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Variability in noise-driven integrator neurons
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Neural variability in the presence of noise has been studied mainly in resonator neurons, such as Hodgkin-
Huxley or FitzHugh-Nagumo models. Here we investigate this variability for integrator neurons, whose excit-
ability is due to a saddle-node bifurcation of the rest state instead of a Hopf bifurcation. Using simple
theoretical expressions for the interspike times distributions, we obtain coefficients of variation in good agree-
ment with numerical calculations in realistic neuron models. The main features of this coefficient as a function
of noise depend on the refractory period and on the presence of bistability. The bistability is responsible for the
existence of two different time scales in the spiking behavior giving an antiresonance effect.
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Neurons are an important class of excitable dynamicaheurons, like the Hodgkin-Huxley model of the squid axon,
systems, wherein a perturbation of an equilibridquies-  repetitive firing is produced by a Hopf bifurcation where the
cen) state may be amplified to produce a large excursion obnly equilibrium point(rest statg loses stability as the cur-
the relevant dynamical variables before returning to equilib+ent increases and the system falls on to a stable limit cycle.
rium. In neurons, this amplified response is due to the facBy contrast, integrator neurons have three equilibria for cur-
that ionic conductances depend on the membrane potentidents below the critical current, one of them for high voltage
This translates into sudden increases of the membrane vol¢stable or unstabjeanother stable for low voltag@ node,
age or spikes, which constitute the basic information units ofnd another unstable with only one positive eigenvakie

the neural code. An important step towards the unraveling ofaddle point see Fig. 1. At the critical value of current,
this code is the understanding of how individual neurondhese two last fixed points merge and disappear through a

respond to a given stimulus and which is the intrinsic dy_s'agQIe—nlod.e bif_lIJ_rcz_atio”n, leaving the system with a staﬁle péa-
namics responsible for this behavior. riodic solution. Typically, resonator neurons are type Il an

From a dynamical systems perspective, the reason for e)&r_ltegrat.or neurons are type[1,3_,4] . .
citability is that the neuron is close to a bifurcation point The implications of these different bifurcation structures

where a transition takes place between a rest $tattable (Hopf versus saddle-nogigo beyond the above-mentioned

fixed poin) and repetitive firing(a stable limit cycle [1]. frequency behavior for type | and Il excitability. For in-

bviouslv. h | h b hi ... stance, the small-amplitude limit cycle present in the sub-
Obviously, how close the system must be to this transitioryyiica| Hopf bifurcation below the transition current origi-

point to be excitable depends on the particular case and theyies subthreshold oscillations. Thus, resonator neurons
size of the perturbation. Real neurons are in general highcombine oscillatory and excitatory properties close to the
dimensional, nonlinear dynamical systems, where the numyjfyrcation point and respond preferentially to a given input
ber of dynamical variables is determined by the diﬁerentfrequency(show phase |Ock|r)gwh||e integrator neurons in-
kinds of ionic channels across the membrane contributing tgegrate the subthreshold response to a sufficiently high fre-
spike generation. It is thus intriguing that, in spite of thequency input, do not show subthreshold oscillations, and are
large variability of ionic currents and conductances, all bio-more difficult to synchronize.
physically detailed neuron models can be grouped in two Real neurons are not purely deterministic devices but usu-
classes according to their excitable properfieb Histori-  ajly operate under noisy conditions, due to membrane volt-
cally [2], type | excitability is characterized by spikes gener-age fluctuations or random synaptic inp(ftsr an analysis of
ated with arbitral’ily low frequency as adc currentis injected,the sources of neuronal noise, see, for instance, N}
while for type Il neurons the onset of repetitive firing is at The response of individual neurons in the presence of noise
nonzero frequency. Moreover, for this last class the spikinghas been investigated for a Hodgkin-Huxley mod#lin the
frequency is relatively insensitive to changes in the applieontext of coherence resonarf@e-9]. In analogy to the cel-
current. From the point of view of dynamical systems theoryeprated stochastic resonance, the coherence of oscillations of
neurons are better classified as resonators or integr[dt:brs an excitable System may be enhanced by a proper amount of
depending on two different dynamical scenarios: in resonatofopise without any time-periodic input, whenever the system
is close to the bifurcation poif8,9]. Other variants of the
coherence resonance phenomenon in single element excit-
*Electronic address: rgn@imaff.cfmac.csic.es able systems have been investigated in the FitzHugh-
TElectronic address: gonzalo.polavieja@uam.es Nagumo model, which is a simplified version of a resonator
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FIG. 1. Bifurcation diagram of the membrane voltagemV) as a function of the dc injected current for the two models discussed in
the text.(a) Morris-Lecar(Appendix A). (b) Leech neurorfAppendix B. Solid lines: stable fixed points. Dashed lines: unstable fixed points.
Filled circles: stable limit cycles. Empty circles: unstable limit cycles. The inséb)ins an enhancement of the saddle—node bifurcation
region showing the coexistence of the stable limit cycle and the node.

neuron[9-13], in models of bursting neuron&4], and inthe  stable rest and spiking stajeshe CV may exhibit a maxi-
leaky integrate-and-firgdLIF) neuron model[15]. In the  mum as a function of the noise intensity for moderate values
FitzHugh-Nagumo model and a LIF model with absolute re-of noise level, showing an anticoherence resonance phenom-
fractory period, it has been shown that coherence and antenon. Outside this regime, the CV either decreases or in-
coherence resonance can be tuned by a proper amount afeases monotonically, depending on whether the neuron is
noise[12,16. The behavior of a noise-driven dynamical sys- before or after the saddle-node bifurcation. We show that for
tem with a saddle node on a circle bifurcation was studied aa wide range of noise amplitudes and applied currents, the
one of the first examples of autonomous stochastic resonand¢8l distributions are of Poisson type, although modified to
[7,8] showing a resonant profile in the signal-to-noise ratioinclude a refractory periodspiking with very large fre-
(SNR) of the power spectrum jusbelow the bifurcation quency is not possible in real neurons due to the recovery
value. For a recent review on the effects of noise in excitabléime of the membrane potentialThe refractory period is
systems, including coherence and stochastic resonance important in explaining the bounds for the CV, which is gen-
some neuron models, see REf7]. erally less than 1. The anticoherence phenomenon is also
Coherencdor its inverse, variabilityis usually character- well explained by considering two Poisson or renewal pro-
ized by the coefficient of variatiofCV), defined as the vari- cesses with different rates, due to the bistable dynamics of
ance to mean ratio in the distribution of interspike intervalsthe neuron.
(ISI). Variability in ISI distributions of single neurons has
important implications for information coding and response |. MODELS AND SPIKING PROPERTIES
reproducibility[ 18—22. For neurons with subthreshold oscil-
lations, such as in the Hodgkin-Huxley model, care must be We investigate the spiking behavior of two different inte-
taken with this indicator, since for low noise intensities dis-grator neuron models, one showing a bistability region and
tributions are multimodal, showing several peaks due to imthe other without bistability. As a first, simpler case study we
perfect phase locking between noise-activated spiking andse a Morris-Lecar modgR5], which is a two-dimensional
the intrinsic oscillationg11]. Since resonator neurons re- system originally proposed for the membrane potential of a
spond in a narrow frequency range, the correlation time obarnacle muscle fiber. The dynamical variables are the mem-
the SNR of the dominant peak in the power spectrum couldrane voltagé/ and the fraction of open potassium channels.
be a better measure of the coherence of spiking. Integratarhe equations and model parameters used are listed in Ap-
neurons, however, usually show larger coefficients of variapendix A. In Fig. 1a), we show the bifurcation diagraf26]
tion compared to the dominant peak of resonator distribuof the membrane voltage as a function of the applied dc
tions. This has been shown numericdl®8] and analytically  current. Stablgunstabl¢ equilibria corresponding to quies-
[24] for a ®-neuron model, which corresponds to a one-cent states are represented by continuddisshed lines
dimensional normal form of a saddle-node bifurcation. Thewhile stable(unstablg limit cycles corresponding to repeti-
reason for this higher variability, as we will see, is that ISlItive firing are shown with filled(empty circles. For |
distributions of integrator neurons are unimodal and charac=39.95uA/cm?, a saddle-node bifurcation of the fixed
terized by long exponential tails, due to the broader fre{oint takes place. As anticipated in the previous section, be-
guency range of their response. These neurons act, therefotew the bifurcation value three equilibria coexist, one un-
as Poisson generators and fire with high irregularity. stable(high voltage determining the shape of the action po-
In this paper, we analyze in detail the spiking features oftential, another stabldow voltage which is the rest state,
different realistic models of integrator neurons, under theand an unstable saddle point at intermediate voltage acting as
simultaneous action of a dc current and a noisy input. The threshold. Since the bifurcation is of the type saddle-node
coherence as a function of the noise intensity shows a rathen invariant circle[1,7,27, the limit cycle appears right at
different behavior from that of resonator neurons usually inthe bifurcation point, and thus there is no coexistence of
vestigated in the literature. In particular, when an integratostable rest and spiking sates. Note that a subcritical Hopf
neuron presents hystereglsistability due to coexistence of bifurcation, rendering the unstable high voltage equilibrium
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FIG. 2. (Color onling Spiking behavior of the
two type | models under a step current and a low
intensity noise source in the excitable regime.
Top panels: Morris-Lecar. (a) 38.5<Iq4,
<405uA/cm?, D=0. (b) 14.=39.9uA/cm?,
D=0.7. Bottom panels: leech modét) 0=<1
<2 uAlcm?, D=0.(d) lge=1 wAlcm?, D=0.07.

stable as the current increases, is also present. However, tegstem(no nois¢ and a step current, where the difference
bifurcation value is too high to be physiologically relevant. with the Morris-Lecar mod€lFig. 2(@)] is apparent. First the

As another, more realistic instance of an integrator neuneuron is placed in the excitable regime in both cases, close
ron, we have found among experimental research that th&® but previous to the saddle-node bifurcation point. With a
spike-generating sodium and potassium conductances of tfgidden increase in voltage ofdA/cm?, both neurons are

pressure-sensitive neuron of the leddacrobdella decora

brought past the bifurcation point and start periodic firing.

[28,29 produce a saddle-node bifurcation of the rest stateAfter some time, an inhibitory current step brings both sys-
The physiological origin of this dynamical behavior is in the t€Ms to the initial current value. In Morris-Lecgfig. 2@)],

potassium conductance; in fact, changing the opening ra
for the potassium channel, this model can be converted into
resonator neurofsee Appendix B The bifurcation diagram

for this model is shown in Fig. (b). This diagram is very

similar to that of Morris-Lecar in the left panel except for
two differences: the first one is that the subcritical Hopf bi-
furcation takes place at negative values of the current. Thu

{he system returns to the excitable regime since the limit
cle no longer exists before the saddle-node bifurcation. In
the leech neurofFig. 2(c)], the system remains in the stable
branch of the limit cycle, and continues firing, albeit with
lower frequency. Another decrease in current is necessary to
hyperpolarize the membrane below the bistability regime and
terminate firing. This bistability is also typical of models
Svith a Hopf bifurcation, although the origin is different. As

in all the relevant current range the high voltage quiesceny, jjystration, we show in Fig. 3 the bifurcation diagram of
state is stable. This, again, may not be biologically signifi-the modified leech neuron model with resonator properties,
cant for the real neuron since it should be necessary to demd its behavior under a ramp injected current. In this sys-
polarize the membrane by, for instance, injecting an abnortem, the bistability region lies between the Hopf bifurcation
mally high current to artificially place the system in this point atly.~18.3 uA/cm? and the fold limit cycle bifurca-
state. The second difference, more important for the presemion, where the stable and unstable limit cycle collide and
discussion, is that the stable limit cycle is born in a bifurca-disappear, aty.~ 13.6 uA/cm?. The most apparent differ-
tion prior to the saddle-node poifgee the inset in Fig.(b)]. ences in spiking behavior with respect to an integrator neu-
Thus, for a short current interval we have coexistence of aon are the existence of subthreshold oscillations before and
stable rest state and a stable limit cycle. The saddle-nodafter firing, and the relative insensitivity of the spiking fre-

bifurcation takes place dt.~ 1.1 uA/cm?, while the limit

cycle disappears d.~0.95 uA/cn?. The bistable or hys-

teretic behavior is illustrated in Fig(® for the deterministic

50

40

quency to the intensity of the injected current.

In the rest of the paper, we will add a noisy inpyto the

b)
20

dc current, which is treated as an Ornstein-Uhlenbeck sto-

FIG. 3. (Color onling (a) Bifurcation diagram

% 0] of the leech neuron model shown in Fig(blL
= with a different closing rate for the potassium
307 07 channel(see Appendix B (b) Spiking behavior

—60*/\ 30 1, of the modified leech model under a ramp
oot & ‘ : ‘ : = current.
-40 -20 0O 20 40 60 80 100 120 0.1 03 0 0.9 1.1
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0241 Resonator Integrator
FIG. 4. Interspike interval histograms for a
0164 Hodgkin-Huxley modelleft) and the leech neu-
o3 ron (right). The noise intensity is the same in both
figures, D=0.7. The constant current i$y.
008 =6.5 uA/cm? for the Hodgkin-Huxley(see Ref.
[6]) andl4.=1 uA/cm? for the leech modelboth
0 -~ ‘ , neurons are in the bistable regime
20 40 60 80 100 100 150 200
t(ms) t(ms)
chastic proces§Gaussian colored noiseNoisy fluctuations Il. VARIABILITY OF INTERSPIKE TIMES
of the membrane voltage with a finite correlation time may DISTRIBUTIONS
be important, for instance, if channel noigkie to the finite
number of ion channels in a patch of membramenoise due In many cases when experimental recordings are obtained
to synaptic transmission are taken into accdBhtThe noisy ~ from single neurons, spikes appear as random sequences,
input satisfies the equation even when the external sensory stimuli are held constant

[18-21,30Q. There are several statistical quantities which are
relevant for analyzing information transmission and coding
of spiking neuron$31]. Whether the code used by neurons is
a “rate code,” in which the firing rates of many neurons are
where &(t) is a Gaussian white noise, afitland = are the  averaged to obtain a signal, or a “time code,” where the
intensity and correlation time of the stochastic prodgss relative times between spikes are meaningful, many impor-
tant properties can be inferred from the distribution of inter-
4. (D1.(0)) = Be‘t’f ) spike timgs. This can be related, for. i_nstancg, to the di;tribu—
min e ’ tion of spike counts or to the probability of spiking at a given
time [32]. The reliability and precision of spike timing,
In order to separate time scales, we take a correlation time afhich plays an important role in information coding of cor-
one order of magnitude less than the relevant period of thécal and visual neurond8-20,23, is also analyzed in terms
system, and thus fix it te=2 ms for the leech neuron model of ISI distributions and their coefficients of variation. It is
and 7=20 ms for the Morris-Lecar model. Nevertheless, wethus important to understand properly the dynamical mecha-
checked that decreasing the correlation time did not affechisms by which variability in response to given stimuli arises
the statistical quantities, therefore a Gaussian white noisi single neurons.
source would produce the same effect on the neuron As mentioned above, variability as a function of noise has
dynamics. been investigated mainly in resonator neuron models. The
The spiking behavior of the noise-driven neurons showssubthreshold oscillations may cause phase locking in the
qualitative differences in both models, especially for low bistable regime, where the stable limit cycle and the stable
noise intensities. These are illustrated in Figd) 2nd Zd). rest state coexist. In the presence of noise, the imperfect
In the excitable regime of the Morris-Lecar system phase locking between the interspike intervals and the fun-
(14c=39.9uA/cm?, just below the saddle-node bifurcation damental period of subthreshold oscillations for certain noise
valug, a low noise intensity produces isolated spikes withintensities manifests as multimodal ISI distributions with
very long interspike times between thdeompare the time equidistant peaks. This is illustrated in Fig. 4. In the left
scale in Figs. @) and 2b)]. Just past the bifurcation value panel, we show the ISI distribution for a Hodgkin-Huxley
(14c=40 uA/cm?), the system fires with regularity and the neuron model in the bistable reginfl,.=6.5 uA/cm?, see
low noise only modifies slightly the interspike times. On the Ref.[6]) with a noise intensityp=0.7. In the right panel, we
other hand, if we place the leech neuron in the excitable, buplot the ISI histogram for the leech neuron model also in the
bistable regime(l4.=1 uA/cm?), firing occurs usually in  bistable rangdlq.=1 uA/cm?) with the same noise inten-
“bursts” of a few spikes, with long interburst times. Note thatsity, D=0.7. The distribution is unimodal with a larger coef-
inside a burst the firing period is also quite variable. Such dicient of variation than that corresponding to the first peak
bursting behavior is also present in the Hodgkin-Huxleyof the Hodgkin-Huxley model. It has also a long exponential
model in the bistable regimg6], with the difference that decay typical of a Poisson proce@&ee Fig. 5 and below
inside a burst the firing frequency is very regular and notThis exponential decay is general in ISI distributions of in-
affected by the noise intensity. Due to its integrator propertegrator neurons, except for very low noise intensities in the
ties, the leech model shows two different noise-induced timespiking regime(past the saddle-node bifurcatjpmvhere the
scales in the bistable regime: an interburst time, and a timéring frequency is very regular since noise produces a very
modulating the spiking frequency inside a given burst. As wesmall effect. In Fig. 5, for instance, we show the ISl distri-
will see in the next section, these two time scales produce hutions for the leech model at large noise intengiy=10,
rather different behavior of the ISl distributions as comparedilled circles and moderate noisé€D=1, open circles for
to the Morris-Lecar model. lgc=1 wA/cm?. At this last value, even two different expo-

dl, —
o dt - |n+\‘2D§(t)a (1)
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FIG. 5. (Color onling IS! distributionsP,g(t) for the leech neu- FIG. 6. Coefficients of variation of the ISI distributions for the

Morris-Lecar system in the excitable regime=39.9 uA/cn?,
open squargsand in the spiking regimél=40 uA/cn?, filled
circles. The solid and dashed lines are the theoretical prediction

. .. . Eq. (7) with a power-law dependence for the refractory period
nenual slopes are clearly VISIb|e., which we shall analyze[O(D)mD_yl y~0.3 in both cases, and the rategD) numerically
later in more detail. These two time scales are due to thgpiained from the ISI distributionsee main text

bistable behavior and are never present in the Morris-Lecar

model, where only single Poissonian r rved in . S . .
thgdvsﬁole ?10?5% rgr;sgege oissonian decays are observed probability of spiking in a small interval around timg

In Fig. 6, we show the CV for the Morris-Lecar model as Pps(t, t+d?), is proportional to an instantaneous firing rets,

a function of the noise intensity, for a dc current in the ps(t,t + db) = r(t)dt. (3)
excitable regime just before the bifurcation value _ o o .
[14.=39.9 uA/cm?, squares; see also Figs(a2and 2b) ] Then the interspike times are distributed accordin3®)
and in the spiking regimél =40 uA/cn?, circles. The ot

qualitative behavior of the CV is easily understood from the Pisi(t) =e™o rt). (4)
discussion accompanying Figs(a@and 2b). In the excit-  Since we know that at long times spiking is Poisson with
able regime, a low noise intensity produces only isolatectonstant ratep, we approximate the instantaneous rete
spikes separated by long interspike times. The firing can bgy [20]

considered as a homogeneous Poisson process with low rate,

and IS| distributions are broad and slowly decaying. Increas- r(t) =wp, (5)

ing the noise intensity increases the rate, and the coefficientparewt) is a recovery function accounting for the refrac-
of var_latlon.decreases.' O'n the contrary, if 'Fhe neuron IS p‘f"%ry time. Note that this function can be obtained numeri-
the blfqrcatlon vglue, I .f|res regularly. Noise de;troys thisg lly from the ISI distribution. The exponential factor in

regularity and, since spikes can be generated with a bro q. (4) gives the probability that there is no spike during

frequency range, firing can be considered again a Poissoérg ti t 131.37. that is. th ival babilitvs(t
process but now with a high rate, producing higher coher— me t [31,33, that is, the survival probabilityS(t

t ’ ’ H
ence (smaller C\J. As noise increases, coherence is de—_l_fO Pisi(t')dt’. Therefore, the recovery function can be
: calculated as
stroyed and the CV also increases.
An important observation is that the CVs are always less 1P(t)
than 1, as it should be for a purely Poisson process. This is w(t) = _S(—t)' (6)
due to the fact that neurons cannot respond inmediately after P
a spike but need a refractory time for returning to the restrhis function is nearly zero for small times and increases
value of the membrane potentig81]. The simplest way to rapidly at some given tim&, sinceS(t)— 0 in a short time
introduce the refractory period in our approach is considerinterval. Fort—«, w(t)=1, see Fig. @®). Therefore, in order
ing an inhomogeneous Poisson proc¢&6], where the to keep the approach analytically simple, we approximate

15 107
k ’

a10” 5

ron model in the bistable regimég=1 wA/cm?) at two different
noise intensitiesD=0.1 (empty circle$, D=10 (filled circles.

FIG. 7. (a) Recovery function of the
Morris-Lecar system in the excitable re-
gime atD=10, calculated from the ISI
distribution following Eq.(6). (b) Ratep
and absolute refractory periag (insej
as a function of the noise intensity for
the Morris-Lecar model in the excitable

05 p—— - 10— 17— regime (I gc=39.9 uA/cm?).
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w(t) by a Heaviside functionv(t)=6(t—ty) (absolute refrac-
tory period, wheret, nearly coincides with the maximum of
the distribution. We also approximates(t) by a smooth
function, such as a sigmoidal functigmnelative refractory
period, but it did not change significantly the results. With
this choice forw(t) it is straightforward to calculate the co-
efficient of variation for the single Poisson process with ISI
distribution (4),

1

Cv= .
1 +pt0

)

Note thatp andt, are functions of the noise intensity, but in

any case both are positive quantities and the CVs always IesdsIff
than 1 for this simple model. When the system is in the
excitable regime, it is tempting to assume an exponential

dependence on noise intensity for the rgte [9,12],
pxexp—U/D), following Kramers’ theory of noise-

PHYSICAL REVIEW E1, 011911(2005
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FIG. 8. Coefficients of variation of the leech neuron for three
erent values of the dc current. Excitable regiméy,

0.9 uA/cm?, open squares and dashed line. Bistable regige,

1 uAlcm?, filled circles and solid line. Spiking regimdge
=1.1 uA/cm?, open triangles and dotted line. In the inset, we show
with open diamonds the prediction of the two renewals model Eg.

activated rate processes. This means that the transition frog) with rates, refractory, and crossover times numerically obtained
quiescence to spiking is equivalent to surmounting an effecyom the IS! distributions.

tive barrierU due to random fluctuations, wit/D>1. In
our case, we observe this exponential dependence for t
Morris-Lecar model aty.=39.9 uA/cm? only for D<3, as
shown in Fig. Tb). If the Kramers’ dependence were valid
for the wholeD range, we would obtain the minimum in CV
characteristic of coherence resonance, which is not the ca
On the other hand, when looking gtas a function oD we
see that it follows rather well a power latinset of Fig. 7,
to(D)«D7?, with y~0.3 both in the excitable and spiking
regimes. Using this dependence fgrand the numerically
obtained values for the rageat each noise intensity, we plot
in Fig. 6 the theoretical prediction E¢¢) as a function oD
(solid and dashed line The good agreement confirms the

validity of the simple Poisson model with absolute refractory

time to predict variability of ISI distributions of integrator
neuronswithout bistability, both in the excitable and spiking

regimes. We note also that at large noise intensities, the CV

tends to a value close to 13, which is the strong noise limit

rﬁ, the spikes appear now in bursts as those shown in Fig.

2(d). Now, for low noise, the interburst times are very long
and the significant variability is given mainly by the coher-
ence inside a burst, which is large. For intermediate noise,

S|?|‘terspike and interburst times are comparable and coherence

is minimum (maximum variability in Fig. 8 while for high
noise levels we have again a single Poisson process with
increasing rate, see Fig. 5, and the CV decreases as in the
Morris-Lecar system in the excitable regime.

The ISI distributions in the bistable regime can be for-
mally expressed, using the same approach as above, as

P (1) = O(t, — t) pw(t)ePr/o wt)at

+CO(t — ty) ppw(t)eP2lo Wt at ®

result for the one-dimensional normal form of a saddle-nodavherep; and p, give the two different rated; is the cross-

system[24].

over time between the two exponential decays, dhd

For an integrator neuron with a bistability region, as the=piexfl (p2—p1)[¢ W(t')dt']/ p, imposes continuity at=t;.
leech model, the behavior of the CV is rather different in thisFor a recovery step functiony(t)=0(t—ty), the CV can be
region. In Fig. 8, we show the CV as a function of the noiseobtained analytically, although the expression is much more
level for the leech neuron at three different values of the deumbersome than that for the single Poisson profeste
current: in the excitable regime, previous to the appearencthat this case is recovered from H§) for t;—]. The ab-

of the limit cycle (14,=0.9 uA/cm?, open squargsin the
bistable regime (I4.=1 uA/cm?, filled circles; and in
the spiking

solute refractory period, and the crossover timg follow

rather well a power law as a function of the noise intensity,

regime, after the saddle-node bifurcationD™?, both with exponenty~0.1. The ratep,, giving the av-

(14e=1.1 uA/cm?, open triangles The excitable and spiking erage interburst frequency, is again an activated process of
regimes are similar to those described for the Morris-LecaKramers’ type only forD=<0.2.

system, and the behavior is well accounted for by the simple In the inset of Fig. 8, we compare the numerical coeffi-
Poisson model with absolute refractory time, except at vergients of variation(filled circles with those calculated from
low noise intensities. On the other hand, for low to moderatehe distribution Eq(8) (open diamonds with rates obtained
noise intensities in the bistable regime, the CV presents &om the numerical ISI distributions. The maximum appears

well defined maximum which is characteristic arfiticoher-
ence[33]. At these noise intensities in this regime, ISI dis-

in the region where both rates contribute significantly to the
interspike frequency, confirming our qualitative explanation

tributions have the double Poisson decay shown in Fig. 5. Affior the anticoherence behavior in the bistable region.

intuitive explanation for this behavior can be given following

Finally, it is interesting to investigate if other second-

the discussion of Figs.(2) and Zd). For low to intermediate order properties of the stochastic spiking process, such as the
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FIG. 9. Power spectra as a function of the periotrerse fre-
quency for the leech model at two different noise intensities:  FIG. 10. Signal-to-noise rati¢top), correlation time(middle),
D=0.07 (top panel and D=10 (bottom panel The top spectrum  and effective diffusion coefficientbottom) as a function of the
corresponds in both cases to the excitable regimengise intensity for the leech neuron model. Symbols are as in Fig. 8:

(|dc=0-9MA/Cg12), the middle one to the bistable regime open squares and dashed line, excitable reglge0.9 uA/cn?.
(lgc=1 pAlcm?), and the bottom one to the spiking regime Filled circles and solid line, bistable regimg,=1 xA/cm?2. Open

(lgc=1.1 uA/cm?). triangles and dotted line, spiking regimg,=1.1 xA/cm?.
power spectrum or the correlation time, also reflect the vari- B= S(‘"L")wmax 9)
ability of the ISI distributions as a function of the noise Aw

intensity. It is known that a minimum or maximum in the CV

does not necessarily imply the same behavior in other '“d'beak is well fitted to a Lorentzian shape, indicating an expo-
cators, such as spectral coherefite,34. o nential overall decay of the correlation functjorThis is
First, we see that the power spectra qualitatively reprosnown in the top panel of Fig. 10 for the three different
duce the expected differences in variability in the three reregimes. In the bistable regintglled circles, coherence de-
gimes. In Fig. 9, we show the power spectra for the leecfyreases faster untid ~1 where it nearly saturates, although
neuron model at two different noise intensiti8=0.07 it does not show the minimum characteristic of anticoher-
(around the maximum seen in Fig) 8nd D=10. The top  ence. The correlation time,, defined as the time average of
spectra were obtained with the neuron in the excitable rethe squared correlation functidf], shows a similar behav-
gime (14.=0.9 uA/cm?), the middle ones in the bistable re- jor (Fig. 10, middle panglbut it now presents a shallow
gime (I4c=1 uA/cm?), and the low spectra in the spiking minimum around ~ 1, indicating a weak anticoherence. Fi-
regime (14.=1.1 uA/cm?). The maximum of the dominant nally, we calculate the effective diffusion coefficient of the
peak approximately coincides with the maximum of the ISIspike count distributiorN(t) (number of spikes until a time
distribution. For low and moderate noise intensities, the cot), which is related to the varianc®AT?)=(T?)—(T)? and
herence of the main peak is very different in the three remean(T) of the interspike intervals b}32]
gimes, as expected. At low noise intensity, the neuron fires
very regularly in the spiking regime, at nearly the frequency L (NA)) = (N(D)? 1(ATH)
of the limit cycle (the lower intensity peaks in the spectrum Deff—tlm ot ) M3
corresponding to even and odd harmonics of this frequency
and irregularly in the excitable regime since spikes are isoin the bottom panel of Fig. 10 we show the effective diffu-
lated by long interspike periods. A strong noise sourcesion coefficient as a function of the noise intensity obtained
(D=10) makes uniform the coherence of spiking, and thefrom the ISI distribution in the same way as for Fig. 8. It is
three regimes approximately present the same power spectigeen that in the bistable reginffdled circles it has a maxi-
In order to quantify this behavior, we calculate the SNR ofmum at approximately the same value of the CV. In the
the main peak in the power spectrum, defined as usual by excitable regime(open squaregs dispersion in the spike

whereAw is the full width at half maximum of the pedkhe

(10
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count is high at low noise intensities since spikes appear ACKNOWLEDGMENTS

isolated or in bursts of very few spikes, while in the spiking . . .
- ; P - - This work has been supported in part by DGICt3pain

regime(open trianglek firing is very regular and dispersion

small at low noise. We remark that in integrator neurons Srants No. BCM2001-2179 and No. BFM2003-06242, and

opposite to resonators, there is not a preferred frequency (?fy fBBVA, Spain.
spiking even at low noise intensity, and the autocorrelation
function does not show the neat oscillatory behvior seen, for APPENDIX A: MORRIS-LECAR EQUATIONS

instance, in the FitzHugh-Nagumo system in R&i. Thus, . .
! I rzhug au y in R8I Thu Morris and Lecar[25] proposed the following two-

in integrator neurons the CV or the diffusion coefficient are bl del of b ial f b | |
likely more appropriate measures of variability than the cor-/2/'able model of membrane potential for a barnacle muscle

relation time or the SNR. fiber:

dv
IlI. CONCLUSIONS C— == geam.(V)(V = Vo) — geW(V = Vi)

Noise is an unavoidable ingredient in neurons operating dt
under real conditions. It is argued, however, that some times gL (V=V)) + g,
it may play a useful role in neural computation enhancing
detection of weak signals or improving information process-
ing [35,34. It is thus important to understand the dynamical
mechanism of the noise-induced response in single neurons.

In this article we have focused on the response variability
to a constant stimulus with noise in neurons close to a
saddle-node bifurcatiofintegratorg. Opposite to most usu-
ally studied models of resonator neurons, such as the
Hodgkin-Huxley or FitzZHugh-Nagumo models, the two real- 1
istic systems investigated here do not show a coherence reso- W..(V) = ={1 + tant (V - V3)/V,]},
nance behavior in the ISl distributions, although an antico- 2
herence phenomenon is displayed under bistability
conditi_ons. These distributions are also very different from (V) = Licosh(V = V3)/V,], (A1)
those in resonator neurons, which due to the presence of
subthreshold oscillations may show phase locking and thughereC is the membrane capacitandéthe membrane volt-
several peaks at integer values of the average interspike pgge,dca Ok, andg, calcium, potassium, and leakage conduc-
riod. Integrator neurons fire with higher irregularity and aretances, respectivelyy the fraction of open potassium chan-
characterized by a Poisson decay of the ISl distribution evenels, and 4 the applied dc current. The parameters used are
at low noise intensity. This is caused by the much broadefsee Ref. [23]) C=20uF/cn?, gc=4 mS/cm, gx
frequency range of their response. We have shown that the8 mS/cnd, g =2 mS/cnf, V=120 mV, Vy=-84 mV,
inclusion of the refractory time is necessary to account foV_=-60 mV, V;=-1.2 mV, V,=18 mV, V3;=12mV, V,
the observed values of coefficient of variation, both in the=17.4 mV, and¢$=0.067.
excitable and spiking regimes, although the different trends
at low _noise intensities are given by _the noise dependence of  AppENDIX B: LEECH P-NEURON EQUATIONS
the Poisson rate. The refractory periods follow a power law
as a function of noise in all the cases analyzed. In the The spiking activity of the leectMacrobdella decora
bistable region, two different time scales are present. This igrechanosensory P-neuroftesponding to pressurewas
due to the peculiar firing features in this region, since spikegound to be produced mainly by a sodium currggfand a
are generated mainly in bursts with a large variability in thedelayed rectifier potassium curreht [28]. The equations
interburst and interspike times. The interplay between thesand parameters used here are as foll¢sez Ref[29]):
two time scales maximizes variability if the significant re- iy
sponse time is not made arbitrarily large. av__ Ay _ N n2(\ _ _ _

Finally, let us mention that many neurocomputational dt =~ OV = Via) = (V= Vi) = 9LV = VL) +le,
properties depend critically on the underlying dynamics of
the neuror{1]. It is known that most models of cortical neu-

dw _

at HW=o(V) = Wi/ 7, (V),

M) = {1+ tanfi(V - VoIVl

. . o _ dm m.(V)-m
rons are integrators, while neurons in invertabrates are typi- —_— =,
cally resonators. The study presented here may help to better dt (V)
understand recent experiments of variability in cortical neu-
rons[19,22,37. Especially, bistability may play a role in the dh_h.(V)-h
computational properties of these neurons. In spite of their dt (V)
higher variability, integrator neurons under low and moderate
noise intensities may be able to discriminate frequencies in a
short range of dc input, and have more flexibility in changing dn - M (B1)
the preferred frequency range than resonator neurons. dt V) '
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where the asymptotic values, and time constants, are

given in terms of the opening and closing rates of the gating

variablesm, h, n, as in the Hodgkin-Huxley-type equations,
by Xx.(V)=a,WV)/[aV)+B,V)] and 7 (V)=1/[a, (V)
+B(V)], with

0.03V + 28)

am(V) = 1 — g (V+28/15"

ﬁm(v) =2 7e—(V+53)/18,

ap(V) = 0.045(V+59/18

PHYSICAL REVIEW E71, 011911(2005

072
:Bh( )= 1 + g (V+23/14°

. 0.024V-17)

an(V) = 1 V1708

,Bn(v) - O.%—(V+48)/35' (BZ)

Conductances and Nernst potentials have the vabigs
=350 mS/cm, gx=6 mS/cm, g =0.5mS/cmM, Vya
=60.5 mV, Vx=-68 mV, V, =-49 mV, andC=1 uF/cn¥.

For a neuron with resonator propertigzresenting only a
Hopf bifurcation as shown in Fig.(8)], parameters are the
same except for the opening rate of the potassium gating
variable,a,(V)=0.024V-17)/ (1 -e V-17/18),
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