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Dynamics on a torus
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The dynamics of atoms on the surface of a torus is considered. The simple illustration of motion with regard
to rotating and fixed space gives a model of a four-dimensi@tal torus. Two different schemes including
rotation and shear in angular frame are used to take into account shears of the surface. In general, a variable-
cell-shape molecular dynamics method analogous to the Parrinello-Raman one is developed. The six dynamical
variables, the three radiuses and the three angles, specifying the deformations of the surface describe the cell
dynamics. The new equations of motion contain no vectors of translations of the cell making its shape
irrelevant for the structural and thermodynamical description of the system. The new method was tested on two
problems concerning structure transformations of two-dimensional lattices.
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In molecular dynamic§MD) the flexibility of a crystal be represented by the intersection of the three three-
under periodic boundary conditions is achieved by introducdimensional hypercylinder, given by parametric equations
ing additional degrees of freedom for the MD cell. Tradition-s,=R, sin6,, v,=R, cosd,, and a=xX,y,z, whereR, is the
ally the dynamical variables associated with the MD cell areradius of the cylinder. The closed and finite surface being
the Cartesian components of the three vectors defining thigometric to 3D Euclidean spa¢8] is particularly suited to
cell [1]. Since the number of the independent cell variableshe consideration of the dynamics of a finite ensemble with
differs from the number of forces responsible for the cellperipdic boundary conditions. L&, 6, be coordinates dth
deformation(the six components of the internal stress tensor haticle on the surface of a 6D torus. Then the distance be-
a correspondence between them is not direct producing @een the ith and jth particle on the surface is;

number of inconsistencies. At first, Nog# has shown that =\3.R202_ The motion o particles of the mass on the
three extraneous coordinates can be responsible for unphysi- a” e

cal rotation of the cell. Further, one has to guarantee tha?urface O]J torus can be evaluated with the help of the La-

equations of motion are invariant to the arbitrary choice ofdrangian

the lattice vector$3]. Of course, all inconsistencies of prior m N _ .
Parrinello-RamanPR) treatment founded have been suc- L=— E (Riaiza+ Ri) - ¢, (D
cessfully removed and further development of PR method 2t

has given a powerful means to study systems in the . -
isoen?halpic—iso%aric and isothermal—isobgric Znsembles. onghich originates from the model .Of the curved chigih
should note though that incorrect number of the variables is " Order to reduce a 6D dynamics on a torus o the real 3D
a consequence of the scaling model, which has not changeéfomic dyn'\?mms, the pair potential of interaction between
in process of all corrections and improvements. Originatedtoms$=2;2,;,U(s;) in Eq. (1) is assumed to be dependent
with Anderser{4] and generalized later by FR] this model ~ on the arc lengtts; connecting atoms on the surface. Then
assumes the atomic coordinates and momenta to be scaled g equations of motion from this Lagrangian are given by
the lattice coordinates. Because the scaling the equations of
motion contain the direct dependence on the MD cell coor-
dinates and the corresponding Lagrangian cannot be deriv-
able from first principles. Evidently, this circumstance is
likely not to be the serious one in view of numerous com- M(R.Via) = R.Fia:
parisons between the results of MD simulations and Monte
Carlo calculations. The more especially as the rigor of the w O
PR method arises from that fact that the trajectories sample mR, = R’ (2
the correct distribution function, assuming ergodicity. Still, it “«
does not seem improbable that some features of dynamigghere Va=Ra9ia and the forces are defined b¥;,
may turn out to be _seneit_ive to thi_s dependence in_a greater_ng(Sj)Sja andy(s)=s1dU(s)/ ds. The values ofr,, are
degree than to that implicitly contained in the potential of thethe diagonal components of the tensor
lattice due to periodic boundary conditions. So the elimina-
tion of this dependence should be in accordance with the
principle of material-frame indifferencgs] and deserving Naa,;:mz ViaVig = E X(8;)SjaSijp- ©)
motivation for a possible alternative. =t =

A model of the ensemble of particles on the surface of a Since the three-dimensional curvilinear coordinates on the
6D torus proposed in Ref$6,7] enables us to avoid in a surface have the Euclidean metrics, the transverse motion of
natural way the problems mentioned above. This surface caamoms on the surface determining by tangent foregsis

. R,
Sia = Via + R_aSai

N N
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quite analogous to the Newtonian one in terms of three- ri=v;+Br,

dimensional Cartesian coordinates. The coupling of the

atomic motion to the cell's motion is made through the ra- 1

dius of the curvatur®,. It is driven by the diagonal compo- Vi = n‘fi -Blv;. (6a)

nents of the internal stress tensey,/V, whereV is the
volume per atom. As a result, the system will evolve to aThe components of the matrB& can be written as
configuration with constant curvature, which corresponds to )
the stress-free state of the crystal in real space. Bas = (Ry/R,) 8ap* €0,p(Ry IRp @, (6b)
Basically, the equations of E2) account for only inde-
pendent extensions in three directions. In particular, thes
equations with the same radi&s,=R generate the isoshape
dynamics of Andersen’s kinfb,6]. To include shears to the
dynamics three other independent variables must be intro- - O~ PV
duced. The trial to do that by means of nondiagonal elements mR, = R
of the curvature radiuf7] failed since the motion equations “
obtained do not conserve energy. Below, the necessary defor-
mation will be introduced through the use of new orders of
freedom in an angular frame. In principle, there are two op-SincedV/V=Z, dR,/R,, only the upper equation depends
tions available. Apart from a direct shear in angles it can ben the volume.
done by a rotation of angles with regard to a fixed reference The second scheme is to work with a transformation of a
frame orientated along directions of the main curvatures. pyre shear'H;:ba+w0,3, a# B in Eq. (4) instead of rigid

For illustrative purposes the application to the rotation ofyotation. As before the relations,/ dp= 6, and 96,/ dp= 6,
angular coordinates of a particle on the 4D torus will berequire thatﬂa:Aaﬁﬁf. The matrix.A with the components
considered first. Let the rotation of the vectdr(6,,6,)  A_ =cost{y), A,p=sin(p), a# B represents a pure shear
through the angle> be accompanied by the displacement ofyhose principal axes are in the diagonal directions of the
the particle¢ along the axis of rotation. The Lagrangian as-right angle# {0 !. The new transformation is seen as a ro-
sociated with a rigid rotation can be obtained from that oftation by an imaginary angle in the complex plane fixed in
Eqg. (1) by the substitutionf— @' =60+[w X 8] where @  space. Hence a new Lagrangian differs from that of @y.

where w,=¢, ande,g, is the antisymmetric unit matrix in
WWhich (aBy) is a cyclic rotation of(xyz. The equations for
the curvature variables are

m(.l)a: SQBV(RIB /Ry)(fﬂy (60)

=pé&l £ so that only by the positive sign before6,. Therefore, in general,
Egs. (6a—6¢) being implicitly dependent on the 3D matrix
_Mme . : Y 2. P2/ 7 _ A could be reduced to the new equations of motion by the
o 2[§+ Ret Ry Rl 08)* + R+ i) = (o). substitution of the symmetric unit matrix;; =1, a# 8

(@) # vy instead of the antisymmetric ong,z,. Use of either
rotating or shear schemes is a matter of convenience. The
The angled, and ¢, in this expression are independent vari- second scheme allows one the same values of initial radiuses
ables. If, in addition, we relat® and ¢ by the equations and it will be used below.
96l dp=-6, and 96,/ Jo= 6y, then the vector can be de- The additional_ variables change as the response to the
fined in terms of its componen®], and ¢ fixed in space. imbalance of the internal stress,/V and the external pres-
Introducing the matrix of rotatioA through the angle, one  sure p. Since &V/iR,=V/R, the treatment of the motion

substitutesd, =A, 56 |; to Eq.(4). Accordingly the velocityp' ~ quation of Eqs(6a—-6¢) in the context of statistical me-
. s chanics is quite analogous to the one-dimensional {3ke
in Eq. (4) becomes equal to the apparent velogig " thus The average of the motion equation of Ec) over time

eliminating forces of reaction caused by rotation. comes to the relatioki(c,,—pV)/R,)=0. Besides, in equi-

The extension to the case of the ensemble of particles opy_ . _ . . . -
the surface of the 6D torus is straightforward. The EuIerianﬁlD”um’ {024/V)=pd,s. Detalled discussion of the virial

matrix A determines now the rotation of the vectatswith theorems for a more general isothermic-isobaric ensemble

respect to a fixed frame so that the Lagrangian takes the fori{ill P& made elsewhere.
The total energy, the momentum and the angular momen-

m N ) tum are conserved in the usual constant volume dynamics.
L=—2> (V2 +R2+¢%) —¢-pV, (5)  The equations of motion of Eq¥6a—(6c) conserve the
i=la energy

where v,=R,A, 40, and £,= ¢, is supposed. An external _m N 5

isotropic pressu?@liﬁs introduced here additionally. E= E;l" [(Fio = Baglip)* + Re+ el + ¢+ pV.  (7)
Following the usual procedure E) gives the equations e

of motion. It is convenient to write them down not in terms As it is seen from Eq(6a the momentum conservation law

of the independent variables but in termséf and further-  holds if the initial position of the center of mass,,=0.

more make the substitutiog —r; taking into account the However, as like as in the PR method, the full angular mo-

direct correspondence between the curvilinear and CartesianentumL =m3;[s; X §] is not conserved. To see the reasons

coordinates in the 3D configuration space: start with the relatiort;[ s, X F;]=0 for the special case of 4D
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FIG. 1. The vibration of the triangular latticea) The time evo-
lution (in dimensionless uniiof a change of radiuses of curvature
from their initial values(b) The change of shear strain. Analytical
solutions are shown by the dots.

FIG. 2. Transition from the square to the triangular latti@®.
The motion of the lattice vectos anda,,. (b) The time evolution
of the shear angle.

torus whose radiuses aRg=1. In view of Eq.(4) the rate of  displacements of the curvatures from their equilibrium val-
change of L=L,+w(Jx=Jy,) is given by L=a(Je—Jdyy) ues A, _k:x,y,go. Retaining the second-order term in the
where L,=m3;[s X v;] and J,z=mZ;s,S, Hence, in an expression of the total energy

ideal lattice wherl,=0, the integration gives the conserved

quantity L/ . Only if one selects the initial valug,=Jy,, ¢ =(NI2) 2 g, (8)
the cell angular momentum is zero. It corresponds to the K

shear diagonal being along a principal axis of inertia of theWe obtain the coefficientsgaB:Sff, gw:ZSZfD, and g,

system. —42 n— e(r)rmpn i
Other reason of the quantitynot being conserved can be Ei?tisglg \;V:riref/%s_t(ﬁ e/l\\l/)aEll,ch(r_”)r”zrg/Bé Calriugl)?gon of_tge
understood by the example of extending cylinder with a ndg _3/29 BBy =97 Gy = 2% Bap =T
[ ’

screw. A ratio of a screw pitch and the radius decreases wit The reduction of the quadratic form of E@) to a sum of

radius thus making a screvas well as the MD cell as a squares gives the solutioh,(t) as a superposition of two

whole) rotate in the development of the cylinder in spite of q | gd Q. andA. wi h" he f Perp _/3/2 and

no torque acted(Of course, radial forces of reactions are normcﬂno €3, and: 2 With the frequencies, = an
w,=\3/4 correspondinglyA,=A;+A,; Ay=A;-A,. The ex-

responsible for this kind of the rotation in 3-spac®ne ) ) A
should try to combine both schemes to deal with varyingPreSSions for the amplitudes,=(A,/2)cogw,t) and A,

direction of the shear diagonal thus avoiding the cell rota-:(Aglz)Cos(“’Zt_) follow fgom the initial conditions. Similarly
tion. However such complication is hardly justified, since thethe shear strain ia =A_ codwd), where the frequencys

cell rotation itself does not influence the dynamics of the=V3/2. The difference between the exact and analytical re-
system[2] and troubles in the analysis of the molecular ori- Sults(dot curves in Fig. 1 vanishes whend — 0.

entations and crystal structures mentioned in R2f. are It should be noted that small curvatures are equal to their
mainly a consequence of non-Euclidean metrics used in theorrespondent components of a plane strajp=A, and
PR method 10]. ey=4, thus producing the conventional linear stress-strain

Two 2D model problems were used to test the newrelations in a latticg12].
method proposed herein: the oscillations of the period of the In the next example, the atoms were arranged initially in a
triangular lattice and the distortion of a square lattice. Parsquare structure, whose basis vectors @re(1,0) and a,
ticles of the massm=1 are assumed to interact via a =(0,1). Being unstable to a small initial sheAP=0.01 the
Lennard-Jones 6-12 pair potential with the force constant afattice undergoes a uniform deformation to a triangular struc-
the minimum of the potential taken to be unitg(r) ture while holding the same values of the permda [see
=rLax(r)/or|,-1=1. The potential was truncated to take Fig. 2@]. Therefore, the instantaneous structure could be
into account the six nearegand the eight in the next ex- monitored by the length of the diagonal,=a,-a;. Since
ample neighbors. Zero temperature is assumed because ti@e= 1 the oscillations of,, correlate with those of [Fig.
basic aspect of interest here is the structural transformatior(b)]. The transition is reversible in spite of strong anhar-

The perfect triangular structure is characterized by thénonic effect caused by a large amplitude.
lattice translation vectora;=(1,0), a2:(1/2,\3'§/2) and the The initial part of the time evolution is determined by a
curvature variableR,=1 and ¢=0. The initial extension saddle point configuration. For the perfect square lattice and

-1=A%=0.01 in the Y direction and the distortiqp=A°  the next-nearest neighbors taken into account, the coeffi-
=0.01 make the structure transform along the trajectory gerfcients of the expansion of Eq9) are gy, =2e, g=0yy=b
erated by Eqs(6a—(6¢). Periodic uniform deformation near *2€ 9a=0,k#l, andg,,=8e<0, whereb=c(R)R; ande
equilibrium shown in Fig. 1 occurs with small amplitude. =¢(\2RJRZ. The equilibrium value of the radiuRR,
Therefore, adequate treatment of these results and appropfi0.9831 follows from relationy(R.) =—-2x(V2R,). Therefore,
ate test of calculation procedure, which was analogous tthe period of isoshape oscillations due to a misfit between
that developed in Ref.11], can be given with the help of the equilibrium and initial lattice parameter is clo3g
harmonic approximation to the total potential in terms of=~2#x/b=5.34. Naturally results of all calculations depend
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on neither a number of particles nor a shape of the MD cellcal variables was suggested earlier by Souza and Martins
Evidently also that the condition of a positive definite qua-[10]. The six components of the dot product between the cell
dratic form of Eq.(8) coincides with the Born-Karman con- vectors were used there instead of their components thus
dition of the lattice stabilityf12]. leaving the scaling model unchanged. Therefore this metric-
The result of this work is a set of dynamical equationsbased formulation appears to be the one of the possible im-
governing the structure of the lattice. Formally, the equationgrovement of the conventional PR scheme. The second dif-
of motion of Eqgs.(6) and (7) are similar to the modified ference is in the form of the cell box. The matBxdoes not
version of the PR equations using Cartediaot scalefico-  depend on the lattice vectors making the orientation and the
ordinates[11,13. However, the method outlined above hasshape of the MD cell irrelevant for the structural and ther-
two principal differences. First, only six dynamical variables modynamical description of the system. In particular, the
describe the cell motion. Basically, these are the three radimolecular dynamics apart, the new method can be useful to
uses and the three angles determining the deformation of theconsider well-known relations obtained for infinite crystal
torus surface. In fact, the correct number of the cell dynamiwith the internal stress of the system taken into account.
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