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Vibrational dynamics and energy flow in a protein are related by Alexander-Orbach theory to the protein’s

mass fractal dimensionD and spectral dimensiond̄. Burioni et al. fProteins: Struct., Funct. Bioinf.55, 529

s2004dg recently proposed a relation betweend̄ and protein size based on their computational analysis of a set
of proteins ranging from about 100 to several thousand amino acids. We report here values forD computed for
200 proteins from the Protein Data BanksPDBd ranging from about 100 to over 10 000 amino acids and
examine variation ofD with protein size. The averageD is found to be 2.5, significantly smaller than a
completely compact three-dimensional collapsed polymer. Indeed, we find that on average a protein in its PDB
configuration fills about three-quarters of the volume within the protein surface. Protein mass is also found to
scale with radius of gyration with an exponent of 2.5 for this set of proteins.

DOI: 10.1103/PhysRevE.71.011912 PACS numberssd: 87.10.1e, 87.15.2v, 82.35.Lr

I. INTRODUCTION

X-ray crystallographers have long observed that proteins
are very compact collapsed polymers. Still, the native struc-
ture that is captured in a protein crystal is, while perhaps
representative, merely one of many that a protein may find
itself in during the course of its function in the living cell.
Ligands or water molecules enter and leave the cavities that
can be resolved in many proteins. As such, the notion that
proteins are simply three-dimensional, extremely compact
objectsf1g may be too simple. Indeed, the possibility that
proteins may be better characterized by fractal geometry
rather than as a compact three-dimensional object has been
pointed out for some timef1–3g. This appears to be the case
for protein surfaces, for which a fractal dimension of 2.1 to
2.4 is widely acceptedf1,4g. Nevertheless, the fractal dimen-
sion of the protein itself based on several estimates has been
argued to lie near 3f1g, though a number of studies also
suggest smaller valuesf3,5–7g. For example, the radius of
gyration has been found to scale with protein masssor num-
ber of residuesd with a dimension near 2.5 for proteins with
more than 300 amino acidsf3g. On the other hand, counting
algorithms coupled with a series of scaling approximations
have yielded a fractal dimension for the protein backbone
that may lie closer to 3f1g. We recently computed the mass
fractal dimension for three proteins, cytochrome c, myoglo-
bin, and green fluorescent protein, which are made up of
about 100–230 amino acids, and foundD<2.3 f7g. This re-
sult is consistent with dispersion relations and the anomalous
subdiffusion that we computed for these proteinsf7g, which
are related to the mass fractal dimension by Alexander-
Orbach theoryf8g. Since the value of the mass fractal dimen-
sion influences protein dynamics and energy flow, a closer
look at its value for proteins ranging widely in size seems
worthwhile.

In this article, we compute the mass fractal dimensionD
for a set of 200 proteins whose structures are obtained from

the Protein Data BanksPDBd. The number of amino acids,
N, of the proteins in this set ranges fromN<100 to 11 000.
We computeD with an approach directly related to its defi-
nition as described below, and compareD with the scaling of
the radius of gyration with protein size. Both sets of results
yield dimensions near 2.5. We find thatD for larger proteins,
with more than 1000 amino acids, settles around a value near
2.6, while it is smaller for smaller proteins. This result is
consistent with our earlier computational studyf7g of vibra-
tional energy flow in three proteins mentioned above, where
D<2.3 was computed for three proteins withN from about
100 to 230. We also examine the extent to which a protein of
a given configuration fills the volume within its surface, and
find for this set of 200 proteins that roughly 25% and thus a
sizable fraction of space within the protein surface is un-
filled.

Evidence that protein molecules may be characterized by
a fractal-like geometry has appeared in a variety of measure-
ments. For instance, the anomalous temperature dependence
seen in spin echo experiments revealed an interesting scaling
relation for the vibrational mode density with mode fre-
quencyf9,10g. A theoretical underpinning for the variation of
the vibrational density of states of a protein with vibrational
frequency was provided by Alexander and Orbachf8g, who
assumed a correspondence between the vibrations of a pro-
tein and the vibrations of an object with fractal geometry.
The scaling exponent characterizing the variation of the vi-

brational density with mode frequency of a fractal,d̄, called
the spectral dimension, is analogous to the Euclidean dimen-
sion in the Debye expression for the density of states. The
value of the spectral dimension is generally smaller than the
fractal dimension of the object, and reflects the connectivity
or bonding of the atomsf11g. The spectral dimension for a
number of modest-sized proteins was deduced from results
of the spin echo experiments to range from 1.3 to 1.6f9,10g;
these values were corroborated by theoretical and computa-
tional work on fractal models of proteinsf2,12g. In a recent
study of 58 proteins ranging fromN<100 to 3600, Burioni
et al.computed the spectral dimension directly from the den-
sity of states for these proteinsf13g. The Gaussian network*Corresponding author. Email address: dml@chem.unr.edu
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model f14–16g was used to account for interactions among
protein atoms, an approach that has provided reliable de-
scriptions of the low-frequency vibrations of proteins, as
seen by comparing computed and measured thermal fluctua-
tions of Ca atomsf14g. The spectral dimension was found to
range from about 1.3 to 2.0, and appears to increase logarith-
mically with protein sizef13g.

Correspondence between the vibrational properties of a
protein and those of a fractal object provides a useful means
to learn about vibrational energy flow in proteins and protein
dynamics. Indeed, a number of studies of protein dynamics
and energy fluctuations reveal fractal propertiesf17–20g. Al-
exander and Orbach derived relations between the spectral
dimension, the fractal dimension of the object, and scaling
exponents characterizing at least two important and related
propertiesf8g. One of these is how the frequency of a pro-
tein’s normal modes of vibration varies with wave number
si.e., a dispersion relationd at low frequency; the other de-
scribes how vibrational energy spreads in time. Thus, assum-
ing that the vibrations of proteins correspond to those of a
fractal object, both the spectral dimension and the mass frac-
tal dimension of the protein are required to predict the dis-
persion relation for a protein and the diffusion of vibrational
energy. The recent analysis by Burioniet al. provides a
means to estimate the spectral dimension of a protein based
on its sizef13g. In this article we focus on the mass fractal
dimension.

In the following section we describe the method we use to
compute the mass fractal dimensionD for each protein in our
sample of 200 obtained from the PDB. In Sec. III we present
results forD. Our calculation reveals thatD approaches a
value of about 2.6 for larger proteins, with over 1000 amino
acids, and generally decreases to about 2.3 for smaller pro-
teins with closer to 100 amino acids. We also discuss a cal-
culation carried out to estimate the fraction of volume within
the protein surface for a given protein configuration that is
not filled by the protein, which we estimate to be about 25%
on average by our method.

II. COMPUTATIONAL METHODS

The mass fractal dimensionD is defined by

M , RD, s1d

whereM is mass andR is a length scale. The dimensionD
can be computed for a single protein by plotting the mass of
all atoms contained inside concentric spheres of radiusR on
a log-log scale. The slope givesD. We have carried out this
calculation for 200 proteins ranging fromN<100 to 11 000
amino acids. The proteins, whose structures have all been
obtained from the PDB, are listed in Table I by their PDB
code. These 200 proteins include the 58 analyzed in
Ref. f13g.

Describing how we calculateD in practice is easiest by
example. Figure 1 presents a log-log plot of the enclosed
massM of all protein atoms inside a sphere as a function of
its radiusR. The ten sets of points, where each set appears to
fall on a line, have been computed for concentric spheres
centered at tena-carbons, which in this case happen to be

the ten nearest to the center of mass of the protein 1MZ5,
which has 622 amino acids. Data are shown forR ranging
from 5 to 20 Å. Most of the points lie close to straight lines,
as we have found to be typically the case. The length scale of
this particular protein is significantly larger than 20 Å, but
we nevertheless only calculateM for R up to 20 Å to avoid
finite-size effects when computingD for the interior of the
protein. In fact, to avoid possible finite-size effects when
computingD for the interior of the smallest proteins in our
sample set, we have computedM for R up to 16 Å for pro-
teins with up to 200 amino acids, and up to 18 Å for proteins
with from 200 to 400 amino acids. Nevertheless, the results
that we report below are very similar to those that we obtain
when we calculateM as a function ofR up to 20 Å for all
proteins. We shall also present results forD calculated in
different regions of the protein, other than the center. In these
casesD is obtained by using atoms closer to the surface as
centers in our calculation, and the cutoff of 20 Å may not
exclude surface atoms. The lower value ofR=5 Å was cho-
sen after considering 3–8 Å as a lower limit, and fitting lines
to these. The largest correlation coefficient was found with
5 Å, since significant deviations from the best-fit line were
typically found for points with smallerR. The average value
of the slopes of the lines in Fig. 1 gives us an estimate forD
for the protein 1MZ5, which we calculate by averaging
slopes obtained for such plots using all of the Ca’s of the
protein backbone as centers.

We note for later discussion that the correspondence be-
tween a protein and a fractal object allows us to relate the

mass fractal dimensionD and the spectral dimensiond̄ to
scaling exponents relating how vibrational energy flow var-
ies with time and how vibrational mode frequency scales

with wave numberf8g. The spectral dimensiond̄ is defined
by f8g

rsvd , vd̄−1. s2d

The scaling of mode frequency with wave numberk then
obeys the relationf8g

v , kD/d̄. s3d

The variance of a vibrational wave packet spreads in time
as f8g

kR2l , td̄/D. s4d

For a set of polymers of varying lengthN sor massMd we
may also takeD to describe the scaling of the radius of
gyrationRG with, say,M,

RG , M1/D. s5d

For a given protein configuration taken from the PDB we
compute the radius of gyration as

RG =Îo
i

mir i
2Yo

i

mi , s6d

where the sum is over each atomi of massmi, and distance
r i from the center of mass. We shall see that the value ofD
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TABLE I. List of all protein molecules with their PDB code; number of amino acids,N; radius of gyrationsÅd for the PDB coordinates,
RG; mass fractal dimensionD; void fraction fV using 1.5-Å- and 2.0-Å-radius atoms. The PDB code names for the 58 proteins analyzed in
Ref. f13g are written with capital letters.

Name N RG D fV s1.5d fV s2.0d Name N RG D fV s1.5d fV s2.0d

9RNT 104 12.450 2.300 0.228 0.106 1SOM 528 22.402 2.520 0.274 0.146

1r9h 118 13.490 2.229 0.248 0.125 1E3Q 532 22.809 2.512 0.278 0.150

1r2i 143 14.228 2.322 0.248 0.129 1CRL 534 22.131 2.514 0.277 0.148

1r4v 145 15.980 2.282 0.234 0.115 1AKN 547 23.343 2.495 0.261 0.136

1r67 151 14.295 2.330 0.238 0.115 1r5t 554 23.029 2.536 0.284 0.156

1BVC 153 15.285 2.276 0.222 0.101 2r2f 571 25.535 2.498 0.281 0.155

1rda 155 15.505 2.310 0.237 0.116 1rq4 572 23.701 2.447 0.233 0.114

1rf7 159 15.387 2.332 0.247 0.125 1r1y 574 23.414 2.451 0.234 0.113

1G12 167 14.862 2.379 0.247 0.121 1rps 574 23.696 2.444 0.242 0.121

1rm8 169 15.141 2.384 0.250 0.130 1rq3 574 23.644 2.445 0.238 0.117

3rab 169 15.220 2.375 0.250 0.125 1CF3 581 23.266 2.539 0.288 0.161

1AMM 174 16.587 2.380 0.251 0.125 1rqi 598 24.332 2.517 0.265 0.138

4GCR 185 16.694 2.340 0.254 0.126 1EX1 602 24.922 2.536 0.295 0.166

1KNB 186 18.425 2.359 0.241 0.125 1A14 612 26.164 2.513 0.265 0.141

1CUS 197 15.241 2.433 0.240 0.126 1rfv 615 25.559 2.513 0.282 0.155

1IQQ 200 16.692 2.360 0.234 0.111 1ry2 615 24.082 2.528 0.264 0.138

2AYH 214 16.081 2.406 0.261 0.136 1MZ5 622 27.128 2.510 0.271 0.142

1r5a 214 17.049 2.342 0.245 0.123 1rfz 637 23.458 2.547 0.263 0.138

1rei 214 17.155 2.395 0.280 0.154 1rli 648 25.005 2.522 0.275 0.151

1AE5 223 16.455 2.444 0.254 0.135 1r4l 655 25.141 2.478 0.252 0.129

1r18 223 16.855 2.386 0.248 0.124 1CB8 674 27.508 2.507 0.265 0.138

1rm9 223 16.912 2.393 0.281 0.157 1HMU 674 27.500 2.506 0.270 0.143

1rmm 224 17.081 2.399 0.291 0.166 1r65 680 25.978 2.542 0.282 0.155

1emb 225 17.138 2.403 0.254 0.131 1rib 680 26.047 2.539 0.295 0.167

1rw7 235 16.376 2.429 0.258 0.133 1rsv 681 25.897 2.540 0.286 0.159

1LST 239 17.732 2.397 0.261 0.136 1A47 683 25.545 2.524 0.285 0.157

1rxh 239 16.798 2.437 0.237 0.118 1CDG 686 25.397 2.526 0.291 0.162

1r9c 243 17.709 2.410 0.266 0.142 1DMT 696 26.363 2.487 0.255 0.130

1rjk 250 17.898 2.396 0.250 0.128 1r7i 747 25.725 2.534 0.285 0.158

1rk3 250 17.991 2.394 0.257 0.133 1r31 751 25.851 2.539 0.281 0.153

1r5l 251 17.842 2.387 0.248 0.125 1A4G 780 27.888 2.589 0.300 0.169

1ri1 252 18.049 2.388 0.249 0.126 1kko 802 26.384 2.548 0.292 0.164

1rkh 253 17.966 2.397 0.250 0.125 1rtw 809 28.532 2.508 0.257 0.132

1ray 258 17.473 2.427 0.275 0.148 1ry5 822 28.867 2.446 0.247 0.124

1rxf 264 18.168 2.426 0.255 0.133 1rzh 822 28.767 2.446 0.246 0.122

1rxg 275 18.577 2.434 0.268 0.145 1rgn 823 28.921 2.448 0.248 0.124

1A06 279 19.986 2.376 0.241 0.118 1rqk 824 29.116 2.447 0.250 0.127

1NAR 289 18.337 2.465 0.276 0.151 1rov 834 28.440 2.537 0.271 0.144

1r53 291 19.338 2.398 0.250 0.126 1rj8 840 29.206 2.584 0.285 0.155

1r0t 292 18.170 2.450 0.263 0.139 1kzy 854 31.921 2.439 0.254 0.131

1A48 298 19.823 2.386 0.253 0.128 1rqp 873 27.563 2.558 0.277 0.148

1rjb 298 19.179 2.442 0.255 0.129 1km0 901 31.056 2.542 0.288 0.161

1A3H 300 17.602 2.494 0.274 0.148 1kw2 908 34.845 2.377 0.282 0.153

1rb7 304 18.861 2.462 0.283 0.157 1ktw 914 35.434 2.462 0.230 0.112

1SBP 309 19.408 2.435 0.270 0.144 1rvu 929 28.338 2.569 0.279 0.152

1rft 309 19.028 2.415 0.246 0.124 1kre 950 29.673 2.567 0.277 0.148

1rz5 309 20.937 2.401 0.236 0.115 1rzp 988 27.400 2.579 0.287 0.158
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TABLE I. sContinued.d

Name N RG D fV s1.5d fV s2.0d Name N RG D fV s1.5d fV s2.0d

1rkp 311 19.245 2.406 0.243 0.121 1HTY 1014 29.823 2.602 0.271 0.144

1A5Z 312 19.868 2.381 0.256 0.134 1KCW 1017 28.336 2.435 0.250 0.126

1A1S 313 19.389 2.430 0.264 0.141 1kzg 1032 35.874 2.571 0.253 0.128

1ADS 315 18.947 2.469 0.280 0.154 1ipj 1088 32.933 2.557 0.256 0.131

1rya 320 20.476 2.429 0.264 0.138 1ivx 1238 31.718 2.609 0.295 0.164

2ren 320 19.730 2.444 0.260 0.133 1ktv 1264 38.776 2.445 0.274 0.146

1A40 321 19.931 2.451 0.267 0.139 1ksi 1282 32.392 2.605 0.278 0.150

1A54 321 20.036 2.452 0.260 0.134 3req 1345 33.495 2.566 0.279 0.151

1r6w 321 20.365 2.450 0.254 0.129 1rjw 1356 32.961 2.571 0.275 0.148

1r66 322 18.946 2.464 0.258 0.133 1kr2 1395 34.900 2.507 0.280 0.152

1r6d 324 18.888 2.465 0.243 0.120 1kqo 1398 34.958 2.506 0.270 0.142

1r0r 325 18.085 2.483 0.269 0.141 1kev 1404 32.726 2.585 0.275 0.147

1ryo 325 19.403 2.459 0.259 0.134 1jrq 1437 33.104 2.600 0.238 0.116

1A0I 332 23.332 2.347 0.253 0.128 1kor 1538 34.081 2.596 0.234 0.115

1ri6 333 18.633 2.493 0.276 0.146 1ivh 1548 34.292 2.585 0.242 0.121

1re8 337 20.008 2.448 0.269 0.141 1rx0 1573 34.139 2.580 0.276 0.148

3PTE 347 18.949 2.490 0.280 0.150 1rp7 1602 33.291 2.617 0.285 0.155

1A26 351 20.888 2.402 0.268 0.144 1ky4 1712 35.539 2.559 0.270 0.145

1rl9 356 20.068 2.459 0.258 0.133 1ky5 1720 34.567 2.603 0.289 0.160

1BVW 360 19.205 2.473 0.275 0.149 1re5 1767 35.684 2.585 0.275 0.149

8JDW 360 19.068 2.508 0.261 0.146 1nlz 1804 39.888 2.559 0.289 0.160

1rdq 360 19.892 2.493 0.256 0.130 1k93 1884 40.681 2.485 0.285 0.155

1rgy 360 19.668 2.494 0.270 0.145 1nu1 2105 49.292 2.497 0.253 0.129

1r2v 361 20.113 2.475 0.276 0.151 1kf6 2138 45.405 2.551 0.264 0.139

1r7o 362 19.239 2.477 0.278 0.152 4rub 2348 40.220 2.662 0.288 0.160

1r3q 365 19.807 2.475 0.283 0.155 1KEK 2462 38.567 2.642 0.283 0.154

1rgz 370 19.472 2.505 0.263 0.137 1B0P 2462 38.645 2.644 0.220 0.102

1r5y 385 20.108 2.468 0.269 0.143 1rfm 2680 44.033 2.528 0.251 0.126

7ODC 387 23.524 2.447 0.259 0.133 1ggj 2908 41.297 2.686 0.262 0.137

1OYC 399 20.347 2.493 0.259 0.145 1rxc 2970 41.973 2.641 0.293 0.162

1rom 399 21.328 2.442 0.253 0.131 1ijg 3084 50.787 2.569 0.262 0.138

1A39 401 20.730 2.450 0.266 0.139 1K83 3494 48.090 2.576 0.275 0.148

16PK 415 23.146 2.430 0.264 0.136 1I3Q 3542 48.494 2.571 0.279 0.152

1r61 415 21.957 2.505 0.272 0.146 1I50 3558 48.503 2.572 0.275 0.148

1DY4 441 20.459 2.484 0.267 0.139 1r5u 3602 47.353 2.586 0.260 0.137

1BU8 446 25.039 2.460 0.269 0.140 1fqv 3696 57.863 2.474 0.260 0.137

1r9o 455 22.430 2.461 0.246 0.124 1cw3 3952 54.134 2.658 0.302 0.172

1rxj 471 21.401 2.489 0.252 0.126 1mfr 4104 52.990 2.596 0.282 0.153

1rjp 474 21.651 2.511 0.292 0.162 1kyo 4459 59.476 2.529 0.258 0.133

1rk6 475 21.562 2.513 0.284 0.154 1jro 4840 64.391 2.628 0.281 0.154

1r1k 477 22.769 2.452 0.227 0.108 1f52 5616 53.974 2.631 0.280 0.152

1rty 479 21.578 2.497 0.256 0.133 1fpy 5808 53.636 2.630 0.276 0.151

1AC5 483 22.151 2.453 0.248 0.136 1kyi 5904 63.041 2.589 0.254 0.131

1LAM 484 24.146 2.484 0.279 0.150 1nr7 5952 70.379 2.606 0.260 0.136

1reo 484 23.338 2.477 0.263 0.139 1g0u 6296 59.853 2.623 0.270 0.144

1CPU 495 22.975 2.500 0.292 0.162 1g65 6366 59.827 2.630 0.269 0.143

3COX 500 21.999 2.508 0.283 0.154 1mx9 6378 70.549 2.633 0.277 0.150

1rxy 500 22.364 2.516 0.288 0.160 1ryp 6386 59.833 2.634 0.275 0.146
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obtained in this way compares well with the average value of
D we obtain for the individual proteins in our set.

III. RESULTS AND DISCUSSION

A. Mass fractal dimension

We have already introduced Fig. 1, which presents ten
log-log plots of the enclosed mass of all protein atoms inside
a sphere of radiusR as a function ofR, centered at one of the
ten nearest Ca’s to the center of mass of the protein 1MZ5.
The ten lines that best fit the ten sets of points shown in Fig.
1 have an average slope of 2.798±0.197, where the error that
we report is two standard deviationss95% confidence limitd.
The correlation coefficients for the lines that best fit each of
the ten sets of data range from 0.9985 to 0.9997.

We now compute in this way the slopes for sets of points
obtained using as centers the nearest 10% of all Ca’s from
the center of mass of the protein. We find the value ofD
using this inner 10% of Ca’s, D10%, to be 2.737±0.249 for
1MZ5. In fact, 1MZ5 is quite typical. Carrying out the same
analysis for all 200 proteins in our set, we find thatD10% is
2.761±0.164. If we now choose as centers the next closest
10% of the Ca’s from the center of mass of the protein, we

find that the points on the log10 M versus log10 R plot for one
Ca center similarly lie close to a line. However, the average
slope of all of these is somewhat smaller thanD10%, in this
case 2.673±0.175. Indeed, we find thatD usually becomes
smaller when we compute its value using concentric spheres
that are centered on Ca’s closer to the exterior of the protein.
Using the outermost 10% of the Ca’s as centers for the con-
centric spheres we find a dimension of 2.215±0.229.

These trends are shown in Fig. 2sad for our set of 200
proteins. We thus see thatD is not a uniform quantity, but
decreases on average toward the exterior of the protein. This
is likely due to the greater influence of the surface dimen-
sion, which for proteins has been found to be 2.1 to 2.4f1g,
on our computed value ofD as the calculation is carried out
closer to the protein’s surface. The influence of the protein
surface on the computed values ofD is supported by com-
paring Fig. 2sad with Fig. 2sbd, which is similar to Fig. 2sad
but only includes results for the 63 proteins with 200–400
amino acids. We find that the value ofD10% for the smaller
proteins is the same as for the whole set, 2.76, but the aver-
age value ofD is somewhat smaller for the smaller proteins,
2.43 compared to 2.49. The cutoff radius used in the calcu-
lation of D10% for the proteins in Figs. 2sad and 2sbd excludes
surface atoms. However, more and more atoms near the pro-
tein surface are included when the calculation ofD is cen-
tered at Ca’s farther from the center of mass, and this effect
is greater for the set of smaller proteins. We note, however,
that this trend is not so apparent for the larger proteins, as is
illustrated in Fig. 2scd for the ten largest proteins in our set.
The trend is different for the larger proteins because the cen-
ter of mass often lies outside the denser centers of the indi-
vidual globules of the quaternary structure.

In Fig. 3 we show how the average value ofD that we
calculate for each protein varies with protein size. Results are
plotted for the calculation ofD using all Ca’s as centers, and
also using only the nearest 10% to the center of mass of the
protein, D10%. We compute the value ofD10% to be
2.761±0.164 for all the proteins, a value that does not
change much with protein size, as Figs. 2sad and 2sbd sug-
gest. For example, we find that for proteins with at least 1000
amino acidsD10% is 2.734±0.209. The value of the mass
fractal dimensionD computed using all Ca’s as centers in the
calculation is 2.489±0.172 for all proteins. The mass fractal
dimension as obtained by averaging its value over each pro-
tein molecule appears to depend on the size of the protein.
For larger proteins, with at least 1000 amino acids, we findD
is 2.584±0.113. For smaller proteins, withN,1000, we find
D is 2.456±0.136. Interestingly,D10% andD appear to con-
verge to similar values for larger proteins, likely due to the

FIG. 1. Plot of log10 M vs log10 R for 1MZ5, where values ofM
are the masses enclosed by concentric spheres of radiusR centered
at a backbone atom. Each of the ten sets of points through which
lines are fitted corresponds to a center in our calculation, which is
one of the ten closest Ca’s to the center of mass of the protein. The
correlation coefficients for the lines that best fit the data range from
0.9985 to 0.9997.

TABLE I. sContinued.d

Name N RG D fV s1.5d fV s2.0d Name N RG D fV s1.5d fV s2.0d

1r0s 502 25.096 2.413 0.251 0.129 1kp8 7350 63.853 2.508 0.241 0.119

1r12 502 24.830 2.419 0.255 0.131 1mcz 8384 70.402 2.677 0.289 0.160

1A65 504 21.729 2.539 0.286 0.158 1mt5 8592 65.821 2.609 0.293 0.162

1rkm 517 23.869 2.474 0.269 0.412 1fnt 9110 81.070 2.604 0.239 0.117

2rkm 519 23.242 2.508 0.279 0.151 1hto 11448 80.642 2.645 0.275 0.146
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fact thatD10% for the largest proteins is not necessarily larger
than that computed in other parts of the protein, as noted
above and illustrated in Fig. 2scd.

We plot the radius of gyrationRG versus protein sizeN in
Fig. 4. The slope of the line for this log-log plot is 0.390 and
the correlation coefficient is 0.9893. The value ofD from the
data, which is 1/slope, is thus 2.56, in good agreement with
the average value of the mass fractal dimension computed
above. In fact, if we switch thex andy axes so that the slope
itself now gives us an estimate forD we find from a best fit
a value of 2.50. We observe significant dispersion in this
plot. Arteca has pointed out that one can select a set of “most
compact” proteins, those through which in a plot like that in
Fig. 4 one may draw a line with the largest slopef3g. Arteca
studied 373 proteins ranging in size fromN<100 to 900. For

FIG. 2. sad Average values of the mass fractal dimensionD
computed for the 200 proteins using as centers in the calculation the
nearest 10%, 10–20 %, 20–30 %, etc., of the Ca’s from the center of
mass of the proteinslight grayd. Also shown isD computed using
all Ca’s as centerssdark grayd. sbd Same assad, but for the 63
proteins with 200–400 amino acids.scd Same assad, but for the ten
largest proteins in the data set.

FIG. 3. Plot of the mass fractal dimensionD ssquaresd and its
estimate using as centers in the calculation the nearest 10% of all
Ca’s to the center of mass of the protein,D10% strianglesd, as a
function of the number of amino acids of each protein,N. For this
set of 200 proteins we findD is 2.489±0.172 andD10% is
2.761±0.164.

FIG. 4. Plot of log10 RG vs log10 N for the 200 proteins in the
set. Data are labeled as3 for a protein with lower-than-averageD,
i.e., D,2.489; ands for a protein withD.2.489. The best-fit
line, with correlation coefficient 0.9893, is drawn through the data.
The slope of this line, which can be interpreted as 1/D, is 0.390,
giving an estimate of 2.56 for the dimension.
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the most compact proteins with at least 300 amino acids,
analysis ofRG versusN gave an average dimension of 2.48
f3g. We also attempt to correlate proteins of relatively highD
with relatively smallRG, which could indicate that higherD
correlates with a more compact object. In Fig. 4 we plot as3
those proteins with a lower-than-averageD, i.e., D,2.489,
and s those proteins with a higher-than-averageD, i.e., D
.2.489. We see clearly that smallerD is found for smaller
proteins, as seen already in Fig. 3. We find that 72% of the
s’s lie below the best-fit line in the plot, and so have a
relatively small RG, indicating that a higher-than-average
value of the mass fractal dimension indeed correlates with a
more compact protein. Similarly, we find that 57% of the3’s
lie above the line.

The average result for the mass fractal dimension that we
find for this set of 200 proteins, 2.49, agrees quite well with
the mass fractal dimensions that we previously computed for
cytochrome c, myoglobin, and green fluorescent protein,
which we found to be 2.30, 2.36, and 2.42, respectivelyf7g.
These values lie below 2.49, and indeed there is a visible
trend in Fig. 3 whereby smaller proteins are characterized by
a smallerD, reaching<2.3 for N<100, due to a larger con-
tribution of the atoms near the protein surface in the calcu-
lation of D for small proteins. We note that the average value
of D that we computed for cytochrome c, myoglobin, and
GFP, 2.36, agrees well with the average value ofD that we
obtained from the spectral dimensions, dispersion relations,
and vibrational energy diffusion calculations for these pro-
teins with Eq.s2d–s5d, which was 2.25f7g. Both of these
values have an error of ±0.2. These results are consistent
with a correspondence between the vibrational properties of
a protein and those of a fractal object. However, the calcula-
tions presented above suggest that there is in fact no unique
D that characterizes a protein. For the proteins in our sample
D typically ranges from 2.75 to 2.25, depending on where in
the protein we center our computation ofD, and is usually
larger as we compute it near the center of the protein and
smaller when more of the surface is included. Protein vibra-
tions at low frequency involve atoms throughout the protein.
The fact that we find the averageD computed for a protein
similar to the value ofD that we obtain from the vibrational
dynamics, using the Alexander-Orbach relations, suggests to
us that the averageD is the appropriate mass scaling dimen-
sion for characterizing properties of protein vibrations.

In addition to the mass fractal dimension, which we report
and analyze here, vibrational energy flow in a protein is also

influenced by the spectral dimensiond̄. The spectral dimen-
sion has been suggested by Burioniet al. based on a compu-
tational study of 58 proteins to vary logarithmically withN
f13g. For proteins with about 100 amino acids its value lies
near 1.3f7,13g. For proteins with more than 1000 amino

acidsd̄<2, which is the largest value that it can have for a
harmonic fractal object to remain thermodynamically stable
f13g. We find thatD is about 2.6 and is largely independent
of N for sufficiently large proteins, with more than about
1000 amino acids, and is smaller for smaller proteins, about
2.3 for proteins with about 100 amino acids. We thus con-

clude that the exponenta=D / d̄, which characterizes the
variation of vibrational mode frequency with wave number,

v,ka fEq. s3dg, ranges from about 2.3/1.3<1.8 for small
proteins sN<100d to about 2.6/2<1.3 for large proteins
sN.1000d.

B. Fraction of empty space within the protein surface

The above analysis reveals that proteins are not com-
pletely compact objects, but must also have “empty” or
“void” space. In this subsection we examine the relative vol-
ume of such void space. There is a fair amount of arbitrari-
ness in defining such a quantity. For one thing, we shall
calculate the fractional void space within a protein with a
fixed configuration, which means we must first establish a
protein surface. Then, using a reasonable volume for the pro-
tein atoms, we can compute the fraction of space that is filled
by them and the remaining void fraction.

We first estimate the surface in a fashion inspired by the
“ball rolling” algorithm used in the computation of the sur-
face area and dimension of a proteinf1g. We first superpose
the protein coordinates with a grid in three dimensions, each
point 1 Å from its neighbor. This allows us to approximate
the space occupied by the protein by a collection of cubic
cells 1 Å on each side. We then identify which cells are
“protein” cells and which cells lie outside. We enclose
around each protein atom a 3-Å-radius sphere and count as
protein cells all of those 1-Å cubic cells whose centers lie
within this sphere. In this way we fill the cells belonging to
the protein. The use of a 3-Å-radius sphere is of course
somewhat arbitrary, but has been used for similar calcula-
tions f1g. Smaller spheres give rise to a more porous protein
surface; more space that we might reasonably call void
would be counted instead as lying outside the protein. A
larger sphere would tend to fill in the spaces left by indenta-
tions in the protein surface that we would otherwise reason-
ably decide lie outside the protein; we would then be ulti-
mately designating much of this space as void. We have
found, as others have in earlier work on the dimension of
protein surfacesf1g, that searching for protein atoms in a
3-Å sphere provides a reasonable balance of these effects.

We then have a means to label cells of the grid as “pro-
tein” and “outside” cells. TheNP cells that we call “protein”
are those enclosed by the protein surface and may be “filled”
by a protein atom or may be “void.” Cells that we call “out-
side” are beyond the boundary of the protein, but we empha-
size that the surface may be very rugged and is typically
pockmarked with deep and narrow craters. A cross-sectional
cut near the center of a protein may contain many “outside”
cells, as we see in an example below. We must now decide
which, and how many,NF, cells are filled and which and how
many,NV, are void. The void fractionfV is then given by

fV =
NV

NP
=

NV

NV + NF
. s7d

To estimate the space filled by the protein atoms, we as-
sume each atom is a sphere of radius 1.5 Å. This radius is
rather large for a molecule containing C, N, and O atoms, but
we must also compensate for the fact that we do not explic-
itly account for H, so that OH, CH, methyl groups, etc., are
all counted as one “atom.” In this case a radius of 1.5 Å
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seems reasonable. We shall also compare with results using a
more conservative radius of 2.0 Å. In any case, our aim is to
determine if a substantial region inside the protein in a given
configuration can be called void, and it does not matter much
if we find that 20% or 30% of the protein’s volume is void.
We would like to know if the void space estimated in a
reasonable way turns out to be, say, 20% or instead 2% of the
space within the surface of the protein. We now fill cells
whose centers are enclosed by any part of the 1.5-Å- or
2.0-Å-radius sphere representing a protein atom. Such vol-
umes may be cubes 3 or 4 Å on each side, but the volume

around the protein atom may also appear as other shapes
built up from 1-Å cubic cells if the center of that cell hap-
pens to be enclosed by the spherical shell of the atom. Over-
lapping atom volumes are possible and not unlikely given the
relatively large volume that we ultimately place around each
atom.

We illustrate our calculation in Fig. 5, which shows a
discretized cross section of the protein 1A4G, which contains
780 amino acids. The white background, as well as some
white cells that appear contained in the protein, are all “out-
side” cells, not counted in estimating the void fraction. That
some white cells appear to lie inside the protein is merely
due to the display of a cross section, and arise from craters in
the established surface above or below the cross section. The
black 1-Å cubic cells contain protein atoms. In addition, as
described above, adjacent cells are also counted as filled
space. These are shown in dark gray. We notice that there are
what appear to be islands of dark gray cells in the white
region. These result from protein atoms just above or below
the cross-sectional cut of the protein. The light gray cells are
“void” cells. These lie inside the surface of the protein but
outside the cells enclosing protein atoms. We notice that
there appears to be a halo of void cells surrounding the pro-
tein in Fig. 5sad, which is an artifact of the calculation of the
protein surface. We remove all the void cells around the edge
in computing the void fraction. The resulting cross section,
after removing the layer of void cells from the edge of the
protein, is plotted in Fig. 5sbd. The same cross section as in
Fig. 5sbd is also shown in Fig. 5scd, but this time we compute
the filled space using protein atoms that are spheres with a
radius of 2.0 Å. The number of light-gray void cells is
clearly smaller than in Fig. 5sbd but still fills a sizable frac-
tion of the protein cross section. The void fractionfV for
each protein can be computed with Eq.s7d by counting all of
the light gray, void cells, which givesNV, and the total num-
ber of gray and black cells, which gives the total number of
protein cells,NP. For the protein shown in Fig. 5 we obtain
fV=0.30 using spherical atoms with a 1.5 Å radius, andfV
=0.17 using a 2.0 Å radius. Results for all of the proteins are

FIG. 5. Cross section of the protein 1A4G superposed on a
lattice of 1-Å cells, as described in text. White cells are computed
to lie outside the protein surface. Black cells contain a protein atom
and dark gray cells contain part of the volume of a protein atom.
Light gray cells represent the empty or void spaces within the pro-
tein surface. The cross section insad has been computed with the
algorithm described in the text. Insbd andscd we remove the outer
layer of void cells, which are an artifact of our computation of the
protein surface and are removed to compute the fraction of void
spacefV within the protein surface. Insbd and scd we use in our
computation a sphere of 1.5 and 2.0 Å, respectively, for each pro-
tein atom.

FIG. 6. Plot of the void fractionfV calculated using as radius for
each protein atom a value of 1.5strianglesd and 2.0ssquaresd Å, as
a function of the number of amino acids of each protein,N. For this
set of 200 proteins we findfV is 0.265±0.035 using the smaller
radius and is 0.139±0.030 with the larger.
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plotted in Fig. 6. Using the smaller radius, which we con-
sider a reasonable estimate, we find for the 200 proteins in
the set thatfV is 0.265±0.035. With the even more conser-
vative 2.0 Å radius we findfV is 0.139±0.030. We thus find
a substantial fraction of space inside the protein is empty, a
result that is qualitatively consistent withD<2.5 computed
above.

IV. CONCLUDING REMARKS

We have computed the mass fractal dimension for a set of
200 proteins ranging from about 100 to about 11 000 amino
acids. For proteins with at least 1000 amino acids the dimen-
sion is 2.6 and does not appear to vary much with size. The
dimension is smaller for smaller proteins, around 2.3 for pro-
teins with about 100 amino acids. The mass fractal dimen-
sion for the 200 proteins in our set is 2.489±0.172. This
value ofD is the same as the value of the scaling exponent
for the variation of protein mass with radius of gyration that
best fits our data. The value of the mass fractal dimension for
each protein is itself an average value over all regions of the
protein. Near the center of mass of each protein we find the
mass fractal dimension for this set to be 2.761±0.164. It is
the averageD over the whole protein, about 2.5 for this set,
which corresponds most closely to the mass fractal dimen-
sions we have obtained by studying the vibrations of several

proteins using the Alexander-Orbach relations.
A mass fractal dimension of 2.5 indicates that a protein is

not a completely compact three-dimensional collapsed poly-
mer. We have computed the fraction of volume within the
protein surface for each protein in its PDB configuration that
is filled and empty. We have indeed found, using reasonable
estimates for the protein surface and volume of atoms, that
less than 80% of the protein volume is filled, consistent with
a mass fractal dimension less than 3.

The computed mass fractal dimensions, together with the
recently computed spectral dimensions by Burioniet al.f13g
for 58 proteins spanning a similar size range and included in
our set, allow us to estimate a range of values for scaling
exponents characterizing vibrational energy flow in proteins.
The variance of a vibrational wave packet spreads in time

subdiffusively askR2l, td̄/D f8g. Our results combined with
those of Ref.f13g indicate that for proteins with at least 100
amino acids the exponent ranges from<0.55 for the smaller
proteins to<0.75 for proteins with at least 1000 amino ac-
ids.
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