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Nucleation and growth in one dimension.
I. The generalized Kolmogorov-Johnson-Mehl-Avrami model
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Motivated by a recent application of the Kolmogorov-Johnson-Mehl-AvigdMA) model to the study of
DNA replication, we consider the one-dimensiofD) version of this model. We generalize previous work to
the case where the nucleation rate is an arbitrary fundtfpnand obtain analytical results for the time-
dependent distributions of various quantitiesich as the island distributibnWe also present improved
computer simulation algorithms to study the 1D KIMA model. The analytical results and simulations are in
excellent agreement.
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I. INTRODUCTION Although most of the applications of the KIMA model
Consider a tray of water that at tinte0 is put into a Qeve b¢e” lto thte study 0.]; phgse trr?nsfoLmatmns 'IF‘ (tjh{ee—
freezer. A short while later, the water is all frozen. One mayw'irgeenggnz éyzr?gg{mséﬂi%rné earsoblg\r;es gﬁghasg IFE;énOi’:
thus ask, what fractiorf(t) of water is frozen at timé=07? 9 P ! y

In the 1930s, several scientists independently derived a st car-parking problenp14] and the coarsening of long parallel

! . _ Wroplets [15]. Recently, we have shown that the one-
chastic model that could predict the form fif), which ex-  gimensional KIMA model can also be used to describe DNA

perimentally is a sigmoidal curve. The Kolmogorov- yepjication in higher organisnid6]. Briefly, in higher organ-
Johnson-Mehl-Avram{KIJMA) model[1-3] has since been jsms (eukaryotey DNA replication is initiated at multiple

widely used by metallurgists and other materials scientists Wrigins throughout the genome. A replicated domain then
analyze phase'transmon !(Inetlb$]. In addition, the model grows symmetrically with velocity away from the replica-
has been applied to a wide range of other problems, frofon origin. Domains that impinge coalesce. And finally, each
crystallization kinetics of lipid$5], polymers[6], the analy-  pase in the genome is replicated only once per cell cycle.
sis of depositions in surface sciencd, to ecological sys-  Thys if one views replicated regions as “solid,” unreplicated
tems[8] and even to cosmolog}p]. For further examples, ones as “liquid,” and the initiation of replication origins as
applications, and the history of the theory, see the reviews by, cleation,” all of the essential ingredients of the KIMA
Evans[10], Fanfoni and Tomellin7], and Ramost al.[11].  model are present. The purpose of the present two papers,
_ In the KIMA model, freezing _k|net|cs r_esult fr(_)m _three then, is as follows: Here, in paper I, we discuss how to gen-
simultaneous processdg) nucleation of solid domain€is-  grajize the KIMA model for biological application. In par-
lands), (2) growth of existing islands, an() coalescence, ficylar, we consider the problem of arbitrarily varying origin
which occurs when two expanding islands merge. In the simpitiation rate (equivalent to arbitrarily varying nucleation
plest form of KIMA, islands nuclee’ge anywhere |n'the liquid 5te in freezing processedhen, in paper I[29], we discuss
areas(*holes”), with equal probability for all spatial loca- 5 nymper of subtle but generic issues that arise in the appli-
tions (*homogeneous nucleation”Once an island has been cation of the KIMA model to DNA replication. The most
nucleated, it grows out as a sphere at constant velacity jmportant of these is that the method of analysis runs back-
(The assumption of constantis usually & good one as 1ong \yard from the usual one. Normally, one starts from a known
as temperature is held constant, but real shapes are far frogcleation ratédetermined by temperature, mostand tries
spherical. In water, for example, the islands are snowflakesy geduce properties of the crystallization kinetics. In the
in general, the shape is a mixture of dendritic and facetegp|ogical experiments, the reverse is required: from mea-
forms. The effect of island shape—not relevant to the onegrements of statistics associated with replication, one wants
dimensional(1D) version of KIMA studied here—is dis- 4 geduce the initiation raté(t). This problem, along with

cussed extensively if4]) When two islands impinge, qhers relating to inevitable experimental limitations, merits
growth ceases at the point of contact, while continuing EISe'separate consideration.

where. KIMA used elementary methods, reviewed below, t0 | he mid-1980s, Sekimoto showed that the analysis of

calculate quantities such d¢t). Later researchers have re- the KIMA model could be pushed much further if growth
visited and refined KJIMA methods to take into account vari-yceurs in only one spatial dimensida7]. Sekimoto used
ous effects, such as finite system size and inhomogeneities {ethods from nonequilibrium statistical physics to describe
growth and nucleation rat¢42,13. the detailed statistics of domain sizes and spacings, as de-
fined in Fig. 1. In particular, he studied the time evolution of
domain statistics by solving Fokker-Planck-type equations
*Present address: FOM-Instituut AMOLF, Kruislaan 407, 1098 SJor island and hole distributions, for constant nucleation rate
Amsterdam, the Netherlands. Electronic address: s.jun@amolf.nl |(t)=const. His approach has since been revisited by others
"Electronic address: johnb@sfu.ca (e.g.,[18]).
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FIG. 1. Definitions. In the KIMA model, a hole is the liquid N/ \ /

domain between the growing solid domaiiisand. The island-to- A D
island is defined as the distance between the centers of two adjacent ) ) ) o )
islands. FIG. 3. Spacetime diagram. The hole-size distribupgix,t) is

proportional to the probabilitypy(x,t) for no nucleation event oc-

. curs in the shaded parallelograkBCD (see te
Below, we extend Sekimoto’s approach to the case of an P 9 ( X

arbitrary nucleation ratd(t) with zero critical radius of , hod ield(t) in th f i
nucleation[19]. As mentioned above, this case is relevant tocOne methods can yield(t) in the presence of complica-

the kinetics of DNA replication in eukaryotes. We also tions such as finite system sizgk2,13. Unfortunately, this

present two algorithms to simulate 1D nucleation and growtf?imple method cannot be used to calculate the distributions

processes that are both much faster than more standard 14€fined in Fig. 1, except that it can partly help solve the
tice methodg20]. time-evolution equation for the hole-size distributi¢see

below).

Il. THEORY
B. Hole-size distribution py,(x,t)

A. Island fraction f(t)

We definepy(x,t) as the density of holes of sizeat time
t. For a spatially homogeneous nucleation functi@y, the
densitypy, will also be spatially homogeneoudhe hole size
x should not be confused with the genome spatial coordinate
X.) The time evolutiornpy(x,t) then obeys

We begin with the calculation of(t), the fraction of is-
lands at timet in a one-dimensional system. We write as
f(t)=1-9(t), whereS(t) is the fraction of the system uncov-
ered by islandsi.e., the hole fraction In other wordsS(t) is
the probability for an arbitrary poinK at timet to remain
uncovered. If we view the evolution via a two-dimensional

spacetime diagranfFig. 2@)], we can calculat& by noting Ipn(%,H) =2 Ipn(x,t) — 1(t)Xpr(x,t) + 2I(t)fo pr(y,Hdy
that ot IX ’ § ) )
sH= lim [ (1-1,AxAD 3)
AX,AtHOx,t eA

where v is the growth velocity of islands antt) is the
:exp<_ff Iodxdt> = exp- lgut?), (1) spatially homogeneous nucleation rate at timgl7]. The
xteA first term on the right-hand side describes the effects on
pn(X,t) of domain growth in the absence of coalescence and
nucleation. The second term accounts for the annihilation of
a hole of sizex by nucleation, while the last term represents
f(t)=1 _e—lovtz’ ) the splitting of a hole _Iarger thaxi by nucleat!on. Equatipn
(3) was solved by Sekimoto fdft) =const, while Ben-Naim
which has a sigmoidal shape, as mentioned aljeee Fig. et al. derived a formal solution for arbitraryt) [21]. Below,
2(b)]. ) we show that the solution of Ben-Naiet al. can also be
We note that Kolmogorov's method can be straightfor-gptained directly by applying Kolmogorov's argument. In
wardly applied to any spatial dimensiénfor arbitrary time-  Fig. 3, we see a hole of size flanked by two islands. In
and space-dependent nucleation ratest). Similar “time-  order for such holes to exist at tinte there should be no
nucleation within the parallelograsBCD in the spacetime

whereA denotes the gray triangle shown in FigaR There-
fore,

X diagram. Similar to the calculation of the hole fractigt),
5 1 i1 we obtain the “no nucleation” probability in the parallelo-
I gram as
o ~ " - ¢ pox )= lim [T [1-1()AxAt]=St)e 9™, (4)
(@) e b) =T Ax,At—0x te ABCD

FIG. 2. Kolmogorov's method(a) Spacetime diagram. In the Whereg(t)=[¢l(t')dt’. The domain density(t) and the hole
small square box, the probability of nucleation jaxAt, wherel,  fraction S(t) are related by definition as follows:
is the nucleation rate. In order for the poXto remain uncovered
by islands, there should be no nucleation in the shaded triangle in w
spacetime.(b) Kinetic curve for constant nucleation ratg f(t) n(t) :f pr(X,1)dx, (5)
=1-exg-lt?). 0
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S(t) = f Xpp(X, )dx. (6)
0

Since the hole-size distributiopy(x,t) is proportional to
Po(X,t), we can writepy(X,t) =c(t)po(X,t). By integrating this
equation and using Eq5), we obtainc(t)=n(t)g(t)/S(t).
Putting this back into Eq.3), we obtain an equation fa(t):

1 oan(t)

n(t) ot

=~ 20g(t) + D

gt) @)

This is a first-order linear equation and can be solved exactly.

Using the boundary conditiom(0)=1, we solve Eqs(7) and
(3) to find
t
n(t) = g(t) exp(— va g(t’)dt’),
0

t
pr(xt) = g(t)? exp(— gt)x - va g(t’)dt’) )

0

(8

These are just exponential functions xafwith decay con-
stants that monotonically decrease as a function of time.

C. Island distribution p;(x,t)

In analogy to Eq(3) and following[17], the time evolu-
tion of the island distributiorp;(x,t) is governed by drift,
creation, and annihilation terms, as follows:

(X _ ) dpixt) pn(0.H)
P R (UL G R

X{ f pi(x =y, Dpi(y,Hdy - 2n(t) pi(x,1) | .
0

(10)

Again, the first term on the right-hand side represents the
effects of domain growth. The second term accounts for the

creation of islands of zero size, initiallys(x) is the Dirac

delta function] The last two terms represent the creation and
annihilation of islands by coalescence, respectively. We note

that the prefactor 2p,,(0,t)n(t)"2 can be obtained by writing
it asa(t), applying fpdx to Egs.(3) and(10) and then com-
paring the two.

Unfortunately, we cannot solve E(LO) using the simple
arguments that worked fas,(x,t). The main difference is
that a hole is created byucleationonly, while an island of
nonzero size is created by growth and/or toalescencef
two or more islands. Thusy(x,t) is given by an infinite
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@ == 2v[s+29(t)Jpi(s,)
t
+2v exp<va g(t’)dt’)?;i(s;,t)2 +1(H)S(t),
0
(11

where pi(s,t) = [{€p;(x,t)dx, with initiation conditions
0i(s,00=0. We can further simplify Eq(11) by defining
Gi(s,t)=exd 2v[{g(t")dt'Tpi(s,t), which then obeys

@ = - 20[s+g(1)]Gi(s,t) + 20Gi(s,H)? +(t).
(12)
If we write éi(s,t) as
Gi(s,t) =s+g(1) +X(s1), (13)

we find that;((s,t) obeys the(nonlineay Bernoulli equation
[22]

aX(s,t)

=[s+g(t)IX(s,t) + X(s,)%. (14)

Solving Eq.(14) and substituting back into E¢13), we find
the Laplace transforrp;(s,t):

t
(st = exp<— 20 f g(t’)dt’)éi(s,t)
0

t
= exp<— 2vf g(t’)dt’) s+g(t)
0

t
sexp{Zv(sHJ g(t')dt’”
0
_ t ,
1+2vsf exp{z{stwf g(t")dt”J}dt’
0 0

(15

We cannot perform the inverse Laplace transform of the
above equation, even for the simple casé(bf=const[i.e.,
g(t) ~t] [17,18. However, from the form of denominator in
Eqg. (15), we observe thap;(s,t) has a single simple pole
along the negative real axis [gts* ()| <1 fort>1, regard-
less of the form thatg(t) may have. Since the inverse
Laplace transform can be written formally as the Bromwich

series of probabilities for an island to contain one seed, twantegral in the complex plang.e., as the sum of residues of
seeds, three seeds, and so on. Nevertheless, we can still dbe integrand[23]), a standard strategy for obtaining the

tain the asymptotic behavior gf(x,t) for arbitraryI(t) by

asymptotic expression @f(x,t) for x> 1 is to expan;(s,t)

Laplace transforming the above evolution equation, as iraround s*(t) (|s*(t)|<1) to lowest order. Following

[17].
Applying [ydxe* to Eq. (10), we find

Sekimoto’s approach, we defikés,t) to be the denominator
in Eqg. (15), which becomes

011908-3
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t
pi(st) = exp<— va g(t’)dt’) [s+ g(t)
0

1K 1 ]

2w at K(s)

Around s=s* (1), Eq. (15) can be approximated as

t
exp| -2 J g(t’)dt’]
(st) = { ’ 0 IK(s* (1),t)
Pis -2v ot
1
X KETM
s [s—s*(1)]
t
-2 t")dt’
_+w{ ng()}dva> 1
- 2v dt s-s*(t)
(16)

From Eq.(16), we arrive at the following asymptotic expres-
sion forp;(x,t):

t
exp| - 2v f
{ 0 ds* (1)
2v dt
for x,t>1. Now, both the prefactor and the exponétiite

g(t')dt’]

pi(x,t) = eSOk (17)

PHYSICAL REVIEW E1, 011908(2005

2x

2x

FIG. 4. Constraint plan&:(i;+i,)/2+h=x.

In the 1D KIMA model, Sekimoto has shown that a con-
stant nucleation functiolfy cannot produce correlations be-
tween domain sizegl7]. We speculate that the same holds
true for any local nucleation functiohx,t), a conclusion
that is also supported by computer simulati@%,26]. As-
suming a local nucleation function, we can write the formal
expression forp;,(x,t) directly in terms of pi(x,t) and
pn(X,1):

pizi(X,t) = Cf piinDpn(h,t)pi(iz )dS, (19
{iphistes

where S designates the constraint plane shown in Fig. 4
[S:(i,+ip)/2+h=x]. The normalization coefficiert can be
obtained easily from the relatiof; pjoi (X, t)dx= [ pi(x,t)dx

= [opn(X,)dx=n(t). From Eq.(19) and Fig. 4, it is easy to
see that [pisi(X, t)dx=c[n(t)]3, and thereforec=[n(t)]2.

pole s* (t)] can be obtained very easily by simple numericalSince the full solution forp;(x,t) is not known, we cannot

methods. On the other hand, an approximate expression famtegrate Eq. (19).

s* (t) itself can be found by first expandir(s,t) inpowers

However, we can still obtain an
asymptotic expression fagfi,(x,t) using Eqs.(8) and (17).

of st and then solving iteratively using Newton’s method For x> 1, taking into account the constraigt we find

[24]. The result is

432 -J,]
J, 4 oz)l

18
X 238 (18

s* (t):—\]i<1+

0

t T
JnEJ exp(f g(t’)dt’)f“dr.
0 0

As we shall show below, Eq17) describes the behavior of
pi(x,t) accurately forx= 2ut.

where

D. Island-to-island distribution pj5(x,t)

While most studies of 1D nucleation growth have focuse

on py(x,t) andp;(x,t) exclusively, the distribution of the dis-
tances between two centers of adjacent islditids island-
to-island distributionp;,(x,t)] has important applications.

For instance, whether homogeneous nucleation is a valid a

sumption cannot be knowa priori. Indeed, in the recent

DNA replication experiment that motivated this work, the
“nucleation” sites for DNA replication along the genome

pin(,8) ~ f oI5 Ol-gOnIs Olzgs
{iphiotes

~ e_g<t)x + e_z‘S*(t)‘X[— 1+ g(t)x
- 2|s* (t)|x]. (20)

As we shall show later, the bottom portion of Eg0) is

an excellent approximation for all rangeoéind timet. Note
that the first term on the right-hand side has the same
asymptotic behavior as the hole-size distributip(x,t),
while the exponential factor in the second term comes from
the product of island-size distributions-e7s"®li1 and
~e15°Wliz2, The asymptotic behavior gf(x,t) is dominated

Y pr(X,t) for f<0.5 and byp;(x,t) for f>0.5 (see below

ut at all times, we emphasize thas;(x,t) is asymptotically
exponential for largex. From a mathematical point of view,
both p;(x,t) andpy,(x,t) have exponential tails at large and
g_we integral of the product of exponential functions again
produces an exponential.

Ill. NUMERICAL SIMULATION

were found to be not distributed randomly, a result that has

important biological implications for cell-cycle regulation
[25].

Often, one has to deal with systems for which analytical
results are difficult, if not impossible, to obtain. For example,
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the finite size of the system may affect its kinetics signifi- 10
cantly or the variation of growth velocity at different regions
and/or different times could be important. In such cases,
computer simulation is the most direct and practical ap- 10’
proach.

For one-dimensional KIMA processes, the most straight-
forward simulation method is to use an Ising-model-like lat-
tice, where each lattice site is assigned either 1 r0-1,
for the Ising model representing island and hole, respec-
tively. The natural lattice size i&x=vAt, with v the growth
velocity. At each time stet of the simulation, every lattice
site is examined. If 0, the site can be nucleated by the stan .
dard Monte Carlo procedure; i.e., a random number is gen- °
erated and compared with the nucleation probability
[(t)AxAt. If the random number is larger than the nucleation
probability, the lattice site switches from 0 to 1. Once nucle-
ation is done, the islands grow Ik, namely, by one lattice 10 10 10° 10 10
size at each end. System Size

Although straightforward to implement, the lattice model ) ) o )
is slow and uses more memory than necessary, as one StoresFlG' 5. _Comparlson of simulation times fo_r the three algorithms
information not only for the moving domain boundaries butdiscussed in the teft(t)=10"t andv=0.5]. Circles are used for
also for the bulk. Recently, Herrickt al. used a more effi- the Iat_tlce-model algorithm, squares _for theT double-list algorithm,
cient algorithm{ 16]. Specifically, they recorded the positions a_nd triangles for the phantom-nuclel_ algorlthm. For each system
of moving island edges only. Naturally, the nucleation of an>%® the_number of Monte Carlo reallzatm_ns ranges from 5 to 20,
. . . - .. and the lines connect the average simulation times. The double-list
island creates two new, ppposnely moving bounda_rles, Wh"(%lgorithm is two to three orders of magnitude faster than the lattice
the coalescence of an island removes the colliding boun algorithm, while the phantom-nuclei algorithm ranges from three to

aries. five orders of magnitude faster, depending on the number of time
For the present study, we have developed two other alggsoints at which one records data. The solid triangles show the fast-

rithms, which have improved both simulation and analysisest case, with only one time point requested, while the open tri-

speeds by factors of up to 1(Fig. 5. The first of these, the  angles show the slowest case, where data are recorded at each in-
“double-list” algorithm, extends the method of Herriekal.  termediate time step.

[16]. The second of these, the “phantom-nuclei” algorithm, is _ _ _ )
inspired by the original work of Avranii3]. double-list algorithm described above. We wrote and opti-

mized both programs using theor PROprogramming lan-
guag€ 28], and they were run on a typical desktop computer
) . . ) (Pentium P3, 900 MHz For both, we used the same simu-
Figure 6 describes schematically the double-list algojation conditions: time stepAt=0.1, nucleation rate (t)
rithm. The basic idea is to maintain two separate lists o105, and growth velocityy=0.5. Note that the perfor-
lengths:{i} for islands,{h} for holes[27]. The second listh}  mance of the lattice algorithm ©®(N), whereas the double-
records the cumulative lengths of holes, whiig lists the  |ist algorithm is roughlyN>-2for 10°<N=<10". The main
individual island sizes. Using cumulative hole lengths sim-reason is that the double-list algorithm has to maintain dy-
plifies the nucleation routine dramatically. For instance, fornamic lists{i} and{h}. This requires searching for, removing,
timest ranging betweer and 7+ A, the average number of and inserting elementas well as minor sortingwhere each

new nucleations idl=1(7)AxAt. Since the nucleation process algorithm is linear, or roughlyO(N?) in overall. However,
is Poissonian. we obtain the actual number of new nuclethe double-list algorithm performed almost three orders of
— magnitudes faster than the lattice algorithm even at a system

ations,N=p(N), from the Poisson distributiop. We then ;0 of 16, and we did not attempt to improve the efficiency
generateN random numbers between 0 and the total holexrther for example, by using a binary search.
size—namely, the largest cumulative length of holgs, Finally, the relative storage requirements for the lattice
(the last element ofh}). The list {h} is then updated by algorithm compared to the double-list algorithm can be esti-
inserting theN generated numbers in their rank order. Ac- mated by the ratiN,,/Nmae WhereN,, is the total number
cordingly, {i} is automatically updated by inserting zeros at|attice sites per unit length am, ,, is the domain density.
the corresponding places. {h} were to record the actual Equivalently, one may usk,,/Ax, wherel, is the mini-
domain sizes a$i} does, the nucleation routine would be- mum island-to-island distance addk the lattice size. Since
come much more complicated because the individual holene usually sets up the simulation conditions such that
sizes would have to be taken into account as weighting fac> Ax, the double-list algorithm requires much less memory.
tors in distributing the nucleation positions along the tem-
plate.

Figure 5 compares the running times for two different Figure 7 describes schematically the phantom-nuclei algo-
algorithms: the standard lattice model versus the continuousthm. The basic idea is to capitalize on the ability to specify

Lattice model

/ Phantom nuclei

. o algorithm
Double-list algorithm (direct growth)

Simulation time (second)

107

A. Double-list algorithm

B. Phantom-nuclei algorithm
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{i} {h'}
0] do |hy'=h,
1l i) |h)=hy+h, AT
2| iy | hy' =hy+h, +h,
T « > «> <« >
1 — L] —
L 4 L
b
W ————>h/ %
{h} —n,
(a) -’hqo--’ h, b hy N Space
iy hy . Before nucleation FIQ. 7. Schematic d_esc_ript_ion of the phgnt_or_n_-n_uclei_algo_rithm.
Q| @ - The figure shows the distribution of potential initiation sites in the
h, A} spacetime plane. The open circles denote sites that do initiate, while
U hy' the “phantom” solid circles, lying in the “shadow” of the open
* i P circles, do not initiate.
. 1 h,
) b R hy The principal advantage of the phantom-nuclei algorithm
L 1 . is that one can find the state of the system at a particular time
AAﬂer nucleation t without having to calculate the system’s state at intermedi-
— T {1} {n} ate time steps. If one is interested in only a small number of
booh ok 0| i by system states, then the method can be significantly faster
by b, h [1]i hy =x _than the double-list z_ilgorithm. The solid triangles in Fig. 5
x 2 [ip=0 b, =oldh, illustrate a 100-fold improvement compared to the double-
Random)«:numberbetweenOamI hy 3| ooy, | booldn, list algorithm (and a 16-fold improvement relative to the
() : 2 lattice algorithm. On the other hand, if information is

needed at every time stépr if the number of phantom nu-
clei is very largg, the algorithm slows. The open triangles in

Before coalescence Fig. 5 show a simulation where information is collected at
{_‘} (' each time step. The run time is comparable to the double-list
O o |hy'=hy algorithm. Because there is no sorting operation, a linear
1 iy |h'=hg+0 time scaling is maintained. The phantom-nuclei and double-
2| iy |h'=hy+0+h, list algorithms thus cross over at abouk 2(° sites.

The phantom-nuclei algorithm is performed as follows.

(i) One generates the potential initiation sites in the two-
dimensional spacetime plane. At each time, this is done in
the same way as in the double-list algorithm. The only dif-

After coalescence

e W {n} ference is that, here, the number of sites at any time is cal-
9 b hy' =1y culated over the whole length of the systémegardless of its
1] old i+ ip) | hy' =oldhy state of transformation One uses two vectors to store the
© new h, position and initiation time of every potential site.

(i) One removes all initiation sites that are in positions
FIG. 6. Schematic description of the double-list algorit@.  that have already transformed before their initiation time.
Basic setup for listi} and{h’}. Note that{h’} records cumulative (They lie in the “shadows” in Fig. Y.Because the growth
lengths.(b) Nucleation.(c) Coalescence due to growth. velocity is known at each time, it is straightforward to imple-
ment this. Briefly, one first sorts the potential initiation sites
by space. Then, for each potential sftedexed byi, with
when and where in the two-dimensional spacetime plane lipositionx; and nominal initiation time;), one calculates the
potential initiation sites, in advance of the actual simulation.position of the right-hand boundary at the reference time
Thus, in Fig. 7, the circles, which represent potential initia-point t. This is given byr;=x;+v(t-t;) for eachi. One then
tion sites, are laid down in a first part of the simulation. Oneproceeds through the list. If r; <r; for anyj <i, then sitei
then uses an algorithm, described below, to determine whicls discarded. Finally, one repeats the analogous process mov-
of these potential sites actually initiatéhese are denoted by ing to the left, using the left-hand boundarig§=x;
open circley and which cannot fire because the system hasv(t-t;).
already been transformedhese “phantom nuclei” are de- (iiif) One calculates the desired statistics at the reference
noted by solid circles time point. This time point is arbitrary. For the solid triangles
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FIG. 8. (Color onlind. Theory and simulation results foft)=10"t andv=0.5. Size distributions are calculated at these time points:
t=50, 75, and 100(a) Hole-size distributiorp,(x,t). (b) Island distributionp;(x,t). The inset plots(t) vs t, with the dot att=75 (f=0.5).
(c) Island-to-island distributiom;,;(x,t). The analytical curves have been obtained by @6). There is a crossover of the decay constant
slightly aftert=75(f=0.5) (see text The inset showp,(x,t) andp;,i(x,t) for t=50. All figures including insets have the same vertical range
of 107-1072 (log scal@.

of Fig. 5, itis the last time step of the transformation processthan 2t must have resulted from the merger of smaller is-
while in the open triangles, it occurs at the next time step ofands. Therefore, fax< 2ut, p;(x,t) has an extra contribution
the double-list simulation(For the latter case, the statistics from islands that contain only a single seed in them, which
were then repeatedly calculated at each time interval. makesp;(x,t) deviate from a simple exponential. Although
In conclusion, we note that both the double-list and thesuch discontinuities are expected at every2vtn (n
phantom-nuclei algorithms are significant improvements on=1,2,3, ..), higher-order deviations decrease geometrically
the more straightforward lattice algorithm. For simple initia- gnd thus are almost invisible.
tion schemes, where it is possible to give a functitt for Finally, the island-to-island distributiop,(x,t) provides
the intiation sites, the phantom-nuclei algorithm will gener-important insight about the “seed distribution” and about the
ally be preferable. For more complicated initiation schemesgpatial homogeneity of the nucleation. Note tpat(x,t) is
where the initiation of sites is correlated with the activationnot monotonic and has a pealoat 0 [see Fig. &)]. This is
of earlier sites, the double-list algorithm may be preferablenot surprising becausg(x,t) —0 asx—0 from Eq.(19).
In the next _section,_we present simulation results based of, the other hand, we see thsg(x,t) decays exponentially
the double-list algorithm. at largex, as predicted in the previous sectiiiy. (20)]. In
contrast tap;(x,t) andp,(x,t), however, the decay constant is
IV. COMPARISON BETWEEN THEORY AND not a monotonic function of time. This can be understood as
SIMULATION follows: at early times, the large island-to-island distances
p-.come from large holes and therefopg(x,t) ~ pp(x), as

In Fig. 8, we compare the various analytical results o oned i he | ¢ Fi p hi
tained in the previous sections with a Monte Carlo simula.mentioned earlier[The inset of Fig. &) confirms this]

tion. Shown arep,(x, 1), pi(x,1), and pi(x,t) for 1(t)=10"5% However, as the islanq fractiof(t) approaches .unity, the
at three different time point$=50, 75, and 100. The system SYSteém becomes mainly coveged by large islands, and
size is 10 and the growth rate is=0.5. The chosen form of pizi (%, 1) shoul_d approachvpi(x,t.) asymptotically[see the
acceleratingl (1), linear in time, is the simplest nontrivial S€cond term in the bottom portion of EQO)]. _
nucleation scenario. It is also relevant to the description of In _F|g_. 9 we plot the decay constants for the three differ-
DNA replication kinetics inXenopusearly embryos, where €Nt distributions,z, 7, and 7. Note that wherf <0.5, 7,
the | (t) extracted from experimental data has a bilinear form™ 7izi» @ discussed above. As~1, the behavior ofry is
[16].

The agreement between simulation and analytical results
is excellent. In particular, we emphasize that the analytic
curves in Fig. 8 are not a fit. Note that, fge>1, all three
distributions decay exponentially as predicted by EgS,
(17), and(20). [The p,(x,t) distributions are simple exponen-
tials over the entire range of]

One interesting feature @k(x,t) is the inflection point in
the interval O<x=<2ut, where p;(x,t) is slightly convex. 2'5 T 7'5 T '155
Such behavior is even more dramatic wHén=const[17], i
and p;(x,t) is strongly convex. In other wordgy(x,t) in- Time
creases ag approaches#™, but suddenly drops discontinu- FIG. 9. (Color onling. Decay constant&™) of p,(x,t), pi(X,1),
ously atx=2vt, decaying exponentially. This peculiar behav- and p;(x,t) for 1(t)=105t andv=0.5. The symbols are simula-
ior of p;(x,t) originates from the fact that any island larger tions, and the solid lines are theory.

400

Island

Decay constants
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controlled by7;, as suggested by ERO). Becaus®i2i~pi2, function I(t) of time, deriving a number of analytic results
we expectr;, — 0.57;; however, the corrections to this rela- concerning the properties of various domain distributions.
tionship in Eq.(20) imply that this holds true only for large e have also presented highly efficient simulation algo-
x andt. Note that the azptual minimum of is atf>0.5  yithms for 1D nucleation-growth problems. Both analytical
because;, depends o and notp; alone. . and simulation results are in excellent agreement. In the
One final note about the island-to-island distribution 'Scompanion paper, we discuss the application of these results

that, unlike pi(x,1), it is a continuous function ok. The to experiments in general and to the analysis of DNA repli-
reason for this is that for any island-to-island distarcthe =XPEriments in gen y P
cation kinetics in particular.

discontinuousp;(y<x,t) contributes top;5(x,t) in a cumu-
lative way, as can be seen in Eq9). This implies that there
is no specific length scale where discontinuity can come in.
From a mathematical point of view, this is equivalent to say- ACKNOWLEDGMENTS
ing that the integral of a piecewise discontinuous function

[the integrand in Eq(19)] is continuous. ) ) _
We thank Tom Chou, Massimo Fanfoni, Govind Menon,

V. CONCLUSION Nick Rhind, and Ken Sekimoto, Massimo Tomellini for help-

To summarize, we have extended the KIMA model to thdul comments and discussions on 1D nucleation-and-growth
case where the homogeneous nucleation rate is an arbitrafjodels. This work was supported by NSERCanada
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