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We study the approach to jamming in hard-sphere packings and, in particular, the pair correlation function
g2srd around contact, both theoretically and computationally. Our computational data unambiguously separate
the narrowingd-function contribution tog2 due to emerging interparticle contacts from the background con-
tribution due to near contacts. The data also show with unprecedented accuracy that disordered hard-sphere
packings are strictly isostatic: i.e., the number of exact contacts in the jamming limit is exactly equal to the
number of degrees of freedom, once rattlers are removed. For such isostatic packings, we derive a theoretical
connection between the probability distribution of interparticle forcesPfsfd, which we measure computation-
ally, and the contact contribution tog2. We verify this relation for computationally generated isostatic packings
that are representative of the maximally random jammed state. We clearly observe a maximum inPf and a
nonzero probability of zero force, shedding light on long-standing questions in the granular-media literature.
We computationally observe an unusual power-law divergence in the near-contact contribution tog2, persistent
even in the jamming limit, with exponent −0.4 clearly distinguishable from previously proposed inverse-
square-root divergence. Additionally, we present high-quality numerical data on the two discontinuities in the
split-second peak ofg2 and use a shared-neighbor analysis of the graph representing the contact network to
study the local particle clusters responsible for the peculiar features. Finally, we present the computational data
on the contact contribution tog2 for vacancy-diluted fcc crystal packings and also investigate partially crys-
tallized packings along the transition from maximally disordered to fully ordered packings. We find that the
contact network remains isostatic even when ordering is present. Unlike previous studies, we find that ordering
has a significant impact on the shape ofPf for small forces.

DOI: 10.1103/PhysRevE.71.011105 PACS numberssd: 05.20.2y, 61.20.2p

I. INTRODUCTION

Jamming in hard-sphere packings has been studied in-
tensely in past yearssseef1,2g and references thereind. In this
paper, we investigate the pair correlation functiong2srd of
the classical three-dimensional hard-sphere system near a
jamming point for both disorderedsamorphous, often called
randomd and orderedscrystald jammed packings. The basic
approach follows that of Ref.f3g, developed further for crys-
tal packings of rods, disks, and spheres in Ref.f4g. We focus
on finite sphere packings that are almostcollectively jammed
f5,6g, in the sense that the configuration point is trapped in a
very small region of configuration space around the point
representing the jammedideal packingf5g. Difficulties with
extending the results to infinite packings will be discussed in
what follows. In the ideal jammed packing particle contacts
necessary to ensure jamming are exact and the particles can-
not at all displace, even via collective motions. Such ideal
jammed sor rigidd packings have long been the subject of
mathematical inquiryf7g; however, they are not really attain-
able in numerical simulations where produced packings in-
variably have some interparticle gapsseven taking into ac-
count the unavoidable roundoff errorsd. It is therefore
instructive to better understand the approach to this ideal

jammed state computationally and theoretically, which is the
primary objective of this paper.

We choose as our main tool of exploration the shape of
the venerable orientationally averaged pair correlation func-
tion g2srd around contact. This is because this function is a
simple yet powerful encoding of the distribution of interpar-
ticle gaps. In the jamming limit, it consists of ad function
due to particle contacts and a background part due to par-
ticles not in contact. As the jamming limit is approached, it is
expected that thed-function contribution will become more
localized around contact. We derive the first exact theoretical
model for this narrowing for isostatic packingssdefined be-
lowd, connectingg2 to the probability distribution of inter-
particle forcesPf, and verify the relation numerically. In this
work, we present computational data with unprecedented
proximity to the jamming limit, clearly separating the nar-
rowing d-function contribution from the apparently persis-
tent diverging background contribution. The data show that
our disordered packings have an exactly isostatic contact net-
work in the jamming limit, but with an unusual multitude of
nearly closed contacts. We study the properties of the contact
network and find, contrary to previous studies, no traces of
polytetrahedral packing, but rather a complex local geom-
etry, indicating that the geometric frustration due to the con-
straints of global jamming on the local geometry is non-
trivial. Additionally, we study the evolution of the salient
features ofg2srd along the transition from maximally disor-*Electronic address: torquato@electron.princeton.edu
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dered to fully ordered packings by inducing partial crystalli-
zation in the packings. We find that bothg2srd and Pf are
significantly affected by crystallization; however, the contact
network remains isostatic. We thus demonstrate by example
that isostaticity is not synonymous with randomness.

II. THEORY

A packing of N hard spheres of diameterD in
d-dimensional Euclidian space is characterized by thesNdd-
dimensional configuration vector of centroid positionsR
=sr 1, . . . ,r Nd. Here we fix the center of mass of the packing
swith periodic boundary conditionsd, so that in fact the con-
figuration space is of dimensionsN−1dd. However, we will
usually neglect order-unity terms compared toN. The bound-
ary conditions imposed determine the volume of the enclos-
ing “container” V and thepacking scoveringd fraction, or
density, f.

A jammed packingis one in which the particle positions
are fixed by the impenetrability constraints and boundary
conditionsf5,6g. In particular, a packing islocally jammedif
no particle in the system can be translated while fixing the
positions of all other particles,collectively jammedif no sub-
set of particles can simultaneously be continuously displaced
so that its members move out of contact with one another
and with the remainder set, andstrictly jammedif it is col-
lectively jammed and all globally uniform volume-
nonincreasing deformations of the system boundary are dis-
allowed by the impenetrability constraints. Assume that a
configuration RJ represents a collectively jammed ideal
packing f5g with packing fractionfJ, where there areM
interparticle contacts. Next, decrease the density slightly by
reducing the particle diameter byDD, d=DD /D!1, so that
the packing fraction is lowered tof=fJs1−ddd. In this paper
we restrict ourselves to an analysis which is first order in the
jamming gap d, f<fJs1−ddd and focus on three-
dimensional packings,d=3.

A. Jamming: Configurational trapping

It can be shown that there is a sufficiently smalld that
does not destroy the jamming property, in the sense that the
configuration pointR=RJ+DR remains trapped in a small
neighborhoodJDR aroundRJ f8g. In fact, for sufficiently
small d, it can be shown that asymptotically the set of dis-
placements that are accessible to the packing approaches a
convex limiting polytopesa closed polyhedron in arbitrary
dimensiond PDR#JDR f3,4g. This polytope is determined
from the linearized impenetrability equations

ATDR ø Dl , s1d

whereA is the sdimensionlessd rigidity matrix1 of the pack-

ing and Dl is the set of interparticle gapsf5g. In our case
Dl =DDe, wheree is a vector ofM elements all equal to 1.
We can therefore focus on the normalized polytope
Px :ATxøe, which can be scaled by a factor ofdD to obtain
PDR. Examples of such polytopes for a single disk are shown
in Fig. 1. A troublesome aspect, discussed in Ref.f3g, is that
infinite packings can never be jammed in the above sense
unlessd=0, due to the appearance of unjamming mecha-
nisms involving collective density fluctuations. Nevertheless,
computational studies indicate that macroscopic properties
derived using this polytope-based approach do not depend on
N, even asN→`.

The polytopePx is necessarily bounded for a collectively
jammed configuration, which implies thatA is of full rank
f5g and that the number of faces boundingPx—i.e., the num-
ber of interparticle contactsM—is at least one larger than the
dimensionalitydCS of the configuration space,2 M ùdCS+1.
For collective jammingf5g the boundary conditions are fixed
and with periodic boundary conditions there ared trivial
translational degrees of freedom, sodCS=sN−1dd. If hard-
wall boundary conditions are employed, thendCS=Nd and
one should also count contacts with the hard walls among
the M constraints. For strict jammingf5g the boundary is
also allowed to deform and this introduces additional degrees
of freedom. For example, with periodic boundary conditions
a symmetric nonexpansive macroscopic strain tensor is
added to the configuration parameters, givingdCS=sN−1dd

1This matrix combines geometrical information with the topologi-
cal connectivity information contained in the node-arcincidence
matrix of the graph representing the contact network of the packing.
Namely,A hasNd rows,d rows for each particle, andM columns,
one for each contact. The column corresponding to the contact be-
tween particlesi and j is nonzero only in the rows corresponding to

the two particles, and contains the unit surface normal vector at the
point of contactf5g.

2The additional +1 comes because we are considering inequality
constraints, rather than equalities. One can also think of this extra
degree of freedom as representing the density—i.e., the size of the
particles. For example, looking at the left panel of Fig. 1 we see that
at least three linear inequalities are necessary to bound a polytope in
two dimensions.

FIG. 1. sColor onlined The polytope of allowed displacements,
PDR, for a locally jammed diskslight shaded trapped among three
sleftd or six sright, as in the triangular latticed fixed disks sdark
shaded. The exclusion diskssdashed linesd of diameter twice the
disk diameter are drawn around each of the fixed disks, along with
their tangentsssolid linesd and the polytopePDR they boundsdarkd.
For the isostatic case on the left this polytope is a trianglesa sim-
plex in two dimensionsd and a hexagon for thehyperstaticcase on
the right.

DONEV, TORQUATO, AND STILLINGER PHYSICAL REVIEW E71, 011105s2005d

011105-2



+dsd−1d /2+sd−1d degrees of freedom.3 Isostaticpackings
are jammed packings which have the minimal number of
contacts: Namely, for collective jamming,

M = H2N − 1 for d = 2,

3N − 2 for d = 3,
J s2d

and for strict jamming,

M = H2N + 1 for d = 2,

3N + 3 for d = 3,
J s3d

with periodic boundary conditions. Packings having more
contacts than necessary arehyperstatic, and packings having
fewer contacts arehypostaticsfor sphere packings these can-
not be jammed in the above sensed. For the trivial example of
local jamming andN=1, all particles but one are frozen in
place and the free particle must have at leastd+1 contacts.
Figure 1 shows the polytopePDR for a locally jammed disk,
for both an isostatic and a hyperstatic case. In this work, we
focus on collectively jammed packings, since strictly
jammed packings are hard to produce with existing algo-
rithms. For sufficiently large disordered systems, the differ-
ences between collective and strict jamming are expected to
be insignificantf9g.

We now consider adding thermal kinetic energy to this
nearly jammed hard-sphere packing. While the system may
not be ergodic and thus not in thermodynamic equilibrium,
especially if considering disordered packingsf10g, one can
still define a suitable macroscopic pressure by considering
only time averages as the system executes tightly confined
motion around theparticular configurationRJ. In a sense,
the configuration will explore the interior ofPDR and ergod-
icity is restored if one restricts the configurational space to
PDR. For a finite packing, which is sufficiently close to its
jamming point, the time-averaged properties will always be
well defined. Since the availablesfreed configuration volume
scales in a predictable way with the jamming gap,uPDRu
=sdDdNduPxu, one can show that the reduced pressure is as-
ymptotically given by the free-volume equation of statef3g,

p =
PV

NkT
=

1

d
=

d

s1 − f/fJd
. s4d

Relations4d is remarkable, since it enables one to accurately
determine the true jamming density of a given packing even
if the actual jamming point has not yet been reached, just by
measuring the pressure. We later numerically confirm the
validity of Eq. s4d in the vicinity of the jamming point.

B. Jamming: Interparticle forces

As the particles travel aroundRJ and the configuration
exploresPDR, one can average the exchange of momentum
between any two pairs of particles which share a contact in
the jammed limitsi.e., whose contact forms a face ofPxd,

hereafter referred to asfirst neighbors, to obtain an average
interparticleforce smomentum transfer per unit time or im-
pulsef11gd, as detailed in Ref.f12g. This kind of method for
measuring interparticle forces has previously been used in
work on dense granular flowsf11g. The vector of collisional
forces f compares directly to the intergrain force networks
which have been the subject of intense experimental and the-
oretical study in the field of granular materialsf13–16g.
These forces are in local equilibrium,

Af = 0, s5d

where we take the forces to be non-negative,4 f ù0, and nor-

malize them to have a unit average,f̄ =eTf /M =1, in the tra-
dition of the granular media literature. Our numerical inves-
tigations indicate that indeed the set of time-averaged
collisional forces approaches local equilibrium as the time
horizonT of the averaging increases, in a inverse-power-law
manner, iAf i,T−1. We can therefore obtain interparticle
forces relatively accurately given sufficiently long molecular
dynamics runs. While Eq.s5d will have a unique solution if
and only if the contact network of the packing is isostatic,
even for hyperstatic packings, such as the fcc packing, the
equilibrium set of forces should be unique. In fact, one can
prove that the force between two particles will be propor-
tional to the surface area of the face ofPx formed by the
contact in question.

It is interesting to observe that if one has anarbitrary
point DRPPDR, the interparticle gaps due to nonzero jam-
ming gap will beDl <ATDR−dDe, so that

fTDl < sAf dTDR − MDd = − MDd. s6d

Equations6d enables one to determine how far from the jam-
ming density a packing is without actually reaching the jam-
ming point. This can be a useful alternative to using Eq.s4d
when the hard-sphere pressure is not available, but interpar-
ticle forces are, such as, for example, with packings gener-
ated by algorithms using stiff “soft” spheresf17g.

As already pointed out, hypostatic packings cannot be
jammed. However, it is possible for a hypostatic packing to
be locally maximally dense, in the sense that no continuous
motion of the particles can increase the density to first order.
In other words, the particles must first move and unjam
swhich must be possible for a hypostatic sphere packingd
before the density can increase. In particular, a packing of
contacting particles for which a set of interparticle forcesf in
equilibrium exists is locally maximally dense. In a sense, the
interparticle forces resist further increase of the density. As
we discuss later, our packing generation algorithm some-
times terminates with such packings since it tries to continu-
ally increase the density.

C. Pair correlation function around contact

We now turn to the central subject of this work: the shape
of the sorientation-averagedd pair correlation functiong2srd

3Here dsd−1d /2 gives the number of off-diagonal strain compo-
nents andd−1 comes from the number of diagonal componentssdd
whose sum is constrained to be nonpositives−1d.

4This sign convention is in agreement with the granular media
literature, but opposite to our own preferred notationf5g.
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for small jamming gaps. In particular, we will focus on in-
terparticle distancesr that are very close toD. We express
g2sld in terms of the non-negativeinterparticle gaps l=r
−D. The polytope picture above says that only theM first-
neighbor particle pairs will contribute to the shape ofg2sld
right near contact—i.e., for gaps up tolmax, wherelmax is the
largest distance from the centroid ofPDR to one of its faces.
This contribution will become ad function in the jamming
limit. Particle pairs not in contact will not contribute tog2sld
until gaps larger than the minimal farther-neighbor gaplFN,
and for now we will implicitly assume thatlFN@ lmax, so that
there is a well-definedd-function region g2

sddsld;g2sl ! lFNd.
This d-function region has previously been investigated theo-
retically for crystal packings, primarilyf4g. In this work, we
derive exact theoretical expressions for this region for isos-
tatic packings, as well as numerically study vacancy-diluted
fcc crystals and partially crystallized packings.

Isostatic packings

We first focus on the probability distribution for observing
an interparticle gapl, Plsld, which is related tog2

sddsld via a

simple normalization factor. The contributionP̃sld from a

specific contact is determined from the areaS̃sld of the cross
section ofPx with a plane parallel to the face corresponding

to the contact and at a distancel from the face,P̃sld, S̃sld
f4g. The critical observation we make is that for an isostatic
contact network,Px is a simplex5 and thus immediately we

get S̃sld,fsh− ld /hgM, whereh is the height of the simplex

corresponding to this particular face,h=MuPxu /S, S=S̃s0d.
After normalization ofP̃sld and averaging over all interpar-
ticle contacts, we obtain that

Plsld =E
h=l

` M

h
F1 −

l

h
GM

Phshddh,

which shows that if we know the distributionPh of heights
for the simplexPx or, equivalently, the distribution of sur-
face areasS of the faces of the polytopePSsSd, we would
know Pl and thusg2

sdd.
Since the interparticle forcef ,S, we see immediately

that the distribution of face areas is equivalent to the distri-
bution of interparticle forcesPfsfd, and in fact it is easy to
derive that

h/DD = 1 +
eTf

f
<

M

f
,

which gives, in the limitM→`,

Plsld =E
f=0

M/l f

DD
F1 −

l f

MDD
GM

Pfsfddf

<
1

DD
E

0

`

fPfsfdexps− f l/DDddf

=
1

DD
Ll/DDffPfsfdg,

whereLs denotes the Laplace transform with respect to the
variable s. We have the normalization conditione0

`Plslddl
=1 and additionally

DPls0d =
D

DD
E

0

`

fPfsfddf =
D

DD
= p.

If we now relatePlsld to g2
sddsld,

g2
sddsld =

2MV

4pD2N2Plsld =
Z̄D

24f
Plsld,

where Z̄=2M /N=2d=6 is the mean coordination number,
we obtain the central theoretical result

g2
sddsld =

p

4f
Ll/DDffPfsfdg. s7d

D. Classification of jammed packings

Jammed hard-sphere packings can be classified based on
their densityf. However, such a classification is clearly not
sufficient in order to distinguish betweenorderedanddisor-
deredsoften called random, despite the shortcomings of such
terminologyd packingsf18,19g. In fact, packings can have
various degrees of order in them, and for hard-sphere pack-
ings the dominant form of ordering is crystallization into
variants of the fcc lattice. We can use a hypothetical scalar
order metricc to measure the amount of order in a packing,
such thatc=1 corresponds to fully orderedsfor example, the
perfect fcc crystald andc=0 corresponds to perfectly disor-
deredsPoisson distribution of sphere centersd packings. Very
large jammed packings are thus classified based on their po-
sition in the density-disordersf-cd plane, as sketched in Fig.
2, as taken from Ref.f18g. A state of special interest is the
MRJ state, representing the collection ofmaximally random
jammedpackings, believed to be closely related to the tradi-
tional but ill-defined concept of random close packingsRCPd
in three dimensions, if strict jamming is considered, and to
have a density of aboutf<0.64 in three dimensions.6 Addi-
tionally, the perfect fcc crystal and variants thereof corre-
spond to the most dense jammed packing, withf<0.74.
This work will focus on these two points in thef-c plane.
However, it is possible to produce packings with intermedi-
ate amounts of order and densities—for example, by allow-
ing partial crystallization.5A simplex is a closed convex polytope that hasn+1 faces and

n+1 vertices inn-dimensional spacesi.e., a triangle in two or a
tetrahedron in three dimensionsd. Our definition of isostatic thus
implies thatPx is a simplex.

6Contrary to popular belief, the traditional concept of RCP does
not have a two-dimensional analog for monodisperse disksf9,20g.
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III. COMPUTATIONAL RESULTS

We use event-driven molecular dynamicsf12g as the pri-
mary computational tool for our investigations. This enables
us to perform exact molecular dynamics on hard-particle
packings very close to the jamming point, which is not pos-
sible with traditional time-driven molecular dynamics algo-
rithms. The algorithm monitors a variety of properties during
the computational run, including the “instantaneous” pres-
sure, as calculated from the total exchanged momentum in
all interparticle collisions during a certain short time period
Dt. By allowing the shape of the particles to change with
time—for example, by having the sphere diameter grow
sshrinkd uniformly at a certainspossibly negatived expansion
ratedD/dt=2g—one can change the packing density. If the
change is sufficiently slow, the system will be in approximate
smetastabled equilibrium during the densification and one can
rather effectively gather quasiequilibrium data as a function
of density.

Event-driven molecular dynamicsssee Ref.f12g and ref-
erences thereind in which the particlessquicklyd grow in size
in addition to their thermal motion at a certain expansion
rate, starting from a randomsPoissond distribution of points,
produces a jammed state with a diverging collision rate. This
is the well-known Lubachevsky-StillingersLSd packing al-
gorithm f21,22g, which we have used and modifiedf12g to
generate all the disordered hard-sphere packings for this
study. During the initial stages, the expansion has to be fast
to suppress crystallization and maximize disorderf19g, and
delaying further discussion to later sections, we will assume

that the disordered packings used in this study are represen-
tative of the MRJ state. It is important to note that the algo-
rithm typically produces packings that haverattling
particles—i.e., particles that do not have true contacts with
particles in the jammedbackbone7 of the packing and can be
removed without affecting the jamming category of the final
packing. We will discuss procedures for the identification of
such rattlers in what follows.

To our knowledge, no verification of the exactness of Eq.
s4d for disordered packings exists in the literature. The per-
fect fcc crystal is stable until rather low densities, and the
pressure seems to be rather accurately predicted by the free-
volume approximation in a wide range of densities around
close packing. This has been observed in the literature and a
suitable corrective term was determinedf23g. However, for
disordered packings, previous studies have identified a coef-
ficient smaller than 3 in the numerator: namely, 2.67f24,25g.
In Fig. 3, we numerically confirm the validity of Eq.s4d with
very high accuracy for disordered packings. In Fig. 4, we
show the change of the coefficientsthe constant volume heat
capacity in units ofNkd C=s1−f /fJdp with density. Agree-
ment with the theoreticalC=d=3 is observed sufficiently
close to the jamming point, but with rapid lowering of the
coefficient from 3 away from the jamming point. This is
because for sufficiently large jamming gaps, contacts other
than theM true contacts start contributing to the collisions,
and the polytope-based picture we presented so far does not
apply exactly. We demonstrate this in Fig. 4 by showing the
number of contacts which participate in collisionssactive
contactsd as the jamming point is approached. Our investiga-

7The backbone is formed by the collection of particles that par-
ticipate in the jamming force networkf5g.

FIG. 2. A highly schematic plot of the subspace in the density-
disorder sf-cd plane where strictly jammed three-dimensional
packings exist. PointA corresponds to the lowest-density jammed
packing, and it is intuitive to expect that a certain ordering will be
needed to produce low-density jammed packings. PointB corre-
sponds to the most dense jammed packing. Point MRJ represents
the maximally random jammed state. This is the most disordered
jammed packing in the given jammed categoryslocally, collectively
or strictly jammedd. We conjecture that the Lubachevsky-Stillinger
packing algorithmf21,22g typically produces packings along the
right smaximally densed branch, and we do not know of an algo-
rithm that produces packings along the leftsminimally densed
branch.

FIG. 3. sColor onlined The inverse of the “instantaneous”saver-
aged over several hundred collisions per particled pressure of a
nearly jammedsisostaticd packing of 1000 particles, as it is slowly
diluted susing a negative expansion rate for the particles in the
molecular dynamics algorithmg=−10−5d from fJ<0.627 until an
unjamming particle rearrangement occurs. Up to this occurrence,
the free-volume theoretical relationp=d−1 is satisfied to very high
accuracy. There is a short transient region during the initial equili-
bration of the packing. Rattlers have been removed from the
packing.
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tions indicate that previous studies did not examine at the
range of densities appropriate for the theory presented above
and did not properly account for the rattlers.

A. Disordered packings

We have verified in previous publications that LS pack-
ings are typically collectively jammedf9g using a testing
procedure based on linear programmingf5g. Unfortunately,
the linear programming library used in the implemen-
tation cannot really achieve the kind of numerical accuracy
that we require in this work, specifically that for packings
which are jammed almost to within full numerical precision
sd=10−15–10−12d. Additionally, it cannot handle three-
dimensional packings of more than about 1000 particles. An-
other test for jamming, which we have found to be reliable
for the purposes of this work, is to take the final packing
produced by the LS procedure and then run standard event-
driven molecular dynamics on it for long periods of timeson
the order of thousands to hundreds of thousands of collisions
per particled and monitor the “instantaneous” pressure. If the
packing is jammed, this pressure will be stable at its initial
value. However, if the packing is not truly jammed, we have
observed that the pressure slowly decays with time; the
slower the “pressure leak,” the more “jammed” the initial
packing is, as illustrated in Fig. 5. Similar observations are

made in Ref.f24g. In addition, we track the average particle
displacementsfrom the initial configurationd and check to
see if there is a systematic drift with time away from the
initial configuration. The two tests always agreed: A pressure
leak always corresponds to a systematic drift away from the
initial configuration.

We have observed that LS packings densified to within
numerical capability only pass this rigorous jamming test of
having no pressure leak if during the final stages of the LS
densification the expansion rate is very small compared to
the average thermal velocitysmaintained constant via a ve-
locity rescaling thermostatf12gd of the particlessabout five
orders of magnitude or lessd. Similar observations are made
in Ref. f24g. If the expansion rate is too fast, we have found
that the packings jam in slightly hypostatic configurations,
where there are not enough particle contacts to ensure jam-
ming. In particular, some particles have two or three contacts
sand of course rattlers are presentd. In order for a set of
balanced forces to existswhich as we discussed is a neces-
sary condition for a packing to be locally maximally densed
when a particle has fewer than four contacts, these contacts
must be in a degenerate geometric configuration: namely,
three coplanar or two collinear contacts. We have indeed
verified that this is what happens in the hypostatic packings
produced by the LS algorithm. The number of such geomet-
ric peculiarities increases with increasing expansion rate and
also for more ordered packings, as we discuss later.

We illustrate the progress of the densification during the
final stages of the algorithm in Fig. 6. The figure shows, for
several snapshots of the packing during the densification, the
cumulative coordination number

Zsld =
N

V
E

r=D

D+l

4pr2g2srddr = 24fE
r=D

D+l S r

D
D2

g2srd
dr

D
,

FIG. 4. sColor onlined The coefficientC during a typical slow
densificationsexpansion rate is 10−4d of a 10 000–particle system,
starting from an equilibrated liquid atf=0.5 up to jamming. The
final packing has 259 rattlers, so the expected coefficient is 3
30.9741<2.92, a value which is shown with a red line. It is clear
that close to the jamming point Eq.s4d is very accurate, but a
marked lowering from a coefficient of 3 is seen for pressures lower
than about 106, likely explaining the coefficient 2.67 reported in
works of Speedyf24,25g. The inset shows the estimated “colli-
sional” coordination, defined as the average number of different
particles that a particle has collided with during a time interval of
about 100 collisions per particle, during the same densification. The
expected number 630.9741<5.85 is shownsthis number is not
asymptotically reached exactly since some of theM contacts do not
participate in collisions frequently enough to be registered during
the time interval usedd, and we see that as many as eight contacts
per particle are active at sufficiently large jamming gaps.

FIG. 5. sColor onlined The short-terms“instantaneous”d pressure
versus number of eventssmostly binary collisionsd processed by the
molecular dynamics algorithmf12g, corresponding to a total run of
about half a million collisions per particle. For the 1000-particle
packing the pressure is stable, but for the larger packings a system-
atic pressure leak is observed.
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i.e., the average number of particles within a gapl from a
given particle. We we will often use this quantity instead of
g2sld. With unprecedented clarity, a clear separation is seen
between thed-function contributionZsddsld, which becomes
more localized around contact, and the background increase
in the mean coordination from the isostatic contact value of

Z̄=6, which remains relatively unaffected by the densifica-
tion. For small packingssN=1000d, the value ofZsld is fixed
at 6 for a remarkably wide range of gaps, as much as nine
orders of magnitude for the final packings. Fast densification
is seen to lead to subisostatic packings in Fig. 6, leaving a
certain fraction of the contacts “open.” Stopping the expan-
sion invariably leads to a decay of the macroscopic pressure
for such subisostatic packings.

By using heuristic strategies, we were able to findsslowd
densification schemes which produced packings which are
indeed ideally jammed within almost full numerical preci-
sion, at least for packings ofN=1000 particles or less. In
fact, the plateau inZsld was at exactlysup to a single contactd
an isostatic number of contacts,M =3N−2, for all the pack-
ings produced via a carefully guided LS algorithm. It is es-
sential that hereN is the number of particles in the jammed
backbone of the packingf5g; i.e., rattlersf22g with fewer
than two contacts have been removed from the packing. It
seems that the algorithm produces packings with about 2.2%
rattlers, and so the density of the disordered packings we
look at is typicallyf<0.625–0.630, rather than the widely
known f<0.64. Despite a concentrated effort and lots of
expended CPU time, we have been unable to achieve true

isostaticity for 10 000–particle packings.8 This is illustrated
in Fig. 5, where it is clearly seen that the pressure in the large
packings does not remain constant over long periods of time
sabout 106 collisions per particled. It is therefore not strictly
justified to consider these packings within the framework of
ideal jammed packings that we have adopted here. However,
it is readily observed that over finite and not too long time
intervals sfor example, several thousands of collisions per
particled, the large packings conform to the predictions of the
theory developed here. In particular, the collisional forces
form a balanced force network with essentially the same
Pfsfd as the truly jammed smaller packings, and the pressure
is given by Eq.s4d with very high accuracy, whered can be
determined, for example, via Eq.s6d. We have observed no
systematic differences in any of the correlation functions or
distributions between the jammed isostatic packings with
1000 particles and the ones with 10 000 particles, other than
the better binning resolution of the larger packings and larger
statistical variability among the small packings. Results
given in subsequent sections will indicate that the fact we
could not achieve true jamming for very large packings is an
inherent property of the kinds of packings we consider,
rather than a failure of the simulation method. We therefore
believe it is justified to use the larger packings for certain
analysis where better statistics are needed.

The main goal of this work is to explore and explain Fig.
6 and, in particular, to investigate both the “d-function,” or
contact, contributiong2

sdd, which should integrate to produce

the isostatic average coordinationZ̄=2M /N=6, and the
“background” or near-contact g2

sbd, for gaps from about
100dD–10−1D. This latter one has already been observed in
an experimental study of hard spheresf26g and in computa-
tional studies of stiff “soft” spheresf17,27g. These various
studies find a nearly square-root divergence,g2

sbdsld,1/Îl,
and Ref.f27g observes that this is an integrable divergence
and thus clearly separate from thed function. Our results,
shown in Fig. 6, are an unambiguous and precise separation
of the two pieces of the pair correlation function around con-
tact near jamming. Our numerical data have precisionsd
,10−13d not previously attained, since such proximity to
ideal jammed hard-sphere packings can only be achieved in a
true hard-sphere algorithm, and at present only event-driven
molecular dynamics seems to provide the required numerical
robustness. It is rather interesting that although graphs show-
ing the hard sphereg2sld in the literature have clearly dem-
onstrated a divergence ing2sld near contact for at least three
decadesf28g, this seems to never have been clearly docu-
mented or investigated. We are led to believe that researchers
were under the false impression this divergence is a signature
of the d-function contribution and thus expected it to further
narrow and disappear at true jamming.

1. d-function (contact) contribution

We first verify that our theory correctly predicts the shape
of g2

sddsld. In order to verify relations7d numerically, a form

8When carefully densified, the packings typically lacked only a
few contacts to achieve isostaticity.

FIG. 6. sColor onlined The cumulative coordinationZsld fi.e.,
the integral ofg2sldg as a function of the gap tolerancel, for a
sequence of snapshots of a 1000-particle packing during the final
compression stages of the LS algorithm. Each snapshot is shown
with a separate solid curve and only the last one is labeled in the
figure legend. For a sufficiently slow expansionsexpansion rate is
10−5 times the average thermal velocityd, the packing is clearly seen
to jam in an isostatic configuration. A subisostatic configuration is
found for fast expansionsexpansion rate is comparable to the ther-
mal velocityd. The inset shows the properly normalized derivative
of Zsld, right around contact, along with a comparison to our semi-
theoretical prediction forg2

sddsld, for a packing withd=2.5310−12.
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for Pfsfd is needed. Force networks in particle packings have
been the subject of intense theoretical and experimental in-
terestf13,15,16,29,30g, and it has been established thatPf
decays exponentially at large forces for a variety of models.
The behavior ofPf for small forces has not been agreed
upon, the central question being whether the infinite-system-
limit Pfs0d is nonzero. No theoretical model has been offered
yet that truly answers this question. We note that a recent
model reproduces all of the major characteristics ofPf that
we observe, including a positivePfs0d, even though it is
presently restricted to two dimensionsf31g. Part of the diffi-
culty is that the answer likely depends not only on the system
in question, but also on the definition off. In a true ideal
collectively jammed isostatic packing, which is necessarily
finite, all interparticle forcesmustbe strictly positive and, in
fact, are determined uniquely through Eq.s8d,

f = FA

eTG−1F0

1
G , s8d

without any mention of interparticle potentials or influence
of external fields or loads like gravity or thermal dynamics.
The limiting probability distribution of these interparticle
forces as the packing becomes larger, if it exists, can be
positive at the origin, indicating that finite but large packings
have limiting polytopes with a few extremely small faces or,
equivalently, are very elongated along certain directions. We
have numerically studied the form ofPfsfd for almost
jammed random packings ofN=1000 andN=10 000 spheres
by using molecular dynamics to observe the collisional
forces between first neighbors and also by directly using Eq.
s8d for the smaller packings9 sthis offers better accuracy for
small forcesd. The results are shown in Fig. 7. We clearly see
a peak inPsfd for small forces, as observed in the literature
for jammed packings of soft particlesf29g, and it appears
that there is a finite positive probability of observing zero
interparticle force. We will return to this point later.

The observedPfsfd can be well fitted for medium and
large forces byPfsfd=sAf2+Bde−Cf, with a small correction
needed to fit the small-force behavior, as used in Fig. 7. This
small correction has a negligible impact on the Laplace
transform offPfsfd, and in fact a very good approximation to
g2

sddsld in Eq. s7d is provided by just using

LxffPfsfdg =
6A

sx + Cd4 +
B

sx + Cd2 . s9d

In the inset in Fig. 6, we show a comparison between the
g2

sddsld we observe computationally and the one given by Eqs.
s7d ands9d and the empirical fit toPfsfd in Fig. 7. An essen-
tially perfect agreement is observed. Our focus here is on
small forces; however, we do wish to note that our data can-
not confidently rule out a Gaussian component toPf for large
forces and that a slight quadratic component does seem to be
visible whenPfsfd is plotted on a log-log plot.

2. Near-contact contribution

In Fig. 8 we investigate the near-contact contribution to
g2sld. We have found thatZsbdsld has a power-law behavior
over a surprisingly wide range of gaps, up to the first mini-
mum of g2 at l <0.25D, Zsbdsld<11sl /Dd0.6, as shown in the
figure. Note that this range is too wide for

g2
sbdsxd =

1

24fs1 + xd2

dZsbdsxd
dx

to be a perfect power law, wherex= l /D, as used to fit nu-
merical data in other studiesswhich have not investigated

9Efficiently inverting the rigidity matrix for very large three-
dimensional packings is a rather challenging numerical task which
we have not yet tackled.

FIG. 7. sColor onlined Computational data on the interparticle
force distribution along with the best fit we could achieve. Packings
of both 1000 and 10 000 particles, using either molecular dynamics
to average the collisional forces or inversion of the rigidity matrix,
were used, consistently producing the same probability distribution.
Comparison to other data in the granular-media literature is beyond
the scope of this work.

FIG. 8. sColor onlined The near-contactZsbdsld for a nearly
jammed 10 000–particle packing, along with a power-law fit for
small gaps, shown in both a linear-linear scale and a log-log scale
sinsetd. In this inset we also show a line with slope 0.5si.e., a
square-root dependenced, which is clearly inconsistent with the nu-
merical data.
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nearly as wide a range of gaps as we do hered f27,26g. The
observed exponent is clearly distinguishable from an inverse
square-root divergence ing2

sbdsld, as proposed in the literature
f27g, and it is consistent with the experimental exponents
reported in Ref.f26g. Our study has higher statistical accu-
racy than previously realized; however, it is not clear if there
are not also systematic effects due to the different protocols
used to prepare the packings in studies such as Ref.f27g.

We do not have a theoretical explanation for this func-
tional behavior ofZsbdsld; however, the remarkable quality of
the fit in Fig. 8 hints at the possibility of assimpled scaling
argument. Some simple observations can be made by assum-
ing that

Zsxd = Z̄ + ax1−a for 0 , x ø b, s10d

wherea is an exponent 0øaø1 andb,1 determines the
extent of this power-law dependence. The corresponding pair
correlation function of course exhibits an inverse power-law
divergence with exponenta, except whena=1, when it is
identically zero.10 The exponenta clearly will depend on the
amount of order present in the packing—i.e., the position of
the packing in the density-order diagram of Fig. 2. We expect
that it will increase with increasing order, sincea→0 would
indicate a constantg2sld near contact, a signature of the ideal
gas, whilea→1 would indicate a clear distinction between
the first and second shells of neighborssi.e., a wide range of
gaps with very few contactsd typical of crystal packings. Un-
der the assumption that a power-law divergence ing2 is ap-
propriate, an intermediate value ofa between 0 and 1, as we
find numerically, is therefore expected. Some bounds on the
range of possiblea can be obtained from bounds onZsxd
derived from geometric constraintsffor example,Zsxd,13
for a certain range ofx since the sphere kissing number is 12
in three dimensionsg, but the exact value is not simple to
predict.11

3. Away from contact: Split-second peak

Although the primary focus of this work is on the behav-
ior of g2srd around contact, it is instructive to also look at the
split-second peak of the pair correlation function, shown for
a sample of packings of 10 000 particles in Fig. 9. Only two
clear discontinuities are seen: one at exactlyr =Î3D and one
at r =2D. The latter is very clearly asymmetrical, with a
sharp decrease ing2 at r =2D+. Although the first discontinu-
ity is less pronounced and statistics are not good enough to
unambiguously determine its shape, it appears that it also has
the same shape as the second discontinuity, only of smaller
magnitude. The split-second peak is of great importance be-
cause it is a clear signature of the strong local order in the

first two coordination shells of the packing, and in fact ob-
servations have been made that along with the appearance of
a peak inPfsfd for small forces, the splitting of the second
peak of g2 is a signature of jammingf29g. It is therefore
important to try to understand the local geometrical patterns
responsible for the occurrence of these structures ing2.

4. Contact-network statistics

The exact geometry of the jammed configurationRJ is
determinedsnot necessarily uniquelyd from its contact net-
work, which as we have demonstrated is the network of first-
neighbor interactions and can easily be separated from
further-neighbor interactions. Figure 10 shows the histogram
of local coordination numbers as a function of the first-
neighbor cutofft—i.e., the histogram of the number of par-
ticles within distances1+tdD from a given particle. It is seen
that for sufficiently smallt st,10−5d the histograms are in-
dependent of the exact cutoff usedsthis is true down tot
<100d or so, which can be as small as 10−12 in some of our
packingsd. It is interesting to observe that the contact-number
probability distributions conform very well to a Gaussian
shape, at discrete points between 4 and 10, for all of the
cutoffs shown in the figure. A number of particles having
fewer than two contacts are seen, and these are clearlyrat-
tlers and we have removed them from consideration from all
of the final packings we analyze here. We observe that such
particles remain with fewer than two contacts for a very wide
range oft and are easy to identify. In some cases, however,
we cannot unambiguously identify a handful of the particles
as rattlers or nonrattlers. This is typical for packings which
are not sufficiently close to their jamming point, packings
which have been produced using fast expansion in the LS
algorithm, or packings which are very large. It is safest to not
remove such particles as rattlers.

10Note thatg2
sbdsxd cannot have a simple-pole divergence since this

would lead to a logarithmic divergence inZsbdsxd, which must be
finite for all finite x.

11The three parametersa, b, and a are thus not independent of
one another. For example, requiring thatg2

sbdsxd.1 andZsxd,12
for 0,xøb gives the weak constraintsas1−ad.24fb2sb−1da

andasb−1d1−a,12−Z̄.

FIG. 9. sColor onlined Computational data on the split-second
peak ofg2srd averaged over five packings of 10 000 particles. The
valuesr =Î3D and r =2D are highlighted and match the two ob-
served discontinuities. Also visible is the divergence near contact.
The inset shows the probability distributionPusud of bond-pair
angles in the contact network of the packings, also revealing two
divergences atu=p /3 and atu=2p /3. No peaks are observed at
r =Î2D or r =Î5D, which are typical of crystal packings, indicating
that there is no detectable crystal ordering in the packing.
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This work is the first time a clear look has been provided
at the exact contact network of disordered hard-sphere pack-
ings. Previous studies have either used soft atoms, in which
case the definition of a contact is not clear cut unless one
carefully takes limits of a stiff interaction potentialf16g, and
therefore in such studiest has been typically set to corre-
spond to the location of the first minimum ing2srd or have
used Voronoi tessellations to define neighbors. Even studies
which have actually used hard particles have resorted to such
definitions unsuitable to investigating the jamming limit,
mostly because the numerical precision required to separate
the true contacts from the near contacts has not been
achieved up to nowf32g. Such investigations, the literature
of which is too vast to cite, have found a plethora of local
coordination patterns typical ofpolytetrahedralpacking, in-
cluding icosahedral orderf32g.

We therefore attempted to do a similarshared-neighbor
f32g analysis for the contact networks of our disordered
packings and look for local clusters reminiscent of polytet-
rahedral packing. Our procedure, based on looking at the
contact network as an undirected graph, was as follows. For
each particle, we extracted the subgraph corresponding to the
first-neighbor shell of the particlesthis includes contacts be-
tween the neighborsd, extracted its connected components,
and counted the number of occurrences of a given subgraph
susing graph algorithms that can test for graph isomorphism
to form equivalence classesd. The results were surprising. By
far the most prominent patterns were a central particle con-
tacting achain of 1, 2, 3, 4, or 5 contacting particles. The
chains were almost never closed, other than for chains of
length 3 swhich together with the original particle form a
contacting tetrahedrond, and this was itself rare. The prob-
ability of finding a chain of lengthn seems to decay expo-
nentially, Psnd,exps−1.2nd. This study found very few tet-
rahedra, and so polytetrahedral local ordering is certainly not
apparent in the contact networks. We also performed the

same analysis for a range oft’s, all the way up tot=0.1D
swhich raises the average coordination significantly above
6d, but still found the open linear chains to be the dominant
pattern. We further attempted to include second neighbors in
the analysis; however, including all second neighbors led to
very large subgraphs of a very broad variety, so classification
was not possible. We further restricted our attention only to
second neighbors which are very close to the given particle
swithin 0.1D, for exampled, and this also found very few
tetrahedra.

One of our goals was to determine if certain simple local
coordination patterns are responsible for each of the three
features ofg2srd we previously documented: the power-law
divergence near contact and the discontinuous, if not diverg-
ing, peaks atr =Î3D and r =2D. We had little success in
accounting for the first one by restricting attention to only
the first two neighbor shells in the true contact network. In
particular, we looked at all the near contactssfor example,
with gaps less than 0.01Dd and whether the almost contact-
ing particles were in fact second neighbors in the contact
network. Indeed, most were: however, the majority only
shared one particle as a first neighbor or two or three first
neighbors which were not themselves first neighbors. It was
therefore not possible to isolate one particular local geometry
as responsible for the multitude of near contacts. An interest-
ing quantity we measured is the probability distribution
Pusud of bond-pair anglesu in the contact network, meaning
the angles between two contact bonds of a given particle.
This distribution is shown in the inset in Fig. 9 and shows
divergences atu=p /3 and u=2p /3, which correspond to
distancesr =2D sinsu /2d of r =D and r =Î3D. Although
there is no divergence atu=p, the corresponding distribution
of distances does show a divergence atr =2D.

We had more success with a shared-neighbors analysis for
the split second peak. This was because we could increaset
and thus progressively relax the definition of first neighbor.
We found that with increasingt, an increasing majority of
particle pairs at a distance close toÎ3D were second neigh-
bors and that an increasing majority of them shared two
neighbors which were themselves neighbors. This corre-
sponds to two edge-sharingapproximatelyequilateral copla-
nar triangles, a configuration which has been suggested as
being responsible for the first part of the split-second peak
f28g. Note, however, that we do not observe any discontinu-
ity in g2 at r =1.633D, which corresponds to two face-sharing
tetrahedra, which is another configuration often mentioned in
connection with the split-second peak. A similar analysis for
the peak at 2D indicated that the majority of particle pairs at
this distance share one neighbor between them, which repre-
sents an approximately linear chain of three particles, a con-
figuration which has long been known to be responsible for
the second part of the split-second peak ofg2.

B. Ordered packings

In this work we have focused on disordered hard-sphere
packings and have found a multitude of unexpected singular
features, such as a long power-law tail ing2

sddsld, a nonzero
Pfsf =0d, and a power-law divergence ing2

sbdsld. It is impor-

FIG. 10. sColor onlined The probability distribution of local con-
tact numbers as the cutoff used in defining neighbors is increased.
Rattlers are clearly seen, and a relative maximum atZ=6 is seen.
Note that only one particle with 11 neighbors is observed, and very
few have as many as 10 neighbors. No particle with 12 contacting
neighbors has been observed in any of our packings, indicating a
lack of crystallinity.
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tant to realize that the properties we observe are not universal
and will change as one changes the amount of ordering of the
packings. In particular, dense ordered packings like the fcc
crystal are not isostatic, and we have no theory that can
predict the shape ofg2

sdd. We therefore resort to a computa-
tional investigation of ordered and partially ordered sphere
packings.

Vacancy-diluted fcc crystal packings

It was the behavior of crystal packings around the jam-
ming point that was the subject of Refs.f3,4g, and these

works inspired this investigation. For crystal packings, there
is no ambiguity in defining first neighbors, and the fcc pack-
ing hasZ=12 contacts per particle, which is twice the isos-
tatic value. Therefore, the limiting polytopePx is not a sim-
plex and, as argued in Ref.f4g, it is expected that for an fcc
packingg2

sddsld will have a single peak for small gaps. We
indeed observe this computationally as shown in Fig. 11.

Furthermore, we have prepared vacancy-diluted fcc pack-
ings by removing a fractionp of the spheres from a perfect
crystal, 0øpø4 sherep=0 corresponds to the perfect crys-
tald. The fcc lattice is composed of four interpenetrating cu-
bic lattices. We obtain the vacancy-diluted crystal with the
lowest density by removing one of these four cubic lattices
si.e., p=1/4d, as shown in the inset in Fig. 11. This gives a
packing with density of aboutf<0.56 and mean coordina-
tion Z̄=8 and is still collectively jammed. In fact, it is likely
that more spheres can be removed with a more elaborate
proceduref19g. We can add back a randomly chosen fraction
q=1/4−p of the previously removed quarter of the spheres
to obtain 0,p,1/4. Thed-function contributions tog2 for
severalp’s are shown in Fig. 11. It is rather surprising that
the pair correlation function for thep=1/4 packing no
longer shows a peak, but is monotonically decaying. In fact,
by changingp one can obtain packings withg2

sddsld that has
zero slope at the origin.

It is interesting to note that for thesvacancy-dilutedd fcc
packingsg2

sddsld decays in a Gaussian manner and, in fact, is

FIG. 11. sColor onlined The first shellg2
sddsld for a collection of

fcc crystal packings with a fractionp of the spheres removed, start-
ing with N=13 500 particles. The inset shows the packing with
most vacancies, where every fourth sphere is removed to form a
cubic sublattice of vacanciesscolored darkd. Intermediatep’s are
achieved by randomly adding back some of the spheres to the sub-
lattice. The density has been reduced byd=Î2·10−11 from close
packing.

FIG. 12. sColor onlined The force probability distribution for the
collection of fcc crystal packings from Fig. 11. For the pure crystal
and the crystal with the most vacancies, all of the particle pairs are
identical and therefore the probability distribution would be ad
function if forces are averaged over an infinite time horizon. For the
intermediatep’s, multiple relatively broad peaks are observed. In
contrast with the disordered case, very small forces arenot
observed.

FIG. 13. sColor onlined Compression of an initially liquid sys-
tem with f=0.5 to jamming with several different expansion rates
g sthe mean thermal velocity is 1, in comparisond. The pressure is
plotted on a reciprocal scalesthe tickmarks being equally spaced in
equal increments ofp−1, increasing in the usual directiond, to high-
light the expected linear relations4d near jamming. The pressure-
density curves for the perfect fcc crystalf23g, the accepted fluid-
solid coexistence region, and the widely known Carnahan-Starling
equation of state for the fluid branch are also shown for comparison.
Sufficiently fast compression suppresses crystallization and leads to
densities around 0.64–0.65, and slower compression allows for par-
tial crystallization, typically occurring aroundf<0.55, which is
the end of the coexistence regionsi.e., the density where the crystal
necessarily becomes thermodynamically favoredd. This produces
denser packings which exhibit more crystal ordering the denser
they are.
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perfectly fitted by a modified Gaussian,g2
sddsld=sAl2+Bl

+Cdexpfsl −Dd2g. This fast decay is to be compared to the
slow power-law decay for the disordered packingsfcf. Eq.
s9dg, hinting at a possible connection to the stability of the
crystal packings versus the metastability of the glass pack-
ings f10g. Additionally, we show the force distributionPfsfd
for these ordered packings in Fig. 12, illustrating that, in
contrast with the disordered packings, very small forces are
not observed. It would be interesting to know if the perfect
fcc crystal can be vacancy diluted to an isostatic packing and
still be collectively or strictly jammed and what the corre-
sponding force distribution would be.

C. Partially crystallized packings

As previously explained, the Lubachevsky-Stillinger algo-
rithm can produce partially crystalline sphere packings if a
sufficiently small expansion rate is used and nucleation of
crystallites occurs during the densification. This is demon-
strated in Fig. 13, where we show the evolution of the pres-
sure during the densification of an initially liquid sample
si.e., a state on the stable equilibrium liquid branchd for a
range of expansion ratesg. The slower the expansion is, the
more crystalline the final packings become, as can be seen
from the fact that the final density increases and from the
evolution of the peaks ing2srd, as shown in Fig. 14. Addi-
tionally, the structure factorSskd shows more anisotropy and
localized peaks. More detailed studies of crystallization us-
ing hard-sphere molecular dynamics have been performed by
other researchersf10,33g. Here we are merely interested in
how crystallization affects the properties we have studied in
detail for the disordered packings.

The packings shown in Fig. 13 clearly have nucleated
crystals, and so one may anticipate that there is a qualitative

distinction between them and the “random” packings pro-
duced by suppressing crystallization. However, as demon-
strated in Fig. 15, slower densification leads to larger densi-
ties and more ordered packings even if crystallization is
suppressed and no visible nucleation occurs. This indicates
that there is a continuum of packings from most disordered
to perfectly orderedf18g packings, so that one needs to be
careful in interpreting results obtained from packings pro-
duced by just one, possibly nontrivially biased, algorithm.
For example, Ref.f29g relates the occurrence of a peak in
Pfsfd to jamming. However, as we show next, jammed pack-
ings do not necessarily exhibit this peak if they are suffi-
ciently ordered.

For the sake of brevity, we will only briefly discuss some
interesting features ofg2 for the partially crystallized pack-

ings. Since the perfect fcc or hcp crystals haveZ̄=12, one
expects that, as partial crystallization occurs, somehow the
number of first neighbors per particle should increase from

the isostatic value ofZ̄=6. However, this is not really so if
one properly defines first neighbors via true contacts in the
final jammed packing. In fact, if one plotsZsld for partially
crystallized packingsswe omit this plotd, a qualitatively simi-

lar curve to that shown in Fig. 6 is seen, withZ̄ clearly close
to the isostatic value of 6. However, the backgroundZsbdsld
shows a faster rise the more crystalline the packing isfcon-
sistent with a larger exponenta as defined in Eq.s10dg, so
that indeed an increase of the cumulative coordination is
seen for sufficiently large gaps. Additionally, we observe that
nearly crystalline packings easily jam in noticeably hypo-
static configurations, with a higher probability of observing
particles with only two or three contacts and a less flat pla-
teau inZsld.

FIG. 14. sColor onlined The evolution of the peaks ing2srd as
crystalline order is increased, for the packings from Fig. 13. The
formation of peaks at distances typical of the fcc lattice, such asr
=Î2, is clearly seen. It is interesting to note that a peak is observed
at Î11/3<1.91, which is a fifth-neighbor distance in the hcpsbut
not the fccd lattice sa similar hcp peak atÎ8/3<1.63 is barely
visibled. This is in agreement with numerous previous theoretical
and numerical investigations of crystallizationf33g.

FIG. 15. sColor onlined Compression of an initiallysmetastabled
liquid system withf=0.6 to jamming with several different expan-
sion rates, as in Fig. 13. For this range of expansion rates, crystal-
lization is suppressed due to the large initial density and all final
packings are apparently disordered and would be ordinarily identi-
fied as random; however, it is clear that slower compression leads to
higher densities, and thus the final packings are not all identical, but
rather some are more ordered than others, as can be verified by the
slight increase in bond-orientational order metricQ6 f18g, for
example.
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All of these findings are readily explained. The basic
premise, used widely in the granular media literature, is that
random perturbations to either the particle-size distribution
or to the boundary conditions will break some of the contacts
in an otherwise perfect crystal down to the isostatic value.

This is because additional contacts in excess ofZ̄=6 imply
special correlations between the positions of the particles,
which one expects to destroy with random perturbations.
Such random perturbations are provided in the case of par-
tially crystallized packings by the fact that the crystallites
need to jam against a partially amorphous surroundings, and
this induces complex strains that break some of the perfect-
crystal contacts.12 However, the geometric peculiarities of
the underlying crystal remain; for example, there is a multi-
tude of nearly collinearsin fact lines of aligned particlesd or
coplanar contacts, which leads to the occurrence of much
more pronouncedforce chainsschains of large forces propa-
gating along a nearly straight lined and a sharp increase in the
probability of occurrence of small forces. We indeed observe
this in Fig. 16, where we show that for sufficiently ordered
packings there is no longer a peak inPfsfd for small forces,
but rather a monotonic decrease ofPfsfd, apparently expo-
nential for sufficiently large forces. This is in contrast to
previous studies of the effect of order on force distributions
in granular pilesf34,35g, which did not register a significant
impact of the ordering. However, these studies examine the
distribution of forces in granular piles and a direct compari-
son is beyond the scope of this work.

IV. DISCUSSION

The results presented in this work settle some long-
standing questions and confusions in the literature. We

showed both theoretically and computationally how the
d-function portion of g2srd is formed as jamming is ap-
proached, for a true hard-sphere packing. Our investigation
focused on maximally disorderedsMRJd sphere packings
with a packing fractionf<0.64–0.65. We presented true
hard-sphere computational data on the power-law divergence
in the near-contact portion ofg2, in agreement with previous
observations in the literature for stiff soft spheres, but with a
distinguishably different exponent of −0.4. We confirmed
that this divergence persists even in the true jamming limit
for hard particles. We presented high-quality data on the
probability distribution of interparticle forcesPfsfd, espe-
cially focusing on small forces, demonstrating a maximum at
small forces and a nonzero intercept atf =0. A local analysis
of the topology of the contact network found few traces of
tetrahedra and an overwhelmingly complex local connectiv-
ity and was successful in accounting for the structures re-
sponsible for the split-second peak ofg2srd. A computational
study of thed-function contribution tog2srd for vacancy-
diluted fcc crystals showed a faster than exponential decay,
unlike the slow power-law decay for the disordered isostatic
packings. Finally, we investigated packings on the transition
from maximally disordered to maximally ordered and found
that partially crystallized packings produced by our algo-
rithm are still nearly isostatic despite having a higher density
and thatPfsfd loses the peak for sufficiently ordered pack-
ings.

This work has raised several important questions. The
computational observations undermine the very applicability
of the ideal jammed packing model to largesmaximallyd dis-
ordered packings of spheres, as produced by most algorithms
in use today. First, a very unusual power-law divergence in
g2sld is observed near contact, leading to a multitude of par-
ticle pairs just away from contact. Similarly, a power-law
decay is seen in the contact part ofg2sld. As the packings
become larger, one can expect the tails of the two power laws
to start overlapping by an observable number of contacts,
blurring the distinction between true contacts and almost
contacts. Even more troubling is the observation that there
appears to be a positive probability of observing a zero force
in the contact network of the packings, indicating the pres-
ence of geometric degeneracies in the contact network. The
above observations may explain why we have had trouble
generating truly jammed packings ofN=10 000 particles.
However, we do not see a reason why very large but finite
collectively jammed ideal packings could not be constructed.
The question of what algorithm can produce disorderedsand
thus likely isostaticd packings which are jammed and devoid
of some or all of the above peculiarities, as is the fcc crystal
packing,13 for example, remains open. As usual, with each
careful study the hard-sphere system provides more ques-
tions than originally posed or answered.

12We mention in passing that we have observed similar results by
starting with a perfect fcc crystal, applying a smallsbut not too
smalld random strain, and then jamming the packings. This typically
yields almost perfectly crystal packings which are nonetheless

clearly frustrated by the random strain to haveZ̄<6.

13Note that the observations we list as troubling are separate from
the rather general objections due to the inapplicability of the con-
cept of ideal jamming to infinite packings, which apply to crystal
packings as wellf3g.

FIG. 16. sColor onlined The evolution ofPfsfd as crystalline
order is increased, showing the disappearance of the peak at small
forces. The inset shows a log-log view of the plot and is consistent
with exponential decay for large forces.
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