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Gravity waves over topographical bottoms: Comparison with experiment
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The propagation of water surface waves over one-dimensional periodic and random bottoms is investigated
by the transfer matrix method. For the periodic bottoms, the band structure is calculated, and the results are
compared to the transmission results. When the bottoms are randomized, the Anderson localization phenom-
enon is observed. The theory has been applied to an existing expefimheBelzonset al, J. Fluid Mech.

186, 539(1988]. In general, the results are compared favorably with the experimental observation.
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I. INTRODUCTION ized, the transmission of the waves falls off exponentially in

. q . ¢ . all directions, and a cooperative behavior appears.
Propagation and scattering of gravity waves Over topo- |, this paper, we will consider water waves over one-

graphical bottoms has also been and continues to be a subjgiensional uneven bottoms. The systems adopted here are
of much research. A great amount of papers and monograpiig,m, the experiment of Belzonet al.[7]. We present a the-
have been published on water waves over various t0pQ;refical analysis of the previous experimental rediiisThe
graphical bottom$1-12). A comprehensive reference on the ¢ormyjation in Ref[23] will be used for this purpose. Com-
topic can be found in three excellent textbogk8-15. parison between the experimental and theoretical results, in
Wh'en multiply scattered by periodic or random topo- return, provides a verification of the theory. We will study
graphical bottoms, the so-called band gaps and Anderson Igge phand structure of periodic cases, the effect of randomness
calization phenomena prevail6,17 and have been investi- , \yave propagation, the relation between the band gaps and
gated in the context of water surface waves OVelgcajization, and the amplitude or energy distribution over
topographical bottoms. In 1983, Guazzedli al. [18] sug- e structured bottoms. The dependence on parameters, such
gested that the phenomenon of Anderson localization couldg the frequency, water depth, and variations of the height

be observed on shallow water waves, when the bottom hag,q \yidth of the obstacle steps, will be examined in detail.
random structures. Later, Devillaad al. reconsidered water- Although the experiment to be analyzed here was done

wave localization inside a channel with a random bottom 'nnearly 20 years ago, to the best of our knowledge, however
a framework of the potential theofg9]. They computed the hore” have been no further experiments which have been

localization length for various cases. The experimental obyane on water waves in the context of localization effects.
servation of water-wave localization has been subsequently, o, existing limited experimental results have not been

suggested by Belzonet al.[7]. thoroughly analyzed. The present paper bridges the gaps

When the topographical bottoms are periodically Strucyyith the hope that further experimental investigations may

tured, the propagation of water surface waves will be modupg arranged. From the results, we can see a few differences
lated accordingly. According to the Bloch theorem, waves inyonveen two-dimensional2D) and one-dimensionallD)

a periodic medium, termed Bloch waves, can bg e>'<presse_d Fhses. For example, in 2D, localized waves start the expo-
terms of the product of a plane wave and a periodic function,gntia| decay right from the transmission site, while in 1D,

which has the periodicity of the medium. Therefore, theyhe exnonential decay starts when waves have traveled a rea-
waves will exhibit the properties of both plane-wave propa-gonaply ong distance. We also emphasize that the present

gation and periodic modulation. Indeed, a recent experimerEaper has been limited to consider linear water waves. For
[20] has used gravity waves to |I!ustrate the _phenomenon_o onlinear wave situations, readers may refer to Rif].
Bloch waves over a two-dimensional periodic bottom. This 114 paper will be constructed as follows. In the next sec-

pioneering experiment has made it possible that the abstragh, ‘\ye will present the formulation and parametrization of

concept be presented in an unprecedentedly clear manngge problem. The results and discussion will be presented in
The experimental results have also been matched by a the@u. |11 followed by a summary in Sec. IV.

retical analysis in Ref.21].
Motivated by these developments, we wish to further con-
sider the propagation and localization properties of water
surface waves. Two-dimensional situations have been con-
sidered elsewherg22]. There the propagation of water
waves over cylindrical steps has been considered. It is showlgo
that the waves can be localized spatially through the proces&
of multiple scattering and wave interference. When local-

Il. GENERAL FORMULATION

A theory of water-wave propagation over step-mounted
ttoms has been recently proposed and developed in Refs.
1,23. This formulation has been used earlier in interpret-
ing some experimental daf21]. While the details can be
referred to in Ref[23], here we only present the final equa-
tion. After the Fourier transformation, the equation describ-
*Electronic address: chkuo@phy.ncu.edu.tw ing the wave of frequency over topographical bottoms is
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The first set of boundary equations gives the matrix rela-
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wherek satisfies
and
w®= gk(ftantk(F)h()], () «
=L
where 7 is the surface displacemer,is the gravity accel- 9m= Ky
eration constant, and is the depth from the surface. For a o .
fixed frequency, the variation of the wave numkewith the Similarly, we can derive
topographical bottom is determined by the depth function A A
From Eq. (1), we have the conditions linking domains ( M) :TMR< R), (10
with different depths as follows: both and By Br
tanhkh)  o? with
Tk " g_kzn 1<(1 +guR)e kMR (1 - QMR)e_i(kR+kM)XR)
MR™ S5\ (1 _ i (k)X =i (Kg—kp)X
are continuous across the boundary. 2\(1-guple ™R (1 +gyR)e”RTMTR
(11)
A. Application to one-dimensional situations and
1. Single step : k_M
First, consider a step with widtthand a wave propagating MR = Kg'

along thex direction. The conceptua_l layout is as in Figa)l From Egs.(9) and (11), we obtain the following solution
We use the standard transfer matrix method to solve for the - .

o ih the transfer matrix form:
wave transmission across the step.

The waves on the left, within, and on the right side of the (AL> . (AR> 2
step can be generally rewritten as B, LR Bg/’
= AL+ Be with
Tir=TimTmr- (13

™ :AMeikMX+ BMe_ikMX,
Equation(12) relates the waves on the left to the right side of
e = ArgkRX + BoerkeX. 3) the step.

i it 2.C f N st
The subscriptd, M, andR represent the quantities on the ase ot N steps

left side, in the middle, and on the right side of the step, Now we consideN steps in a unform medium of wave
respectively. numberk. The illustration is in Fig. (b). The step widths are
The boundary conditions lead to the following equations:di and the water depths over the stepstardhe wave num-
_ . . ' ber over the step is denoted kyi=1,... N). They satisfy
AL+ B e kL= A gL + By erkw (4)  the following relations, respectively:
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w’=ghtanikh), o= gh tanh(kh). (14) _1 ((1 +gs)e L (1 _gs,i)e_i(ki+k)xi'L>
Clearly, the coefficients on the leftmost region is related bA\(L-gg)@® L (1 +gg)e RN
to the most-right-hand region by ((1 +1/gg e RNrR (1- 1/gsi)e_i(k+ki)xi,R>
(AL> =T(N (AR> 15 (1= 1igs)€ iR (1 + 1igg;)e ' * %R )"
B )~ (N) B/’ (15 (22)
with B. Simulation setup

N 1. Nondimensional parametrization
T(N) = ,11 Ti. (16) Consider an infinite periodic array of the steps, as shown
in Fig. 1. The lattice constant ik. For random arraysl.
The matrixT; is the transfer matrix for thith step and will ~ refers to the average distance between two adjacent steps.
be given below. The dispersion relation is
. Let_ us consider a unit plane—wgve propagation alpng<the w? = gktanhkh).

direction, and explore the reflection and transmission prop-_ . )
erties. In this case, clearly we have This can be rewritten as

2
A =1, Br=0. (17) % = (kL)tanf((kL)E),
Wo

Br=0 is the common radiation condition. Thus from Ebp)

) . with
we arrive at the solutions

rlQ

2_
1 T21(N) “o =

TN BL(N) = TN’ (18)
1 1 Therefore, in all later computations, the length can be scaled

The subscripts denote the corresponding matrix elements. by L, the frequency byw,, and the wave number .

The transmission and reflection coefficients are defined as The wave numbers in the medium and within the steps are
given by (at the same frequengy

2 R=1-T. (19) 2

Ar(N)

T=[AN) . A
Now we construct thd matrix for each step. In the cur- ;(2; - (kL)tanI‘((kL)E), (23
rent case, we have
k ki 22 =(k L)tanl-((k L)ﬁ) (29
gum(i) = pE gur(i) = K (20) w5 L)
1
This leads to
and
LS
k|_ = k, kM = kiv kR =k. (21) S kIL !
We denotegs;=k/k;. Therefore, and the transfer matrix of thieh step is
|
. . 1 + i ei(kL_kiL)(xi,L+di)/L 1 _ i e_i(kL+kiL)(Xi,L+di)/L
1<(1 +gg) €N (1 - gsi)e_'(kiUkL)XiVL/L) si N
T() =~ "Lk Dx " ik LKL ’ ’ :
4 (1_gs‘i)e|(kL+k|L)X|,L/|— (1 +gS,i)e i(kiL kL)X|,L/L (1_i)ei(kL+kiL)(Xl,L+di)/L <1+i)e_i(kL_kiL)(xi,L"'di)/L
Os;i S,i
(25
[
wherex; _is the coordinate of the left side of thith step. rem, the water surface displacementan be expressed as
7(x) = £, (26)

2. Band structure for periodic cases

For the periodically arranged steps wilfrd andh;=h;, = whereK is the Bloch wave number anglx) is a periodic
the band structure can be solved. According to Bloch theofunction modulated by the periodicity of the structure—i.e.,
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&x+L)=&(x). The relation betweeK and the frequencyw Bed P
can be obtained by taking E(R6) into Eq. (15). i Surface
We can derive an equation determining the band structure
in the periodic case,
cogKL) =cogk;L(d/L)]cogkL(L —d)/L]

- cosh2é)sink;L(d/L)]sinkL(L —d)/L], (27)

where

k
&=In(q), with w?= gk, tanikhy), qzzf_ .

Surface

3. Random situations

There are a number of ways to introduce the randomness.
(1) Variation in the height of the steps: with the fixed widths
and positions of the steps, the height of the steps can be
varied in a controlled way. For example, the height of the
steps can be varied randomly betwdéty—AH,Hy+AH].

(2) Positional disorders: initially, the steps can be arranged in
a lattice form. Then allow each step to move randomly
around its initial position. The allowing range for movement
can be controlled and denotes the level of randomness. The
extreme case is completely randomné8$.Width random-
ness: we can also introduce the randomness for the widths of
the steps. In the simulation, we will consider the randomness ©) ~{rozar fe
introduced in the experimeft]. L . N _

When randomness is introduced, a few definitions are ir]) FIG. 2. Situations considered in this paper, adopted from Fig. 2

der. Th i tant fity is the L f Ref. [7]. (@) Bed P case: in this case, the steps are mounted
oraer. 1he mc')S' '|mp_or ant quantity 1S the Lyapounov expo'periodically with lattice constantly); the variation of the stepsH
nentvy. Its definition is

is fixed.(b) Bed RS case: in the case, the steps are allowed to move

y=lim (y), (28) randomly from their initial periodic positions, as set in the bed P
N—o0 case—the allowed range is denoted ad iand the variation of the
stepsoH is fixed. (c) Bed R: in this case, both the heights and the
where widths are allowed to vary randomly from their initial values in the
1 bed P case within the rang@dy—AH,Hp+AH] and[Lo—ALg,Lg
N = - N |n|:|AR(N)|:| +ALO].
Here |Ag(N)|? is the transmission coefficient for a system steps are allowed to vary randomly, but within the ranges
with N random steps, referring to E¢L8), [Ho—AH,Hp+AH] and[Ly—AL,Ly+AL], respectively.
The experimental setups have been described in Sec. Il of
IAR(N)[2 = ;2 Ref. [7]. We briefly repeat here. The experiments were car-
IT12(N)| ried out in a glass-walled wave tank with length 4 m and

_ . width 0.39 m. A bottom composed of periodic or random
The symbok-) denotes the average over the random configu teps was built into a flat bottom with mean water deigh

ration. The inverse of the Lyapounov exponent characterize. he different bottoms varied only along the tank so that,

. . _. - _1
the localization length—i.e£= . apart from weak edge effects, the propagation of waves is
considered to be one dimensional. The resolution of the wa-

lll. RESULTS AND DISCUSSION ter depth is estimated at about 0.2 mm.

The systems are from the previous experimght That
is, the bottoms are mounted with a series of steps and these
steps are either regularly or randomly but on average regu-
larly placed on the bottoms. Three cases are considered and First, we consider the first case in the experiment: the
are illustrated by Fig. 2. In the bed P case, the averaged wateeriodic case—i.e., the bed P case. For this case, the band
depth isH,, the periodicity is 2, and the step variation is structure and the transmission are computed for two water
fixed atoH. In the bed RS case, the averaged water depth idepths. In both cases, the width of the stepkgs4.1 cm;
Ho, the step variation is fixed atH, and the separation be- therefore, the periodicity is 8.2 cm. The results are shown in
tween steps is uniformly distributed wifldy,—Ad,dy+Ad]. Fig. 3. From the band structure results(af) and(bl), we
In the bed R case, both the height and separation between tibéserve that for the small water defdti,=1.75 cm), there

A. Band structure and transmission
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5 5 domly chosen with uniform distribution withif2 cm, 8 cnj
¥, \/ ¥, or [dy—3,dy+3] with dy=5 cm. In the simulation, the total
S = number of steps is 58. We have taken two numbers of ran-
g 3/\ g 3 dom configuration in the simulation. One is(&2), which
& 2 complies with the experiment, and the otl{aB) is 10 000
l?_ 2 L‘I'.:’ 2 times, so to ensure the stability of the averaging. The experi-
\ / mental data are shown {&1). The comparison ofal), (a2),
!3 21 012 3 -‘J;o 20 -10 o and (a3 indicates the following. Overall speaking, the theo-
(a1) KL (a2) In(T) retical results capture well the qualitative features observed
5 5 experimentally and agree to a certain extent with the experi-
= = mental results.
T4 T4 First we consider the bed P cag&) The theoretically
;.=>>' E predicted positions of the reflection peaks agree well with the
g 3 g 3 —< experimental observation in the bed P case. These positions
4 2\ / g2 also coincide with the band gaps from the band structure
(s (s computation in Fig. 1(2) In the bed P case, the reflection
1 1 coefficient reaches its maximum value of 1 within the band
(b1)'3 2 -1 I?L 123 (b2;10 'If‘(.r) 0 gaps as expected, while the experimental values are always

smaller than 1 for the frequency range considered. A possible
FIG. 3. Band structure and transmission for the bed P case "r](.aason.for this discrepaﬂcy may be that in .the the(_)retical
two situations, referring to Fig.(d: (al) and (a2 The average simulation, we did not take into account possible dissipation
water depth isHy=1.75 cm, and the height variation isH/H, effects caused by such as viscosity and th_ermal exchange;
=0.43.(b1) and(b2) The average water depthlig,=3 cm, and the ~SOMe of these effects have been discussed !n[R]efThese
height variation isH/Hy=0.25. The left and right panes show the €ff€Cts tend to prevent waves from propagati@.The the-

band structure and transmission results, respectively. The transmiQ—retical width of the first reflection peak in Fhe bed P case
sion is presented in the logarithmic scale for 100 steps. matches well that observed, but the theoretical width of the

second reflection peak at about 4 Hz is narrower than that

) . from the experiment. In fact, the experimentally measured
are two band gaps in the frequency range measured in thgighs of the two reflection peaks are more or less the same.

experiment, while in the deeper ca$t,=3 cm) there is one  gince the effects of the periodic bottom diminish with in-
band gap. The locations of the band gaps match the inhibitegreasing frequency as discussed above, we may conclude
transmission regimes. The width of the gap and the inhibitionthat there are other effects which could broaden the reflection
effect tend to decrease with frequency as showriaddy and  peak at 4 Hz, and these effects may include those from the
(a2. This is understandable. In the high-frequency limit— dissipation, nonlinearity, and evanescent mode leakage.
i.e., whenkh>1—the dispersion relation in Eq2) ap- These effects have not been considered in the current theory
proachesw?=gk. Therefore the importance of the bottom [23].
structure will decrease with increasing frequency. The results Now we consider the bed RS cas#) Again, except for
in Fig. 3 will help us comprehend the later results. the peak values in the reflection, the theoretical results repro-
duce the experimental observation reasonably well in gen-
eral, particularly at the strong reflection located at about
2 Hz.(2) Different from the bed P case, the width of the first
In the experimenf7], the reflection coefficients are mea- reflection peak at 2 Hz is wider in theory than in the experi-
sured for the three cases: bed P, bed R, and bed RS casegnt.(3) In both theory and experiment, a second reflection
Two average water depths are considereld=1.75 and peak is noticed within 4 and 5 H#) An obvious difference
3 cm. We have considered all the cases and applied the fobetween the theory and experiment is at low frequency
mulation in Sec. Il to obtain corresponding results. In Fig. 4,around 1.2 Hz, a strong sharp reflection peak appears at
we present our theoretical results. For the convenience of the.2 Hz in the experiment, but is absent in the theory. This
reader and as a comparison, we also replot the experimentekperimental observation differs from previous observations
results in the same figurgeft pane). We have taken into in acoustic or optical systemd7]. In acoustic or optical
account two random configuration numbers in the simulasystems, the disorder effect decreases as the frequency de-
tion: one is 5 random configurations—i.e., the middlecreases. Therefore, waves tend to diffuse away, leading to
panel—which is taken as the same as in the experiment; theeaker reflections at low frequencies. In fact, the result of
other in the right panel is more than 10 000 random configuthe reflection measurement is also in disagreement with the
rations to ensure the stability of the averaging results. All thdocalization measurement shown in Fig. 15 of R&{.where
parameters are repeated from Réfl. it is shown that the localization length at 1.2 Hz is even
Figures 4al), 4(a2), and 4a3 compare the results for the longer than at 1.5 Hz at which the reflection is small; the
bed RS and bed P cases with averaged water delgth longer the localization length, the weaker the reflecti@.
=1.75 cm and step widtlh,=4.1 cm. For both cases, the Increasing the number of random configuration tends to
ratio oH/Hy is fixed at 0.43; i.e., there is no variation in the smooth the curves.
step heights. In the bed RS case, the disorder is introduced to The comparison between the theoretical and experimental
the separation between steps; that is, the separation is rareflection results for the bed P and bed R cases ih

B. Reflection coefficient
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FIG. 4. Reflection versus frequency for the bed RS and P cases with three average water depths. Left panel: the results from the
experimen{ 7]. Middle panel: the theoretical results with the average over five random configurations. Right panel: the theoretical results
with the average over 10 000 random configurations, so to make sure the stability of the average.

=3 cm is shown by Figs. (#1), 4(b2), and 4b3). The pa- also match that from the experiment in both the qualitative
rameters are as follows(l) Bed P: oH/Hy=0.25, L,  structure and the magnitude, referring(tid) and (b2). The
=4.1 cm; (2) Bed R: the separation between steps varieexisting deviation may result from an insufficient random
completely randomly within.g= AL with AL=2 cm, and the average.

height of the steps varies uniformly withiHy+=AH with The comparison between the theoretical and experimental
AH=1.26 cm. The number of steps is 58. (bR), five ran-  reflection results for the bed P and bed R cases Wigh
dom configurations are used for averaging, and(lg) =1.75 cm is shown by Figs.(d1), 4(c2), and 4c3). The

10 000 random configurations are used to ensure the stabilifyarameters are as followsl) Bed P: oH/Hy=0.43, Lg

of the averaging. In the bed P case, except at the reflection4.1 cm. (2) Bed R: the separation between steps varies
peak, the theoretical results reproduce very well the experieompletely randomly withih g+ AL with AL=2 cm, and the
mental observation. In the bed R case, the theoretical resulteight of the steps varies uniformly withiHyxAH with

011201-6



GRAVITY WAVES OVER TOPOGRAPHICAL BOTTOMS.... PHYSICAL REVIEW E 71, 011201(2005

tions. In the simulation, the localization length is obtained
from the inverse of the Lyapounov exponent given in Eq.
(28). Here the bed R case is considered and the parameters
areH;=1.75 cm,Ly=4.1 cm, and the height of the steps and
the separation between steps vary randomly within the
ranges [Ho—AH,Hy+AH] and [Lo—AL,Ly+AL] respec-
— ] tively; here,AH=1.2425 cm andAL=2 cm. Ten thousand
steps and 10 000 random configurations have been used in
the simulation to ensure the stability of the numerical results.
The numerical and experimental results are shown in Fig.
5. Here the localization length is plotted against the fre-
qguency. The results from Rdf7] are shown in the inset. A
few observations are in ordefl) In Ref. [7], the authors
have used a potential formulation to obtain the localization
. . length, denoted by the solid length in the inset. By eye in-

3 4 5 6 spection, we see that the present numerical results agree re-
Frequency(Hz) markably well with the results from the potential theory, thus
o providing further support for the present relatively simple

FIG. 5. Localization length versus frequency for the bed R Casetheory, stemming from Ref23]. (2) The numerical results
The experimeqtal results are shown iq the .inset, qnd the legends callso agree with the averaged experimental data in the vicinity
e o e o, e 01 e equentcy 2 Hald) Thre s  huge Tuctuation n th

o ) experiment results. From our simulation, we think that such a
dots denote the results from an averaging over five randomy. ™ . o . -
configurations. S|gn|f|c_ant d_ev!atlpn is due to |nsu_ff|C|ent average n_umbers,

an obvious limitation on any experiment. This is particularly

AH=1.24 cm. The number of steps is 58. (kR), five ran- ~an important factor when the localization length is long.
dom configurations are used for averaging, and(d8) Nevertheless, the agreement shown in Fig. 5 is encouraging.
10 000 random configurations are used to ensure the stability

of the averaging. The bed P case has been discussed in theD. Behavior of the wave amplitude along the random bed
above. In the bed R case, the general features of the experi-

mental and theoretical results seem to be agreeable with each In the experiment, the variation of the wave amplitude
other. The predicted reflection curve starts to match qualitadlong the random bed is also measured. Both bed RS and bed

tively the experimental data from about 3 Hz. The discrepR cases are considered. The parameters used in the experi-

15}

=y
[=)
T

14

0123456

Localization length(m)

o

0 1 2

ancy at low frequencies is, again, noticeable. ment [7] are summarized as follows. In the bed RS case,
o Ho=1.75 cm,oH/H=0.43, Ly=4.1 cm, and the separation
C. Localization length between steps varies randomly in the rangg2oém, 8 cnj.

In the experimenf7], the localization length is extracted In the bed R case;l;=1.75 cm,Ly=4.1 cm, and the height
from the measurement of the total wave amplitude attenuaef the steps and the separation between steps vary randomly

bed RS bed RS

EE 1r f=1.6Hz 1 QE 1 f=1.6Hz
(a1) 0 1 2 (a2) 0 1 2
E ) ) bed RS . bed RS
™ I f=1.9Hz 7 A'E 1 f=19Hz
z 8 Aol
S L. A
1) 0 1 2 (be) O 1 2 FIQ. 6. Variation of the amplitude of wave
elevation along the wave tank for the bed RS and
r bed R cases for different frequencies. The experi-
bed R bed R i i
. - f=1.5Hz fomn) f=1.5Hz
~F1 1 =71 mental[ 7] and numerical results are shown in the
7 E % £ /V\I\’\(\/"\N\MM left and right panels, respectively.
| — I
(c1) 0 1 2 (c2) 0 1 2
l ' bed R ' bed R
QE 1F f=1.7Hz - QE 1 f=1.7Hz
ok “ Winyapne
< ' < N
0 1 2 0 1
(d1) x(m) (d2) x(m)
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1 y We have further computed the averaged variation of the
'E wave amplitude along the random bed for a sufficiently large
g number of random configurations. We found that though
A 0.5; smeared out a little by the averaging, the resonance feature
% remains for spatial points near the transmission and tends to
$ diminish for large traveling paths. And the averaged ampli-

0u 3 2 tude decays exponentially with increasing traveling dis-
(at) x(m) tances. As an example, in Fig. 7 we illustrate these by the

1 results of the bed RS case witkr 1.6 Hz. The results in Fig.
- bed RS 7 also indicate that the exponential decay rate, associated
E f=1.6Hz with the localization length, may not be accurately obtained
= 05 from measurements done on insufficiently long samples, as
»& the fluctuation can be quite significant for small sample
% .
5 sizes.

o ' n ———

0 5 10 15 20
(a2) x(m) IV. SUMMARY

FIG. 7. The averaged variation of the amplitude of wave eleva- /N Summary, we have considered the propagation of water
tion along the wave tank for the bed RS from Fig. 6 with surface waves over topographical bottoms. A transfer method
=1.6 Hz. To show the behavior near the transmission site, the rédas been developed to compute the wave field along the
sults are plotted in two length scaldéal) up to 2 m anda? upto  Propagating path, the transmission, and reflection coeffi-
20 m. cients. The localization effects due to disordered bottom

o structures are also considered. The theory has been applied to
within the rangegHo~AH,Ho+AH] and[Lo-AL,Lo+AL],  apalyze the existing experimental results. Some agreements
respectively; hereAH=1.2425 cm and\L=2 cm. Four dif-  and discrepancies are discovered and discussed. It is pointed
ferent frequencies have been measured and simulated. ot that more detailed experiments may be helpful in not

The experimental and simulation results for a given ranyy identifying the peculiar localization phenomenon, but in
g:iom realization of the random beds are presented in Fig. 6. belping improve theories for water-wave propagation over
is shown that the theoretical results match remarkably wel

. . ough bottoms.
the experimental results. It is shown that the waves do not
decay monotonically along the random bottéwithout av-
eraging, due to the manifestation of resonant modes of the
beds. The resonances are sensitive to the frequency variation.
We also found that the occurrence of the resonances is sen- This work received support from the National Science
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