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Molecular dynamics simulation of heat conduction in near-critical fluids
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Using molecular dynamics simulations we study supercritical fluids near the gas-liquid critical point under
heat flow in two dimensions. We calculate the steady-state temperature and density profiles. The resultant
thermal conductivity exhibits critical singularity in agreement with the mode-coupling theory in two dimen-
sions. We also calculate distributions of the momentum and heat fluxes at fixed density. They indicate that
liquidlike (entropy-poor clusters move toward the warmer boundary and gasékéropy-rich regions move
toward the cooler boundary in a temperature gradient. This counterflow results in critical enhancement of the
thermal conductivity.
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I. INTRODUCTION An
VeTe ™~ ?(flfo)ﬁh/gzll—, (2

In one-component fluids, the density and energy fluctua-
tions are known to become long ranged and long lived as theshereAn=a,L dT/dzis the difference between the densities
temperaturel and the densityr approach the critical values at the two ends of the cell with length. This distance is
T. andn, [1,2]. The critical singularities are characterized by very short forL much longer tharé. Hence it should be
the correlation lengtlf, which grows asg(T/T.—1)"" on the difficult to unambiguously observe the cluster motion in heat
critical isochore with&, being a microscopic length and  flow experimentally and even numerically.
being the critical exponent. On one hand, the isothermal As numerical work of heat conduction in fluidi§,7], the
compressibilityKy, the isobaric thermal expansion coeffi- thermal conductivity has been calculated using equilibrium
cientay, and the isobaric specific he@p, grow asé?™, with molecular dynamic¢MD) simulations[8,9] on the basis of
7 being the small Fisher critical exponent. On the otherthe Green-Kubo formul§2,6] or using nonequilibrium MD
hand, the thermal diffusivittD; behaves aggT/7&%2 and  simulations [10-12. In particular, developing a simple
the lifetime of the critical fluctuations grows a§:§2/DT method, Ohara performed nonequilibrium MD simulations
~ &, whered is the space dimensionality and the weak sin-for Lennard-Jone$LJ) fluids [13] and for liquid water14].
gularity of the shear viscosity is neglected. As a result, the All these previous papers treated fluids far from the critical
thermal conductivity\=D+C, grows as& 7. The critical  point. In this paper we will use Ohara’s method to realize
behavior of\ and » has been well described by the mode- heat-conducting states in the one-phase region near the criti-
coupling theory[3,4] and by the dynamic renormalization cal point.
group theony5]. This paper is organized as follows. In Sec. Il we will

However, the calculations in these dynamical theories ar@resent numerical results on equilibrium critical behavior in
performed in the space of the wave vector of the fluctuationsupercritical LJ fluids. In Sec. Ill we will show numerical
and are rather formal. The real space picture of the enhanceedsults on near-critical heat conduction together with theoret-
heat transport in a small temperature gradiémtdz is as ical interpretations. In particular, we will confirm the cluster
follows [2]. The critical fluctuations with relatively higher convection mechanism by introducing steady-state distribu-
(lower) densities should be convected in the directiog=  tions of the momentum and heat fluxes at fixed density. In
verse directioh of the temperature gradient. The typical ve- Appendix B we will summarize the mode-coupling theory
locity of the clusters with lengths of ordéris given by for the thermal conductivity. In Appendix C we will examine

the linear response to heat flow and justify Et).

-DrdT
- Blvi2-p=T="
ve~ (EE)" T @) Il. MODEL AND EQUILIBRIUM RESULTS

We used a two-dimensionéD) LJ fluid composed oN
identical particles. The pair potential as a function of the

in the linear response with being the critical exponent. The distancer between two particles is given by

entropy of the liquidlike regions is smaller than that of the
gaslike regions by&dss~ £4# where the entropy fluctua- a\2 [o\8
tion &s (as well as the denisity fluctuatiafn) has sizes typi- P(r) = 46[(?) - (?) } -C (r=ry, )
cally of order&#” [~(T/T,—1)# on the critical isochork

The thermal average of the convective heat fiiésv, thus ~ and ¢(r)=0 for r>r.. The constanC is chosen such that
gives rise to the critical heat conduction. Within their life- ¢(r.)=0. The cutoff lengthr. was set equal to® The sys-

times the clusters can move only over the distance tem containdN=5000 particles. Space and time are measured
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TABLE I. Numerical estimations for the two-dimensional LJ 100 ¢ T o o
fluids. The estimated critical temperatufg and densityn. are F ]
given in the first and second columns. The particle nuntband [
the cutoff radiug ¢, used are given in the third and fourth columns. 10k i

~ f E

T. Ne N rew Source R ]

0.533 0.335 256 [15] » 1 /\—

0.472 0.33 500 oo [16] - N

a N .

0.515 0.355 512 [17] 0.05(~27/L)

0.459 0.35 512 25 [17] 0.1 T N ul
a 0.01 0.1 1 10

0.498 0.36 8000 [18] q

0.47 0.35 4096 25 [19]

0.47 0.37 5000 3.0 Present work FIG. 1. The structure factdd(q) at n=0.37 forT=0.65 (short-

dashed line at bottom0.51, 0.5, 0.495, and 0.4@ashed line on

#The Gibbs ensemble method was used wifh=L/2, whereL is top). A line with a slope of ~7/4 is included as a guide.

the cell size.

S(q):Jdr e9(A(r,1)A(0,1))/n. (5)

in units of o and 7,=(mo?/ €)*?, wherem is the particle
mass. Equilibrium states of the fluid may be characterized b
the temperaturd and the average number density N/V
measured in units of/ kg ando?, respectively. The pressure
is measured in units af %e. We used the leapfrog algorithm
to integrate the Newton differential equations with a time
step of 0.01 and the cell-index method of cutting off the

interaction potential. The details of these numerical method . . .
are described in the literatuf@]. We took the angle average in the calculatiorStd). Figure

The phase diagram of the two-dimensional LJ fluid ha’s1 showsS(q) for T=0.65, 0.51, 0.5, 0.495, and 0.49 mt

been studied by several groups using the conventional Montg0-37- We can see the power lapbehavior,
S) ~ g, (7)

Carlo method15], the Gibbs ensemble methftb—-1§, and
finite-size scaling analys[49]. Table | summarizes the criti-
cal parameters reported in the literature together with ouin the rangeé'<q=<2 near the critical point, where the
MD results. However, note that the critical parametersexponent value 7/4 is consistent with the well-known Fisher
largely depend on the details of the truncation of the poteneritical exponent #=1/4 in two dimensions. The peak
tial [17]. We also mention that Luet al. [20] examined aroundg~6 represents the short-range pair correlation at
thermal relaxation in a two-dimensional supercritical LJthis density. We then estimated the correlation lengtfio
fluid. this end we fitted our data to a simple extrapolation formula
As preliminary work before nonequilibrium simulations, S(q)=nksTK+/[1+(qé)?]”’® for q<1. The isothermal com-
we carried out equilibrium simulations in the canonical pressibility Ky=(dn/dp);/n can be determined from the
(constantNVT) ensemble, using the Nosé-Hoover thermostalong-wavelength limit 0fS(g). We showé vs n in Fig. 2 and
[7,21] under the periodic boundary condition, witht K. vsnin Fig. 3 for variousT (=0.49. Although not shown

=0.01, to calculate the structure fact(q). We started with  in Figs. 2 and 3, we also performed simulations at lower
random initial particle configurations at each given tempera-

¥|ere we define the fluctuating particle number density in
terms of the particle positions as

N
A(r, b =2 8(ri() = r). (6)
i=1

ture, waited fort,,=5x 10%, and afterward took data in a 25 : : . : : :
subsequent time interval af, <t<2t,,. This long equilibra- = T=0.65 +
tion is needed because the density fluctuations relax very 20k T=0.51 X
slowly near the critical point. That ig,, should be longer B T=050 %
than the lifetimer,=£/D+ of the critical fluctuations with 15| T=0.4950 |
sizes of the order of the correlation lengh[2]. Here X wp e T=0.49 =
=D+C, is the thermal conductivity an@, is the isobaric heat 10k .';"x***'**x?‘. -
capacity per unit volume, respectively. In particular, in two ,)Q:’('_%xﬁxx;;'%‘.
dimensions the critical exponentis equal to 1 and the criti- 5 - X REVIEN) .
cal singularity ofD is weak[as will be evident in Eq(19)], e

so on the critical isochore; grows as ] I it N s it

0 01 02 03 04 05 06 07
n
T~ &~ (TIT,-D72 (d=2). (4)
FIG. 2. The correlation lengtl vs the density at various tem-

We consider the structure factor given by peratures obtained from the structure factor.
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FIG. 4. Simulation cell under heat flow composed of cooling,
FIG. 3. The isothermal compressibilir vs the density at vari-  neating, and interior regiorfd.3].

ous temperatures obtained from the structure factor.

] cooling region —0.b<z<-0.4L the average temperature of
temperatures to obtaii-50 for T=0.485 and>L (appar-  the particles was kept &f,, while in the heating region
ently) for T=0.48 atn=0.37. However, for thesd, our o4 <z<0.5_ it was kept atT,,. The precise definition of
simulation times are not sufficiently long compared with  the average temperature in a given region will be presented
in Eq. (4). From the peak positions in Figs. 2 and 3 wen Eq. (12) below. The pinning of the average temperatures
estimatedn,=0.37 in Table I. This value was also obtained j; the cooling and heating regions was realized by simple
as the mean position of the two peaks in the one-body denscajing of the velocities of the particles in the two regions at
sity distribution¥(p) [defined by Eq(22) below] in equilib-  every time step. The periodic boundary condition was im-

rium for 0.495<T=0.50. - posed in thex direction, while the walls az=+L/2 were

From the data in Figs. 2 and 3 on the critical isoch#e, assumed to interact with the particles via the LJ potential in
behaves as a function défas Eq. (3) wherer is the distance from the wall ang=3. The
Ky= 3.7+ 0.80, ®) particles in the interiof—0.4L <z<0.4L) obeyed the New-

tonian dynamics without artificial thermostat. The particles
in units of o?/e. We then fitted¢ to the scaling form¢  entering the interior from the coolingheating region have
=&(T/T,-1)7* on the critical isochore to obtaifi,=0.47 lower (highe kinetic energies than those of the particles in
and £=0.6. From the isothermal curves in tpen plane in  the interior on the average. Then a steady heat conducting

the range 0.495 T<0.50 atn=n,, we obtained22] state is realized after a transient time.
In our nonequilibrium simulations, we used a single den-
(@) = (@) =0.40. (9) sity n=0.37 nearly equal to.. The system length is then
Ty \dT/ =(5000/0.37*2=116. The lower boundary temperatufe

was changed as 0.7, 0.65, 0.6, 0.52, 0.505, 0.5, 0.495, and
0.49. The temperature differenel=T,—-T, was fixed at
0.005 in all the simulations. We regard the system to be in a
steady state for>t,,=6X 10* after application oAT. In the
following the steady-state values of the physical quantities
ap>2 (&p) « will be the time averages over the data during the next time
T
CX

Cp= T(a_T 5T (100 intervalt, <t<t,+tgapmWith tyae= 14X 10%

We also consider the specific he@y=nT(ds/JT), per unit
volume (s being the entropy per partidlend the thermal
expansion coefficient,=—(an/JT),/n at constant pressure.
These quantities grow strongly and are relatettdoy [2]

KT! a/p =
CcX
near the critical point. These relations will be used in the
next section.
As long as k¢<L, our equilibrium results are consis-  Figure 5 displays a snapshot of the particle positions in
tent with the well-known results of critical phenomdra2]. the cell att=2x 10° for T, =0.50, where the system is nearly
If £ approaches, a finite-size scaling analysis may be per-in a steady state. The large clusters formed by many patrticles
formed[19]. However, such analysis is beyond the scope ofare significantly denser near the cooler bounddgyttom
this paper. than near the warmer bounda(tpp) [23]. This is due to the
diverging isobaric thermal expansion as will be shown in Eq.
(16) below. By comparing successive snapsHoist shown
I1l. NONEQUILIBRIUM SIMULATIONS herg, we recognize that the clusters appear and disappear
A Method continuously on the time scale af in Eq. (4).
' To quantitatively analyze Fig. 5, we need to calculate the
Next we imposed a heat flux on the system using Ohara’me averages of the temperature and the density. They are
method[13,14]. As illustrated in Fig. 4, the cell is divided defined as follows. Dividing the interior into eight layers
into three parts, cooling, heating, and interior regions. In thewith thicknesd./10, the density in théth layer is defined by

B. Steady-state density and temperature profiles
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T(2)=(Te(1), n(@)=(n,1), (13

which are the time averages with=(€-5)L/10. Here T,
=0.50 andh=0.37 as in Fig. 5. For this case the deviation of
T(2) from the linear profile is not large and there exists a
temperature gradient also in the cooling and heating regions.
We may define the penetration widtds anddy by the ex-
trapolations

T(_ dL - 2L/5) = TLI T(2L/5 + dH) = TH' (14)

When the temperature profile is nearly linear, we simply find
d. =dy=L/20. When the temperature flux is not too large,
the effective cell length of heat conduction becomes

4L/5 +d, +dy = 9L/10, (15)

FIG. 5. Snapshot of the particle configurationrat0.37 in a  which is the distance between the middle points of the
steady state witff, =0.50 andT;=0.505. The horizontal bars atthe cooling and heating region as in the case of Ohara’s
vertical box lines mark the boundaries between the interior regio%imulation[li%].
and cooling or heating region. On the other hand, in Fig. 6 the density deviation is much

more enhanced than that of the temperature. We expect that
n(t)=(10/L?)N,(t) in terms of the particle number in theh if the deviationsT(z)=T(z)-T(0) (measured from the center
layer, z=0) is not too large, the average density deviatiém(z)
=n(z)—n(0) should be given by

Zp+1 L
N,(t) = L dz fo dx 7lr, 1), (1) N(2) = - na,dT(2), (16)

wherez,=(£-5)L/10 andi(r ,t) is the fluctuating density in wherea, is the isob_aric thermal expansion coefficient. Here,
Eq. (6). The temperature in théth layer T,(t) may be de- &t the center, we find(0)=0.5025 andn(0)=0.37, so Eq.

fined by (10) indicatesKy=159 andna,=23.5 at the center. In Fig. 6
the solid line has a slope dfT/(9L/10)=0.0056L, and the
1 — dotted line a slope of -23X60.0056L. These two lines can
- (1) — 2 . .
T = Ne(t)% vict) = veF, (12 fairly fit the temperature and density data, though there are

considerable deviations close to the boundafisviously
where the summation is over the particles within #t@  pecause the boundary regions are considerably off ciitical
layer and v, () == vi(t)/N,(t) is the average velocity Notice that we assume homogeneity of the pressure in Eq.
within the ¢th layer. Notice that the zeroth layer is the cool- (16). To check this, we calculated the steady-state time aver-
ing region and the ninth layer is the heating region. Thus weages of the trace of the stress tengotegrated in each laygr
set To()=T_ and Te(t)=T in the cooling and heating re- and found no appreciable heterogeneity in these values.
gions, respectively.

Figure 6 shows the steady-state temperature and density C. Thermal conductivity

profiles,
In our simulations, the steady-state thermal conductivity
0.5050 T 044 in the interior was calculated from
- i \ = Q0.9|_ 17
] CUAT
-~ i . >
N 05025} 0T N where 0.2 is the effective cell length in Eq15). TheQ is
= B 1 the steady-state heat flux written as
2 - Q = - (I94))/0.8L2 (18)
0.5000 oo Wherngz(t) is the integral of the heat flux density within the
-0.5L 0.0 0.5L

interior with area 0.B? and its microscopic expression will
be given in Appendix A. In our small system the fluctuations

FIG. 6. Steady-state profiles of temperature and density iz the Of the heat flux turned out to be large, so we performed ten
direction obtained by the time average. The solid line representingdependent runs and calculated the mean values of the cor-
the temerature has a slope AfT/(9L/10) (left scale with AT ~ responding ten time averages. In Fig. 7 the thermal conduc-
=0.005, while the dotted line representing the dengityht scale  tivity data are shown as a function of the temperature at the
has a slope of rapAT/(9L/10) in Eq. (16). Here na,AT=23.5 critical density, which gives the background;=2.3 far
X 0.05. above the critical point. In Fig. 8 the data of the singular part
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FIG. 7. The thermal conductivitk calculated from Eqs(16)
and(17) atn=0.37 forT=0.7, 0.65, 0.6, 0.52, 0.51, 0.5, 0.495, and
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obtained almost the same results. Thatiisthe time integral

of the stress time correlation functid®,7] in the range 0
<t<100 gaven=0.35 and(ii) the long-time tail of the
velocity correlation function gavey=0.33 (see Appendix

D). If we use the latter result, we are ledAg=0.035. In Fig.

8 the theoretical curve represents the second term on the
right-hand side of Eq19) with this A,. It excellently agrees
with the data before the saturation of

D. Momentum and heat flux distributions at fixed density
under heat flow

Some characteristic features of the density fluctuations
can be seen in the one-body density distribution function
W (p)=(8(Neen—p)), Wherehg is the density in an appropri-

0.49. The bold dashed line is a view guide. The width of each errorate|y chosen cell in the fluid and the average is taken over
bar is twice the variance of ten data values corresponding to tefhe ‘thermal fluctuations and over the cells in the system

independent runs.

AN=N-\g are plotted as a functions @& For ¢&<10 our

[17-19,24. It is the probability distribution of the coarse-
grained density. Furthermore, in the presence of heat flow,

numerical data nice|y agree with the theoretical linear reWe are interested in distributions of the momentum and heat

sponse result Eq19), which will be explained below. For

fluxes at fixed density. They can give the correlations be-

£=10 the finite-size effect and the nonlinear response effedween these fluxes and the density within the same cell even

should be responsible for the saturation of the calculated
The mode-coupling theory in Appendix B predicts the fol-
lowing behavior:
T 714
AN=Ng+——C,In(L/§) =Ag + A In(LIE), (19
41y

where 7 is the shear viscosith25]. See also Appendix C for

the linear response theory for heat flow. The singular part of

the thermal conductivity is simply given bp-C, with Dy
being the thermal diffusion constalat]. In terms of the iso-
thermal compressibilit)K; the coefficientA, is written as
T2 <01p>2
- g K 7/4.
_47”7 1§

20
dT )/ o 20

N

To estimateA, from the above expression, we calculated the

shear viscosityy at T=0.50 andh=0.37 by two methods and

10
:l |||I L] L] L] L] LI} ||I L] L] L] :
[ A ]

<

< s -
- + ]

0'1 Ll III L L L L L1 III L L L

05 1 5 10 50

FIG. 8. The singular part of the thermal conductiviix as a
function of ¢ on logarithmic scales. The solid line is the second
term in Eq.(19) with A,=0.035.

if the cluster motion driven by heat flow is very small.

First we coarse-grain the system to calculdté). The
interior region (-0.4L<z<0.4L and 0<x<L) is divided
into 10x10 rectangular subsystems. LeM,(t) (k
=1,---,100 be the particle number in thah cell at timet.
After the time averaging in steady states, we obtained the
distribution of M(t) for integerM as

100

1
_2 <5M,Mk(t)>,

P(M) =
M) 1005,

(21)

where 6y v is the Kronecker delta, anBy,_,P(M)=1 by
definition. For each given densip=M/V,, we define

100

U(p) = VearP(Veeip) =~ 2 (8(p — (1)),

22
1005, 22

where V.;=0.8.2/100 is the cell volume and we give the
expression in the continuum limit with(t) =M, (t)/ Vo). By
definition we obtain

fo
wheren;, is the average density in the interior ang=n in
our case. The second moment becomes

J
In equilibrium, or if the heterogeneity along the heat flow is
neglected, the second momentpehaveﬁ@lyvce” for ¢ less
than the cell length but a‘dﬁiﬁ’_”)’d for larger ¢ due to the
finite-size effect.
Now we consider the coarse-grained momentum and heat

fluxes at fixed density. We calculate the following steady-
state averages:

o

dpV(p) =1, J dp p¥(p) = iy,

0

(23

100

dp(p~ )2 (p) = — 3 ([n(D) 2.

24
1005, 24
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FIG. 9. (a) Density distribution function¥(p) (right scalg, momentum distributiod,(p), and heat-flux distributiodg(p) (left scalg
obtained an=0.37 for T, =0.65 in(a), 0.50 in(b), and 0.48 in(c).

100 ior of these quantities using the linear response theory for
3(p) = 7oy~ 2 (a0 8p = D)), (25) VT [26] N
cellk=1 In Fig. 9 we show the three quantiti&i(p), Jo(p), and
Jo(p) obtained from ten independent runs. Each run was a
100 h . . . . .
: S (39 simulation with the time intervatl,.= 14X 10%, as explained
Jolp) = 100V g2 (o (1) op ~ (V). (26) 4t the beginning of this section. The temperature=it is

T.=0.65 in(a) (top plate, T, =0.5 in(b) (middle plate, and
where J§,(t) and JOQkZ(t) are thez component of the space T, =0.48 in(c) (bottom platg¢, with AT=0.005 or(dT/d2
integral of the momentum density and that of the heat flux=0.43x 1074 As can be seen in Fig. 7, the calculated thermal
respectively, within theth cell[see Eq(A2) in Appendix A conductivity iS\=5.96 in(a), 5.66 in(b), and 2.63 in(c). In

for their definitiond. If they are divided by the cell volume Appendix C we will give a theoretical basis to understand
Veenr they become the coarse-grained densities, respectivelihe results in Fig. 9. Here we mention salient features.

For simplicity, we may write W(p)=(8(p—N)), Jp(p) (i) The density distribution?(p) has a rather sharp peak
=(J,8(p—N)), andJQ(p)=<J35(p—ﬁ)> regarding the dynamic in (a), a broad(still single) peak in(b), and double peaks in
variables involved as the coarse-grained quantities. The nof€). We also calculate® (p) in equilibrium at the same tem-
malized quantities,(p)/ ¥ (p) andJq(p)/W(p) may be inter-  peratures, which exhibits double flattened peaksTiei0.5
preted as the coarse-grained conditional average of the mend sharper double peaks f&d=0.48, and found that the
mentum density and that of the heat flux, respectively, undedouble peak behavior emerges more conspicuously in equi-
the condition of fixed density a. If integrated overp, we  librium. This difference arises from the fact that the average

obtain

density profile is considerably dependentim (b) and(c)
(see Fig. %, as a complicating factor in heat flow.

f dp J,(p) =0, (27) (i) The momentum distributiod,(p) is positive for p

0 =0.37 and negative fop=<0.37. This is consistent with the
antisymmetric behaviorJy(p) ~Q(p—0.379W(p), close to

* the criticality in Eq.(C5) of Appendix C. Evidently, the lig-

f dpda(p) =-Q, (28) uidlike clusters move toward the higher-temperature bound-

0 ary, while the particles in the gaslike regions move toward
whereQ is the average heat flux defined by Ef8) in the  the lower-temperature boundary. However, notice that the
interior. In Appendix C we will examine the expected behav-high-density maximum is considerably sharper than the low-
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density minimum, which should arise from the gas-liquidrapid adiabatic heating throughout the dgfle piston effegt

asymmetry of the fluctuatiorf®2]. In particular, for the case [27,28. We should examine how this phenomenon starts in

(b), the momentum density of the liquidlike regions is of the early stage on the acoustic time sd&@p

order 102 and the velocity is of order 8 1073 [in units of (i) Heat conduction in two-phase near-critical fluids be-

ol 9=(e/m)*?]. In this case we havé~ 18 andD;~0.1so low T, has been little examined in the literatuj2]. For

that the distance of the cluster motion within the lifetime example, we should examine how a gas-liquid interface re-

£/D;~3x 10 is estimated to be of order 10. acts to applied heat flow, where latent heat transport can be
(ii ) The heat flux distribution functiodiy(p) still exhibits  crucial in the presence of convection. Interestingly, gas

considerable irregular behavior, but its negativity at arig~ bubbles in liquid migrate toward the warmer boundary in

clear. Let us smooth out the curves; thdg(p) has a single heat flow[29].

minimum in (a) and double minima irfb) and(c). Thus, as

T—T,, heat is largely transported by the counterflow of the ACKNOWLEDGMENTS
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noisy behavior even after averaging over ten runs and ever€Nter, Institute of Medical Science, University of Tokyo
not very close to the critical poirithe case@)]. This is due gnd the_ Supercomputer Center, Institute for Solid State Phys-
to large local heat transport randomly occurring when thdCS, University of Tokyo.
clusters emege, disappear, or move. On the other hand, even
a single run can give a smooth curve &p) with small APPENDIX A: MICROSCOPIC EXPRESSIONS
fluctuations. Thel,(p) is noisy for each run, but becomes

rather smooth after averaging over ten runs. We introduce the momentum density

(1) =2 mv ()5 —ri(t) (A1)

IV. CONCLUDING REMARKS . . .
and the energy current densi§(r ,t). The microscopic ex-

MD simulations have been performed on LJ near-criticalpression for the latter quantity is rather complicaf2tl Let
fluids in two dimensions. In equilibrium the critical proper- ys consider its space integra§(t)=fy.dr J&r,t) in a sub-
1

ties obtained are presented_ in Figs. 1-3. The main res“'@ystem with volumé/, containing many particles. It may be
under heat flow are summarized as follows. approximated as

(i) We have calculated the average density and tempera-

ture profiles in steady state in Fig. 4, where they are fairly e , 5
fitted to linear lines and satisfy E¢L6). The density devia- Jo(®) = 52 [mvi * 2 ‘Wii)]vi
tion is more enhanced than that of the temperature and the .
average pressure remains homogeneous. 1, oL
(i) We have obtained critical enhancement of the thermal 2E 2 ¢ (rig) i (Vi T3, (A2)

conductivity for variousT close toT, in Figs. 7 and 8 in L
good agreement with the mode-coupling prediction in Eqwherer;=r;(t) andv;=v;(t) are the position and velocity of
(19) derived in Appendix B. theith particle[the timet being suppressed ifA2)], rj=r;

(iii ) We have calculated the one-body density distribution—r;, ¢'(r)=de¢(r)/dr, and the summatioR; is over the par-
W(p), the momentum distributiod,(p), and the heat flux ticles contained in the subsystem under consideration. Here
distributionJq(p) defined by Eqs(22), (25), and(26). Figure  the pair interactions between the particles inside and outside
9 demonstrates the cluster convection mechanism, which e subsystem are not precisely accounted for.
briefly summarized in the Introduction and supported in Ap-  The microscopic heat flux density is defined [l2}
pendix C in the linear regime. _

(iv) The cluster convection is a natural consequence of the 39, = 3%, 1) = [(e+ P/n]I(r 1), (A3)
irreversibility in heat conduction, while the density increasewheree, p, andn are the average energy, pressure, and den-
near the cooler boundary in Fig. 6 arises from the simplesity, respectively. This current satisfies the orthogonal prop-
thermodynamics under homogeneous pressure in(Egj. erty [dr(J?(r,t)-J(r’',t))=0 in equilibrium. The Green-
These two effects are not contradictory with each other inkybo formula for the thermal conductivity reads
view of the fact that the distance of cluster convection is very
short.

The following problems could be mentioned as future
subjects of nonequilibrium MD simulations.

(i) When the boundary wall is heated with a fixed cell The J34t) in Eq. (18) is the z component of the total heat
volume, sound waves emitted from the boundary can causiux in the interior,

[

)\:LZ dt f dr (39(r,132(0,0)). (A4)
keT°Jo
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steady heat-conducting state in the absence of macroscopic

BO=]  drI%r. (A5)  velocity field [26]. To pick up the singular contribution near
nterior the gas-liquid critical point we may approximate the heat
In Egs. (25) and (26) the space integrals are within small flux by (T/m)éS(r,t)J(r,t) from (B1). Then the linear
subsystems. response of any dynamic variaki#r ,t) to a can be written
as[2]

APPENDIX B: MODE-COUPLING THEORY -a o
XBy=—— f dtj dr’{B(r,t)os(r’,0)3(r’,0))
mksT Jo

In the critical dynamics of simple fluids the gross vari-
ables include the long-wavelength pangth wave numbers -
in the regiong<o™') of the energy densitg, the particle __a f dtf dr’(f?(r 0)3s(r’,H)J(r’,t))
densityf, and the momentum densify The heat flux den- mieT J, ’ ’ T
sity J9(r,t) in (A3) has been approximated as a sum of a

product of the gross variables and a random part in the form €D
[2-5] From the first to second line use has been made of the time-

T reversal relatiod A(t) B(0))=(B(t).4(0)) where. A and 3 are

JQ(r,t)zab‘s(r,t)J(r,t)+J8(r,t). (B1)  the time-reversed variables. For example;—J. Further-

more, on the second line, we may replaés(r’,t) by
The &5 is the fluctuating entropy deviatioiper particle¢ de-  ss(r’,0) because the relaxation time dfr’,t) due to the
fined by shear viscosityy is much faster than that aofs(r’,t). Then
the time integral may be performed to give

1 e+p
Ss(r,t):ﬁ 6é(r,t)—Téh(r,t) , (B2) N
XBy=->, & dr’ | dr'"7Z;(r' =r")
. .. ~ k. J
in terms of the deviations of the energy densityand the ij keT
number density). The e can be defined microscopically us- X (B(r)ds(t")J:(r") (2
J ]

ing the particle positions and velociti€®,24]. The first term

on the right-hand side ofB1) evolves slowly in time and where the equal-time correlation is involved and the time
gives rise to the singular part of the thermal conductiily  dependence is hence suppressed. Jfte) is the Oseen ten-
when substituted intgA4). In 2D the mode-coupling calcu- sor whose Fourier  transformation is7;(q)=(4;

lation yields the following integral over the wave vectar _qiqj/qZ)/,?qZ_ In 3D it follows the well-known expression
kBT dq 1 Zj(r):(c‘;ij+Xin/r2)/87T7]r.

AN = —f 5 5Cp(a), (B3) In (C2), if we setB=(T/m)&SJ, and use the equilibrium

27 ) (2m)°q relation (Ji(r)J;(r'))=kgTps;8(r-r’), we reproduce the

where 7 is the shear viscositj25] ande(q):k§1n2<|%|2> is mode—coupling expression for Fhe singular part of the ther-
the variance of the entropy fluctuation wihbeing the Fou- mal conductivity[given by (B3) in 2D] in the form X5)=

rier component. See Appendix C for another derivation of-ANdT/dz Next let us setB=J,8(p—) and J28(p—0)

A\ from the linear response. As far as the most singular panvhere the dynamic variable, JS, and i are the coarse-

is concerned, we may sg2] grained quantities averaged in appropriate cells. Then we
obtainJy(p) andJq(p) in Egs.(25) and(26) expressed as

8= - n"2(IpldT) 0. (B4)
o gp\ dT , , R ,
This yields Jo(p) =m T & dr'7,r =r") X {(8(p—n(r))on(r')),
CcX

Cy(a) = (9p/aT)5S(a)/ken, (B5) (3
in terms of the structure fact®(q) in Eq. (5) [2]. The long-
wavelength limitC,=lim,_,C,(q) is the usual isobaric spe- _ T(dp 2dT , ,
cific heat per unit volume behaving as in Eg0). Note that Jolp) == 3| 7% L dz dr'T4Ar =)
the integral(B3) is logarithmically divergent at smatfl, so R )
we obtain the expression E¢L9). On the other hand, the X(&(p —N(r))on(r)on(r’)). (C4)

second term on the right-hand side (@1) relaxes rapidly \ye notice that these quantities depend on the cell volume
and gives rise 1o the background thermal conductixgy Ve If the cell length€,e=V24 is shorter than the correla-

tion length&, we estimatel,(p) as
APPENDIX C: LINEAR RESPONSE TO TEMPERATURE .
GRADIENT NEAR THE GAS-LIQUID I(o) ~ M2 (0w (@) atr cs
CRITICAL POINT plP) cell(P = i)'V (p) aT) oz’ (€5

Here we consider the linear response theory with respeatheren, is the average density. #.. is longer than, we
to a temperature gradier= VT (along thez axis) in a  divide the cell into subsystems with lengéand find that
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Jo(p) is given by (C5) with ¢Z,, being replaced by?. Next
notice that the integraldp Jo(p) is equal to £AN)dT/dz
from (C4) which is in accord with Eq(28) for AA=\. Ac-
counting for this sum rule we thus expect

olP) = = Aglp =N ¥(p) (c6)

for €ce<&. The coefficientA, is determined from the nor-
malization condition Eq(28). The estimation$C5) and(C6)
are consistent with the data in Fig. 9.

In addition, Eq.(1) in the Introduction follows if we as-
sumev; .~ J,(p)/mm¥(p) in (C5) by setting .~ & and p
-n;,~ &P with the aid of the exponent relationg2 (d-2
+7)v [2]. Note thatJ,(p)/¥(p) represents the average mo-
mentum density at density.

PHYSICAL REVIEW E 71, 011507(2005

APPENDIX D: DIFFUSION IN TWO DIMENSIONS

In two dimensions the flux-time correlation functions for
the transport coefficients have a long-time tail relaxing as
1/t, giving rise to a logarithmic singularityif integrated
over time [25]. The simplest example is the diffusion con-
stantD of a tagged particle. It is the time integral of the
velocity time correlation function,

N

1
> (vilte+1) - vito)).

V=2
i=1

(D1)

The long-time tail of G(t) is theoretically given by
(kgT/8mm)/t if the kinetic viscosity »/mn is much larger
thanD. By taking the average ovey in a time interval of

5x 10%, we obtained/dt'G(t’)=0.17+0.059 Irt for t=1,
leading tokg T/87r7=0.059. Note that the kinetic viscosity is
close 1 and is considerably larger than the diffusion constant
in our system.
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