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We study the approach to jamming in hard-sphere packings and, in particular, the pair correlation function
g»(r) around contact, both theoretically and computationally. Our computational data unambiguously separate
the narrowingds-function contribution tag, due to emerging interparticle contacts from the background con-
tribution due to near contacts. The data also show with unprecedented accuracy that disordered hard-sphere
packings are strictly isostatic: i.e., the number of exact contacts in the jamming limit is exactly equal to the
number of degrees of freedom, once rattlers are removed. For such isostatic packings, we derive a theoretical
connection between the probability distribution of interparticle forfeg$), which we measure computation-
ally, and the contact contribution . We verify this relation for computationally generated isostatic packings
that are representative of the maximally random jammed state. We clearly observe a maximuamnih a
nonzero probability of zero force, shedding light on long-standing questions in the granular-media literature.
We computationally observe an unusual power-law divergence in the near-contact contribgtiopeisistent
even in the jamming limit, with exponent —0.4 clearly distinguishable from previously proposed inverse-
square-root divergence. Additionally, we present high-quality numerical data on the two discontinuities in the
split-second peak of, and use a shared-neighbor analysis of the graph representing the contact network to
study the local particle clusters responsible for the peculiar features. Finally, we present the computational data
on the contact contribution tg, for vacancy-diluted fcc crystal packings and also investigate partially crys-
tallized packings along the transition from maximally disordered to fully ordered packings. We find that the
contact network remains isostatic even when ordering is present. Unlike previous studies, we find that ordering
has a significant impact on the shapeRyffor small forces.
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[. INTRODUCTION jammed state computationally and theoretically, which is the
ir*:grimary objective of this paper. _

We choose as our main tool of exploration the shape of
the venerable orientationally averaged pair correlation func-
tion g,(r) around contact. This is because this function is a
sﬂnple yet powerful encoding of the distribution of interpar-
ticle gaps. In the jamming limit, it consists of &function
due to particle contacts and a background part due to par-
. ) . ticles not in contact. As the jamming limit is approached, it is
tal packings of rods, disks, and spheres in iRéf. We focus expected that thé-function Jcontribt?tion will t?epcome more

onfinite sphere packings that are almestlectively jammed |,.51i76d around contact. We derive the first exact theoretical

[5.6], in the sense that the configuration point is trapped ir_] $nodel for this narrowing for isostatic packingdefined be-

very sma!l re%ior) of cqgfiglLlratiﬁn space ;_r Ouln.d ‘h‘? hpo'nﬁow), connectingg, to the probability distribution of inter-
representing the jammedeal packing[5]. Difficulties wit article forcesPs, and verify the relation numerically. In this

extending the result; to mflnlte packmgs will be'dISCUSSEdI ork, we present computational data with unprecedented
what follows. In the ideal jammed packing particle contacts

) ) d1th o] proximity to the jamming limit, clearly separating the nar-
hecessary to ensure jamming are exact and the particles c wing &-function contribution from the apparently persis-
not at all displace, even via collective motions. Such ideal

) M ; ! ent diverging background contribution. The data show that
jammed (o.r r|g_|d) packlngs have long been the SUbJeC'_[ Ofour disordered packings have an exactly isostatic contact net-
mathgmatlcal mquwi?]; hqwever, they are not really attain- ok in the jamming limit, but with an unusual multitude of
able in numerical simulations where produced packings inqaary closed contacts. We study the properties of the contact
variably have some interparticle gafeven taking into ac-  nowyork and find, contrary to previous studies, no traces of
count the unavoidable roundoff errarsit is therefore

. ) b d d th h his id olytetrahedral packing, but rather a complex local geom-
Instructive to better understand the approach to this ldedl,.y inicating that the geometric frustration due to the con-

straints of global jamming on the local geometry is non-
trivial. Additionally, we study the evolution of the salient
*Electronic address: torquato@electron.princeton.edu features ofg,(r) along the transition from maximally disor-

Jamming in hard-sphere packings has been studied
tensely in past yealsee[ 1,2] and references theregirin this
paper, we investigate the pair correlation functigytr) of
the classical three-dimensional hard-sphere system near
jamming point for both disordere@morphous, often called
random and orderedcrysta) jammed packings. The basic
approach follows that of Ref3], developed further for crys-
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dered to fully ordered packings by inducing partial crystalli- " ™
zation in the packings. We find that both(r) and P; are 7/
significantly affected by crystallization; however, the contact |

network remains isostatic. We thus demonstrate by example\\

that isostaticity is not synonymous with randomness. . [
Il. THEORY / \
A packing of N hard spheres of diameteb in '\ .
d-dimensional Euclidian space is characterized by(tie)- ‘\\
dimensional configuration vector of centroid positioRs S

=(rq,...,ry). Here we fix the center of mass of the packing
(with periodic boundary conditionsso that in fact the con-
figuration space is of dimensidiN—1)d. However, we will (left) or six (right, as in the triangular lattigefixed disks (dark

usually neglect order-unity terms compared\idrhe bound- shade¢. The exclusion diskgdashed lingsof diameter twice the

ary Sondltlpnsnlmposed determ]ne the vqlume of Fhe enCIOSEiisk diameter are drawn around each of the fixed disks, along with
ing “container”V and thepacking (covering fraction, or

) their tangentgsolid lineg and the polytopéP,r they bounddark).
density ¢.

. . . . . . For the isostatic case on the left this polytope is a triarglsim-
A jammed packings one in which the particle positions pjexin two dimensionsand a hexagon for theyperstaticcase on
are fixed by the impenetrability constraints and boundaryne right.

conditions[5,6]. In particular, a packing ically jammedf
no particle in the system can be translated while fixing the

positions (_)f all other particles,ollectivelyjammedf no s_ub- ing and Al is the set of interparticle gag&]. In our case
set of particles can simultaneously be continuously displaced |- Ape wheree is a vector ofM elements all equal to 1.

so that its members move out of contact with one anothe\\,s can therefore focus on the normalized polytope
and with the remainder set, astrictly jammedif it is col- P.:ATx<e, which can be scaled by a factor 8D to obtain

Iectl_vely Jammed and_ all_ globally “uniform volume- . Par- Examples of such polytopes for a single disk are shown
nonincreasing deformations of the system boundary are d|s"-1 Fig. 1. A troublesome aspect, discussed in R&f. is that
allowed by the impenetrability constraints. Assume that a 9. bect, "

configuration R; represents a collectively jammed ideal Infinite: packings can never be jammed in the above sense

packing [5] with packing fractiong,, where there areM unless 6=0, due to the appearance of unjamming mecha-

interparticle contacts. Next, decrease the density slightly b}plsms involving collective density fluctuations. Nevertheless,

reducing the particle diameter D, 5=AD/D <1, so that computational studies indicate that macroscopic properties
the packing fraction is lowered = ¢,(1-8)°. In this paper derived using this polytope-based approach do not depend on
we restrict ourselves to an analysis which is first order in thd\, €ven asN—c.

jamming gap 8, &~d¢,(1-d5) and focus on three-  The polytopePy is necessarily bounded for a collectively
dimensional packingg=3. jammed configuration, which implies that is of full rank

[5] and that the number of faces boundiRg—i.e., the num-
ber of interparticle contactdl—is at least one larger than the
dimensionalityd.g of the configuration spa@eM =degtl.

It can be shown that there is a sufficiently smélthat  For collective jammind5] the boundary conditions are fixed
does not destroy the jamming property, in the sense that thend with periodic boundary conditions there atetrivial
configuration pointR=R;+AR remains trapped in a small translational degrees of freedom, dgs=(N-1)d. If hard-
neighborhoodJ,r aroundR; [8]. In fact, for sufficiently  wall boundary conditions are employed, thégs=Nd and
small 8, it can be shown that asymptotically the set of dis-one should also count contacts with the hard walls among
placements that are accessible to the packing approachest®e M constraints. For strict jamminff] the boundary is
convex limiting polytope (a closed polyhedron in arbitrary also allowed to deform and this introduces additional degrees
dimension PyrC Jar [3,4]. This polytope is determined of freedom. For example, with periodic boundary conditions
from the linearized impenetrability equations a symmetric nonexpansive macroscopic strain tensor is

ATAR < Al (1) added to the configuration parameters, giviig=(N-1)d

whereA is the (dimensionlesksrigidity matrix® of the pack-

FIG. 1. (Color online The polytope of allowed displacements,
Par, for a locally jammed disKlight shadé trapped among three

A. Jamming: Configurational trapping

the two particles, and contains the unit surface normal vector at the
point of contac{5].

This matrix combines geometrical information with the topologi- ’The additional +1 comes because we are considering inequality
cal connectivity information contained in the node-amcidence  constraints, rather than equalities. One can also think of this extra
matrix of the graph representing the contact network of the packingdegree of freedom as representing the density—i.e., the size of the
Namely,A hasNd rows, d rows for each particle, anll columns,  particles. For example, looking at the left panel of Fig. 1 we see that
one for each contact. The column corresponding to the contact bext least three linear inequalities are necessary to bound a polytope in
tween particles andj is nonzero only in the rows corresponding to two dimensions.
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+d(d-1)/2+(d-1) degrees of freedorhlsostaticpackings hereafter referred to d#st neighborsto obtain an average
are jammed packings which have the minimal number ofnterparticleforce (momentum transfer per unit time or im-

contacts: Namely, for collective jamming, pulse[11]), as detailed in Ref.12]. This kind of method for
measuring interparticle forces has previously been used in
- 2N-1ford=2, ) work on dense granular flowd1]. The vector of collisional
3N-2ford=3, forcesf compares directly to the intergrain force networks

which have been the subject of intense experimental and the-
oretical study in the field of granular materigl$3—1§.
{ZN +1ford=2, These forces are in local equilibrium,

and for strict jamming,

3
3N+ 3 ford=3, ® Af =0, (5)
with periodic boundary conditions_. Packings_ having morewhere we take the forces to be ncm-negafi‘f/ez, 0, and nor-
contacts than necessary d_uyqaerstatlc and pa_cklngs having malize them to have a unit averagee'f/M=1, in the tra-
fewer contacts arypostatic(for sphere packings these can- gition of the granular media literature. Our numerical inves-
not be jammed in the above sendeor the trivial example of  tjoadions indicate that indeed the set of time-averaged

local jamming andN=1, all particles but one are frozen in ¢qjisional forces approaches local equilibrium as the time
place and the free particle must have at lesl contacts.  5,0nT of the averaging increases, in a inverse-power-law
Figure 1 shows the polytopBy for a locally jammed disk,  anner af|~ T We can therefore obtain interparticle

for both an isostatic and a hyperstatic case. In this work, W, o velatively accurately given sufficiently long molecular

focus on collectively jammed packings, since strictly 4y namics runs. While Eq5) will have a unique solution if

jammed packings are hard to produce with existing algo,n4 only if the contact network of the packing is isostatic,

rithms. For sufficiently large disordered systems, the differ-g o for hyperstatic packings, such as the fcc packing, the
ences between collective and strict jamming are expected

AT té?quilibrium set of forces should be unique. In fact, one can
be |nS|gn|f|can1[9]. : I ._prove that the force between two particles will be propor-
We now consider adding thermal kinetic energy 1o thiSijona) 1o the surface area of the face Bf formed by the

nearly jammed hard-sphere packing. While the system may,iact in question.
not be ergodic and thus not in thermodynamic equilibrium, |, g interesting to observe that if one has arbitrary

especially if considering disordered packind®], one can oint AR e P, the interparticle gaps due to nonzero jam-
still define a suitable macroscopic pressure by considerin ing gap will beAl ~ATAR - éDe, so that

only time averages as the system executes tightly confined
motion around theparticular configurationR;. In a sense, fTAl = (Af)TAR - MD&= - MD5. (6)

the configuration will explore the interior %,z and ergod- OEquation(G) enables one to determine how far from the jam-

icity i if i h fi ional . I ; g
icity is restored if one restricts the configurational space t ing density a packing is without actually reaching the jam-

Par- For a finite packing, which is sufficiently close to its . . . d )
jamming point, the time-averaged properties will always heMiNg point. This can be a useful alternative to using &.

well defined. Since the availab{&ree) configuration volume vyhen the hard-sphere pressure is not avgilable, put interpar-
scales in a predictable way with the jamming géBag| ticle forces are, such as, fqr ?xan?,ple, with packings gener-
=(D)NYP,|, one can show that the reduced pressure is asqted by algorlthm_s using Stff “soft spherél;?_].
ymptotically given by the free-volume equation of stE3é _As already pomt_eq out, hypostatlc packlngs cannot he
jammed. However, it is possible for a hypostatic packing to
PV 1 d be locally maximally densein the sense that no continuous
p= m: 3: m (4) motion of the particles can increase the density to first order.
In other words, the particles must first move and unjam
Relation(4) is remarkable, since it enables one to accuratelywhich must be possible for a hypostatic sphere pagking
determine the true jamming density of a given packing everbefore the density can increase. In particular, a packing of
if the actual jamming point has not yet been reached, just byontacting particles for which a set of interparticle fortas
measuring the pressure. We later numerically confirm thequilibrium exists is locally maximally dense. In a sense, the
validity of Eq. (4) in the vicinity of the jamming point. interparticle forces resist further increase of the density. As
we discuss later, our packing generation algorithm some-
times terminates with such packings since it tries to continu-
B. Jamming: Interparticle forces ally increase the density.

As the particles travel arounR; and the configuration
exploresP,r, One can average the exchange of momentum
between any two pairs of particles which share a contact in
the jammed limit(i.e., whose contact forms a face &%), We now turn to the central subject of this work: the shape

of the (orientation-averagedpair correlation functiorg,(r)

C. Pair correlation function around contact

*Hered(d-1)/2 gives the number of off-diagonal strain compo- ______
nents andl—1 comes from the number of diagonal componédis “This sign convention is in agreement with the granular media
whose sum is constrained to be nonposifivé). literature, but opposite to our own preferred notatibh

011105-3



DONEV, TORQUATO, AND STILLINGER PHYSICAL REVIEW E71, 011105(2005

for small jamming gaps. In particular, we will focus on in- M/l [f (M
terparticle distances that are very close t®. We express Pl = f AD {1 __MAD} Py(f
g»(l) in terms of the non-negativaterparticle gaps ¥r

—-D. The polytope picture above says that only Mefirst- 1

neighbor particle pairs will contribute to the shapeggfl) ~ D fPf(f)eXp(— fl/AD)df

right near contact—i.e., for gaps up ltg,,, wherel . is the 0

largest distance from the centroid Bfg to one of its faces.

This contribution will become & function in the jamming = Eﬁl/AD[fPf(f)]’

limit. Particle pairs not in contact will not contribute ¢g(1)

until gaps larger than the minimal farther-neighbor dap  where £, denotes the Laplace transform with respect to the
and for now we will implicitly assume thagy> |, SO that  variables. We have the normalization conditioffP;(1)dl

there is a well-defined-function region §()=g,(I<lgy). =1 and additionally

This é-function region has previously been investigated theo- "

retically for crystal packings, primarili4]. In this work, we DP,(0) = RJ fP,(f)df= D =p.
derive exact theoretical expressions for this region for isos- AD

tatic packings, as well as numerically study vacancy-diluted
fce crystals and partially crystallized packings. If we now relateP(l) to g ),

2M

Isostatic packings (5
92 (I) S ~2n12 I(I)
47D“N 4¢

P,
We first focus on the probability distribution for observing o
an interparticle gap, P(l), which is related tcg(zﬁ)(l) viaa whereZ=2M/N=2d=6 is themean coordination numbeger

simple normalization factor. The contributid®(l) from a  We obtain the central theoretical result

specific contact is determined from the a?maj of the cross ” p
section ofP, with a plane parallel to the face corresponding g ()= ﬁﬁlmo[fpf(f)]- (7)

to the contact and at a distantérom the face,IB(I)~~S(I)
[4]. The critical observation we make is that for an isostatic
contact networkP, is asimpleﬁ and thus immediately we D. Classification of jammed packings

get S(I)~[(h=1/h]™, whereh is the height of the simplex  jammed hard-sphere packings can be classified based on
corresponding to this particular face=M|P,|/S, S=S(0).  their density¢. However, such a classification is clearly not
After normalization ofP(l) and averaging over all interpar- Sufficient in order to distinguish betweenderedanddisor-
ticle contacts, we obtain that dereQ(often called_ random, despite the shor.tcomlngs of such
terminology packings[18,19. In fact, packings can have
various degrees of order in them, and for hard-sphere pack-
ings the dominant form of ordering is crystallization into
variants of the fcc lattice. We can use a hypothetical scalar
order metricyy to measure the amount of order in a packing,
. . S . such thaty=1 corresponds to fully ordereébr example, the
which shows that if we know the distributidf, of heights  perfect fcc crystaland =0 corresponds to perfectly disor-
for the simplexP, or, equivalently, the distribution of sur- dered(Poisson distribution of sphere centepgickings. Very
face areasS of the faces of the polytop®y(S), we would  |3rge jammed packings are thus classified based on their po-
know Py and thusg}). sition in the density-disorddkp-1) plane, as sketched in Fig.
Since the Interparticle forcé~S we see immediately 2 as taken from Ref.18]. A state of special interest is the
that the distribution of face areas is equivalent to the dIStrlMRJ state, representing the Co||ectionmﬁxima||y random
bution of interparticle force®¢(f), and in fact it is easy to  jammedpackings, believed to be closely related to the tradi-

o0

M | M
P = F[l‘ﬁ} Pn(h)dh,

h=|

derive that tional but ill-defined concept of random close packiR{P
in three dimensions, if strict jamming is considered, and to

TE M have a density of about~0.64 in three dlmensmr?sAddl-
h/AD =1 +T ~ T tionally, the perfect fcc crystal and variants thereof corre-

spond to the most dense jammed packing, witls0.74.
This work will focus on these two points in thg-¢ plane.
which gives, in the limitM — o, However, it is possible to produce packings with intermedi-
ate amounts of order and densities—for example, by allow-

B ing partial crystallization.
A simplex is a closed convex polytope that hasl faces and

v+1 vertices inv-dimensional spacéi.e., a triangle intwoora ___
tetrahedron in three dimensignOur definition of isostatic thus 6Contrary to popular belief, the traditional concept of RCP does
implies thatP, is a simplex. not have a two-dimensional analog for monodisperse dig}&J|.
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FIG. 3. (Color online The inverse of the “instantaneou&iver-
aged over several hundred collisions per partigleessure of a
nearly jammedisostati¢ packing of 1000 particles, as it is slowly
diluted (using a negative expansion rate for the particles in the
molecular dynamics algorithny=-10"°) from ¢;~0.627 until an
rﬁ_‘njamming particle rearrangement occurs. Up to this occurrence,

FIG. 2. A highly schematic plot of the subspace in the density-
disorder (¢-i) plane where strictly jammed three-dimensional
packings exist. Poinf corresponds to the lowest-density jammed
packing, and it is intuitive to expect that a certain ordering will be
needed to produce low-density jammed packings. PBirorre-
sponds to the most dense jammed packing. Point MRJ represe
the maximally random jammed state. This is the most disordere
jammed packing in the given jammed categ@ogally, collectively
or strictly jammed. We conjecture that the Lubachevsky-Stillinger
packing algorithm[21,22] typically produces packings along the
right (maximally densgbranch, and we do not know of an algo-
rithm that produces packings along the léfhinimally densg
branch.

S . ) - e .
e free-volume theoretical relatiqgpe 571 is satisfied to very high

accuracy. There is a short transient region during the initial equili-
bration of the packing. Rattlers have been removed from the
packing.

that the disordered packings used in this study are represen-
tative of the MRJ state. It is important to note that the algo-
rithm typically produces packings that haveattling
particles—i.e., particles that do not have true contacts with
IIl. COMPUTATIONAL RESULTS particles in the jammetackboné of the packing and can be
We use event-driven molecular dynamfd€] as the pri- remo_ved Witho_ut qﬁecting the jamming category (_)f the_ final
mary computational tool for our investigations. This enabled?@cking. We will discuss procedures for the identification of
us to perform exact molecular dynamics on hard-particleuch rattlers in what follows.
packings very close to the jamming point, which is not pos- To our knowledge, no verlflc_atlon of theT exactness of Eq.
sible with traditional time-driven molecular dynamics algo- (4) for disordered packings exists in the literature. The per-
rithms. The algorithm monitors a variety of properties duringfec" fcc crystal is stable until rather low der!smes, and the
the computational run, including the “instantaneous” presPréessure seems to be rather accurately predicted by the free-
sure, as calculated from the total exchanged momentum iyolume approximation in a wide range of densities around
all interparticle collisions during a certain short time period ¢/0S€ packing. This has been observed in the literature and a
At. By allowing the shape of the particles to change withSUitable corrective term was determini2B]. However, for
time—for example, by having the sphere diameter gm\,\p_lls_ordered packlngs,_prewous studies have identified a coef-
(shrink) uniformly at a certair(possibly negativeexpansion ficient smaller than 3 in the numerator: namely, 2.8%,25.
rate dD/dt=2y—one can change the packing density. If the'" Fig. 3, we numerically confirm the validity of E¢4) with
change is sufficiently slow, the system will be in approximateV€rY high accuracy for disordered packings. In Fig. 4, we
(metastableequilibrium during the densification and one can Show the change of the coefficiefthe constant volume heat
rather effectively gather quasiequilibrium data as a functiorF@Pacity in units oNk) C=(1-¢/¢;)p with density. Agree-
of density. ment with the theoreticaC=d=3 is observed sufficiently
Event-driven molecular dynamidsee Ref[12] and ref- ~ close to the jamming point, but with rapid lowering of the
erences therejrin which the particlegquickly) grow in size ~ Coefficient from 3 away from the jamming point. This is
in addition to their thermal motion at a certain expansionoecause for sufficiently large jamming gaps, contacts other
rate, starting from a randoiPoisson distribution of points, ~than theM true contacts start contributing to the collisions,
produces a jammed state with a diverging collision rate. Thignd the polytope-based picture we presented so far does not
is the well-known Lubachevsky-Stillingdt.S) packing al- ~ @Pply exactly. We demonstrate this in Fig. 4 by showing the
gorithm [21,22, which we have used and modifi¢di2] to ~ humber of contacts which participate in collisiofactive
generate all the disordered hard-sphere packings for thig0ntacts as the jamming point is approached. Our investiga-
study. During the initial stages, the expansion has to be fast
to suppress crystallization and maximize disorfiE9], and "The backbone is formed by the collection of particles that par-
delaying further discussion to later sections, we will assumeicipate in the jamming force netwofls].
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FIG. 5. (Color onling The short-tern{“instantaneous”pressure
versus number of evenfmostly binary collisionsprocessed by the
molecular dynamics algorithifl2], corresponding to a total run of

?bout half a million collisions per particle. For the 1000-particle
packing the pressure is stable, but for the larger packings a system-
atic pressure leak is observed.

FIG. 4. (Color onling The coefficientC during a typical slow
densification(expansion rate is 16) of a 10 000—particle system,
starting from an equilibrated liquid at=0.5 up to jamming. The
final packing has 259 rattlers, so the expected coefficient is
X 0.9741=2.92, a value which is shown with a red line. It is clear
that close to the jamming point E@4) is very accurate, but a
marked lowering from a coefficient of 3 is seen for pressures lower

than about 19 likely explaining the coefficient 2.67 reported in . . .
works of Speedy[24,25. The inset shows the estimated “colli- Made in Ref[24]. In addition, we track the average particle

sional” coordination, defined as the average number of differenflisplacementfrom the initial configuration and check to
particles that a particle has collided with during a time interval ofSee if there is a systematic drift with time away from the
about 100 collisions per particle, during the same densification. Thénitial configuration. The two tests always agreed: A pressure
expected number 80.9741=5.85 is shown(this number is not leak always corresponds to a systematic drift away from the
asymptotically reached exactly since some ofitheontacts do not initial configuration.
participate in collisions frequently enough to be registered during We have observed that LS packings densified to within
the time interval used and we see that as many as eight contactsnumerical capability only pass this rigorous jamming test of
per particle are active at sufficiently large jamming gaps. having no pressure leak if during the final stages of the LS
densification the expansion rate is very small compared to
tions indicate that previous studies did not examine at th¢he average thermal velocifynaintained constant via a ve-
range of densities appropriate for the theory presented abovecity rescaling thermostdtl2]) of the particles(about five

and did not properly account for the rattlers. orders of magnitude or lessSimilar observations are made
in Ref.[24]. If the expansion rate is too fast, we have found
A. Disordered packings that the packings jam in slightly hypostatic configurations,

where there are not enough particle contacts to ensure jam-

_ We have verified in previous publications that LS pack-ming. n particular, some particles have two or three contacts
ings are typically collectively jamme(9] using a testing (and of course rattlers are preserin order for a set of

procedure based on linear programm{isg. Unfortunately,  pajanced forces to exigtvhich as we discussed is a neces-

the linear programming library used in the implemen-gary condition for a packing to be locally maximally dense

tation cannot really achieve the kind of numerical accuracyyhen a particle has fewer than four contacts, these contacts
that we require in this work, specifically that for packings yust be in a degenerate geometric configuration: namely,

which are jammed almost to within full numerical precision hree coplanar or two collinear contacts. We have indeed
(6=101°-10""). Additionally, it cannot handle three- \erified that this is what happens in the hypostatic packings
dimensional p_acklngs of more than about 1000 part|cle_s. Anproduced by the LS algorithm. The number of such geomet-
other test for jamming, which we have found to be reliableyic peculiarities increases with increasing expansion rate and
for the purposes of this work, is to take the final packingg|so for more ordered packings, as we discuss later.
produced by the LS procedure and then run standard event- e jjjustrate the progress of the densification during the
driven molecular dynamics on it for long periods of tifte®  fing stages of the algorithm in Fig. 6. The figure shows, for

the order of thousands to hundreds of thousands of collisionseveral snapshots of the packing during the densification, the
per particle and monitor the “instantaneous” pressure. If thecymulative coordination number

packing is jammed, this pressure will be stable at its initial
value. However, if the packing is not truly jammed, we have
observed that the pressure slowly decays with time; the D+l DH [ \2 dr
slower the “pressure leak,” the more “jammed” the initial Z() :—f 47r2g,(r)dr = 24¢ <—> go(r)—,
packing is, as illustrated in Fig. 5. Similar observations are A r=p \D D
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o [
» = Initial configuration
— Slow compression (final)
Comp]'ession — — Fast compression
Ideal isostatic

isostaticity for 10 000—particle packin@él.’ his is illustrated
] in Fig. 5, where it is clearly seen that the pressure in the large
3 packings does not remain constant over long periods of time
(about 16 collisions per particlg It is therefore not strictly
justified to consider these packings within the framework of
3 ~ " T34 ideal jammed packings that we have adopted here. However,
rg,(Do/p ] " . o .
] it is readily observed that over finite and not too long time
E intervals (for example, several thousands of collisions per
- Qbserved E particlg), the large packings conform to the predictions of the
] theory developed here. In particular, the collisional forces
3 form a balanced force network with essentially the same

Coordination Z(1)

0.001
IAL 3 P:(f) as the truly jammed smaller packings, and the pressure
! ; 0.0001 bl sl _ is given by Eq.(4) with very high accuracy, wheré can be
o] — bt fun Lo 1 B determined, for example, via E¢6). We have observed no
1x10™" 1x10™ 1x10” 1x10° 1x107 i~ i ; ; ;
systematic differences in any of the correlation functions or
Gap I/D

distributions between the jammed isostatic packings with
1000 particles and the ones with 10 000 particles, other than
the better binning resolution of the larger packings and larger

sequence of snapshots of a 1000-particle packing during the finaSIF":mStIC":lI variability among the small packings. Results

compression stages of the LS algorithm. Each snapshot is ShO\/\gllvelg n subhs_equent S?CIIOI’!S V\;'” |nd|c?te that trll(.e faqt we
with a separate solid curve and only the last one is labeled in thgOu not achieve true jamming for very large packings Is an

figure legend. For a sufficiently slow expansit@xpansion rate is inherent property of the kinds of packings we consider,
1075 times the average thermal veloditshe packing is clearly seen Father than a failure of the simulation method. We therefore
to jam in an isostatic configuration. A subisostatic configuration isP€lieve it is justified to use the larger packings for certain
found for fast expansiofexpansion rate is comparable to the ther- analysis where better statistics are needed.
mal velocity. The inset shows the properly normalized derivative ~ The main goal of this work is to explore and explain Fig.
of Z(1), right around contact, along with a comparison to our semi-6 and, in particular, to investigate both thé-function,” or
theoretical prediction fog(z‘s)(l), for a packing with6=2.5x 10712 contact contributiongé‘s), which should integrate to produce
the isostatic average coordinatiobi=2M/N=6, and the
“background” or near-contact é’), for gaps from about
f1005D—1(T1D. This latter one has already been observed in
gn experimental study of hard sphef@§] and in computa-

FIG. 6. (Color online The cumulative coordinatio#(l) [i.e.,
the integral ofg,(I)] as a function of the gap tolerandge for a

i.e., the average number of particles within a dapom a
given particle. We we will often use this quantity instead o

g»(1). With unprecedented clarity, a clear separation is see . e )
between thes-function contributionZ?(1), which becomes tional studies of stiff “soft” spherefl7,27. These various

. . ) . ) _ “r
more localized around contact, and the background increasséu:'gs ff”;g a gearly sq#areh_roc_)t d|ve_rgeng%fl) d.ll\‘l’
in the mean coordination from the isostatic contact value of"% ™€ [27] observes that this is an integrable divergence

~ hich . lativel ftocted by the densif and thus clearly separate from ti#efunction. Our results,
2.'6’ which remains relatively unaffected by the densifica-gn gy jn Fig. 6, are an unambiguous and precise separation
tion. For small packinggéN=1000, the value ofZ(l) is fixed

) . of the two pieces of the pair correlation function around con-
at 6 for a remarkably wide range of gaps, as much as ning,t near jamming. Our numerical data have precisién

orders of magnitude for the final packings. Fast densification_ 10°13) not previously attained, since such proximity to

IS ste_enfto Ifad t(f) t?]ublsosttatlc E)ackln’gsstm Fig. (i,hleavmg feal jammed hard-sphere packings can only be achieved in a
certain fraction of the contacts “open.= stopping the€ expany,,q hard-sphere algorithm, and at present only event-driven
sion invariably leads to a decay of the macroscopic pressu

) . . "folecular dynamics seems to provide the required numerical
for such subisostatic packings.

B ing heuristic strateqi ble t b robustness. It is rather interesting that although graphs show-
den )/ifilJSI:i]gn eu;]lsrlr:: S r\i‘”ﬁg'hes’rwg we(;e a keino f([\g/vh\iN)h ring the hard spherg,(l) in the literature have clearly dem-
densinication schemes which produced packings €N ABnstrated a divergence gy(l) near contact for at least three
indeed ideally jammed within almost full numerical preci- ;
sion, at least for packings dfi=1000 particles or less. In decadeq 28], this seems to never have been clearly docu-
fact 'the plateau izZ(l) was at exactlyup to a single conté):t mented or investigated. We are led to believe that researchers
an i:sostatic number of contactd=3N-2 for all the pack- VE'€ under the false impression this divergence is a signature
) . " ' . pac of the &-function contribution and thus expected it to further
ings produced via a carefully guided LS algorithm. It is es-

sential that herd is the number of particles in the jammed narrow and disappear at true jamming.
backbone of the packin{g]; i.e., rattlers[22] with fewer 1. &-function (contact) contribution
than two contacts h?“’e been removed _from t_he packing. It We first verify that our theory correctly predicts the shape
seems that the algorithm produces packings with about 2.2%f (5)“) In order to verify relation7) numerically, a form
rattlers, and so the density of the disordered packings we' 92 - Y

look at is typically ¢=0.625-0.630, rather than the widely

known ¢~0.64. Despite a concentrated effort and lots of ®when carefully densified, the packings typically lacked only a
expended CPU time, we have been unable to achieve trifew contacts to achieve isostaticity.
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for Ps(f) is needed. Force networks in particle packings have g A R ]
been the subject of intense theoretical and experimental in _t A ]
terest[13,15,16,29,3D and it has been established ttt g 8 fo8
decays exponentially at large forces for a variety of models. osf 370 E
The behavior ofP; for small forces has not been agreed .
upon, the central question being whether the infinite-system- .
limit P¢(0) is nonzero. No theoretical model has been offereds ,t
yet that truly answers this question. We note that a recen’™ &
model reproduces all of the major characteristicPpthat 03F
we observe, including a positive;(0), even though it is E
presently restricted to two dimensiof&l]. Part of the diffi-
culty is that the answer likely depends not only on the system |
in question, but also on the definition &f In a true ideal :
collectively jammed isostatic packing, which is necessarily =~ 0—————; T
finite, all interparticle forcesnustbe strictly positive and, in f

fact, are determined uniquely through E§),

1000 collisions (4 samples)
N=1000 rigidity matrix

10000 collisions (sample I)
N=10000 collisions (sample II)

- P(1)=(3.43t’7+1.45-1. 18/(1+4.711))e

> o o o
[

(-2.250)

FIG. 7. (Color online Computational data on the interparticle
_ Ao force distribution along with the best fit we could achieve. Packings
f= el 10 (8) of both 1000 and 10 000 particles, using either molecular dynamics
to average the collisional forces or inversion of the rigidity matrix,
without any mention of interparticle potentials or influencewere used, consistently producing the same probability distribution.
of external fields or loads like gravity or thermal dynamics.Comparison to other data in the granular-media literature is beyond
The limiting probability distribution of these interparticle the scope of this work.
forces as the packing becomes larger, if it exists, can be
positive at the origin, indicating that finite but large packings 2. Near-contact contribution
have limiting polytopes with a few extremely small faces or, . . . N
equivalently, are very elongated along certain directions. We In Fig. 8 we mvesﬂgate(b;the hear-contact contnbutlo_n to
have numerically studied the form dP;(f) for almost Ga(l). We have found thaZ™!(l) has a power-law behavior

; ; _ _ isingly wide range of gaps, up to the first mini-
jammed random packings 6f=1000 and\N=10 000 spheres over a surprls[\g O 06 )
by using molecular dynamics to observe the collisionalMum 0fg, atl~0.2D, ZP(1)~11(1/D)™" as shown in the

forces between first neighbors and also by directly using Eqfi9Ure: Note that this range is too wide for

(8) for the smaller packings(this offers better accuracy for 1 dz®(x)
small force$. The results are shown in Fig. 7. We clearly see g(zb)(x) = 5

a peak inP(f) for small forces, as observed in the literature 24¢(1+x)°  dx
for jammed packings of soft particlg29], and it appears to be a perfect power law, where=1/D, as used to fit nu-
that there is a finite positive probability of observing zeromerical data in other studiesvhich have not investigated
interparticle force. We will return to this point later.

The observedP;(f) can be well fitted for medium and s
large forces byP¢(f)=(Af?+B)e !, with a small correction
needed to fit the small-force behavior, as used in Fig. 7. This 7
small correction has a negligible impact on the Laplace
transform off P;(f), and in fact a very good approximation to

g2(1) in Eq. (7) is provided by just using 5

T T T[T T T T[T T T T [T T T T[T T T T [T T T T[T T T [T T[T T T[T T T [TTTT[TTTT]
o

— Z(x=UD)-6=11x" °
O Numerical data

__6A B
C (x+0)* (x+0C)*

Z)-6

L fP(f)] ©)

In the inset in Fig. 6, we show a comparison between the
g(z‘s)(l) we observe computationally and the one given by Egs.
(7) and(9) and the empirical fit td?(f) in Fig. 7. An essen- |
tially perfect agreement is observed. Our focus here is on

small forces; however, we do wish to note that our data can- 0866501 o 07 s 0n ~oas o~ oas o o
not confidently rule out a Gaussian componer®tdor large D

forces and that a slight quadratic component does seem to be
visible whenP(f) is plotted on a log-log plot.

0.1
0.001 0.01 01 1p

FIG. 8. (Color onling The near-contacZ®(l) for a nearly
jammed 10 000—particle packing, along with a power-law fit for
small gaps, shown in both a linear-linear scale and a log-log scale

gEfficiently inverting the rigidity matrix for very large three- (insej. In this inset we also show a line with slope Qi%e., a
dimensional packings is a rather challenging numerical task whictsquare-root dependeng¢esvhich is clearly inconsistent with the nu-
we have not yet tackled. merical data.
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nearly as wide a range of gaps as we do hg2&,26. The 3 SRESARSEASEESRESREEARE | RRAREERARE RERARRRARE ]
observed exponent is clearly distinguishable from an inverse : ]
square-root divergence gf)(l), as proposed in the literature 25
[27], and it is consistent with the experimental exponents
reported in Ref[26]. Our study has higher statistical accu- 2f
racy than previously realized; however, it is not clear if there
are not also systematic effects due to the different protocolsE, ;s[-
used to prepare the packings in studies such as[Ré. E

We do not have a theoretical explanation for this func- ¢
tional behavior oZ®)(1); however, the remarkable quality of
the fit in Fig. 8 hints at the possibility of @imple scaling
argument. Some simple observations can be made by assur
ing that

w

ol b b ]l

— 0 025 0.5 0.75 1 125
Z(x)=Z+ax"™* for0<x<=g, (10) r/D-1

where « is an exponent & a<1 and8<1 determines the FIG. 9. (Color onling Computational data on the split-second
extent of this power-law dependence. The corresponding paftéak ofg,(r) averaged over five packings of 10 000 particles. The
correlation function of course exhibits an inverse power-lawvaluesr=v3D andr=2D are highlighted and match the two ob-
divergence with exponent, except wheme=1, when it is served discontinuities. Also visible is the divergence near contact.
identically zera® The exponent: clearly will depend on the The ins_et shows the probability distributi_dﬂg(a) of bond-pair
amount of order present in the packing—i.e., the position O151_ngles in the contact network of the packings, also revealing two
the packing in the density-order diagram of Fig. 2. We expec{livérgences ab=m/3 and atg=2m/3. No peaks are observed at
that it will increase with increasing order, sinae-0 would r=v2D orr=y5SD, which are typical of crystal packings, indicating
- . . that there is no detectable crystal ordering in the packing.
indicate a constary,(l) near contact, a signature of the ideal

gas, whileae—1 would indicate a clear distinction between
the first and second shells of neighbéirs., a wide range of
gaps with very few contacksypical of crystal packings. Un-

first two coordination shells of the packing, and in fact ob-
servations have been made that along with the appearance of

der the assumption that a power-law divergence,ifs ap- a peak inPf'(f) for' small force;, thg splitting pf the second
propriate, an intermediate value efbetween 0 and 1, as we Peak ofg; is a signature of jamming29]. It is therefore
find numerically, is therefore expected. Some bounds on thnportant to try to understand the local geometrical patterns
range of possibler can be obtained from bounds @x) responsible for the occurrence of these structureg.in
derived from geometric constrainffor example,Z(x) <13 4. Contact-network statistics

for a certain range of since the sphere kissing number is 12

in three dimensions but the exact value is not simple to de
predict™*

The exact geometry of the jammed configurati®p is
termined(not necessarily uniguelyfrom its contact net-
work, which as we have demonstrated is the network of first-
neighbor interactions and can easily be separated from
3. Away from contact: Split-second peak further-neighbor interactions. Figure 10 shows the histogram
: . : of local coordination numbers as a function of the first-
Although the primary focus of this work is on the behav neighbor cutoff—i.e., the histogram of the number of par-

ior of g,(r) around contact, it is instructive to also look at the ficles within distancé1 +7)D from a given particle. It is seen
split-second peak of the pair correlation function, shown for 7 9 P '

L 5 i e
a sample of packings of 10 000 particles in Fig. 9. Only twotdhat fo; suff|c]!err1]tly smally (T<ﬁ10 ) the .hlstogra;ms are n
clear discontinuities are seen: one at exactly'3D and one ependent of the exact cutoff usétis is true down tor

at r=2D. The latter is very clearly asymmetrical, with a ~ 1005 or s0, which can be as small as 10in some of our
sharp decrease i, atr=2D*. Although the first discontinu- packings. It is interesting to observe that the contact-number

ity is less pronounced and statistics are not good enough tBrobabiIity Qistributions conform very well to a Gaussian
unambiguously determine its shape, it appears that it also hé:@aafe’ a:} d|scr.etehpo1|rnts be'tg\/veen S’ an(;i 10, .f?r ar] Of. the
the same shape as the second discontinuity, only of small toits shown In the Tigure. A number of particles having

magnitude. The split-second peak is of great importance b Iewer tr&an tvr\]/o contacts zijrehseerf], and the%e are cI;m:Hy I
cause it is a clear signature of the strong local order in th&'€'Sand we have removed them irom consideration from a

of the final packings we analyze here. We observe that such
- particles remain with fewer than two contacts for a very wide

Note thatg(zb)(x) cannot have a simple-pole divergence since thisrange ofr and are easy to identify. In some cases, however,
would lead to a logarithmic divergence EP(x), which must be  we cannot unambiguously identify a handful of the particles
finite for all finite x. as rattlers or nonrattlers. This is typical for packings which

“The three parameters, B, anda are thus not independent of are not sufficiently close to their jamming point, packings
one another. For example, requiring tigd?(x)>1 andZ(x)<12  which have been produced using fast expansion in the LS
for 0<x=p gives the weak constrain@(1-a)>24¢B%(B-1)*  algorithm, or packings which are very large. It is safest to not
anda(g-1)1"*<12-Z. remove such particles as rattlers.
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03r [ ] same analysis for a range o8, all the way up tor=0.1D
L 102 ' ] (which raises the average coordination significantly above
0251 = 1:=IOj . 6), but still found the open linear chains to be the dominant
'; ﬁig_s ] pattern. We further attempted to include second neighbors in
02 Zloﬁ ] the analysis; however, including all second neighbors led to

very large subgraphs of a very broad variety, so classification
was not possible. We further restricted our attention only to
second neighbors which are very close to the given particle
(within 0.1D, for example, and this also found very few
tetrahedra.

One of our goals was to determine if certain simple local
coordination patterns are responsible for each of the three
] features ofg,(r) we previously documented: the power-law
s divergence near contact and the discontinuous, if not diverg-

Local Z ing, peaks atr=y3D andr=2D. We had little success in
accounting for the first one by restricting attention to only

FIG. 10. (Color onling The probability distribution of local con-  the first two neighbor shells in the true contact network. In
tact numbers as the cutoff used in defining neighbors is increase?)articular, we looked at all the near contatisr example,
Rattlers are clearly seen, and a relative maximurd=a6 is seen. with gaps less than 0.@) and whether the almost contact-
Note that only one particle with 11 neighbors is observed, and venrng particles were in fact second neighbors in the contact

few have as many as 10 neighbors. No particle with 12 ComaCtin%etwork Indeed, most were: however, the majority only

neighbors has been observed in any of our packings, indicating & . - . )
lack of crystallinity. Shared one particle as a first neighbor or two or three first

neighbors which were not themselves first neighbors. It was
This work is the first time a clear look has been providedtherefore not possible to isolate one particular local geometry
at the exact contact network of disordered hard-sphere paclas responsible for the multitude of near contacts. An interest-
ings. Previous studies have either used soft atoms, in whictig quantity we measured is the probability distribution
case the definition of a contact is not clear cut unless on&,(6) of bond-pair angle® in the contact network, meaning
carefully takes limits of a stiff interaction potentid6], and the angles between two contact bonds of a given particle.
therefore in such studies has been typically set to corre- This distribution is shown in the inset in Fig. 9 and shows
spond to the location of the first minimum @(r) or have divergences a¥=w/3 and 6=2=/3, whichrcorrespond to
used Voronoi tessellations to define neighbors. Even studiedistancesr=2D sin(#/2) of r=D and r=y3D. Although
which have actually used hard particles have resorted to sudhere is no divergence @t , the corresponding distribution
definitions unsuitable to investigating the jamming limit, of distances does show a divergence a2D.
mostly because the numerical precision required to separate We had more success with a shared-neighbors analysis for
the true contacts from the near contacts has not beelhe split second peak. This was because we could increase
achieved up to nowW32]. Such investigations, the literature and thus progressively relax the definition of first neighbor.
of which is too vast to cite, have found a plethora of localWe found that with increasing, an increasing majority of
coordination patterns typical qfolytetrahedralpacking, in-  particle pairs at a distance close 8D were second neigh-
cluding icosahedral ord¢B2]. bors and that an increasing majority of them shared two
We therefore attempted to do a similsinared-neighbor neighbors which were themselves neighbors. This corre-
[32] analysis for the contact networks of our disorderedsponds to two edge-shariragpproximatelyequilateral copla-
packings and look for local clusters reminiscent of polytet-nar triangles, a configuration which has been suggested as
rahedral packing. Our procedure, based on looking at thbeing responsible for the first part of the split-second peak
contact network as an undirected graph, was as follows. Fdi28]. Note, however, that we do not observe any discontinu-
each particle, we extracted the subgraph corresponding to thigy in g, atr=1.633, which corresponds to two face-sharing
first-neighbor shell of the particlghis includes contacts be- tetrahedra, which is another configuration often mentioned in
tween the neighboys extracted its connected components,connection with the split-second peak. A similar analysis for
and counted the number of occurrences of a given subgraghe peak at B indicated that the majority of particle pairs at
(using graph algorithms that can test for graph isomorphisnthis distance share one neighbor between them, which repre-
to form equivalence classed he results were surprising. By sents an approximately linear chain of three particles, a con-
far the most prominent patterns were a central particle configuration which has long been known to be responsible for
tacting achain of 1, 2, 3, 4, or 5 contacting particles. The the second part of the split-second pealggaf
chains were almost never closed, other than for chains of
length 3 (which together with the original particle form a
contacting tetrahedrgnand this was itself rare. The prob-
ability of finding a chain of lengtm seems to decay expo- In this work we have focused on disordered hard-sphere
nentially, P(n) ~ exp(-1.2n). This study found very few tet- packings and have found a multitude of unexpected singular
rahedra, and so polytetrahedral local ordering is certainly ndfeatures, such as a long power-law tailgif(1), a nonzero
apparent in the contact networks. We also performed th&:(f=0), and a power-law divergence gf (). It is impor-

P(Z)
T

0.1

0.05—

B. Ordered packings
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FIG. 11. (Color online The first shellg(2 )(I) for a collection of ¢

fce crystal packings with a fractiop of the spheres removed, start-
ing with N=13 500 particles. The inset shows the packing with

most vacancies, where every fourth sphere is removed to form > . i X
v (the mean thermal velocity is 1, in comparigofhe pressure is

cubic sublattice of vacanciggolored dark Intermediatep’s are lotted . | the tickmarks bei t di
achieved by randomly adding back some of the spheres to the syRlotted on areciproca scaléne tickmarks being equally spaced in

lattice. The density has been reduced &y\2- 101! from close equal increments gf ", increasing in the usual directiprto high-
packing light the expected linear relatio@) near jamming. The pressure-

density curves for the perfect fcc crysfa3], the accepted fluid-

tant t lize that th " b t uni solid coexistence region, and the widely known Carnahan-Starling
antto realize that the properties we observe are no un'versgﬁuation of state for the fluid branch are also shown for comparison.

and W'” change a,S one changes the amount Pf ordgrmg of th§ufﬁciently fast compression suppresses crystallization and leads to
packings. In particular, dense ordered packings like the fegensities around 0.64-0.65, and slower compression allows for par-
crystal are not isostatic, and we have no theory that cafg crystallization, typically occurring aroung~0.55, which is
predict the shape CU(;)- We therefore resort to a computa- the end of the coexistence regitire., the density where the crystal
tional investigation of ordered and partially ordered sphereecessarily becomes thermodynamically favirethis produces
packings. denser packings which exhibit more crystal ordering the denser
they are.

FIG. 13. (Color online Compression of an initially liquid sys-
tem with ¢=0.5 to jamming with several different expansion rates

Vacancy-diluted fcc crystal packings

It was the behavior of crystal packings around the jam-works inspired this investigation. For crystal packings, there

ming point that was the subject of Ref8,4], and these IS no ambiguity in defining first neighbors, and the fcc pack-
ing hasZ=12 contacts per particle, which is twice the isos-

tatic value. Therefore, the limiting polytof@, is not a sim-
plex and, as argued in Rg#], it is expected that for an fcc

: GT’Z:;Z.; ] packing g(z‘s)(l) will have a single peak for small gaps. We
E : Fﬁfo E indeed observe this computationally as shown in Fig. 11.
HZ, Furthermore, we have prepared vacancy-diluted fcc pack-

ings by removing a fractiop of the spheres from a perfect
g 1 crystal, 0<p=<4 (herep=0 corresponds to the perfect crys-
:;5 g 3 tal). The fcc lattice is composed of four interpenetrating cu-
E : bic lattices. We obtain the vacancy-diluted crystal with the
lowest density by removing one of these four cubic lattices
(i.e., p=1/4), as shown in the inset in Fig. 11. This gives a
packing with density of abou$=0.56 and mean coordina-
tion Z=8 and is still collectively jammed. In fact, it is likely
that more spheres can be removed with a more elaborate
procedurg 19]. We can add back a randomly chosen fraction
g=1/4-p of the previously removed quarter of the spheres
to obtain 0<p<1/4. Thes-function contributions ta, for
severalp’'s are shown in Fig. 11. It is rather surprising that

4

§
4_."‘ -
1.25 15 1.75
Sf
FIG. 12. (Color online The force probability distribution for the

collection of fcc crystal packings from Fig. 11. For the pure crystal

and the crystal with the most vacancies, all of the particle pairs ar%he palrh Correlatlonk fEnCt_lon for th@:ﬂ'/t paclgng nof
identical and therefore the probability distribution would be’a onger shows a peak, but is monotonically decaying. In fact,

function if forces are averaged over an infinite time horizon. For thd?y changingp one can obtain packings Wi@a)(l) that has
intermediatep’s, multiple relatively broad peaks are observed. In Z€ro slope at the origin.

contrast with the disordered case, very small forces moe It is interesting to note that for thezacancy-dilutegi fcc
observed. packingsg(z‘s)(l) decays in a Gaussian manner and, in fact, is
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FIG. 14. (Color onling The evolution of the peaks ig,(r) as FIG. 15. (Color online Compression of an initiallymetastablg

crystalline order is increased, for the packings from Fig. 13. ThQiquid system with=0.6 to jamming with several different expan-
forr_nation of peaks at distances typical of the fcc lattice, such as gjon rates, as in Fig. 13. For this range of expansion rates, crystal-
=\2, is clearly seen. It is interesting to note that a peak is observegization is suppressed due to the large initial density and all final
at V11/3~1.91, which is a fifth-neighbor distance in the hidut  packings are apparently disordered and would be ordinarily identi-
not the fcg lattice (a similar hcp peak af8/3~1.63 is barely  fied as random; however, it is clear that slower compression leads to
visible). This is in agreement with numerous previous theoreticalyigher densities, and thus the final packings are not all identical, but
and numerical investigations of crystallizatif3g]. rather some are more ordered than others, as can be verified by the
slight increase in bond-orientational order metfg [18], for

perfectly fitted by a modified Gaussiagy’(I)=(Al2+Bl ~ example.
—D)? i i
+C)expl(1~-D)7]. This fast decay is to be compared fo the distinction between them and the “random” packings pro-

slow power-law decay for the disordered packifigh Eq. duced by suppressing crystallization. However, as demon-

(9)], hinting ata possible connection to the stability of thestrated in Fig. 15, slower densification leads to larger densi-
crystal packings versus the metastability of the glass pack-

. 2 TN ies and more ordered packings even if crystallization is
ings [10]. Additionally, we show the force distributioR(f) ._suppressed and no visible nucleation occurs. This indicates

that there is a continuum of packings from most disordered

. . . fo perfectly ordered18] packings, so that one needs to be
not observed. It would be interesting to know if the perfect..q /i in interpreting results obtained from packings pro-

fcc crystal can be vacancy diluted to an isostatic packing ang .« by just one, possibly nontrivially biased, algorithm.

still b de' co]IcIectlvg!ytqt; S,:r'Ctly Jalrgrged and what the corre- For example, Ref[29] relates the occurrence of a peak in
sponding force distribution would be. P:(f) to jamming. However, as we show next, jammed pack-
ings do not necessarily exhibit this peak if they are suffi-
C. Partially crystallized packings ciently ordered. ) ) _ )
For the sake of brevity, we will only briefly discuss some

_ As previously explained, the Lubachevsky-Stillinger algo-ineresting features dj, for the partially crystallized pack-
rithm can produce partially crystalline sphere packings if a =

sufficiently small expansion rate is used and nucleation of"9s: Since the perfect fcc or hep crystals hael2, one

crystallites occurs during the densification. This is demon—eXpeCtS that, as partial crystallization occurs, somehow the

strated in Fig. 13, where we show the evolution of the pres—number of first neighbors per particle should increase from
sure during the densification of an initially liquid sample the isostatic value oZ=6. However, this is not really so if
(i.e., a state on the stable equilibrium liquid branébr a  one properly defines first neighbors via true contacts in the
range of expansion rates The slower the expansion is, the final jammed packing. In fact, if one plo&(|) for partially
more crystalline the final packings become, as can be seefystallized packingéve omit this plo}, a qualitatively simi-
from the fact that the final density increases and from thear curve to that shown in Fig. 6 is seen, wirclearly close
evolution of the peaks i,(r), as shown in Fig. 14. Addi- to the isostatic value of 6. However, the backgroafd(l)
tionally, the structure factdB(k) shows more anisotropy and shows a faster rise the more crystalline the packingds-
localized peaks. More detailed studies of crystallization ussistent with a larger exponent as defined in Eq(10)], so
ing hard-sphere molecular dynamics have been performed kihat indeed an increase of the cumulative coordination is
other researcherfd0,33. Here we are merely interested in seen for sufficiently large gaps. Additionally, we observe that
how crystallization affects the properties we have studied imearly crystalline packings easily jam in noticeably hypo-
detail for the disordered packings. static configurations, with a higher probability of observing
The packings shown in Fig. 13 clearly have nucleatedparticles with only two or three contacts and a less flat pla-
crystals, and so one may anticipate that there is a qualitativieau inZ(l).
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showed both theoretically and computationally how the
S-function portion of g,(r) is formed as jamming is ap-
proached, for a true hard-sphere packing. Our investigation
focused on maximally disordere@MRJ) sphere packings
with a packing fraction¢~0.64—0.65. We presented true
hard-sphere computational data on the power-law divergence
in the near-contact portion @f, in agreement with previous
observations in the literature for stiff soft spheres, but with a
distinguishably different exponent of —-0.4. We confirmed
that this divergence persists even in the true jamming limit
for hard particles. We presented high-quality data on the
probability distribution of interparticle force®:(f), espe-
cially focusing on small forces, demonstrating a maximum at
small forces and a nonzero intercept a0. A local analysis
of the topology of the contact network found few traces of
FIG. 16. (Color onling The evolution ofPs(f) as crystalline tetrahedra and an overwhelmingly complex local connectiv-
order is increased, showing the disappearance of the peak at smiy and was successful in accounting for the structures re-
forces. The inset shows a log-log view of the plot and is consistensponsible for the split-second peakgfr). A computational
with exponential decay for large forces. study of the s-function contribution tog,(r) for vacancy-
All of these findings are readily explained. The basicd”u.ted fce crystals showed a faster than _exponentigl decay’
ynhke the slow power-law decay for the disordered isostatic

premise, used widely in the granular media literature, is tha ki Finall . tinated Ki the t i
random perturbations to either the particle-size distributiorP2¢KINgS. Finally, we investigated packings on the transition

or to the boundary conditions will break some of the contactd©M maximally disordered to maximally ordered and found

in an otherwise perfect crystal down to the isostatic valuethat partially crystallized packings produced by our algo-
rithm are still nearly isostatic despite having a higher density

This is because additional contacts in excesZ o6 imply -
special correlations between the positions of the particles"fmd thatP(f) loses the peak for sufficiently ordered pack-

which one expects to destroy with random perturbations!"9S: _ _ _

Such random perturbations are provided in the case of par- 1hiS work has raised several important questions. The
tially crystallized packings by the fact that the crystallites COMPputational observations undermine the very applicability
need to jam against a partially amorphous surroundings, ar@f the ideal jammed packing model to largreaximally) dis-

this induces complex strains that break some of the perfec@rdered packings of spheres, as produced by most algorithms
crystal contact$® However, the geometric peculiarities of in use today. First, a very unusual power-law divergence in
the underlying crystal remain; for example, there is a multi-Gz2(1) is observed near contact, leading to a multitude of par-
tude of nearly collineafin fact lines of aligned particl¢sor  ticle pairs just away from contact. Similarly, a power-law
coplanar contacts, which leads to the occurrence of mucHecay is seen in the contact part gfl). As the packings
more pronounceébrce chaing(chains of large forces propa- become larger, one can expect the tails of the two power laws
gating along a nearly straight linand a sharp increase in the to start overlapping by an observable number of contacts,
probability of occurrence of small forces. We indeed observedlurring the distinction between true contacts and almost
this in Fig. 16, where we show that for sufficiently orderedcontacts. Even more troubling is the observation that there
packings there is no longer a peakRy(f) for small forces, appears to be a positive probability of observing a zero force
but rather a monotonic decrease R{(f), apparently expo- in the contact network of the packings, indicating the pres-
nential for sufficiently large forces. This is in contrast to €nce of geometric degeneracies in the contact network. The
previous studies of the effect of order on force distributions@bove observations may explain why we have had trouble
in granular pileg34,35, which did not register a significant generating truly jammed packings &f=10000 particles.
impact of the ordering. However, these studies examine thElowever, we do not see a reason why very large but finite
distribution of forces in granular piles and a direct compari-collectively jammed ideal packings could not be constructed.

son is beyond the scope of this work. The question of what algorithm can produce disordéesul
thus likely isostatit packings which are jammed and devoid
IV. DISCUSSION of some or all of the above peculiarities, as is the fcc crystal

.13 . .
The results presented in this work settle some longPacking,” for example, remains open. As usual, with each

standing questions and confusions in the literature. w&areful study the hard-sphere system provides more ques-
tions than originally posed or answered.

2ne mention in passing that we have observed similar results by
starting with a perfect fcc crystal, applying a smesut not too 13Note that the observations we list as troubling are separate from
small random strain, and then jamming the packings. This typicallythe rather general objections due to the inapplicability of the con-
yields almost perfectly crystal packings which are nonethelesgept of ideal jamming to infinite packings, which apply to crystal
clearly frustrated by the random strain to ha&&e 6. packings as well3].
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