
Nucleation and growth in one dimension.
I. The generalized Kolmogorov-Johnson-Mehl-Avrami model

Suckjoon Jun,* Haiyang Zhang, and John Bechhoefer†

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
sReceived 30 July 2004; published 21 January 2005d

Motivated by a recent application of the Kolmogorov-Johnson-Mehl-AvramisKJMAd model to the study of
DNA replication, we consider the one-dimensionals1Dd version of this model. We generalize previous work to
the case where the nucleation rate is an arbitrary functionIstd and obtain analytical results for the time-
dependent distributions of various quantitiesssuch as the island distributiond. We also present improved
computer simulation algorithms to study the 1D KJMA model. The analytical results and simulations are in
excellent agreement.
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I. INTRODUCTION

Consider a tray of water that at timet=0 is put into a
freezer. A short while later, the water is all frozen. One may
thus ask, what fractionfstd of water is frozen at timetù0?
In the 1930s, several scientists independently derived a sto-
chastic model that could predict the form offstd, which ex-
perimentally is a sigmoidal curve. The Kolmogorov-
Johnson-Mehl-AvramisKJMAd model f1–3g has since been
widely used by metallurgists and other materials scientists to
analyze phase transition kineticsf4g. In addition, the model
has been applied to a wide range of other problems, from
crystallization kinetics of lipidsf5g, polymersf6g, the analy-
sis of depositions in surface sciencef7g, to ecological sys-
tems f8g and even to cosmologyf9g. For further examples,
applications, and the history of the theory, see the reviews by
Evansf10g, Fanfoni and Tomellinif7g, and Ramoset al. f11g.

In the KJMA model, freezing kinetics result from three
simultaneous processes:s1d nucleation of solid domainss“is-
lands”d, s2d growth of existing islands, ands3d coalescence,
which occurs when two expanding islands merge. In the sim-
plest form of KJMA, islands nucleate anywhere in the liquid
areass“holes”d, with equal probability for all spatial loca-
tions s“homogeneous nucleation”d. Once an island has been
nucleated, it grows out as a sphere at constant velocityv.
sThe assumption of constantv is usually a good one as long
as temperature is held constant, but real shapes are far from
spherical. In water, for example, the islands are snowflakes;
in general, the shape is a mixture of dendritic and faceted
forms. The effect of island shape—not relevant to the one-
dimensionals1Dd version of KJMA studied here—is dis-
cussed extensively inf4g.d When two islands impinge,
growth ceases at the point of contact, while continuing else-
where. KJMA used elementary methods, reviewed below, to
calculate quantities such asfstd. Later researchers have re-
visited and refined KJMA methods to take into account vari-
ous effects, such as finite system size and inhomogeneities in
growth and nucleation ratesf12,13g.

Although most of the applications of the KJMA model
have been to the study of phase transformations in three-
dimensional systems, similar ideas have been applied to a
wide range of one-dimensional problems, such as Rényi’s
car-parking problemf14g and the coarsening of long parallel
droplets f15g. Recently, we have shown that the one-
dimensional KJMA model can also be used to describe DNA
replication in higher organismsf16g. Briefly, in higher organ-
isms seukaryotesd, DNA replication is initiated at multiple
origins throughout the genome. A replicated domain then
grows symmetrically with velocityv away from the replica-
tion origin. Domains that impinge coalesce. And finally, each
base in the genome is replicated only once per cell cycle.
Thus, if one views replicated regions as “solid,” unreplicated
ones as “liquid,” and the initiation of replication origins as
“nucleation,” all of the essential ingredients of the KJMA
model are present. The purpose of the present two papers,
then, is as follows: Here, in paper I, we discuss how to gen-
eralize the KJMA model for biological application. In par-
ticular, we consider the problem of arbitrarily varying origin
initiation rate sequivalent to arbitrarily varying nucleation
rate in freezing processesd. Then, in paper IIf29g, we discuss
a number of subtle but generic issues that arise in the appli-
cation of the KJMA model to DNA replication. The most
important of these is that the method of analysis runs back-
ward from the usual one. Normally, one starts from a known
nucleation ratesdetermined by temperature, mostlyd and tries
to deduce properties of the crystallization kinetics. In the
biological experiments, the reverse is required: from mea-
surements of statistics associated with replication, one wants
to deduce the initiation rateIstd. This problem, along with
others relating to inevitable experimental limitations, merits
separate consideration.

In the mid-1980s, Sekimoto showed that the analysis of
the KJMA model could be pushed much further if growth
occurs in only one spatial dimensionf17g. Sekimoto used
methods from nonequilibrium statistical physics to describe
the detailed statistics of domain sizes and spacings, as de-
fined in Fig. 1. In particular, he studied the time evolution of
domain statistics by solving Fokker-Planck-type equations
for island and hole distributions, for constant nucleation rate
Istd=const. His approach has since been revisited by others
se.g.,f18gd.
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Below, we extend Sekimoto’s approach to the case of an
arbitrary nucleation rateIstd with zero critical radius of
nucleationf19g. As mentioned above, this case is relevant to
the kinetics of DNA replication in eukaryotes. We also
present two algorithms to simulate 1D nucleation and growth
processes that are both much faster than more standard lat-
tice methodsf20g.

II. THEORY

A. Island fraction f„t…

We begin with the calculation offstd, the fraction of is-
lands at timet in a one-dimensional system. We write as
fstd=1−Sstd, whereSstd is the fraction of the system uncov-
ered by islandssi.e., the hole fractiond. In other words,Sstd is
the probability for an arbitrary pointX at time t to remain
uncovered. If we view the evolution via a two-dimensional
spacetime diagramfFig. 2sadg, we can calculateS by noting
that

Sstd = lim
Dx,Dt→0

p
x,tPD

s1 − I0DxDtd

= expS−E E
x,tPD

I0dxdtD = exps− I0vt2d, s1d

whereD denotes the gray triangle shown in Fig. 2sad. There-
fore,

fstd = 1 −e−I0vt2, s2d

which has a sigmoidal shape, as mentioned abovefsee Fig.
2sbdg.

We note that Kolmogorov’s method can be straightfor-
wardly applied to any spatial dimensionD for arbitrary time-
and space-dependent nucleation ratesIsxW ,td. Similar “time-

cone” methods can yieldfstd in the presence of complica-
tions such as finite system sizesf12,13g. Unfortunately, this
simple method cannot be used to calculate the distributions
defined in Fig. 1, except that it can partly help solve the
time-evolution equation for the hole-size distributionssee
belowd.

B. Hole-size distribution rh„x ,t…

We definerhsx,td as the density of holes of sizex at time
t. For a spatially homogeneous nucleation functionIstd, the
densityrh will also be spatially homogeneous.sThe hole size
x should not be confused with the genome spatial coordinate
X.d The time evolutionrhsx,td then obeys

]rhsx,td
]t

= 2v
]rhsx,td

]x
− Istdxrhsx,td + 2IstdE

x

`

rhsy,tddy,

s3d

where v is the growth velocity of islands andIstd is the
spatially homogeneous nucleation rate at timet f17g. The
first term on the right-hand side describes the effects on
rhsx,td of domain growth in the absence of coalescence and
nucleation. The second term accounts for the annihilation of
a hole of sizex by nucleation, while the last term represents
the splitting of a hole larger thanx by nucleation. Equation
s3d was solved by Sekimoto forIstd=const, while Ben-Naim
et al. derived a formal solution for arbitraryIstd f21g. Below,
we show that the solution of Ben-Naimet al. can also be
obtained directly by applying Kolmogorov’s argument. In
Fig. 3, we see a hole of sizex flanked by two islands. In
order for such holes to exist at timet, there should be no
nucleation within the parallelogramABCD in the spacetime
diagram. Similar to the calculation of the hole fractionSstd,
we obtain the “no nucleation” probability in the parallelo-
gram as

p0sx,td = lim
Dx,Dt→0

p
x,tPABCD

f1 − IstdDxDtg = Sstde−gstdx, s4d

wheregstd=e0
t Ist8ddt8. The domain densitynstd and the hole

fraction Sstd are related by definition as follows:

nstd =E
0

`

rhsx,tddx, s5d

FIG. 1. Definitions. In the KJMA model, a hole is the liquid
domain between the growing solid domainssislandd. The island-to-
island is defined as the distance between the centers of two adjacent
islands.

FIG. 2. Kolmogorov’s method.sad Spacetime diagram. In the
small square box, the probability of nucleation isI0DxDt, whereI0

is the nucleation rate. In order for the pointX to remain uncovered
by islands, there should be no nucleation in the shaded triangle in
spacetime.sbd Kinetic curve for constant nucleation rateI0: fstd
=1−exps−I0vt2d.

FIG. 3. Spacetime diagram. The hole-size distributionrhsx,td is
proportional to the probabilityp0sx,td for no nucleation event oc-
curs in the shaded parallelogramABCD ssee textd.
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Sstd =E
0

`

xrhsx,tddx. s6d

Since the hole-size distributionrhsx,td is proportional to
p0sx,td, we can writerhsx,td=cstdp0sx,td. By integrating this
equation and using Eq.s5d, we obtain cstd=nstdgstd /Sstd.
Putting this back into Eq.s3d, we obtain an equation fornstd:

1

nstd
]nstd

]t
= − 2vgstd +

Istd
gstd

. s7d

This is a first-order linear equation and can be solved exactly.
Using the boundary conditionns0d=1, we solve Eqs.s7d and
s3d to find

nstd = gstd expS− 2vE
0

t

gst8ddt8D , s8d

rhsx,td = gstd2 expS− gstdx − 2vE
0

t

gst8ddt8D . s9d

These are just exponential functions ofx, with decay con-
stants that monotonically decrease as a function of time.

C. Island distribution ri„x ,t…

In analogy to Eq.s3d and following f17g, the time evolu-
tion of the island distributionrisx,td is governed by drift,
creation, and annihilation terms, as follows:

]risx,td
]t

= − 2v
]risx,td

]x
+ IstdSstddsxd + 2v

rhs0,td
nstd2

3FE
0

x

risx − y,tdrisy,tddy− 2nstdrisx,tdG .

s10d

Again, the first term on the right-hand side represents the
effects of domain growth. The second term accounts for the
creation of islands of zero size, initially.fdsxd is the Dirac
delta function.g The last two terms represent the creation and
annihilation of islands by coalescence, respectively. We note
that the prefactor 2vrhs0,tdnstd−2 can be obtained by writing
it as astd, applyinge0

`dx to Eqs.s3d and s10d and then com-
paring the two.

Unfortunately, we cannot solve Eq.s10d using the simple
arguments that worked forrhsx,td. The main difference is
that a hole is created bynucleationonly, while an island of
nonzero size is created by growth and/or thecoalescenceof
two or more islands. Thus,risx,td is given by an infinite
series of probabilities for an island to contain one seed, two
seeds, three seeds, and so on. Nevertheless, we can still ob-
tain the asymptotic behavior ofrisx,td for arbitrary Istd by
Laplace transforming the above evolution equation, as in
f17g.

Applying e0
`dxe−sx to Eq. s10d, we find

]r̃iss,td
]t

= − 2vfs+ 2gstdgr̃iss,td

+ 2v expS2vE
0

t

gst8ddt8Dr̃iss,td2 + IstdSstd,

s11d

where r̃iss,td;e0
`e−sxrisx,tddx, with initiation conditions

r̃iss,0d=0. We can further simplify Eq.s11d by defining

G̃iss,td=expf2ve0
t gst8ddt8gr̃iss,td, which then obeys

]G̃iss,td
]t

= − 2vfs+ gstdgG̃iss,td + 2vG̃iss,td2 + Istd.

s12d

If we write G̃iss,td as

G̃iss,td = s+ gstd + X̃ss,td, s13d

we find thatX̃ss,td obeys thesnonlineard Bernoulli equation
f22g

]X̃ss,td
]t

= fs+ gstdgX̃ss,td + X̃ss,td2. s14d

Solving Eq.s14d and substituting back into Eq.s13d, we find
the Laplace transformr̃iss,td:

r̃iss,td = expS− 2vE
0

t

gst8ddt8DG̃iss,td

= expS− 2vE
0

t

gst8ddt8D5s+ gstd

−

sexpF2vSst+E
0

t

gst8ddt8DG
1 + 2vsE

0

t

expH2vFst8 +E
0

t8
gst9ddt9GJdt86 .

s15d

We cannot perform the inverse Laplace transform of the
above equation, even for the simple case ofIstd=constfi.e.,
gstd, tg f17,18g. However, from the form of denominator in
Eq. s15d, we observe thatr̃iss,td has a single simple pole
along the negative real axis atus=s* stdu!1 for t@1, regard-
less of the form thatgstd may have. Since the inverse
Laplace transform can be written formally as the Bromwich
integral in the complex planesi.e., as the sum of residues of
the integrandf23gd, a standard strategy for obtaining the
asymptotic expression ofrisx,td for x@1 is to expandr̃iss,td
around s* std sus* stdu!1d to lowest order. Following
Sekimoto’s approach, we defineKss,td to be the denominator
in Eq. s15d, which becomes
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r̃iss,td = expS− 2vE
0

t

gst8ddt8DFs+ gstd

−
1

2v

]Kss,td
]t

1

Kss,tdG .

Around s=s* std, Eq. s15d can be approximated as

r̃iss,td .

expF− 2vE
0

t

gst8ddt8G
− 2v

]K„s* std,t…
]t

3

1

]K„s* std,t…
]s

fs− s* stdg

= +

expF− 2vE
0

t

gst8ddt8G
2v

ds* std
dt

1

s− s* std
.

s16d

From Eq.s16d, we arrive at the following asymptotic expres-
sion for r̃isx,td:

risx,td .

expF− 2vE
0

t

gst8ddt8G
2v

ds* std
dt

e−us* stdux, s17d

for x,t@1. Now, both the prefactor and the exponentfthe
pole s* stdg can be obtained very easily by simple numerical
methods. On the other hand, an approximate expression for
s* std itself can be found by first expandingKss,td inpowers
of st and then solving iteratively using Newton’s method
f24g. The result is

s* std . −
1

J0
S1 +

J1

J0
2 +

4J1
2 − J0J2

2J0
4 D , s18d

where

Jn ; E
0

t

expSE
0

t

gst8ddt8Dtndt.

As we shall show below, Eq.s17d describes the behavior of
risx,td accurately forx*2vt.

D. Island-to-island distribution ri2i„x ,t…

While most studies of 1D nucleation growth have focused
on rhsx,td andrisx,td exclusively, the distribution of the dis-
tances between two centers of adjacent islandsfthe island-
to-island distributionri2isx,tdg has important applications.
For instance, whether homogeneous nucleation is a valid as-
sumption cannot be knowna priori. Indeed, in the recent
DNA replication experiment that motivated this work, the
“nucleation” sites for DNA replication along the genome
were found to be not distributed randomly, a result that has
important biological implications for cell-cycle regulation
f25g.

In the 1D KJMA model, Sekimoto has shown that a con-
stant nucleation functionI0 cannot produce correlations be-
tween domain sizesf17g. We speculate that the same holds
true for any local nucleation functionIsx,td, a conclusion
that is also supported by computer simulationf25,26g. As-
suming a local nucleation function, we can write the formal
expression forri2isx,td directly in terms of risx,td and
rhsx,td:

ri2isx,td = cE
hi1,h,i2jPS

risi1,tdrhsh,tdrisi2,tddS, s19d

where S designates the constraint plane shown in Fig. 4
fS: si1+ i2d /2+h=xg. The normalization coefficientc can be
obtained easily from the relatione0

`ri2isx,tddx=e0
`risx,tddx

=e0
`rhsx,tddx=nstd. From Eq.s19d and Fig. 4, it is easy to

see thate0
`ri2isx,tddx=cfnstdg3, and thereforec=fnstdg−2.

Since the full solution forrisx,td is not known, we cannot
integrate Eq. s19d. However, we can still obtain an
asymptotic expression forri2isx,td using Eqs.s8d and s17d.
For x@1, taking into account the constraintS, we find

ri2isx,td , E
hi1,h,i2jPS

e−us* stdui1−gstdh−us* stdui2dS

, e−gstdx + e−2us* stduxf− 1 +gstdx

− 2us* stduxg. s20d

As we shall show later, the bottom portion of Eq.s20d is
an excellent approximation for all range ofx and timet. Note
that the first term on the right-hand side has the same
asymptotic behavior as the hole-size distributionrhsx,td,
while the exponential factor in the second term comes from
the product of island-size distributions,e−us* stdui1 and
,e−us* stdui2. The asymptotic behavior ofri2isx,td is dominated
by rhsx,td for f ,0.5 and byrisx,td for f .0.5 ssee belowd.
But at all times, we emphasize thatri2isx,td is asymptotically
exponential for largex. From a mathematical point of view,
bothrisx,td andrhsx,td have exponential tails at largex, and
the integral of the product of exponential functions again
produces an exponential.

III. NUMERICAL SIMULATION

Often, one has to deal with systems for which analytical
results are difficult, if not impossible, to obtain. For example,

FIG. 4. Constraint planeS: si1+ i2d /2+h=x.
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the finite size of the system may affect its kinetics signifi-
cantly or the variation of growth velocity at different regions
and/or different times could be important. In such cases,
computer simulation is the most direct and practical ap-
proach.

For one-dimensional KJMA processes, the most straight-
forward simulation method is to use an Ising-model-like lat-
tice, where each lattice site is assigned either 1 or 0sor −1,
for the Ising modeld representing island and hole, respec-
tively. The natural lattice size isDx=vDt, with v the growth
velocity. At each time stepDt of the simulation, every lattice
site is examined. If 0, the site can be nucleated by the stan-
dard Monte Carlo procedure; i.e., a random number is gen-
erated and compared with the nucleation probability
IstdDxDt. If the random number is larger than the nucleation
probability, the lattice site switches from 0 to 1. Once nucle-
ation is done, the islands grow byDx, namely, by one lattice
size at each end.

Although straightforward to implement, the lattice model
is slow and uses more memory than necessary, as one stores
information not only for the moving domain boundaries but
also for the bulk. Recently, Herricket al. used a more effi-
cient algorithmf16g. Specifically, they recorded the positions
of moving island edges only. Naturally, the nucleation of an
island creates two new, oppositely moving boundaries, while
the coalescence of an island removes the colliding bound-
aries.

For the present study, we have developed two other algo-
rithms, which have improved both simulation and analysis
speeds by factors of up to 105 sFig. 5d. The first of these, the
“double-list” algorithm, extends the method of Herricket al.
f16g. The second of these, the “phantom-nuclei” algorithm, is
inspired by the original work of Avramif3g.

A. Double-list algorithm

Figure 6 describes schematically the double-list algo-
rithm. The basic idea is to maintain two separate lists of
lengths:hij for islands,hhj for holesf27g. The second listhhj
records the cumulative lengths of holes, whilehij lists the
individual island sizes. Using cumulative hole lengths sim-
plifies the nucleation routine dramatically. For instance, for
timest ranging betweent andt+Dt, the average number of

new nucleations isN̄= IstdDxDt. Since the nucleation process
is Poissonian, we obtain the actual number of new nucle-

ations, N=psN̄d, from the Poisson distributionp. We then
generateN random numbers between 0 and the total hole
size—namely, the largest cumulative length of holeshmax
sthe last element ofhhjd. The list hhj is then updated by
inserting theN generated numbers in their rank order. Ac-
cordingly, hij is automatically updated by inserting zeros at
the corresponding places. Ifhhj were to record the actual
domain sizes ashij does, the nucleation routine would be-
come much more complicated because the individual hole
sizes would have to be taken into account as weighting fac-
tors in distributing the nucleation positions along the tem-
plate.

Figure 5 compares the running times for two different
algorithms: the standard lattice model versus the continuous

double-list algorithm described above. We wrote and opti-
mized both programs using theIGOR PROprogramming lan-
guagef28g, and they were run on a typical desktop computer
sPentium P3, 900 MHzd. For both, we used the same simu-
lation conditions: time stepDt=0.1, nucleation rateIstd
=10−5t, and growth velocityv=0.5. Note that the perfor-
mance of the lattice algorithm isOsNd, whereas the double-
list algorithm is roughlyN1.5–2 for 105øNø107. The main
reason is that the double-list algorithm has to maintain dy-
namic listshij andhhj. This requires searching for, removing,
and inserting elementssas well as minor sortingd, where each
algorithm is linear, or roughlyOsN2d in overall. However,
the double-list algorithm performed almost three orders of
magnitudes faster than the lattice algorithm even at a system
size of 107, and we did not attempt to improve the efficiency
further, for example, by using a binary search.

Finally, the relative storage requirements for the lattice
algorithm compared to the double-list algorithm can be esti-
mated by the ratioNlat /nmax, whereNlat is the total number
lattice sites per unit length andnmax is the domain density.
Equivalently, one may uselmin/Dx, where lmin is the mini-
mum island-to-island distance andDx the lattice size. Since
one usually sets up the simulation conditions such thatlmin
@Dx, the double-list algorithm requires much less memory.

B. Phantom-nuclei algorithm

Figure 7 describes schematically the phantom-nuclei algo-
rithm. The basic idea is to capitalize on the ability to specify

FIG. 5. Comparison of simulation times for the three algorithms
discussed in the textfIstd=10−5t and v=0.5g. Circles are used for
the lattice-model algorithm, squares for the double-list algorithm,
and triangles for the phantom-nuclei algorithm. For each system
size, the number of Monte Carlo realizations ranges from 5 to 20,
and the lines connect the average simulation times. The double-list
algorithm is two to three orders of magnitude faster than the lattice
algorithm, while the phantom-nuclei algorithm ranges from three to
five orders of magnitude faster, depending on the number of time
points at which one records data. The solid triangles show the fast-
est case, with only one time point requested, while the open tri-
angles show the slowest case, where data are recorded at each in-
termediate time step.
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when and where in the two-dimensional spacetime plane lie
potential initiation sites, in advance of the actual simulation.
Thus, in Fig. 7, the circles, which represent potential initia-
tion sites, are laid down in a first part of the simulation. One
then uses an algorithm, described below, to determine which
of these potential sites actually initiatessthese are denoted by
open circlesd and which cannot fire because the system has
already been transformedsthese “phantom nuclei” are de-
noted by solid circlesd.

The principal advantage of the phantom-nuclei algorithm
is that one can find the state of the system at a particular time
t without having to calculate the system’s state at intermedi-
ate time steps. If one is interested in only a small number of
system states, then the method can be significantly faster
than the double-list algorithm. The solid triangles in Fig. 5
illustrate a 100-fold improvement compared to the double-
list algorithm sand a 105-fold improvement relative to the
lattice algorithmd. On the other hand, if information is
needed at every time stepsor if the number of phantom nu-
clei is very larged, the algorithm slows. The open triangles in
Fig. 5 show a simulation where information is collected at
each time step. The run time is comparable to the double-list
algorithm. Because there is no sorting operation, a linear
time scaling is maintained. The phantom-nuclei and double-
list algorithms thus cross over at about 23106 sites.

The phantom-nuclei algorithm is performed as follows.
sid One generates the potential initiation sites in the two-

dimensional spacetime plane. At each time, this is done in
the same way as in the double-list algorithm. The only dif-
ference is that, here, the number of sites at any time is cal-
culated over the whole length of the systemsregardless of its
state of transformationd. One uses two vectors to store the
position and initiation time of every potential site.

sii d One removes all initiation sites that are in positions
that have already transformed before their initiation time.
sThey lie in the “shadows” in Fig. 7.d Because the growth
velocity is known at each time, it is straightforward to imple-
ment this. Briefly, one first sorts the potential initiation sites
by space. Then, for each potential sitesindexed byi, with
positionxi and nominal initiation timetid, one calculates the
position of the right-hand boundaryr i at the reference time
point t. This is given byr i =xi +vst− tid for eachi. One then
proceeds through the listr i. If r i , r j for any j , i, then sitei
is discarded. Finally, one repeats the analogous process mov-
ing to the left, using the left-hand boundaries,i =xi
−vst− tid.

siii d One calculates the desired statistics at the reference
time point. This time point is arbitrary. For the solid triangles

FIG. 6. Schematic description of the double-list algorithm.sad
Basic setup for listshij andhh8j. Note thathh8j records cumulative
lengths.sbd Nucleation.scd Coalescence due to growth.

FIG. 7. Schematic description of the phantom-nuclei algorithm.
The figure shows the distribution of potential initiation sites in the
spacetime plane. The open circles denote sites that do initiate, while
the “phantom” solid circles, lying in the “shadow” of the open
circles, do not initiate.
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of Fig. 5, it is the last time step of the transformation process,
while in the open triangles, it occurs at the next time step of
the double-list simulation.sFor the latter case, the statistics
were then repeatedly calculated at each time interval.d

In conclusion, we note that both the double-list and the
phantom-nuclei algorithms are significant improvements on
the more straightforward lattice algorithm. For simple initia-
tion schemes, where it is possible to give a functionIstd for
the intiation sites, the phantom-nuclei algorithm will gener-
ally be preferable. For more complicated initiation schemes,
where the initiation of sites is correlated with the activation
of earlier sites, the double-list algorithm may be preferable.
In the next section, we present simulation results based on
the double-list algorithm.

IV. COMPARISON BETWEEN THEORY AND
SIMULATION

In Fig. 8, we compare the various analytical results ob-
tained in the previous sections with a Monte Carlo simula-
tion. Shown arerhsx,td, risx,td, andri2isx,td for Istd=10−5t
at three different time points:t=50, 75, and 100. The system
size is 107 and the growth rate isv=0.5. The chosen form of
acceleratingIstd, linear in time, is the simplest nontrivial
nucleation scenario. It is also relevant to the description of
DNA replication kinetics inXenopusearly embryos, where
the Istd extracted from experimental data has a bilinear form
f16g.

The agreement between simulation and analytical results
is excellent. In particular, we emphasize that the analytic
curves in Fig. 8 are not a fit. Note that, forx@1, all three
distributions decay exponentially as predicted by Eqs.s8d,
s17d, ands20d. fTherhsx,td distributions are simple exponen-
tials over the entire range ofx.g

One interesting feature ofrisx,td is the inflection point in
the interval 0øxø2vt, where risx,td is slightly convex.
Such behavior is even more dramatic whenIstd=constf17g,
and risx,td is strongly convex. In other words,risx,td in-
creases asx approaches 2vt−, but suddenly drops discontinu-
ously atx=2vt, decaying exponentially. This peculiar behav-
ior of risx,td originates from the fact that any island larger

than 2vt must have resulted from the merger of smaller is-
lands. Therefore, forxø2vt, risx,td has an extra contribution
from islands that contain only a single seed in them, which
makesrisx,td deviate from a simple exponential. Although
such discontinuities are expected at everyx=2vtn sn
=1,2,3, . . .d, higher-order deviations decrease geometrically
and thus are almost invisible.

Finally, the island-to-island distributionri2isx,td provides
important insight about the “seed distribution” and about the
spatial homogeneity of the nucleation. Note thatri2isx,td is
not monotonic and has a peak atx.0 fsee Fig. 8scdg. This is
not surprising becauseri2isx,td→0 asx→0 from Eq. s19d.
On the other hand, we see thatri2isx,td decays exponentially
at largex, as predicted in the previous sectionfEq. s20dg. In
contrast torisx,td andrhsx,td, however, the decay constant is
not a monotonic function of time. This can be understood as
follows: at early times, the large island-to-island distances
come from large holes and thereforeri2isx,td,rhsxd, as
mentioned earlier.fThe inset of Fig. 8scd confirms this.g
However, as the island fractionfstd approaches unity, the
system becomes mainly covered by large islands, and
ri2isx,td should approach,risx,td2 asymptoticallyfsee the
second term in the bottom portion of Eq.s20dg.

In Fig. 9, we plot the decay constants for the three differ-
ent distributions,th, ti, andti2i. Note that whenf ,0.5, th
<ti2i, as discussed above. Asf →1, the behavior ofti2i is

FIG. 8. sColor onlined. Theory and simulation results forIstd=10−5t and v=0.5. Size distributions are calculated at these time points:
t=50, 75, and 100.sad Hole-size distributionrhsx,td. sbd Island distributionrisx,td. The inset plotsfstd vs t, with the dot att=75 sf =0.5d.
scd Island-to-island distributionri2isx,td. The analytical curves have been obtained by Eq.s20d. There is a crossover of the decay constant
slightly aftert=75 sf =0.5d ssee textd. The inset showsrhsx,td andri2isx,td for t=50. All figures including insets have the same vertical range
of 10−7–10−3 slog scaled.

FIG. 9. sColor onlined. Decay constantsst−1d of rhsx,td, risx,td,
and ri2isx,td for Istd=10−5t and v=0.5. The symbols are simula-
tions, and the solid lines are theory.
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controlled byti, as suggested by Eq.s20d. Becauseri2i ,ri
2,

we expectti2i →0.5ti; however, the corrections to this rela-
tionship in Eq.s20d imply that this holds true only for large
x and t. Note that the actual minimum ofti2i is at f .0.5
becauseri2i depends onri

2 and notri alone.
One final note about the island-to-island distribution is

that, unlike risx,td, it is a continuous function ofx. The
reason for this is that for any island-to-island distancex, the
discontinuousrisy,x,td contributes tori2isx,td in a cumu-
lative way, as can be seen in Eq.s19d. This implies that there
is no specific length scale where discontinuity can come in.
From a mathematical point of view, this is equivalent to say-
ing that the integral of a piecewise discontinuous function
fthe integrand in Eq.s19dg is continuous.

V. CONCLUSION

To summarize, we have extended the KJMA model to the
case where the homogeneous nucleation rate is an arbitrary

function Istd of time, deriving a number of analytic results
concerning the properties of various domain distributions.
We have also presented highly efficient simulation algo-
rithms for 1D nucleation-growth problems. Both analytical
and simulation results are in excellent agreement. In the
companion paper, we discuss the application of these results
to experiments in general and to the analysis of DNA repli-
cation kinetics in particular.
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