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Using molecular dynamics simulations we study supercritical fluids near the gas-liquid critical point under
heat flow in two dimensions. We calculate the steady-state temperature and density profiles. The resultant
thermal conductivity exhibits critical singularity in agreement with the mode-coupling theory in two dimen-
sions. We also calculate distributions of the momentum and heat fluxes at fixed density. They indicate that
liquidlike sentropy-poord clusters move toward the warmer boundary and gaslikesentropy-richd regions move
toward the cooler boundary in a temperature gradient. This counterflow results in critical enhancement of the
thermal conductivity.
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I. INTRODUCTION

In one-component fluids, the density and energy fluctua-
tions are known to become long ranged and long lived as the
temperatureT and the densityn approach the critical values
Tc andnc f1,2g. The critical singularities are characterized by
the correlation lengthj, which grows asj0sT/Tc−1d−n on the
critical isochore withj0 being a microscopic length andn
being the critical exponent. On one hand, the isothermal
compressibilityKT, the isobaric thermal expansion coeffi-
cientap, and the isobaric specific heatCp grow asj2−ĥ, with
ĥ being the small Fisher critical exponent. On the other
hand, the thermal diffusivityDT behaves askBT/hjd−2 and
the lifetime of the critical fluctuations grows astj=j2/DT
,jd, whered is the space dimensionality and the weak sin-
gularity of the shear viscosityh is neglected. As a result, the
thermal conductivityl=DTCp grows asj4−d−ĥ. The critical
behavior ofl and h has been well described by the mode-
coupling theoryf3,4g and by the dynamic renormalization
group theoryf5g.

However, the calculations in these dynamical theories are
performed in the space of the wave vector of the fluctuations
and are rather formal. The real space picture of the enhanced
heat transport in a small temperature gradientdT/dz is as
follows f2g. The critical fluctuations with relatively higher
slowerd densities should be convected in the directionsre-
verse directiond of the temperature gradient. The typical ve-
locity of the clusters with lengths of orderj is given by

vj , sj/j0db/n+2−ĥDT

T

dT

dz
, s1d

in the linear response withb being the critical exponent. The
entropy of the liquidlike regions is smaller than that of the
gaslike regions bynjdds,jd−b/n, where the entropy fluctua-
tion ds sas well as the denisity fluctuationdnd has sizes typi-
cally of orderj−b/n f,sT/Tc−1db on the critical isochoreg.
The thermal average of the convective heat fluxnTdsvj thus
gives rise to the critical heat conduction. Within their life-
times the clusters can move only over the distance

vjtj ,
Dn

n
sj/j0db/nj2/L, s2d

whereDn=apL dT/dz is the difference between the densities
at the two ends of the cell with lengthL. This distance is
very short forL much longer thanj. Hence it should be
difficult to unambiguously observe the cluster motion in heat
flow experimentally and even numerically.

As numerical work of heat conduction in fluidsf6,7g, the
thermal conductivity has been calculated using equilibrium
molecular dynamicssMDd simulationsf8,9g on the basis of
the Green-Kubo formulaf2,6g or using nonequilibrium MD
simulations f10–12g. In particular, developing a simple
method, Ohara performed nonequilibrium MD simulations
for Lennard-JonessLJd fluids f13g and for liquid waterf14g.
All these previous papers treated fluids far from the critical
point. In this paper we will use Ohara’s method to realize
heat-conducting states in the one-phase region near the criti-
cal point.

This paper is organized as follows. In Sec. II we will
present numerical results on equilibrium critical behavior in
supercritical LJ fluids. In Sec. III we will show numerical
results on near-critical heat conduction together with theoret-
ical interpretations. In particular, we will confirm the cluster
convection mechanism by introducing steady-state distribu-
tions of the momentum and heat fluxes at fixed density. In
Appendix B we will summarize the mode-coupling theory
for the thermal conductivity. In Appendix C we will examine
the linear response to heat flow and justify Eq.s1d.

II. MODEL AND EQUILIBRIUM RESULTS

We used a two-dimensionals2Dd LJ fluid composed ofN
identical particles. The pair potential as a function of the
distancer between two particles is given by

fsrd = 4eFSs

r
D12

− Ss

r
D6G − C sr ø rcd, s3d

and fsrd=0 for r . rc. The constantC is chosen such that
fsrcd=0. The cutoff lengthrc was set equal to 3s. The sys-
tem containsN=5000 particles. Space and time are measured
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in units of s and t0=sms2/ed1/2, where m is the particle
mass. Equilibrium states of the fluid may be characterized by
the temperatureT and the average number densityn=N/V
measured in units ofe /kB ands−2, respectively. The pressure
is measured in units ofs−2e. We used the leapfrog algorithm
to integrate the Newton differential equations with a time
step of 0.01 and the cell-index method of cutting off the
interaction potential. The details of these numerical methods
are described in the literaturef7g.

The phase diagram of the two-dimensional LJ fluid has
been studied by several groups using the conventional Monte
Carlo methodf15g, the Gibbs ensemble methodf16–18g, and
finite-size scaling analysisf19g. Table I summarizes the criti-
cal parameters reported in the literature together with our
MD results. However, note that the critical parameters
largely depend on the details of the truncation of the poten-
tial f17g. We also mention that Luoet al. f20g examined
thermal relaxation in a two-dimensional supercritical LJ
fluid.

As preliminary work before nonequilibrium simulations,
we carried out equilibrium simulations in the canonical
sconstant-NVTd ensemble, using the Nosé-Hoover thermostat
f7,21g under the periodic boundary condition, withDt
=0.01, to calculate the structure factorSsqd. We started with
random initial particle configurations at each given tempera-
ture, waited fortw=53104, and afterward took data in a
subsequent time interval oftw, t,2tw. This long equilibra-
tion is needed because the density fluctuations relax very
slowly near the critical point. That is,tw should be longer
than the lifetimetj=j2/DT of the critical fluctuations with
sizes of the order of the correlation lengthj f2g. Here l
=DTCp is the thermal conductivity andCp is the isobaric heat
capacity per unit volume, respectively. In particular, in two
dimensions the critical exponentn is equal to 1 and the criti-
cal singularity ofDT is weakfas will be evident in Eq.s19dg,
so on the critical isochoretj grows as

tj , j2 , sT/Tc − 1d−2 sd = 2d. s4d

We consider the structure factor given by

Ssqd =E dr eiq·rkn̂sr ,tdn̂s0,tdl/n. s5d

Here we define the fluctuating particle number density in
terms of the particle positions as

n̂sr ,td = o
i=1

N

d„r istd − r …. s6d

We took the angle average in the calculation ofSsqd. Figure
1 showsSsqd for T=0.65, 0.51, 0.5, 0.495, and 0.49 atn
=0.37. We can see the power lawq behavior,

Ssqd , q−7/4, s7d

in the rangej−1&q&2 near the critical point, where the
exponent value 7/4 is consistent with the well-known Fisher
critical exponent ĥ=1/4 in two dimensions. The peak
aroundq,6 represents the short-range pair correlation at
this density. We then estimated the correlation lengthj. To
this end we fitted our data to a simple extrapolation formula
Ssqd=nkBTKT/ f1+sqjd2g7/8 for q!1. The isothermal com-
pressibility KT=s]n/]pdT/n can be determined from the
long-wavelength limit ofSsqd. We showj vs n in Fig. 2 and
KT vs n in Fig. 3 for variousT sù0.49d. Although not shown
in Figs. 2 and 3, we also performed simulations at lower

TABLE I. Numerical estimations for the two-dimensional LJ
fluids. The estimated critical temperatureTc and densitync are
given in the first and second columns. The particle numberN and
the cutoff radiusrcut used are given in the third and fourth columns.

Tc nc N rcut Source

0.533 0.335 256 f15g
0.472 0.33 500 `a f16g
0.515 0.355 512 `a f17g
0.459 0.35 512 2.5 f17g
0.498 0.36 8000 `a f18g
0.47 0.35 4096 2.5 f19g
0.47 0.37 5000 3.0 Present work

aThe Gibbs ensemble method was used withrcut=L /2, whereL is
the cell size.

FIG. 1. The structure factorSsqd at n=0.37 forT=0.65 sshort-
dashed line at bottomd, 0.51, 0.5, 0.495, and 0.49sdashed line on
topd. A line with a slope of −7/4 is included as a guide.

FIG. 2. The correlation lengthj vs the density at various tem-
peratures obtained from the structure factor.
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temperatures to obtainj,50 for T=0.485 andj.L sappar-
entlyd for T=0.48 at n=0.37. However, for theseT, our
simulation times are not sufficiently long compared withtj

in Eq. s4d. From the peak positions in Figs. 2 and 3 we
estimatednc>0.37 in Table I. This value was also obtained
as the mean position of the two peaks in the one-body den-
sity distributionCsrd fdefined by Eq.s22d belowg in equilib-
rium for 0.495øTø0.50.

From the data in Figs. 2 and 3 on the critical isochore,KT
behaves as a function ofj as

KT = 3.7j7/4 + 0.80, s8d

in units of s2/e. We then fittedj to the scaling formj
=j0sT/Tc−1d−1 on the critical isochore to obtainTc=0.47
andj0=0.6. From the isothermal curves in thep-n plane in
the range 0.495øTø0.50 atn=nc, we obtainedf22g

S ]p

]T
D

n
> S ]p

]T
D

cx
> 0.40. s9d

We also consider the specific heatCp=nTs]s/]Tdp per unit
volume ss being the entropy per particled and the thermal
expansion coefficientap=−s]n/]Tdp/n at constant pressure.
These quantities grow strongly and are related toKT by f2g

Cp > TS ]p

]T
D

cx

2

KT, ap > S ]p

]T
D

cx
KT, s10d

near the critical point. These relations will be used in the
next section.

As long as 1!j!L, our equilibrium results are consis-
tent with the well-known results of critical phenomenaf1,2g.
If j approachesL, a finite-size scaling analysis may be per-
formed f19g. However, such analysis is beyond the scope of
this paper.

III. NONEQUILIBRIUM SIMULATIONS

A. Method

Next we imposed a heat flux on the system using Ohara’s
methodf13,14g. As illustrated in Fig. 4, the cell is divided
into three parts, cooling, heating, and interior regions. In the

cooling region −0.5L,z,−0.4L the average temperature of
the particles was kept atTL, while in the heating region
0.4L,z,0.5L it was kept atTH. The precise definition of
the average temperature in a given region will be presented
in Eq. s12d below. The pinning of the average temperatures
in the cooling and heating regions was realized by simple
scaling of the velocities of the particles in the two regions at
every time step. The periodic boundary condition was im-
posed in thex direction, while the walls atz= ±L /2 were
assumed to interact with the particles via the LJ potential in
Eq. s3d wherer is the distance from the wall andrc=3. The
particles in the interiors−0.4L,z,0.4Ld obeyed the New-
tonian dynamics without artificial thermostat. The particles
entering the interior from the coolingsheatingd region have
lower shigherd kinetic energies than those of the particles in
the interior on the average. Then a steady heat conducting
state is realized after a transient time.

In our nonequilibrium simulations, we used a single den-
sity n=0.37 nearly equal tonc. The system length is thenL
=s5000/0.37d1/2=116. The lower boundary temperatureTL

was changed as 0.7, 0.65, 0.6, 0.52, 0.505, 0.5, 0.495, and
0.49. The temperature differenceDT=TH−TL was fixed at
0.005 in all the simulations. We regard the system to be in a
steady state fort. tw=63104 after application ofDT. In the
following the steady-state values of the physical quantities
will be the time averages over the data during the next time
interval tw, t, tw+ tdata with tdata=143104.

B. Steady-state density and temperature profiles

Figure 5 displays a snapshot of the particle positions in
the cell att=23105 for TL =0.50, where the system is nearly
in a steady state. The large clusters formed by many particles
are significantly denser near the cooler boundarysbottomd
than near the warmer boundarystopd f23g. This is due to the
diverging isobaric thermal expansion as will be shown in Eq.
s16d below. By comparing successive snapshotssnot shown
hered, we recognize that the clusters appear and disappear
continuously on the time scale oftj in Eq. s4d.

To quantitatively analyze Fig. 5, we need to calculate the
time averages of the temperature and the density. They are
defined as follows. Dividing the interior into eight layers
with thicknessL /10, the density in the,th layer is defined by

FIG. 3. The isothermal compressibilityKT vs the density at vari-
ous temperatures obtained from the structure factor.

FIG. 4. Simulation cell under heat flow composed of cooling,
heating, and interior regionsf13g.
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n,std=s10/L2dN,std in terms of the particle number in the,th
layer,

N,std =E
z,

z,+1

dzE
0

L

dx n̂sr ,td, s11d

wherez,=s,−5dL /10 andn̂sr ,td is the fluctuating density in
Eq. s6d. The temperature in the,th layer T,std may be de-
fined by

T,std =
1

N,std oiP,

uvistd − v̄,stdu2, s12d

where the summation is over the particles within the,th
layer and v̄,std=oiP,vistd /N,std is the average velocity
within the ,th layer. Notice that the zeroth layer is the cool-
ing region and the ninth layer is the heating region. Thus we
set T0std=TL and T9std=TH in the cooling and heating re-
gions, respectively.

Figure 6 shows the steady-state temperature and density
profiles,

Tszd = kT,stdl, nszd = kn,stdl, s13d

which are the time averages withz=s,−5dL /10. HereTL

=0.50 andn=0.37 as in Fig. 5. For this case the deviation of
Tszd from the linear profile is not large and there exists a
temperature gradient also in the cooling and heating regions.
We may define the penetration widthsdL anddH by the ex-
trapolations

Ts− dL − 2L/5d = TL, Ts2L/5 + dHd = TH. s14d

When the temperature profile is nearly linear, we simply find
dL >dH>L /20. When the temperature flux is not too large,
the effective cell length of heat conduction becomes

4L/5 + dL + dH > 9L/10, s15d

which is the distance between the middle points of the
cooling and heating region as in the case of Ohara’s
simulationf13g.

On the other hand, in Fig. 6 the density deviation is much
more enhanced than that of the temperature. We expect that
if the deviationdTszd=Tszd−Ts0d smeasured from the center
z=0d is not too large, the average density deviationdnszd
=nszd−ns0d should be given by

dnszd > − napdTszd, s16d

whereap is the isobaric thermal expansion coefficient. Here,
at the center, we findTs0d=0.5025 andns0d=0.37, so Eq.
s10d indicatesKT=159 andnap=23.5 at the center. In Fig. 6
the solid line has a slope ofDT/ s9L /10d=0.0056/L, and the
dotted line a slope of −23.530.0056/L. These two lines can
fairly fit the temperature and density data, though there are
considerable deviations close to the boundariessobviously
because the boundary regions are considerably off criticald.
Notice that we assume homogeneity of the pressure in Eq.
s16d. To check this, we calculated the steady-state time aver-
ages of the trace of the stress tensorsintegrated in each layerd
and found no appreciable heterogeneity in these values.

C. Thermal conductivity

In our simulations, the steady-state thermal conductivityl
in the interior was calculated from

l = Q
0.9L

DT
, s17d

where 0.9L is the effective cell length in Eq.s15d. TheQ is
the steady-state heat flux written as

Q = − kJ0
Qzstdl/0.8L2 s18d

whereJ0
Qzstd is the integral of the heat flux density within the

interior with area 0.8L2 and its microscopic expression will
be given in Appendix A. In our small system the fluctuations
of the heat flux turned out to be large, so we performed ten
independent runs and calculated the mean values of the cor-
responding ten time averages. In Fig. 7 the thermal conduc-
tivity data are shown as a function of the temperature at the
critical density, which gives the backgroundlB=2.3 far
above the critical point. In Fig. 8 the data of the singular part

FIG. 5. Snapshot of the particle configuration atn=0.37 in a
steady state withTL =0.50 andTH=0.505. The horizontal bars at the
vertical box lines mark the boundaries between the interior region
and cooling or heating region.

FIG. 6. Steady-state profiles of temperature and density in thez
direction obtained by the time average. The solid line representing
the temerature has a slope ofDT/ s9L /10d sleft scaled with DT
=0.005, while the dotted line representing the densitysright scaled
has a slope of −napDT/ s9L /10d in Eq. s16d. Here napDT=23.5
30.05.
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Dl=l−lB are plotted as a functions ofj. For j&10 our
numerical data nicely agree with the theoretical linear re-
sponse result Eq.s19d, which will be explained below. For
j*10 the finite-size effect and the nonlinear response effect
should be responsible for the saturation of the calculatedl.

The mode-coupling theory in Appendix B predicts the fol-
lowing behavior:

l = lB +
T

4ph
Cp lnsL/jd = lB + Alj7/4 lnsL/jd, s19d

whereh is the shear viscosityf25g. See also Appendix C for
the linear response theory for heat flow. The singular part of
the thermal conductivity is simply given byDTCp with DT
being the thermal diffusion constantf4g. In terms of the iso-
thermal compressibilityKT the coefficientAl is written as

Al =
T2

4ph
S ]p

]T
D

cx

2

KTj−7/4. s20d

To estimateAl from the above expression, we calculated the
shear viscosityh at T=0.50 andn=0.37 by two methods and

obtained almost the same results. That is,sid the time integral
of the stress time correlation functionf6,7g in the range 0
, t,100 gaveh>0.35 andsii d the long-time tail of the
velocity correlation function gaveh>0.33 ssee Appendix
Dd. If we use the latter result, we are led toAl=0.035. In Fig.
8 the theoretical curve represents the second term on the
right-hand side of Eq.s19d with this Al. It excellently agrees
with the data before the saturation ofl.

D. Momentum and heat flux distributions at fixed density
under heat flow

Some characteristic features of the density fluctuations
can be seen in the one-body density distribution function
Csrd=kdsn̂cell−rdl, wheren̂cell is the density in an appropri-
ately chosen cell in the fluid and the average is taken over
the thermal fluctuations and over the cells in the system
f17–19,24g. It is the probability distribution of the coarse-
grained density. Furthermore, in the presence of heat flow,
we are interested in distributions of the momentum and heat
fluxes at fixed density. They can give the correlations be-
tween these fluxes and the density within the same cell even
if the cluster motion driven by heat flow is very small.

First we coarse-grain the system to calculateCsrd. The
interior region s−0.4L,z,0.4L and 0,x,Ld is divided
into 10310 rectangular subsystems. LetMkstd sk
=1,¯ ,100d be the particle number in thekth cell at timet.
After the time averaging in steady states, we obtained the
distribution ofMkstd for integerM as

PsMd =
1

100ok=1

100

kdM,Mkstdl, s21d

where dM,M8 is the Kronecker delta, andoM=0
` PsMd=1 by

definition. For each given densityr=M /Vcell we define

Csrd = VcellPsVcellrd =
1

100ok=1

100

kd„r − nkstd…l, s22d

whereVcell=0.8L2/100 is the cell volume and we give the
expression in the continuum limit withnkstd=Mkstd /Vcell. By
definition we obtain

E
0

`

dr Csrd = 1, E
0

`

dr rCsrd = nin, s23d

wherenin is the average density in the interior andnin>n in
our case. The second moment becomes

E
0

`

drsr − nind2Csrd =
1

100ok=1

100

kfnkstd − ning2l. s24d

In equilibrium, or if the heterogeneity along the heat flow is
neglected, the second moment behaves asj2−ĥ /Vcell for j less
than the cell length but asVcell

s2−d−ĥd/d for larger j due to the
finite-size effect.

Now we consider the coarse-grained momentum and heat
fluxes at fixed density. We calculate the following steady-
state averages:

FIG. 7. The thermal conductivityl calculated from Eqs.s16d
ands17d at n=0.37 forT=0.7, 0.65, 0.6, 0.52, 0.51, 0.5, 0.495, and
0.49. The bold dashed line is a view guide. The width of each error
bar is twice the variance of ten data values corresponding to ten
independent runs.

FIG. 8. The singular part of the thermal conductivityDl as a
function of j on logarithmic scales. The solid line is the second
term in Eq.s19d with Al=0.035.
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Jpsrd =
1

100Vcell
o
k=1

100

kJ0k
z stdd„r − nkstd…l, s25d

JQsrd =
1

100Vcell
o
k=1

100

kJ0k
Qzstdd„r − nkstd…l, s26d

where J0k
z std and J0k

Qzstd are thez component of the space
integral of the momentum density and that of the heat flux,
respectively, within thekth cell fsee Eq.sA2d in Appendix A
for their definitionsg. If they are divided by the cell volume
Vcell, they become the coarse-grained densities, respectively.
For simplicity, we may write Csrd=kdsr− n̂dl, Jpsrd
=kJzdsr− n̂dl, andJQsrd=kJz

Qdsr− n̂dl regarding the dynamic
variables involved as the coarse-grained quantities. The nor-
malized quantitiesJpsrd /Csrd andJQsrd /Csrd may be inter-
preted as the coarse-grained conditional average of the mo-
mentum density and that of the heat flux, respectively, under
the condition of fixed density atr. If integrated overr, we
obtain

E
0

`

dr Jpsrd = 0, s27d

E
0

`

drJQsrd = − Q, s28d

whereQ is the average heat flux defined by Eq.s18d in the
interior. In Appendix C we will examine the expected behav-

ior of these quantities using the linear response theory for
¹T f26g.

In Fig. 9 we show the three quantitiesCsrd, Jpsrd, and
JQsrd obtained from ten independent runs. Each run was a
simulation with the time intervaltdata=143104, as explained
at the beginning of this section. The temperature atz=L is
TL =0.65 insad stop plated, TL =0.5 in sbd smiddle plated, and
TL =0.48 in scd sbottom plated, with DT=0.005 orkdT/dzl
=0.43310−4. As can be seen in Fig. 7, the calculated thermal
conductivity isl=5.96 insad, 5.66 insbd, and 2.63 inscd. In
Appendix C we will give a theoretical basis to understand
the results in Fig. 9. Here we mention salient features.

sid The density distributionCsrd has a rather sharp peak
in sad, a broadsstill singled peak insbd, and double peaks in
scd. We also calculatedCsrd in equilibrium at the same tem-
peratures, which exhibits double flattened peaks forT=0.5
and sharper double peaks forT=0.48, and found that the
double peak behavior emerges more conspicuously in equi-
librium. This difference arises from the fact that the average
density profile is considerably dependent onz in sbd and scd
ssee Fig. 5d, as a complicating factor in heat flow.

sii d The momentum distributionJpsrd is positive for r
*0.37 and negative forr&0.37. This is consistent with the
antisymmetric behavior,Jpsrd,Qsr−0.37dCsrd, close to
the criticality in Eq.sC5d of Appendix C. Evidently, the liq-
uidlike clusters move toward the higher-temperature bound-
ary, while the particles in the gaslike regions move toward
the lower-temperature boundary. However, notice that the
high-density maximum is considerably sharper than the low-

FIG. 9. sad Density distribution functionCsrd sright scaled, momentum distributionJpsrd, and heat-flux distributionJQsrd sleft scaled
obtained atn=0.37 forTL =0.65 in sad, 0.50 in sbd, and 0.48 inscd.
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density minimum, which should arise from the gas-liquid
asymmetry of the fluctuationsf22g. In particular, for the case
sbd, the momentum density of the liquidlike regions is of
order 10−3 and the velocity is of order 3310−3 fin units of
s /t0=se /md1/2g. In this case we havej,18 andDT,0.1 so
that the distance of the cluster motion within the lifetime
j2/DT,33103 is estimated to be of order 10.

siii d The heat flux distribution functionJQsrd still exhibits
considerable irregular behavior, but its negativity at anyr is
clear. Let us smooth out the curves; then,JQsrd has a single
minimum in sad and double minima insbd and scd. Thus, as
T→Tc, heat is largely transported by the counterflow of the
liquidlike clusters and the gaslike regions. Particularly inscd,
the contribution fromr>0.37 becomes very small and the
curve can be fairly fitted to the symmetric relationJQsrd,
−Qsr−0.37d2Csrd in accord with Eq.sC6d. The gas-liquid
asymmetry is more suppressed forJQsrd than forJpsrd.

We note that the curves ofJQsrd exhibit considerable
noisy behavior even after averaging over ten runs and even
not very close to the critical pointfthe casesadg. This is due
to large local heat transport randomly occurring when the
clusters emege, disappear, or move. On the other hand, even
a single run can give a smooth curve forFsrd with small
fluctuations. TheJpsrd is noisy for each run, but becomes
rather smooth after averaging over ten runs.

IV. CONCLUDING REMARKS

MD simulations have been performed on LJ near-critical
fluids in two dimensions. In equilibrium the critical proper-
ties obtained are presented in Figs. 1–3. The main results
under heat flow are summarized as follows.

sid We have calculated the average density and tempera-
ture profiles in steady state in Fig. 4, where they are fairly
fitted to linear lines and satisfy Eq.s16d. The density devia-
tion is more enhanced than that of the temperature and the
average pressure remains homogeneous.

sii d We have obtained critical enhancement of the thermal
conductivity for variousT close toTc in Figs. 7 and 8 in
good agreement with the mode-coupling prediction in Eq.
s19d derived in Appendix B.

siii d We have calculated the one-body density distribution
Csrd, the momentum distributionJpsrd, and the heat flux
distributionJQsrd defined by Eqs.s22d, s25d, ands26d. Figure
9 demonstrates the cluster convection mechanism, which is
briefly summarized in the Introduction and supported in Ap-
pendix C in the linear regime.

sivd The cluster convection is a natural consequence of the
irreversibility in heat conduction, while the density increase
near the cooler boundary in Fig. 6 arises from the simple
thermodynamics under homogeneous pressure in Eq.s16d.
These two effects are not contradictory with each other in
view of the fact that the distance of cluster convection is very
short.

The following problems could be mentioned as future
subjects of nonequilibrium MD simulations.

sid When the boundary wall is heated with a fixed cell
volume, sound waves emitted from the boundary can cause

rapid adiabatic heating throughout the cellsthe piston effectd
f27,28g. We should examine how this phenomenon starts in
the early stage on the acoustic time scalef2g.

sii d Heat conduction in two-phase near-critical fluids be-
low Tc has been little examined in the literaturef2g. For
example, we should examine how a gas-liquid interface re-
acts to applied heat flow, where latent heat transport can be
crucial in the presence of convection. Interestingly, gas
bubbles in liquid migrate toward the warmer boundary in
heat flowf29g.
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APPENDIX A: MICROSCOPIC EXPRESSIONS

We introduce the momentum density

Jsr ,td = o
i

mvistdd„r − r istd… sA1d

and the energy current densityJesr ,td. The microscopic ex-
pression for the latter quantity is rather complicatedf2g. Let
us consider its space integralJ0

estd=eV1
dr J esr ,td in a sub-

system with volumeV1 containing many particles. It may be
approximated as

J0
estd =

1

2o
i

8Fmvi
2 + o

jÞi

fsr ijdGvi

−
1

2o
i

8o
jÞi

f8sr ijd
1

r ij
svi · r i jdr i j , sA2d

wherer i =r istd andvi =vistd are the position and velocity of
the ith particlefthe timet being suppressed insA2dg, r i j =r i
−r j, f8srd=dfsrd /dr, and the summationoi8 is over the par-
ticles contained in the subsystem under consideration. Here
the pair interactions between the particles inside and outside
the subsystem are not precisely accounted for.

The microscopic heat flux density is defined byf2g

JQsr ,td = Jesr ,td − fse+ pd/ngJsr ,td, sA3d

wheree, p, andn are the average energy, pressure, and den-
sity, respectively. This current satisfies the orthogonal prop-
erty edr kJQsr ,td ·Jsr 8 ,tdl=0 in equilibrium. The Green-
Kubo formula for the thermal conductivity reads

l =
1

kBT2E
0

`

dtE dr kJz
Qsr ,tdJz

Qs0,0dl. sA4d

The J0
Qzstd in Eq. s18d is the z component of the total heat

flux in the interior,
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J0
Qstd =E

interior
dr J Qsr ,td. sA5d

In Eqs. s25d and s26d the space integrals are within small
subsystems.

APPENDIX B: MODE-COUPLING THEORY

In the critical dynamics of simple fluids the gross vari-
ables include the long-wavelength partsswith wave numbers
in the regionq!s−1d of the energy densityê, the particle
densityn̂, and the momentum densityJ. The heat flux den-
sity JQsr ,td in sA3d has been approximated as a sum of a
product of the gross variables and a random part in the form
f2–5g

JQsr ,td =
T

m
dŝsr ,tdJsr ,td + JR

Qsr ,td. sB1d

The dŝ is the fluctuating entropy deviationsper particled de-
fined by

dŝsr ,td =
1

nT
Fdêsr ,td −

e+ p

n
dn̂sr ,tdG , sB2d

in terms of the deviations of the energy densityê and the
number densityn̂. The ê can be defined microscopically us-
ing the particle positions and velocitiesf2,24g. The first term
on the right-hand side ofsB1d evolves slowly in time and
gives rise to the singular part of the thermal conductivityDl
when substituted intosA4d. In 2D the mode-coupling calcu-
lation yields the following integral over the wave vectorq:

Dl =
kBT

2h
E dq

s2pd2

1

q2Cpsqd, sB3d

whereh is the shear viscosityf25g andCpsqd=kB
−1n2kuŝqu2l is

the variance of the entropy fluctuation withŝq being the Fou-
rier component. See Appendix C for another derivation of
Dl from the linear response. As far as the most singular part
is concerned, we may setf2g

dŝ> − n−2s]p/]Tdcxdn̂. sB4d

This yields

Cpsqd > s]p/]Tdcx
2 Ssqd/kBn, sB5d

in terms of the structure factorSsqd in Eq. s5d f2g. The long-
wavelength limitCp=limq→0Cpsqd is the usual isobaric spe-
cific heat per unit volume behaving as in Eq.s10d. Note that
the integralsB3d is logarithmically divergent at smallq, so
we obtain the expression Eq.s19d. On the other hand, the
second term on the right-hand side ofsB1d relaxes rapidly
and gives rise to the background thermal conductivitylB.

APPENDIX C: LINEAR RESPONSE TO TEMPERATURE
GRADIENT NEAR THE GAS-LIQUID

CRITICAL POINT

Here we consider the linear response theory with respect
to a temperature gradienta; =T salong thez axisd in a

steady heat-conducting state in the absence of macroscopic
velocity field f26g. To pick up the singular contribution near
the gas-liquid critical point we may approximate the heat
flux by sT/mddŝsr ,tdJsr ,td from sB1d. Then the linear
response of any dynamic variableBsr ,td to a can be written
as f2g

dkBl =
− a

mkBT
·E

0

`

dtE dr 8kBsr ,tddssr 8,0dJsr 8,0dl

=
a

mkBT
·E

0

`

dtE dr 8kB̃sr ,0ddssr 8,tdJsr 8,tdl.

sC1d

From the first to second line use has been made of the time-

reversal relationkAstdBs0dl=kB̃stdÃs0dl whereÃ andB̃ are

the time-reversed variables. For example,J̃=−J. Further-
more, on the second line, we may replacedssr 8 ,td by
dssr 8 ,0d because the relaxation time ofJsr 8 ,td due to the
shear viscosityh is much faster than that ofdssr 8 ,td. Then
the time integral may be performed to give

dkBl = − o
i j

nai

kBT
E dr 8E dr 9Ti jsr 8 − r 9d

3 kBsr ddssr 8dJjsr 9dl, sC2d

where the equal-time correlation is involved and the time
dependence is hence suppressed. TheTi jsr d is the Oseen ten-
sor whose Fourier transformation isTi jsqd=sdi j

−qiqj /q
2d /hq2. In 3D it follows the well-known expression

Ti jsr d=sdi j +xixj / r
2d /8phr.

In sC2d, if we setB=sT/mddŝJz and use the equilibrium
relation kJisr dJjsr 8dl=kBTrdi jdsr −r 8d, we reproduce the
mode-coupling expression for the singular part of the ther-
mal conductivityfgiven by sB3d in 2Dg in the form dkBl=
−DldT/dz. Next let us setB=Jzdsr− n̂d and Jz

Qdsr− n̂d
where the dynamic variablesJz, Jz

Q, and n̂ are the coarse-
grained quantities averaged in appropriate cells. Then we
obtainJpsrd andJQsrd in Eqs.s25d and s26d expressed as

Jpsrd = mS ]p

]T
D

cx

dT

dz
E dr 8Tzzsr − r 8d 3 kd„r − n̂sr d…dnsr 8dl,

sC3d

JQsrd = −
T

n2S ]p

]T
D

cx

2 dT

dz
E dr 8Tzzsr − r 8d

3kd„r − n̂sr d…dnsr ddnsr 8dl. sC4d

We notice that these quantities depend on the cell volume
Vcell. If the cell length,cell=Vcell

1/d is shorter than the correla-
tion lengthj, we estimateJpsrd as

Jpsrd ,
m

h
,cell

2 sr − nindCsrdS ]p

]T
D

cx

]T

]z
, sC5d

wherenin is the average density. If,cell is longer thanj, we
divide the cell into subsystems with lengthj and find that
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Jpsrd is given bysC5d with ,cell
2 being replaced byj2. Next

notice that the integraledr JQsrd is equal to −sDlddT/dz
from sC4d which is in accord with Eq.s28d for Dl>l. Ac-
counting for this sum rule we thus expect

JQsrd > − AQsr − nind2Csrd
]T

]z
, sC6d

for ,cell!j. The coefficientAQ is determined from the nor-
malization condition Eq.s28d. The estimationssC5d andsC6d
are consistent with the data in Fig. 9.

In addition, Eq.s1d in the Introduction follows if we as-
sumevj,Jpsrd /mnCsrd in sC5d by setting,cell,j and r
−nin,j−b/n with the aid of the exponent relation 2b=sd−2
+ĥdn f2g. Note thatJpsrd /Csrd represents the average mo-
mentum density at densityr.

APPENDIX D: DIFFUSION IN TWO DIMENSIONS

In two dimensions the flux-time correlation functions for
the transport coefficients have a long-time tail relaxing as
1/t, giving rise to a logarithmic singularitysif integrated
over timed f25g. The simplest example is the diffusion con-
stant D of a tagged particle. It is the time integral of the
velocity time correlation function,

Gstd =
1

2N
o
i=1

N

kvist0 + td ·vist0dl. sD1d

The long-time tail of Gstd is theoretically given by
skBT/8phd / t if the kinetic viscosityh /mn is much larger
than D. By taking the average overt0 in a time interval of
53104, we obtainede0

t dt8Gst8d>0.17+0.059 lnt for t*1,
leading tokBT/8ph=0.059. Note that the kinetic viscosity is
close 1 and is considerably larger than the diffusion constant
in our system.
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