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Slow drag in two-dimensional granular media
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We study the drag force experienced by an object slowly moving at constant velocity through a two-
dimensional granular material consisting of bidisperse disks. The drag force is dominated by force chain
structures in the bulk of the system, thus showing strong fluctuations. We consider the effect of three important
control parameters for the system: the packing fraction, the drag velocity and the size of the tracer particle. We
find that the mean drag force increases as a power(éponent of 1.5in the reduced packing fraction,
(y=7v.)! v, asy passes through a critical packing fractiop, By comparison, the mean drag grows slowly
(basically logarithmig with the drag velocity, showing a weak rate dependence. We also find that the mean
drag force depends nonlinearly on the diamedesf the tracer particle whea is comparable to the surround-
ing particles’ size. However, the system nevertheless exhibits strong statistical invariance in the sense that
many physical quantities collapse onto a single curve under appropriate scaling: force distri{fibns
collapse with appropriate scaling by the mean force, the power sge@acollapse when scaled by the drag
velocity, and the avalanche size and duration distributions collapse when scaled by the mean avalanche size
and duration. We also show that the system can be understood using simple failure models, which reproduce
many experimental observations. These observations include the following: a power law variation of the
spectrum with frequency characterized by an exponent2, exponential distributions for both the avalanche
size and duration, and an exponential fall-off at large forces for the force distributions. These experimental data
and simulations indicate that fluctuations in the drag force seem to be associated with the force chain formation
and breaking in the system. Moreover, our simulations suggest that the logarithmic increase of the mean drag
force with rate can be accounted for if slow relaxation of the force chain networks is included.
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[. INTRODUCTION In molecular fluids, the drag force on a particle arises
from viscous interactions, i.e., from collisional interactions
of the particle and surrounding molecules that involve mo-

external stresses, a dense granular system forms inhomodB€NtUm transfer. This drag force is linearly proportional to
neous force chain networks where only a fraction of thetne object’s velocity through the fluid when the velocity is
grains carry most of the forde]. The spatial scale of these not very large. | ia th iqin of th f it
force chains can extend over many grain diameters, and the !N dense granular media, the origin of the drag force dif-
chain lengths may be comparable to the system size. Th rs in several respects. First, fr|ct|on_al interactions exist be-
separation between microscopic and macroscopic scalé@’leen da.drar? particle and fsufrroundlrl;\g. gralnﬁ. Secolnd., blut
poses a theoretical challenge if one attempts to describe '§lat€d, I the existence of force chains. These relatively
granular system using a continuum approach. Recently, e){g_ng-range inhomogeneous structures can provide an elastic
perimental works by several research gro{i®sg] suggest rigid in the limit of infinitely stiff particleg resistance to a
the importance of strong stress fluctuations in granular syd110Ving particle.

tems. The fluctuations, as characterized by the standard de- N Fi9- 1©), and Fig. 2 we show such force chain struc-
viation or rms of the stress, can often be somewhere from jUrés obtained using photoelastic techniq{@s2]. These

to several times of the mean stress. However, questions ind/c€ chains are typically inhomogeneous and anisotropic in

volving the dynamics, nature, and length/time scales assocpature, and constantly form and break when an object moves

ated with these fluctuations are still poorly understood. Artrough the granular media, leading to strong fluctuations in

improved understanding of these questions could provide infh€ drag force. In the experiments presented here, we con-
ider the drag force experienced by a tracer particle moving

sight into describing a number of practical applications and® - : . L
such phenomena as earthquakes and avalanches. Anott ;oygh atwo-@mensmn&ED) granular materlal consisting
motivation concerns exploring jammiri@,10] in granular  © b!dlsp_erse disks. In our experiment, _the size of the_ tracer
materials. Specifically, jammed states in granular systemBarticle is comparable to the surrounding grains, which al-
may be reached when the densipacking fraction of the lows us to explore fluctuations at the grain scale. The experi-
system is high enough. mental results presented here are described well by simple
In this regard, slow drag experiments, the subject of thidailure models.

paper, provide a useful way to understand the nature of stress A number of experimental and theoretical results provide
fluctuations and slow dynamics in granular materials. Wemportant background to the present studies. Experiments
have used a similar experimental approach to probe the thethat are relevant here include the “carbon paper” studies of
modynamic temperature in granular systems, as reportelluethet al.[4], who measured the static forces of a material
elsewherd 11]. (e.g., glass beaglat the boundary of a container, and showed

Granular materials are of great interest for their rich phe
nomenology and import applicatiodd]. When subject to
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FIG. 2. Visualization(using photoelastic technigyesf the
loading up of the force chains and their subsequent failure/
disappearance. The media in the images move in the clockwise
direction. These six images are ordered sequentially, and the corre-
sponding times are &, 2ty, 5tg, 6ty, 7tg, Wherety, the time between
each snapshot, is 1045 seconds.

- - : . through granular materials such as glass beads. Depending
FIG. 1. (Col I Sch tic d f th tus: . . . .
(Color onling (&) Schematic drawings of the apparatus gn the rod insertion depth and the size ratio between the rod

a cross-sectional view, where the plane of the section is through . . .
diameter of the apparatus, which has circular symmetry in the horif“nd the grain, three types of drag force time series were

zontal plane. The bottom plate, together with particles, rotate as 20Served, a periodic regime where the signal resembles an
rigid body at a slow velocity. The inset shows how a digital force id€al sawtooth pattern, a random regime, and a stepped re-
gauge(F.G) is mounted on the top plate and connected with thedime with sawtoothlike steps. These authors focused their
tracer particle through the force gauge hae. An actual image Work on the periodic and stepped regimes, characterized by
taken from the experiments showing the 2D granular system comstick-slip fluctuations due to successive formation and col-
posed of bidisperse disk&) A stress image, obtained using pho- lapse of jammed states. A particularly interesting finding of
toelasticity[6,12], showing force chain structures when the tracerthese studies was that the mean drag force on the rod was
particle is dragged through the medium. independent of the drag velocity.
Several theoretical wor45,16 have provided a context

that the distribution of forces, is exponential for largd. ~ for understanding the stress distributions and stress fluctua-

Sheared granular systems, both in Y] and 3D[5], show tions in granular material_s. 'I_'hq,xmodel of C_oppersmithet
strong force/stress fluctuations. In addition, the 2D experi@l- [15] predicts a force distribution for static systetRg~)
ments by Howell et al. [6] showed a well-defined *F" 'exp-F/Fo), whereN is the system dimension. This
strengthening/softening transition as the packing fraction oMmodel only considers the vertical force transmitted through a
the system passed a critical packing fractign The mean regularly packed lattice. Vertical forces on a grain in one
stress in such a system varies as a power law in the reducéayer are balanced by transmitting fractiogsand(1-q), to
packing fraction, the two supporting grains in the next lay@ssuming a 2D
system, whereq is a random number uniformly distributed
(= ) in 0=<g=1. We note for exponential force distributions, that
Yo the mean is of the order of the width of the distribution.
Other lattice model$17] and calculations by Radjai using
with an exponent between 2 and 4, depending on the particleontact dynamic$18] also predict exponential force distri-
type. Later experiments on similar 2D systems by Haréiey butions for large forces.
al. [7] showed that the mean stress increased logarithmically Recently, Kahnget al.[16] have used a stochastic failure
with the shearing rate, which may be related to collectivemodel to understand the 3D drag experiments of Albesl.
slow relaxation of the force chain network. Three-[13,8,14. These authors used simple springs with random
dimensional(3D) experiments by Millert al. [5] identified  thresholds to model the jamming and reorganization of
rate-independent power spectRiw), for the stress time se- grains. Among other results, the model reproduces the ex-
ries which fell off asP~ w2 at high spectral frequency.  perimentally observed periodic sawtooth fluctuations in the
Experiments on 3D drag by Albeet al. [13,8,14 relate  drag force. We will use this simple failure model, with modi-
most closely to the present experiments. These studiefications, later in this paper to understand the experiments
yielded the drag force experienced by a rod as it was draggedescribed here.
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The organization of the remainder of this paper is as fol- €0
lows. In Sec. II, we describe the experimental setup and pro- 4o |(2) ©=6.3x10"Hz a=0.876cm
cedures. In Sec. lll, we report experimental results. In Sec.

IV, we describe models and simulations. Finally, we draw M
conclusions in Sec. V. o
40 O @=5.0x10""Hz ]
Il. EXPERIMENTAL SETUP AND PROCEDURES C) 20 WMWWMMWWMMA
(T8
The experiments were carried out in an apparatus whict MMWMW
is, in spirit, similar to the one in Refl3], except that the 60 ¢ ‘ ' ‘

one used here is two dimensional in character, whereas th 44 | (¢) =8.7x10"Hz |
one used by Alberet al. was three dimensional. We show a
cross-sectional view of the apparatus in Figa)1The bot-
tom plate was driven by the center shaft, both of which are o
supported by ball bearings mounted on a stable metal table
(not shown. A stepper motor ran at a low frequency to drive
the bottom plate. The top plate did not rotate and had no
contact with the rotating bottom plate or the particles. The 6o
granular medium consisted of a single layer of bidisperse ,, |
disks with diameters 0.744-2400 particlesand 0.876 cm
(~400 particles where the thickness of both types of disks =2 [ M
was 0.660 cm. Figure(lh) shows an actual image from the 0 N : :

. X ) o 450 460 470 480
experiment where the two types of disks can be identified. L)
The disks were placed on the bottom plate and confined in
the annular space between two concentric rings. The inner FIG. 3. Force time series at different medium velocities for a
ring radius was 10.5 cm and the outer ring radius was 25.4iven packing fraction(y=0.7549 and a given tracer sizéa
cm. When the bottom plate was rotating, the disks moved-0.876 cn). The rotation rates ar¢d) »=6.3x10°Hz, (b) o
with it as a rigid body, due to friction. This frictional force =5.0x10™* Hz, and(c) w=8.7X 10"* Hz. The velocity is obtained
with the substrate was relatively weak compared to theaccording tov=wr, wherer=17.95 cm. These force series show
forces between particles associated with force chains. Thefrong fluctuations. An enlarged view of a small segmeritpélso
centrifugal force experienced by the disks was negligible duguggests self-similar structures in the system. The force is normal-
to the slow rotation speed. Note that this apparatus is not t&&d by the acceleration of gravity and has units of grams.
be qonfused with a Couette shearin_g appa}ratus Wh_ere either lIl. EXPERIMENTAL RESULTS
the inner wheel or the outer wheel is moving. In this appa- ) ) . i
ratus, both inner and outer boundaries remained fixed and the ' this section, we report the experimental results. We first
driving was provided by the moving bottom plate. consider the effec_t of rotation rate, and we then turn to the

A digital force gaug&Model DPS-110 from Imada Inc., €ffect of changes in the packing fraction.

resolution 0.1 @ shown in the inset of the Fig.(8), was A. Changing the medium rotation rate
mounted on one side of the top plate. The force sensor was

An initial series of experiments was carried out at a fixed
ppacking fractiony=0.754, which is above the critical pack-

plate, anq in the middle of the annglar spacey 317.'95' ing fraction vy, discussed in more detail in the next section.
The reading on the force gauge, which yielded the instantapare we varied the rotation rate over=6.33X 10°°<

neous tangential force, was recorded as a time series by &g g7x 1074 Hz (corresponding to 7.1410%<y<9.78
computer through its serial communication port, as in Fig. 3.x 154 m/s). (The velocity of the tracer i®=wr, wherer
When the granular medium moved, force chains form in the-17.95 cm is the radial location of the tragdn Fig. 3, we
bulk of the system, as show in Fig(cl and Fig. 2 using show three sets of force time series, obtained with a tracer
photoelastic techniquef,12]. The pins on the top plate size a=0.876 cm, and rotation rates that spanned the full
stirred the particles. These had a diameter-@&.3 cm, and range of w's, namely (a) w=6.3x10°%Hz, (b) w=5.0
were located at radii of 12.9 cm and 23.0 cm. X 1074 Hz, and(c) ®=8.7X10"* Hz. As one would expect,
There are three important parameters that we explored ithe force time series in Fig. 3 show strong fluctuations. In-
the system, i.e., the rotation rade the system packing frac- terestingly, an enlarged view of a small section of Fi)3
tion y (or density, and the tracer particle size We varied seems qualitatively similar to the slower run in Figa3
the rotation ratew over two orders of magnitude, from  which suggests possible scaling behavior. We will return to
=6.33x10°° to 8.67x10* Hz (corresponding taw=7.14  this point below in the context of power spectra for these
X107 to 9.78<10*m/9), the packing fractiony from data.
0.561 to 0.761(these values are global packing fractions
since the system is not completely unifgrnand the tracer
particle diameters over the set of diameters0.744, 0.876, In Fig. 4(a), we show the mean drag fordg;), as a func-
1.250, 1.610, and 1.930 cm. tion of rotation ratew, for tracer particles of five different

1. Mean drag force and force distributions
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FIG. 4. (a) The mean drag forc&F), as a function of rotation FIG. 5. (a) Standard deviation of the drag force as a function of

rate, w, for tracer particles with different sizeé@=0.744, 0.876, rotation rate,w, for tracer particles with different sizea=0.744,
1.25, 1.61, and 1.93 om(b) Same data a&), but on log-lin scales 0.876, 1.25, 1.61, and 1.93 ¢nib) Same data a&), but plotted on

to emphasize that the mean force increases slgbdgically loga- log-lin scales to emphasize that the standard deviation also in-
rithmically) with the medium velocity. Throughout, we use a force creases logarithmically with the medium velocity.

normalized by the acceleration of gravity.

diameters(a=0.744, 0.876, 1.25, 1.61, and 1.93 )crior In Fig. 5, we show the standard deviation of the drag
each of these tracer sizes, the mean drag force increased ori@fce, o(F), as a function of the rotation rate, whesgF)
slightly (by a factor less than)Zor a variation by more than :N/(llN)Ei’\Ll(Fi%F)). N is the number of measurements in
two decades inw. To emphasize this slow increase, we plotthe force time series arfé is theith measurement. We note
the same data on log-lin scales in Figb¥ The data can be that the standard deviation is of the same order of magnitude
fitted by a straight line, indicating a logarithmic variation of as its corresponding mean, and that it also increases roughly
(F) with w. This is consistent with the results by Hartley  logarithmically with the rate.
al. [7] who found that the total stress in a system of similar The slow increase of the mean drag force with rate ap-
particles undergoing slow shearing also increases logarithmpears to differ from experimental observations in some pre-
cally with the shearing rate. vious studies, including those by Wieghard and by Allsgrt
We emphasize that this slow increase in the mean forcal. [22,13. In particular, Wieghard22] measured the drag
differs significantly from the drag force in a fluid, where the force experienced by vertical rods dipped into a rotating bed
mean force increases linearly with the drag velocity when thef fine dry sand. In this case, the drag force had a weak
velocity is not too large. This is also in contrast to rate-dependence on the velocity: first decreasing then increasing
independent stresses in Mohr-Coulomb friction modelswith increasing velocity. In the experiments by Albettal.
[19,20 for dense granular systems. It is consistent with sev{13], the mean drag force on a cylindrical rod was found to
eral rate-dependent friction mod¢R1]. be independent of the drag velocity.
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In the case of Wieghard’s experiments, the explanation fochange in the force distributions is that the probability of
the difference is relatively straightforward. The velocity very small force becomes smaller. An intuitive explanation is
range used in Wieghard’s experiments is very different fromthat a larger tracer particle is more likely to be in contact
both that used in our and the Albegt al. measurements. with some strong force chains at any time, thus reducing the
Wieghard inves.tigated velocities ranging from about 0.3m/ probability of a very small force. This argument must be
to 2 m/s; the minimum of the drag force appeared betweenmodified for tracers that are much larger than the background
0.5m/s and 1 mé depending on the rod insertion depth. particles. As the tracer particle diameter becomes very large,
Wieghard explained the variation of drag with speed in thénere are multiple contacts, some of which involve strong

following way. The normal pressure and the frictional forceiIOrce chains, and we expect that the distribution FgKF)
along the slip surface provided resistance. At lower spee Will no longer depend on the tracer diameter.

the inertial force of the sand flowing around the body was
small and negligible. When the velocity increased, there was

a reduction in drag because, presumably, more contacts were 2. Power spectra and correlations
slipping and kinetic friction is smaller than static friction. At

T .. The power spectral(w), resulting from such force time
larger speeds, friction became less dependent on the Veloc'tgeries rovide a useful quantitative measure of the relevant
however, when the velocity was increased, an additional infim pl for f fl qt tionéNote that th f
ertial term led to an increase in the drag force. € scales for force fluctuationghote that the mean lorce

The velocities used in the Albeet al. experiments and in @S been removed in calculating the spefiraFig. 7(a), we
the current experiment®f the order of 1 mm/sare more S_hOW P(w) versus the frequencyy, on log-log scal_es. At
comparable and are much slower than that of Wieghard. To 3igh frequency, the spectra fall off @w) =1/, with «
first order approximation, the present data are consistent witf 2- At low frequency, the spectra vary more weakly, and are
Albert's data, i.e., they both show that the mean force i2imost independent of the frequency. Thevi behavior at
roughly independent of the velocity. However, we do see &1gh frequency can be explained by assuming a series of

slow, logarithmic increase in the mean force that differs fromfandom jumps occurring on time scales at least as fast as a
the observation of Alberét al. crossover time~1/w*. This time corresponds roughly to the

The explanation for this difference is not known, but it is time for the tracer particle to travel a few disk diameters. We

interesting to speculate on the cause. Of course, there is tdll come back to this time scale below in more detail. The
obvious difference in dimensionality. However, another dif-POWer spectrum at low frequency is presumably explained
ference between the two experiments is that the present papy the fact that there are no strong correlations at very long
ticles were softer, i.e., had a lower Young’s modulus tharf'Me scales in the force time series. Ad?/behawor occurs
those used by Alberet al. In the present experiments, the N many other contexts, e.g., for frictional fluctuatiorzsi]
particles deformed elastically, whereas in the experiments gind stick-slip motion$25]. _ o

Albert et al. an external spring was deformed. The real issues  11€se spectra also show interesting rate invariance. In
include differences in the elastic time scales versus chara¢id- 7(b), we rescale the power spectra data of Fi@) by
teristic times for frictional eventée.g., creation and destruc- dividing the w-axis by the corresponding rotation raiay,

tion of force chainsand the amount of elastic deformation @nd multiplyingP by w. This corresponds to rescaling time

of particles. In this regard, we note the work by Campbellby 1/wo, or alteratively by replacing time by angular dis-
[23]. Recent experiments by Hartley al.[7] using the same placement. Figure(®) shows an excellent collapse of all the
type of particles as those of the present experiments showetta for the scaled power versus the scaled frequency, and
a qualitatively similar relation between the mean force andMPplies rate invariance in the fluctuating component of the
the rate, albeit in a Couette system. These experiments al§'€SSes. Such rate invariance in stress fluctuations has also
showed that under static shear stresses, there was a logariftzen observed by Milleet al. [5] and Albertet al. [14]. An
mically slow relaxation of the force network. Later in this argument for this rate invariance is provided in REf6]
work, we will use a modified failure model inspired by this Which suggests that the system spends much of its time in

observation to reproduce the slow increase in the mean drajjates close to static equilibrium, so thag sets the time
force. scale to move between states. The fact that the spectra col-

In Fig. 6, we show drag force distributions for different |apse is presumably connected to the qualitative appearance
rotation rates. The left-hand panel of Fig. 6 gives force disOf self-similarity of the time traces. _
tributions for a tracer particle of diameta=0.744 c¢m, and We can better understand the roleugfby calculating the
the right-hand panel gives data fa=1.93 cm. From Figs. correlations resulting f_rom the_se force time series. In Fig.
6(a) and Gc), we note that, irrespective of the particle size,s@’ we show_correlatlon function&(t), for time series at
the force distributions broaden and shift towards largedifferent rotation rates[note that C(At)=(F(t)F(t+At)),
forces as the rotation velocity increases. Interestingly, thes@here the brackets denote an average of time, @) is
force distributions collapse reasonably well onto a singlesimplified to C(t) when no confusion is causgdrhese cor-
curve when scaled by the corresponding mean force, a®lation functions generally drop quicklgxponentially to
shown in Figs. &) and &d). Thus, the mean force is one of zero over a time scale a@f, and then fluctuate around zero,
the key control parameters for this system. These data indindicating that the signals are uncorrelated beyond that time.
cate a roughly exponential fall-off for large forces, as seen iflf we rescale the data of Fig.(& by multiplying thet-axis
Figs. @b) and &d), which shows the scaled distributions on by the corresponding velocities, all correlation functions col-
semilog scales. As the tracer size increases, one noticeablpse reasonably well onto a single curve, as shown in Fig.
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FIG. 6. (a) Distributions of drag force at different rotation rates for a tracer particle of&iz&744 cm.(b) Same data a&), but with

the horizontal axis rescaled by the corresponding mean force, and the vertical axis multiplied by the mean force. The force distributions

collapse to a single curve. Note that since the vertical axi®)ins plotted on a logarithmic scale, the fall-off of the distribution at larger
forces is roughly exponentialc) and(d) are similar to(a) and (b), but for a larger tracer size=1.93 cm.

8(b). The collapsed curve defines a characteristic length
scale,Ax., which is comparable to one disk diameter. Intu-

3. Avalanches and the force chain force constant

If we define an avalanche event to be a monotonic de-

itively, this can be explained by the fact that force chainsrease in the force time series, we can investigate the stress
contacting the tracer particle tend to form and then fail wherng|aase process in the system more quantitativeimilar

the tracgr particle moves_by a few grain diameters, in agré€uqyits are found for the stress build-up progedsis ap-
ment with the characteristic length scale revealed in F'gproach is similar in spirit to the approach of self-organized

8(b).

criticality (SOQ [28], and it is interesting to ask whether any

We note here that the correlation data and the power SPEGign of SOC is present in this system.
tra data are a Fourier transform pair according to the Wiener- “\ya denote the size of an avalanche to be the magnitude of

Khinchin theorem[27]. Thus, the 1&?

power spectrum at yhe grop of the force and the duration to be the time it takes

high frequency can also be derived from the correlation datg, o ayalanche event to take place, as illustrated in Fig. 9.

at small time scales. Using the fddnset of Fig. &b)] that

With such definitions, we can calculate the probability distri-

the correlﬂion functions decay exponentially at early time a$, \tions for both avalanche sizes and avalanche durations. We
C(t)zAOe ¢, the c.orrespondlmg power spectrum can be Ob'show such distributiongproperly rescaledin Fig. 10 for
tained by performing a Fourier transform

P(w) = J C(t)e“'dt = 2L

Thus, for large frequencyw>1/t.), we expect the power

spectrum will decay as LA

1+ (wty)? -

w2 if o> 1k,

force time series obtained at different velocities. It is possible
to collapse all the distributions for avalanche size by dividing
the horizontal coordinate for each set of data by the corre-
sponding mean avalanche sizand therefore necessarily
multiplying the vertical coordinate by the mean avalanche
size). The avalanche duration distributions are similarly res-
caled by the corresponding mean avalanche duration of each
data set. In Fig. 10, we show both data sets on log-lin scales,
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FIG. 7. (a) Power spectraP(w), from force time series at dif- ©
ferent rotation rates(b) The scaled powerwmyP(w) is plotted .
against the scaled frequenay/ wy, Wherew is the rotation rate. 0.25 I 0 ] - = - )
The data collapse nicely, demonstrating rate independence. At larg Ax=txv (cm)
spectral frequency, the power spectra vary as 2, and at small e
frequency, the power spectra are flat, suggesting that there is n ~~\\:>",f"”/f & R S
correlation at time scales larger than some constant factor of the e
inverse rotation rate. (b)
. . . . _0-25 i Il 1 L
which emphasizes the roughly exponential nature of the dis- 0 1 2 3 4
tributions. The flat tails at larger values of the horizontal Ax=tv (cm)

coordinates may be due to insufficient statistics. These data i ) ) )
suggest that there is a large probability of finding small ava- _F!G- 8. (@) Correlation functionsC(t), of the force time series at
lanche events in the system, while the probability of ﬁndingdlffer.ent rotatlgn rates. We note that porrelatlon functlons at all
a large avalanche event becomes exponentially small. Not@tation rates first drop quicklgexponentially over atnlme scalc_a of
that these distributions do not show any indication of powere then fluctuate around zer¢b) Rescaled correlation functions,
laws, as one would expect for a self-similar process an&(AX) Vs AX, WhereA>.<=vAt=ra)At._AII_ res_caled correlathn 'func-
sSocC. tions collapse to a single curve, indicating a characteristic length
It is interesting to ask how the mean avalanche size an?cale’A.XC' Note that the correlatlo_n data a_nd power spectrum data
. . - rom Fig. 7 are related through Wiener-Khinchin theorem. Inset of
duration change witlw. We show, in Fig. 1(a), data for the . . .
N . . (b) shows the correlation function for sma®, which corresponds
mean avalanche siz&F, and durationAt, as functions of .
. L .., to large frequency in the spectra.
the rotation rate. The mean avalanche size increasesawith
and the mean avalanche duration decreasesavithoth the  avalanche sizes and durations. These distributions are given
mean size and the mean duration vary as power lawsaxith in Figs. 12a)-12(c) for different drag velocities, using a gray
Particularly interesting is the fact that the ratio of the mearnscale representation. We see that these distributions are al-
avalanche size to duration, Fig.(b], also varies essentially ways distributed around certain directions with positive
linearly as a power ofw. The linear relationship between slopes, which suggests that, in general, a larger avalanche
AF/At andw (or the medium velocity) suggests that there event lasts longer. We also note that the slope of the distri-
is an effective spring constant for the force chains, that caibution orientation increases with increasing drag velocity.
be defined aaF/(vAt). We develop this point further in the Based on the scalings of Fig. 10, if we rescale the vertical
next few paragraphs. and horizontal axes in Fig. 12 by the mean avalanche size
An obvious question is whether a large avalanche evernind mean avalanche duration, respectively, we expect that
(in terms of its sizgis in general associated with a longer the resulting distributions for different velocities would be
duration, or perhaps vice-versa. This question is addressed peaked around the same orientation. Indeed we have tested
Fig. 12 by calculating the 2D probability distributions for that this is the case.
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FIG. 9. A sample force time series where an avalanche event is
identified. °
10° | 410°
Since the 2D distributions for avalanche size and dura- 107 s 107 o o
tion, Fig. 12, tend to be oriented around a certain direction, it .
is useful to consider an alternative approach to characteriz /(2m) (units of 1/150 Hz)
these events. Namely, we define the avalanche rate to be tr ' '
ratio of the avalanche size and the corresponding duration (b)
i.e., (rate =(sizg/(duration =AF/At. We show the distribu- @ ,,1 i
tions of rates for different medium velocities in Fig. (a8 f»':
From this figure, we see first that each distribution is peaked.§
which is consistent with our claim that events have a mosts
probable direction in Fig. 12, albeit with some spreading 3
[
S 10f ]
=
100 ad 10° S
Ha a=0.876 cm . " g
— e %, (7]
Che S S
LDI. N, - g
% S < o0 : :
g0 N ; - 0.00 0.05 0.10 0.15
S e W «/(2m) (units of 1/150Hz)
m104 = =001 v i L — . J—
2 pOe 3 g FIG. 11. (a) Mean avalanche sizeAF, and duration,At, as
- “a1s @ functions of the rotation ratey. (b) The ratio of the mean avalanche
L B 10 15 size to durationAF/At, as a function ofw.
(Avalanche Size)/(Mean Size)
10’ around that direction. Second, this figure shows that when
ac0876cm the rotation rate increases, the position of the peak shifts to
510° |, o' the right.
L % 0* W We extract the peak positions and plot them as a function
240~ % 0° b of the medium velocity, Fig. 1®). This figure shows that the
s b - peak position increases roughly linearly with the medium
107 I NN ' * velocity. If we denote the slope of a least-squares linear fit to
a wtsot1nsoHz)  * these data ak., then,
F10° T oos X
] A 4005 AR : AF1 AF
= i
T+ L & et Ao ™ ax’ @
0 5 10 voax

FIG. 10. (a) Rescaled distributions of avalanche size, where th

(Avalanche Duration)/(Mean Duration)

Thus, ke; resembles the force constant of a simple spring.

Jndeed, Fig. lc) shows that the resisting forces are mainly

horizontal axis is divided by the mean avalanche size and the veC@/Ti€d through chainlike structures, and one might imagine
tical axis is multiplied by the mean avalanche size. Inset shows théhat each of these force chains acts like a spring. The collec-
same data in log-log scalé) Rescaled distributions of avalanche five force constant of these force chains is then rather well
duration, where the horizontal axis is divided by the mean avadefined, as suggested by the quankty, extracted from Fig.
lanche duration and the vertical axis is multiplied by the meanl3(b). One must keep in mind that since Fig.(&Bis ob-
avalanche duration. These distributions indicate an exponential déained only for peak positions, the actual effective force con-
cay of probabilities of finding large avalanche sizes and durationsStant at a given instant can vary around the extracted
Inset shows the same data in log-log scale.

here. A similar observation has been made in R&6] by
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FIG. 13. (a) Distributions of avalanche rates, for different rota-
tion rates, where the avalanche rate is defined as the ratio of ava-
lanche size to duration, or roughly the slope of an avalang@be.
The peaks in the avalanche rate distributions plotted against the
rotation speed. The slope of the resulting straight line fit gives an
effective force chain force constarkes=(AF/At)(1/v)=56F/AX.

The inset shows a schematic of a force chain.
1N spring. By contrast, in our experiments, the effective force
15 constant gives a measurement of actual strength of the force
. chains in the granular system. Specifically, the force constant
Avalanche Duration (S) of the external spring in our apparatus is much stronger than
that associated with the particles.
FIG. 12. 2D (gray scale representatipulistributions of ava- The above analysis supports the idea that force chains

lanche size and duration for different rotation ratds) w may be modeled by springs as proposed in the model by
=0.0X1/150 Hz, (b) ®=0.081/150 Hz, and (c) «  Kahnget al.[16]. In Sec. IV below, we modify their model
=0.131/150 Hz. These distributions tend to be largest along cer-to explain features of the data for the current experiments.
tain orientations/slopes. This slope increases when the rotation rate | the remainder of this section, we explore several other
is increased. features of the experimental results.

Kahnget al. concerning their 3D drag experime(see Fig. 2

in Ref.[8]). However, the force constant revealed in those
experiments reflects only the force constant of the external
spring. That is, since it is much softer than the effective In this section, we describe experimental data and analy-
spring constant of the grains, the force registered on the forcgis associated with changing the packing fractions in the sys-
sensor is mainly due to the compression of the externaiem. For this set of experiments, we fixed the rotation rate at

B. Changing the packing fraction
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FIG. 14. Force time series at different packing fractions for a
given rotation ratd «=0.0751/150 Hz] and a given tracer size
(a=1.25 cm). There exists a critical packing fractiof,, similar to ’._,.,-0’
that found in Ref[6] (see text Below vy, the force is relatively o =® . .
055 0.65 0.75

small and the friction between particles and the bottom plate is
comparable with the contact force between particles; ahgyen- Y
during contact forces dominate and force chains form in the bulk of
the system, leading to strong fluctuations in the force time series.
The mean drag force increases rapidly when the packing fraction is
increased.

100.0 T T

(b)

wo=5.0X10"% Hz and the tracer size at1.25 cm. We note

that the process of pushing the tracer partieled to a lesser 5
extent the pinsthrough the background medium necessarily :
produces some variation in the density of the material. The,
effect from the pins is relatively small, perhaps a few per-
cent, but there is a wake that is devoid of particles that ex-
tends several particles behind the tracer.

10.0 ¢ 4

Exponent=1.53
1. Mean drag force and force distributions

When we change the packing fractiop, we observe a
softening or strengthening transition similar to the one re-
ported in Ref.[6]. Specifically, wheny is below a critical
value, vy, the system is so loosely packed that it cannot sus-
tain force chains. In the regime< y., when the grains make
contact with the tracer particle, they are almost immediately FIG. 15. (@) The mean force(F), as a function of the packing
pushed into open space, and no long-range force chairfeaction, v, for a tracer particle of siza=1.25 cm. Wheny is below
form. On the contrary, when the packing fraction is above the’e: the mean force increases linearly wighwhen y is aboveyc,
critical value y= y,, there are always some force chains in e force increases like a power law, as showtbinthe mean force
the bulk of the system, such as those shown in Fig). In as a function of reduced packing fractiom (y—y,)/ y. for packing
Fig. 14, we show three sets of force time series data obtame&actlons greater than, on log-log scales.
at different y's. For the data ofy=0.561, which is below define y, as the crossover value from the linear to the non-
¥.=0.645, the forces are close to zero, with a small amounfinear regime. In Fig. 1), we show the mean force as a
of activity corresponding to those events when the tracefunction of reduced packing fractiom=(y—y.)/v., for y
particle makes contact with grains. Wher0.653, which is =, on log-log scales to emphasize the power-law character
slightly abovey,, we already see more activity, and the av-in the nonlinear regime. In that regime, the exponent of the
erage force signal increases above the base line. When power law isg=1.53.
increased further, say tp=0.754, the force signal becomes  In Fig. 16a), we show drag force distributions for differ-
much more active and the scale of fluctuations is signifi-ent packing fractions. As the packing fraction is increased,
cantly larger. the distributions widen and the mean becomes larger, consis-

Figure 1%a) shows the mean drag force as a function oftent with the data of Fig. 15. Again, if we rescale the force
the global packing fractiory. We identify two different re- distributions by the corresponding mean force, we obtain an
gimes in this figure. For smalley's, the mean force can be approximate collapse of all curves. Thus, the mean force is
fitted by a linear function ofy:F=ay+b, wherea andb are  also the appropriate scaling factor for the amplitude of the
constants, while for largey’s, the mean force can be fitted drag force fluctuations.
by a power law, which parallels the results of Howetlal. Thus far, we have considered the mean properties and
[26], F=F.+d(y-y.)?, whered and g are constants. We distributions of the drag forces for different rotation rates and

0.01
(U AL

'0.001 0.1 1
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10° = 570853 (b)- FIG. 17. Rescaled force distributions for different rotation rates
= y=0:683 and packing fractions. These distributions collapse reasonably well
+ +v=0.714 onto a single curve, suggesting a strong statistical invariance after
B10™ 44 y=0.737 | rescaling by the mean force.
2 +<y=0.754
w . . . .

E_A’ For a given tracer particle, changing the rotation rate or
w changingy both affect the mean drag force, although the
102 . former is only a weak effect. In Fig. 18, we combine the

a=1.25cm data for mean drag forces from Figs. 4 and 15 in a single
plot, where the top axis is the rotation raig,and the bottom
« . . . . .
0 L | axis is the reduced packing fractior (y—v.)/ v.. Whenvyis
w/(2m) (units of 1/150Hz)
0 0.05 0.1 0.15 0.2
A 20 T
10-4 1 1 1 (a)
0 1 2 3 4 sl 22.802+2.588‘I:g(w)

F/<F>

FIG. 16. (a) Distributions of drag force at different packing
fractions for a tracer particle of siz=1.25 cm.(b) Same data as

(@), but with the horizontal axis rescaled by the corresponding mean BB

force, and the vertical axis multiplied by the mean force. Force o (a=1.25cm)
. . . : @ Fixed ¥=0.754
distributions collapse reasonably well onto a single curve.
00 0.;)5 0:1 0.‘15 0.2
r=(r1)1,

packing fractions. We now combine these results and exam-
ine how the control parameters, and v, affect the drag
force.

Figure 17 shows the combined drag force distributions for
various rotation rates and packing fractions. The solid sym-
bols are data for different’s, and the open symbols are data
for different y’s. All the distributions are rescaled by their
corresponding mean drag forces. Again, we see all rescaled
curves have nearly the same form. We note, however, that
the collapse is not quite perfect for the smallest and largest
forces. This statistical invariance in the force distributions is 1 18 (Color onling (a) The mean force as a function of drag

striking, since these data are obtained over a wide range Qgjocity and medium packing fraction for a given tracer particle.
rotation rategmore than two decadeand packing fractions.  The solid symbols are experimental data; the lines are a logarithmic
This again confirms the key scaling role of the mean forcefit and a power-law fit, respectivelgb) With fits obtained from(a),

We note too that these distributions decay roughly exponenge plot in (b) a 3D perspective plot showing how the mean force
tially for large forces, in the spirit of thg-model[15], or  changes in the parameter space formedstgnd y. An increase of
various other calculations for the forces on particles in aw tends to have the same effect on the mean force as an increase of
dense granular material. v, although the former effect is much weaker.
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FIG. 19. The mean drag forcéf), as a function of the tracer 1072, : : i
particle diametera, for different rotation rates. For reference, the .
mean diameter of the background particles is 0.763 cm. o
. - . . . 10_3 E _:
fixed, the mean forcésolid circles increases slowly withw,
where this slow increase is adequately described as a loge
rithm. Whenw is fixed, the mean forcésolid squaresin- 4
. . . . . A 10 E z
creases rapidly withy, and this increase is described by a %, :
— ) . v
power law. If we assume th&t can be written in a product 3% Y
form asF=f,(a)f,(w)f4(r), for our given tracer particle size, % 155 L e 0.653 <
we find that a good description of the data is given by == 0.683
+ + 0714
— 1 152 + 40737
F=——(22.802 + 2.588 log)(2.502 + 174.901529, 10° | <« <0754 <
14.51 :
3
- -7. 1 1 1
Figure 18b) shows the mean drag foréein a 3D perspec- 10 107 1072 107 10°
tive plot. From this figure, we see that an increase of the /(2 (units of 1/150 Hz)

rotation ratew, leads to an increase of the mean drag force,
qualitatively resembling what occurs due to an increase in FIG. 20. (a) Power spectraP(w), from the force time series at
the packing fractiony, but on a much weaker scale. Similar different packing fractionsib) Scaled power spectra, with the ver-
effects on the stress due to changes in the shear rate afépl axis divided by the mean square amplitude of the signal.
packing fraction were also observed in a 2D granular Couette
system[7]. on the diameter of the drag rod. However, it is perhaps not

We also examine how the diameter of the tracer particlesurprising that in the present experiments the diameter de-
a, affects the mean drag force. In Fig. 19, we show the meapendence of the drag force is nonlinear, since the tracer par-
drag force as a function of the tracer diameter for differentticle size is comparable to the size of surrounding gréins
rotation rates at a given packing fraction=0.754. From  maximum size ratio is 2)6unlike the situation in the experi-
these data, we see that the increase in the mean force withents of Albertet al.
tracer particle size is faster than linear.

It is interesting to contrast these results with what one 2. Rescaling of power spectra and avalanches
would expect for a particle, typically much larger than a
molecule, that is moving through a viscous fluid. According In Fig. 20(a), we show power spectra of force time series
to Stokes'’s law[29], the drag force is proportional to the for different packing fractions. In this case, variations of the
diameter of the tracer particle, the coefficient of viscosity ofpower spectra withy are qualitatively similar to those due to
the fluid, and the relative velocity of the fluid and the tracer.changes in the rotation rate shown in Figa)7 although the

It is also interesting to compare our results to the experimagnitude of the changes withis much greater. It is inter-
ments by Albertet al.[14] on drag through a granular mate- esting to rescale these spectra to see if they will collapse onto
rial. As noted, these authors observed rate independeiat common curve. In this regard, we note from Parseval’s
forces. They also found a linear dependence of the drag foraheorem[27], that the integral of the power spectral density
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Y=13.78+43039.8 X***
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°f_|_A
v
@ (b) 7 fe :

100 | g FIG. 22. (a) Schematic drawing of the failure model: the block
is a simplified representation of the tracer particle. Force chains in
the bulk of the granular system opposing the tracer particle are
modeled by springs with a force constdgt The tracer particle is
always in balance with the collection of opposing springs/force

0 . L ) chains.(b) The force from each spring increases linearly with time,
0.00 0.05 0.10 0.15 020 until it fails at the point where the force reaches a threshold value,

S AL g. In the physical experiment, this occurs due to the slippage be-

tween the tracer particle and the grains, or among grains them-

FIG. 21. Scale factor from Fig. 20), i.e., the mean square selves. After the failure of a spring, the force on the spring is reset,

amplitude of the signakF?), vs reduced packing fraction These  and the threshold is updated with another value drawn from the
data again can be fitted by a power law. distribution of thresholds and the process continues.

over frequency is equal to the mean square amplitude of thexponentially distributed thresholds to produce more realistic
signal, i.e., force distributions.
" " . (i) Second, we introduce a time-dependent threshold to
if P(w)dm:if |F(w)|2dw:f F(O)2dt, (4) explain.the slow(logarithmig increase of the mean drag
27 _, 27) ., w0 force with the rate.

) . . We also note that since the particles are only one layer
whereF(w) andf(t) are a Fourier pair. Hence, the integral of deep in the 2D experiments, we do not need any depth de-
the power spectrum, which is proportional to the meanpendence. In the remainder of this section, we first briefly
square amplitude of force signald?)=/Z|f(t)[°dt, can be introduce the basic model. We then make modifications to
used as an appropriate scale factor for the spectra in Fighe model and perform simulations to compare with the
20(a). Indeed, when these spectra are normalized by the copresent experimental data.
responding(f?), we obtained a good collapse of data, as
shown in Fig. 20b). Additionally, we show the scaling fac- A. The original spring model
tor, (f2), versus the reduced packing fraction,in Fig. 21.
These data can also be fitted to a power law, and the exp(f-
nent is almost twice as large as the exponent associated Wi(ﬂer

the power law for the mean force, Fig. 15. ; . L7
Before turning to the model, we note that the avalanchdVith constant speed in the x-direction, and the tracer par-
i ticle is simply represented by a block, as shown in Figap2

data calculated from force time series for different packing_l_h ¢ icle int s with s that dt
fractions are similar to those for different rotation rates. We, '€ racer particie interacts with grains that aré assumed 1o

have tested that distributions for both avalanche size anBe supported by force chains. The particle-tracer interactions

duration decay exponentially, and can be rescaled by the ré'e modeled as linear springs with a force conskgrvhere

spective mean avalanche size and duration to obtain goo ere aran S.UCh sprmg_sﬁThe assumption of a single spring
collapse of the data. constant is in part justified for the present data by the analy-

sis of an effective force chain force constakiy, in the
experimental data as in Fig. 23ecessarily, the spring con-
stant ke, refers to the collective mean response, instead of a
force constant for an individual force chain. As time ad-

In this section, we turn to a stochastic failure model,vances, each spring is compressed by an amawntvhich
based on one originally proposed by Kahegal. [16] to  is determined by the velocity and byAt, the time interval
understand the experimental data of Albettal. [13,8. We ~ over which compression has occurred, i.e.,
modify this model appropriately to account for several fea- _ _
tures that are unique to the present 2D granular system. Spe- F=To+koAx=fo+kwAt, ®
cifically, we make the following two modifications to the where f,y is a small initial force proportional to the local
original model: pressure in the system. This is illustrated in Fig(lR2At t

(i) First, we allow the band of thresholds to be wide =0, a spring makes contact with the tracer particle, corre-
enough so as to generate random force patterns, and we usgonding to the formation of a force chain. The spring is then

The original model was constructed to simulate the drag
ce experienced by a vertical cylinder inserted to a given
pth in a granular beld.6]. In this model, the grains move

IV. MODEL AND SIMULATIONS
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compressed as time advances. If the spfiiogce chain is  distribution ofg’'s. As n grows, we expect that the distribu-
too compressed, e.g., the fortexceeds a threshold, the  tion of total forceF will approach a Gaussian with a mean
spring fails, and the force on the spring is relaxedgoln  value ng and a width\no, where o2 is the variance ofy.
addition, the threshold is updated to a new value chosen at Indeed, the statistical properties of the model follow from the
random from an appropriate distribution. In the original fact that the force is a sum ovaruncorrelated random vari-
model,g was uniformly distributed over an intervgdg,d,]. ables where the maximum of each variable is drawn from the
Over time, the process of spring compressiforce chain  appropriate distribution of’s.

formation and failure continues. At any given time, the drag  Apart from the force distributions, for other aspects of the
force is the sum of the forces from allsprings. simulated data(power spectra, distributions of avalanche

The original model[16] also assumes that the effective size/duration, and force chain force constantmiformly
force chain springs are much stronger than the externalistributed thresholds do not lead to significantly different
spring associated with the machine that is pushing the traceresults than thresholds that are exponentially distributed, as
In such a case, the drag force, which is typified by stick-sliplong as the threshold band is wide enough. Below, we will
dynamics, is a function of the strength of the external springfocus on the simulated data derived from exponentially dis-
Kahnget al. focused on the stick-slip regime, since this cor- tributed thresholds.
responded to what was observed in the 3D drag experiments In Fig. 24, we show power spectra and their rescaled form
by Albert et al. for different velocities calculated from the model. These data

In the present experiments however, the effect spring conare in remarkable qualitative agreement with the experimen-
stant of the drive is significantly larger than that of the par-tal data shown in Fig. 7.
ticles. Consequently, we do not observe stick-slip behavior, In Fig. 25, we show in@) the distributions of avalanche
but rather random force fluctuations. We must take into acsizes derived from the model simulations and the re-
count this different feature of our experiments, and we nowscaled distributions of avalanche durations derived from the
turn to appropriate modifications of the model. model simulations. Both distributions of avalanche size and
duration are roughly exponential for large arguments, as are
the experimental data, Fig. 10. Note, however, that the size
distributions in this figure are not rescaled while those in Fig.
10(a) are.

We begin by considering the effect of the width of the  Similarly, in Fig. 26, we show avalanche rate distributions
threshold bandgy,9;]. As one would expect, this width at different velocities in@ and the derived effective force
qualitatively affects the drag force patterns. When the threshehain force constant ifb). This figure compares well with
old band is narrow, as in Fig. 14, f6g,,9,]=[0.49,0.51, the experimental data shown in Fig. 13. The effective force
the force time series exhibits a regular sawtooth pattern. Thighain force constant from the simulation datakig=30.7,
is because all the springs fail almost at the same time, resulwhich is of the same order of magnitude ralg, wheren
ing in a regular pattern of buildup and release. When the=10 (the number of springsandk,=1 (the individual force
threshold band is wider, the force pattern becomes more ragonstant of a spring
dom (e.g.,[dy,9:]1=[0.1,0.9). This more closely resembles
what occurs in the present experiments.

However, if the threshold) is uniformly distributed be-
tween[go,g,], the resulting force distributions are symmetric ~ The model so far has been able to reproduce a number of
with respect to the mean drag force, as shown in Figh23 experimental observations. However, if we calculate the
for a 10 spring system. The symmetry of this distributionmean drag forceF), as a function of the medium velocity,
differs from those of the experiment, and simply reflects thev, we find that(F) is independent o, as shown in Fig. 27.
symmetry of the failure distribution. The data of avalancheFigure 27a) shows force distributions for several different
size distribution in Fig. 10 suggest that the probability ofvelocities, and they all fall on the same curve, with almost
finding a large event becomes exponentially small. Thus, it ishe same mean and variance. Figuréb27s a direct plot of
reasonable to assume that the distributiorg'sfis likewise = mean drag force as a function of velocity, which shows a
exponential. We expect that most of the time, the forcerate-independent result. This differs from the experimental
chains break at small forces, and only in rare events, do thénding that the mean drag force increases logarithmically
force chains survive to reach a large threshold. Using thisvith the velocity.
assumption, we obtain a force time series such as that shown The fact that the model is rate independent is not surpris-
in Fig. 23c). We show the resulting force distributiof®r  ing. The instantaneous force state is found by summing over
10 spring$ in (d). In contrast to Fig. 2(), these new force the n springs. The state of each spring does not depend on
distributions obtained with exponentially distributed thresh-the velocity of the block, but only on the displacement of the
olds are significantly closer in appearance to the experimerblock since it was last reset . In such a displacement-
tal data, as in Fig. 16. controlled system, there can be no velocity dependence.

Note that the mean force in the model is found by sum- One possible way to account for the rate dependence is to
ming overn independent variables;, wherex; is the com-  recognize that there is failure of some contacts due to creep,
pression of spring. The mean value of any one of these isand we explore that possibility here. In this regard, we note
thenx,=(1/2)g, whereg is the mean determined from the recent work by Hartleyet al. (Fig. 2 in Ref.[7]) involving

B. Modification I: Wide threshold bands and exponentially
distributed thresholds

C. Moadification II: Decaying thresholds
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FIG. 23. (a) Force time series generated by the model for various widths of the threshold bgmud], where the threshold is uniformly
distributed between thgy andg,. When the threshold band is narrow, the time series follows a sawtooth pattern, and when the threshold
band is widened, the force time series become more and more raridpifhe force distribution of a random force time series with
[90.91]1=[0.1,0.9, and otherwise as ifa). (c) A random force time series generated from the model with an exponential distribution for the
threshold.(d) Force distributions derived from random force time series, such as the one shégynfor various numbers of springs. In
contrast to(b), the force distribution with an exponentially distributed threshold is nonsymmetrical, and more closely resembles the
experimental data.

similar particles to those used here. These authors reportesses with different velocitiee;>v,), if the originally
logarithmically slow relaxation of the force chain network in chosen thresholds for a spring @yén each case, by the time
their 2D granular Couette system. Specifically, in these exa spring reaches its failure point, this threshold has become
periments, 2D photoelastic grains were sheared steadily so amaller. Sincev, <v1, by the time failure actually occurs, the
to establish a strong force chain network. The shearing wathreshold for the slow process,) is smaller than that of the
abruptly stopped and the particle-scale forces in a section dhst process(v,). The longer one waits, the smaller the
the Couette annulus were monitored thereafter. The forcgéhreshold. Hence, we assume the threshglds time depen-
chains relaxedbecame weakgrover many hours, with the dent and decreases logarithmically with a time constgnt
total stress in the system decaying logarithmically slowly,
presumably due to the collective rearrangements of the log(t)
: : gy =1-—"—, (6)
grains and failure under creep at contacts that were near to log(ty)
failure. Such failures became progressively more difficult
over time because, presumably, the contacts near failure beheret, is a large valugabout 16 times the time stepthat
came less numerous, and also perhaps due to geometric caets the slow relaxation time scale/amplitude.
straints on successive rearrangements. With such a decaying threshold(t), we recalculate the
To make a connection with the model, we note that onelrag force distributions and mean drag force for the model.
interpretation of the Hartlegt al. experiments was that the In Fig. 29, we show the drag force distributions for different
force chains become logarithmically weaker over time,velocities in(a), and their rescaled form itb). Comparison
which means that the threshold of each spring should desf Fig. 29 with the experimental data in Fig. 6 shows very
crease with time. This is illustrated in Fig. 28. For two pro-good agreement. Figure @) shows the mean drag force
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from the simulation, which now has a slow increase with 0 5 10 15 20
velocity. Figure 30b) shows the same data on a log-lin plot. (Avalanche Duration)/(Mean Duration)

These results can be fitted by a straight line, indicating a

logarithmically slow increase now built into the model. This ~ FIG. 25. (8 Distributions of avalanche sizes derived from the
figure compares well with the experimental data in Fig. 4.model. (b) Rescaled distributions of avalanche durations derived
Additionally, this modification to the model does not quali- from the model simulations, where the horizontal axis is divided by
tatively change the features reported in the preceding sedbe mean avalanche duration and the vertical axis is multiplied by
tions. the mean avalanche duration. Both distributions of avalanche size

In summary, the key point of the model is its assumptionand dur.atio.n are exponential, in agreement. With. ex.peri.ment.al dgta
that the force chains are modeled as “springs” with failureS"OWn in Fig. 10. However, note that the size distributions in this
thresholds chosen from a distribution. Thus, the fluctuationd9ure aré not scaled while the size distributions in Figal@re.
and mean properties of the drag force are closely associated
with the force chain formation and failure. In Fig. 2, we dent, while fluctuationgor the AC part of the signabre rate
show a visualization of the loading up of the force chains andndependent. This is also consistent with the failure model
their subsequent slipping. This understanding is useful inve have discussed; i.e., once the level of the mean behavior
particular because it underscores the important role of thé set, the fluctuating components are subsequently set by the
force chains in granular systems. The elastic nature of th&ean behavior.
model is also interesting, given the current debate over how
forces are transmitted in granular systerhs]. _ _ V. CONCLUSIONS

Another interesting observation from the experiments is
the seeming contradiction between the rate dependence in To conclude, through experiments and simple failure
the mean propertiege.g., mean drag force versus velocity, models, we have characterized the drag force experienced by
mean avalanche size versus velocity, )eand the rate inde- an object moving slowly through a 2D granular material con-
pendence of the fluctuation®.g., rate-independent power sisting of bidisperse disks. The drag force is dominated by
spectra, collapse of the avalanche size distributions) iestc. force chain structures in the bulk of the system. The forma-
the data. However, this may be understood by noting that thtton and failure of the force chains leads to strong fluctua-
mean behaviofor the DC part of the signpis rate depen- tions.
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FIG. 26. (a) Distributions of avalanche rates for different rota-
tion rates derived from the modgb) The force chain force con- FIG. 27. (a) Model force distributions at different medium ve-
stant, ke, Obtained by fitting a straight line to a plot of the peak of locities. (b) The mean force vs the medium velocity from model
avalanche rate vs the medium velocity. The vadys=30.7 is of the  simulations. Both(@) and (b) show that the mean force is indepen-
same order of magnitude a%, wheren=10 andky=1. This figure ~ dent of the rate. This figure illustrates the problem that the model,
compares well with experimental data shown in Fig. 13. so far, cannot account for the experimental finding that the mean
force increases slowly with the medium velocity.

We have considered the effect of three control parameters:

the medium velocity, the packing fraction and the tracer paryariation of the drag force with diameter. In this regard, the
ticle size. Experimentally, we find that the mean drag forcefact that the tracers used here were only somewhat larger
grows slowly (logarithmically with the drag velocity, in-  than the grains is likely to be important. Obviously, the pres-
creases rapidlypower law with the packing fraction above ence of weak rate dependence in the mean force is of inter-
a critical value, and varies nonlinearly with the size of theest, and its origin is still not clear. The relative elasticity of
tracer partide. The system exhibits strong statistical invari-the partides(versus the driving machine)‘ynay be impor-
ance in the sense that many physical quantities collapse inf@nt in this regard, and future investigations with harder par-
a single curve under appropriate scaling: force distributionsicles would be of interest. The frictional character of the
P(f) collapse when scaled by the mean force, power spectrgrag force in the dense regime is clear in these experiments.
P(w) collapse when scaled by the drag velocity, and avait would be of interest to see what occurs as the packing
lanche size and duration distributions collapse when scaleftaction is reduced below,. In the present experiments, the
by the mean values of these quantities. particles experience friction with the base, so that it is not
We also show that the system can be understood using gossible to investigate the gaslike regime. Also, the present
simple failure model, which reproduces many experimental
observations including the following: a power law with ex-

ponenta=-2 for the high-frequency portion of the power v Vi>V
spectrum, exponential distributions for the avalanche size o E—

and duration, and an exponential fall-off at large forces for J

the force distributions. The logarithmic increase of the mean kovl ]%V """""" :
force with the drag velocity can also be accounted for if slow 2
relaxation of the material is included. 0 t‘c] té2 1

A number of questions remain. One of these is the non-
linear dependence of the drag force on the particle diameter. FIG. 28. An illustration of two processes with decaying thresh-
Heuristically, one might expect that the drag force wouldolds. The slower process,) has a longer waiting timé.,) and the
grow linearly in proportion to the number of force chains faster procesév,) has a shorter waiting timé;). The longer the
contacting the tracer, and that this would lead to a lineawaiting time, the more the threshold decreases.
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Thus, a 3D analogue would require a fixed volume con-
straint, unlike the easier fixed pressure constraint for a con-
tainer with an open top.
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FIG. 29. (a) Distributions of drag force at different rotation rates
derived from the simulations when a decaying threshold is uged.
Same data a&), but with the horizontal axis rescaled by the cor-
responding mean force, and the vertical axis multiplied by the mean
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