards the barrier atq=0 from the right-hand side
with some kinetic energy into the left-hand wellssee Fig. 2d.
The capture probabilityPcstd is defined in analogy to the
probability of the penetrability in Eq.s9d:

Pcstd =E
−`

qb

dqfrsq,td − rsq,t = 0dgYE
qb

`

dq rsq,0d.

s23d

When the packet approaches the barrier, the value ofPcstd
increases up to the quasistationary valuePc which defines
the part of the initial packet captured in the left-hand well.
Due to the friction, the value ofPc depends on the initial
position q0 of the packet as well as on the initial kinetic
energyEkin=p0

2/ s2md. The dependence of the average initial
total energy E0=Trsr̂H0d of the Gaussian packet with
Îsqqs0d=0.35 fm andspps0d="2/ f4sqqs0dg is presented as
function of q0 and Ekin in Fig. 12 for the potentials8d. The
capture probabilitiesPcstd are presented for variousq0 and
Ekin in Fig. 13. The asymptotic valuesPcs`d on lp are shown

as well. One can see that even for energies exceeding the
barrier only a part of the packet is captured and, therefore,
Pc,1. For the energies near the barrier, the dependence of
Pcs`d on lp is rather weak. For the energies well above the
barrier, the friction suppresses the capture stronger. There-
fore, the present results can be useful for calculating capture
cross sections in the nucleus-nucleus collisions where the
capture occurs into a shallow well of the potential.

VI. SUMMARY

With the exact numerical solution of Eq.s2d for the re-
duced density matrix we found a minor role of the time
dependence of the friction and diffusion coefficients in the
escape rate from a potential well. Since the used friction and
diffusion coefficients were self-consistently under certain ap-
proximations derived, they preserve the positivity of the den-
sity matrix at any time. The diffusion coefficientDqp leads to
a decrease of the escape rate. Since the used value ofDpp is

FIG. 12. Dependence of the average initial total energyE0 in
MeV of the Gaussian packet on its positionq0 and kinetic energy
Ekin in the potential shown in Fig. 2.

FIG. 13. The capture probability of the Gaussian packet into the
left-hand well of the potentials8d as a function of timesupper two
figuresd at q0=1 and 1.5 fm form=50m0 andlp/ ṽ=0.33. The de-
pendence of the asymptotic capture probability onlp/ ṽ shown in
the lowest figure. The results forEkin=6.7, 3.8, 1.8, and 0.4 MeV
are presented by solid, dotted, dashed, and dot-dashed lines,
respectively.
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larger than the one following from a classic treatment, the
obtained escape rate is close to the rate calculated with the
classic set of diffusion coefficients. If the regime of motion is
close to the underdamped case or the temperature is small,
the quasistationary escape rate can increase with friction.
This is explained by the larger role of the increasing diffu-
sion in the decay process. The agreement of the escape rate
obtained with the analytical expressions in comparison to
numerically calculated data depends on the characteristics of
the considered system. The agreement is better in the over-
damped regime. However, for any regime the deviations are
not larger than in the case of the classical Kramers formula.
Therefore, the analytical expressions can be applied in a
large range of parameters for the potential and diffusion co-

efficients. We demonstrated that the uncertainty functionsstd
is related to the linear entropy. The diffusion coefficients
supplying the purity of states were elaborated for the non-
Markovian dynamics. The obtained dependences of the cap-
ture probability on the friction proves that the quantum na-
ture of this process should be taken into consideration when
one calculates the capture cross section in nucleus-nucleus
collisions.
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