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Steady-state properties of a totally asymmetric exclusion process with periodic structure
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We study the steady-state behavior of totally asymmetric simple exclusion pro€EAS&EPs that contain
periodically varying movement rates. In this model, particles move to the right at one of twopatéshe
particle occupies one of a periodically arranged set of lattice sitesitherwise. Approximate mean field
approaches are used to study the steady-state currents and bulk densities of this model. These mean field
methods are found to provide results in good agreement with data derived from Monte Carlo simulations.
Finally, the condition for particle-hole symmetry in the TASEP with periodically varying movement rates is
specified, and the changes in the locations of the boundary-limited to maximal-current transition lines due to
symmetry violation are investigated.
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[. INTRODUCTION In many phenomena of interest however, the assumption
of a single internal hopping ratp implicit in the normal

o . . STASEP does not adequately capture the full character of the
totally asymmetric simple exclusion proce@ASER is a transport behavior. Examples include multistep models for

topic of significant interest. One of the few solvable oM - olecular motor motion, as well as models of ion transport

eq“"'bT'“m r_nodel_s, the TASEP and its solutions have beer%hrough transmembrane channels with selectivity filters and
extensively investigatefll-6,24 as a model for numerous

; . . Lo solvation zones. Additionally, previous studies of TASEPs
o_ne—d|men5|onal transport processes |_nclud|ng ribosome MQuith multiple movement rates focused on systems with peri-
tion[2,7,8], pore transporf10], and traffic flow| 11,12 The odic boundary condition$13-16, isolated defect$6], or
traditional TASEP model consists of a finite lattice with oper;1particle associated hopping ratEEB?] rather than spz;tially
boundaries. Particles are inserted into an empty site at t o . . L :
leftmost end of the lattice at a rate while particles in the and periodically varying hopping rates with open boundaries.

lattice move to the right at a rafe Each motion of a particle
within the lattice moves that particle exactly one lattice site
to the right, and particles can move only if the site immedi- To improve the utility of the TASEP in modeling a wider
ately to the right is not occupied by another particle. Uponrange of systems, we generalize the TASEP to include two
reaching the last lattice site on the right, particles are reinternal hopping rateg; andp,. Numbering the lattice sites
moved from the lattice at a ra@. Exact solutions for the starting from 1 at the far left, we assume the sites are
steady-state particle currer{th, and densitie$o), are avail-  arranged periodically with a periofl (cf. Fig. 1). We apply

able through mean field approact&s?], and matrix product and compare three mean field approximations to the steady-
methods[3]. The latter approach solves the model com-state current and density of the dual-rate TASEP in the maxi-
pletely, providing exact expressions for density correlationmal current, entry limited, and exit limited regimes. We also
functions of arbitrary order. The TASEP solution itself yields conjecture that the phase diagram of the dual-rate TASEP
a phase diagram with three phases. At large values of theetains the three phase character of the standard TASEP’s
injection (a) and extraction(8) rates the system is domi- phase diagram. The accuracy of our mean field methods are
nated by the rate of particle hopping and is in a maximablerified through Monte Carlo simulations.

current phase. At small values of and 3, the system is

found in a low-density entry limited phase, and a high- lll. MEAN FIELD THEORIES

density exit-limited phase, respectively. The fundamental
form of this phase diagram has been found to be very robust
and extending the TASEP to include particles that occlude We begin by considering the dual-rate TASEP in the limit
more than one lattice sitg7,8], or backwards particle mo- Of large @ and 8, where the dynamics of the system will be
tions [9], has not altered the phase diagram significantly.
Nonetheless, these extensions have facilitated the use of the
TASEP in modeling a wide variety of physical processes.

As a canonical model of one-dimensional transport, th

Il. MODEL AND METHODS

A. Simple mean field methods

FIG. 1. The periodic dual-rate totally asymmetric exclusion

*Electronic address: glakatos@physics.ubc.ca model. At everyT lattice site, the particle movement ratepis At
"Electronic address: tomchou@ucla.edu all intervening sites, the movement ratepig All other aspects of
*Electronic address: tolya@rice.edu the model are identical to those of the standard TASEP.
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determined entirely by the internal movement rapesand

p,. Ensuring continuity of the current in a lattice with peri-

odicity T we find

J=paor(1=01) =p1o1(l = 0p) = -+ =pro74(1 - o7).
(1)

In writing Eq. (1) we have assumed that the densitieg in

PHYSICAL REVIEW E 71, 011103(2005

(6)

Ulzl_p_
2

_ pup2—B)
O — .
P2(p1+ B) - p1B
To determine the transitions between the maximal current

the lattice have the same peri@icas the hopping rates in the and entry limited regions we equate the maximal current
lattice” Solving Eq.(1) for J in terms of one of the densities solutions generated by E¢l) to the expressions fa, and
o, then maximizing), yields an approximation to the maxi- Jz in EQ. (3) and Eq.(5) and solve for the transition values

mal currents and densities in terms mf and p,. Unfortu-

nately, Eq.(1) yields increasingly unwieldy expressions for
the current and the densities @isncreases. As a result we

only show the expressions for tfie=2 case:

_ _plpz
(Vpy +Vpo)?

—
/
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R 1
0= ==
VP + VP2

These relations show the expected invariance under th

interchange ofp; andp,. To find the boundary limited cur-

rents in the simple mean field approximation we assume
small value ofe or 8 and assume the lattice contains a whole

number of periods, so that the last lattice site ip,asite.

Focusing initially on the entry-limited case and applying the

current continuity conditions we find, for arbitraily

3

Yielding the following densities and currents for the2
case

J=a(l-0y)=poi(l-0y) = -+ =pyor(l-0y).

J,=a(l-0y) =p1oy(1 —0y) = Poa(l - oq)

03 = p1(p;— a)a

y=—————=a(l-0y)
po(py+ @) — apy !

ap;

o =——————— (4)
Y papy+ @) - apy
gy = Ct’/pz
Similarly in the exit limited case we have
J=P2on(l = on-1r1) = ProN-To(L = ONT2) = 2o
= p1on-1(1 = on) = Boy;, (5)

Jg=B(a2) = p1oy(l - 03) = pooy(1 - 0y)
_ pi(p2.— BB
P papy+ B) - Bpy

Lf the instantaneous lattice occupancyxjs= [0, 1], the average
density at sitd in the steady state is defined as=(x;).

o and". For theT=2 case this yields

’/_
o o« P2VP1
VPt VP2

a = =
Finally, equating the current expressions in equati@snd
(5) we find that the transition between the entry and exit
limited regions occurs whea=g.

)

B. Refined mean field methods

As we will see in the next section, the results of the
simple mean field approach do not provide a particularly
good match to the results of Monte CafMC) simulations.

We attribute the poor performance of the simple mean field
method to the method’s failure to capture the correlations
fetween the occupation probabilities of different lattice sites.
To address this deficiency we apply two related mean field
approaches. The first refined mean field approach, which we
call thefinite-segmeninethod(FSMP) [25], involves exactly
solving the master equation for a finite segment of the dual-
rate TASEP lattice in a self-consistent man(sre Appendix

A). While primarily numerical in nature, this method can
produce estimates for the current and density comparable to
the results from MC simulations. The quality of the estimates
produced by the FSMF approach is a function of the length
of the finite-segment, with longer segments producing supe-
rior results.

The second enhanced mean field method is related to the
cluster mean field approach described[18-20 (see Ap-
pendix B. This mean-field method becomes increasingly un-
wieldy as the size of the cluster increases, thus we only show
results for theT=2 case. In the maximal current phase the
current and density results are

o = p1t+2p,
' 3(py+py)’

2Pt

= , 8
3(p1+p2) ®

()

B 1
2(py + p2)
As expected, the solutions are invariant under the exchange
(o1,p1) < (05,p,), and regenerate the standard TASEP re-
sults in the limitp;=p..

We can use the results of E@) to predict the location of
the phase boundary between the maximal current and entry

011103-2



STEADY-STATE PROPERTIES OF A TOTALLY... PHYSICAL REVIEW E 71, 011103(2005

limited phases. Using the results for the densities in the g 2p,+ P, P1P2 . 3p1p;
maximal current phase and applying current continuity at the T " = )
entrance of the lattice we find S(P1tp) 2Pyt po) 2(2py+p2)

*@:_m+2m>_ P2 . __ 3pipy

(10

Additionally in the T=2 case we can use a similar ap-
9) proach(see Appendix Bto find current and density approxi-

3(pu* P2/ 2pitp2) 2(2p1* o) mations in the parameter regimes where the entry or exit rate
To find the critical value of the extraction rgg, we enforce  limits the rate of particle transport through the lattice. First
current continuity at the exit of the lattice addressing the entry limited region we find

_ o{pap; — a(py + @) + V4pia(p, — @) +[pu(p, — @) + &)

J )
“ 2py(py + a)
_apy+(a+p)la+py) - \/4p§a(p2 - a) +[py(p2— @) + o’
01— y (11)
2py(py + @)
_ o
Oy= "
? P2
Similarly, the solution in the exit-limited phase is
5.2 BiPip2 = APy + B) + \ADIA(P = B) + [Pa(py = B) + BT}
p 2p,(p1+ B) ’
o=1-2 (12
P2
o= PP, — B(p1+ B) + \/4p§,8(p2 - B) +[pi(p2— B) + BT
2~ .

2p,(p1+ B)

Note that Eqs(11) and(12) are the analytic forms for the simulations,p; was normalized to 1. To ensure an unbiased
FSMF results for th&d'=2 dual-rate TASEP when the FSMF sampling of the lattice states, a linear-congruential pseudo-
segment size is set fd=2 (see Appendix A random number generator with a period ot 20*® was used

[22].
IV. MONTE CARLO SIMULATIONS

Monte Carlo simulations were performed to validate the A. Currents

various analytical models presented in the preceding section. The maximal current resulf&ig. 2(a)] show the expected
As we expected the densities in the lattice to vary signifi-qualitative behavior with a low current for small valuespof
cantly as the internal hopping rates were varied, we basedand a value of 1/4 whem,=p;=1. In Fig. 2a the
our Monte Carlo code on the BKL continuous-time algo- boundary-limited current predictiof&g. (11)] were used to
rithm [21]. The BKL algorithm has the advantage of main- generate a prediction for the maximal current as a function of
taining a constant computational efficiency over a widep,. This was accomplished by maximizidgn Eq. (11) with
range of particle densities. respect toa. Consistent with our expectations, we find that
The magnitude of the finite size effect in our simulationsthe two cluster mean field approaches, and the finite-segment
was estimated by running lattices of varying lengths. Formean field approach, provide better approximations to the
lattices one thousand sites long, the MC results were founionte Carlo results than does the simplest mean-field
to systematically deviate from the known TASEP resultsmethod. The relatively poor performance of the simple mean
(p1=p>) by less than half a percent. As a result, unless othfield model can be ascribed to the pair correlations present in
erwise noted we used lattices containing 1000 periods for athe two-rate TASEP, which the simple mean field model
our simulations. The simulations were run fox10° steps, completely fails to capture. The 2-cluster maximal current
which was sufficient to reproduce the known TASEP resultamean field clearly performs best whpg/ p; = 1. In this limit
in lattices much longer than our 1000 period standard. In althe model is essentially the normal single rate TASEP, and
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FIG. 4. Densities for &=2 TASEP from Monte Carlo simula-
) . . ions, the 2-cl imal fiel hod, the simpl
field (FSMP), 2-cluster maximal current mean fieldlMCMF), tions t_e cluster maxima cgrr_ent mean field met_ od, the simple
S ) . mean field method, and at=4 finite segment mean field approach.
2-cluster boundary limited mean fielBLMF), and the simple . ) . .
The simple mean field assumption results in the largest error for

mean field predictions for th€=2 TASEP current in the maximal . : .
current phase. The results for the 2-cluster boundary limited mea?i.mall values ofp, where the density correlation between adjacent

field method were produced by maximizidgn Eq. (11). The es- Sites is expected to be large.

timates of theN=4 FSMF and the 2-cluster BLMF approach are

nearly identical. Inset: The effect of increasing segment length ovith the FSMF results improving with increased segment
the quality of the FSMF estimates. For segment lengths greater thd@ngth. For all three approaches the quality of the agreement
or equal to twice the period, the quality of the current estimateis relatively uniform over all the values @k,. Figure 5 dis-
shows only marginal improvement with increasing segment lengthplays the density profile in the center of the lattice for
(b) Maximal currents for dual-rate TASEPs of various periods. TheTASEPs withT=5 andT=9. Far from the boundaries, the
FSMF estimates were produced using a single period of the latticdensity profiles show the expected periodicity in all three
as the finite segment. While providing reasonable estimates, thphases.
deviation between the M@pointy and FSMF(lines) results in-

creases as the peridd) increases. This increase in error can be

partially mitigated by increasing the number of periods included in

FIG. 2. (a) The Monte Carlo(MC), N=4 finite-segment mean

C. Correlations

the finite segment. Defining the density correlation function for sitesnd j
as
the expected pair correlations between adjaggnand p, (xx:)
sites are small(See Fig. 3. Mex = - =1, (13
(%)
B. Densities Fig. 7(a), shows that in the maximal current phase in The

Referring to Figs. 4-6, we find the finite-segment mean=2 case, the pair correlation is large for small valueppof
field, and both 2-cluster mean field methods provide excelWhile approaching zero g% approache;. The size of this
lent matches to the simulation results. The densities proPair correlation for smallp, indicates that the slow sites
duced by the maximal current 2-cluster mean field methoddominate the dynamics of the system, and is consistent with
the boundary limited 2-cluster mean field method, and théhe maximal current assumption.

finite segment method are all within 5% of the MC results, Figure 7b) displays the the density correlation between
the p, sites and theg; sites immediately to the right in the

maximal current phase. The anticorrelation that occurs at

g : ' . . '
02(? ?:0,8 longer periods can be explained if we consider the density
2
5
0.8 Maximal Current lih‘z‘tse_
0.6
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FIG. 3. (a) Current profiles along ther direction in theT=2
dual-rate TASEP phase plane. The solid lines were produced using
Eqg. (11), the dashed lines were produced using Ej, and the
dotted-dashed lines were produced usingNar8 FSMF approach.
Equation(11) and the FSMF approximation are nearly identi¢h). FIG. 5. The bulk density profiles for the=5 andT=9 dual-rate
Current profiles for dual-rate TASEPs of various periods vgth ~ TASEPs withp,=0.2, in all three current phases. The plots show
=0.25. The FSMF resultglines) were produced using aN=T the good agreement between the Monte Capointy and N=T
FSMF approach. FSMF (lines) results.
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FIG. 6. The density profile along the direction in theT=2 j‘i\ : %:%
dual-rate TASEP phase plane. The solid lines were produced using 0.15F ;’i‘ L=
Eq. (11), the dashed lines were produced using &), while the 4]
dotted-dashed lines were produced byNsn8 finite-segment mean @ 0.1+ 1 = g
field approach. The FSMF results are nearly identical to those of ) Vit -
Eqg. (12). Although the solution fowr, is the same in Eqg4) and 4 _
(11), the predicted value of" differs between the two mean field 0.051 T
theories. This is the reason for the significant difference between the
gfz IC;?roflles predicted by the two mean field methods at small values o .65 9;11 AR
2.

profiles of Fig. 5. Focusing on a single period in the center of FhIGd ?' (@) The phzse d(;agrahm for thTTEZ two-r?tcledTASEP. zhe
the lattice, for largeT the density of the first few lattice sites daShed lines are produced by the simple mean field tf&ary. (4)

in a period should be relatively low. This is a result of the and (6)]. The dotted lines are produced by th.e n.“ax'mal current
slow rate of particle injection from thp, site immediately 2-cluster methodEgs. (9) and (10] and the solid lines are pro-

. . duced by the boundary-limited mean field metHéds. (11) and
left of the period, and due to the relatively large valueTof (12)]. (b) The phase diagram for the two-rate TASEP at various

that prevents particles from backing-up due to the slow exlberiodicities, withp,=0.1. To simulation accuracy the transition

rate from the peri_od. As a resu_lt of this d_ensity profile., thepetween the high and low density phases occurred alongthe
lattice site immediately to the right of g, site would typi- jine for all the periodicities displayed.

cally only be filled for a short time after leaving the now
empty p, site, leading to the observed anticorrelation. Com-, . . , .
paring the predictions of the finite-segment mean ﬁeld:;\creajmgT, as|is cfonﬁrmed byfthhe rle:ssul\l/tls';of F'%'bg Thﬁ .
method for the growth in the anticorrelation with increasing egra ation in per ormance o t € . method with in-
T, its clear the FSMF underestimates this effect. As a resul?ref"‘smgT can b_e _part|ally offset by increasing th_e r_1umber Of
we would expect that, for segments incorporating a fixeoPerIOdS n the finite segment, however the rapid Increase n
number of periods, the predictions of the FSMF methodcompytatlonal cost with increased segment length limits the
would become progressively worse &ss increased. Addi- effectiveness of this approach.

tionally as the FSMF would over-estimate the degree of par-
ticle blocking at the period boundaries, we would expect the
FSMF method to in general underestimate the current with The phase diagram derived from simulations is displayed
in Fig. 8@ for the T=2 case, along with the phase bound-

D. Phase diagram

@) ' ' " [ MC Simulation

_oah 2 5 ivater MF aries predicted by the various mean field methods. The

Lozl Nzt Monte Carlo phase boundaries were computed by taking nu-

ot 1 merical derivatives of the mean value af in the central
ol . half of the lattice as a function af and 3, and locating any

0z 04 p2016 08 1 clear discontinuities in the derivatives. The dual-rate TASEP

®) ' T [* MC Simulation retains the general form of the standard TASEP phase dia-

-0.05 . gram, and the order of the transitions remains unchanged;

)

£ ok . ] first order in the current between the high and low density
' * regimes, and second order between the boundary limited and
2 3 % 5 6 maximal current regions. The most significant deviation from

the standard phase diagram is the increase in the maximal

FIG. 7. (@) The maximal current phase pair correlation function CUrTent region which accompanies a decrease in one of the
produced by the MC simulations and the various mean field aphopping rategp, in our examplg Physically, the maximal
proximations for thel =2 dual-rate TASEP. The results produced by current region is defined as the region of the 8) parameter

the finite segment mean field method improve with an increasingpace where the internal motions determine the net particle

segment lengthth) Mean density correlations betwepg=0.5 sites  flow through the lattice. The increase in the area of the maxi-
and thep; sites immediately to the right. mal current phase with decreasipg is then expected, as
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@ o=t T tion rate 8, and hopping rates. Herex;=1 if lattice sitei is
\IgEI:IingE?:Ig-E\ occupied,x;=0 otherwise. Particle-hole symmetry then re-
1 1 1 1

B quires
(b)g=2 r . o
\—[-:[.;E‘Q.QIEL P(a,BF {X1, %, ... Xn}) = P(B, . F, {Xn, Xy, - - X)),
© 8=3
o

\m\ wherex;=0 if x;=1, andx, =1 if x,=0. For Eq.(14) to hold,

p D p i) the rate of the particle movement that takes the TASEP lat-
tice from a occupancy statie={x;,X,, ... ,X\} t0 an occu-

FIG. 9. Variations on the periodic dual-rate TASEP. The threE‘pancy Statq' must equa| the rate of the partide movement

lattices displayed correspond ta) =1, (b) =2, and(c) §=3. In . — — X
each case the lattice length was chosen to ensure that the resulti%at takes the lattice from state{Xy,Xy-1, ... X} to occu

TASEP possessed particle-hole symmetry. pancy statg. This places constraints on the possible values

of N that can produce particle-hole symmetry.

decreasing, slows the motion of the particles in the interior _. To deter'mme the symmetry-preservmg vgluesl\lofcon-
sider a lattice occupancy statevhere a particle located at

of the lattice. : ; : .
Despite the varying degrees of success in predicting aci ¢ K MOVes to sité+1, changing the lattice state joBy

curate steady state currents and densities, all three mean fiquf'n!_t'on thls.movement WOUld oceur at .rattg In l"’_‘tt'ce
approaches predict the phase boundaries within approxftatei the equivalent move involves a particle hopping from
mately 20% error. As was observed in the mean field predicsite N=k to siteN—(k-1) at a ratery. The definition of the
tions for the steady state currents and densities, thBarticle-hole symmetry operatiditg. (14)] ensures that the
boundary-limited 2-cluster mean field approach provides thdinal state is thenj. To have these exchange-symmetric
best predictions at small values p§, while the maximal moves occur at the same ratg must equaly_,. Now con-
current mean field method excels whes= p;. We also note  sider the case wheng=p,. Then by definition of the dual
that the phase transitions predicted by the boundary-limitedate TASEPk=mT+ § for some integem (see Fig. 9. Par-
2-cluster approach were determined numerically by maxiticle hole-symmetry will then be satisfied if

mizing J in Eq. (11) and (12). Figure 8b) displays the

change in the phase diagram as the pefiaslincreased and N-mT-5=nT+50 N=(n+mT+25 (19
p2=0.1is held constant. The major effect of increas@t a  for an arbitrary integen. Thus the dual-rate TASEP model
f|>_<ed P is to increase the values qf:,B . Thls is consistent  can only satisfy particle-hole symmetry whisisesT+23 for
with Fig. 7(b) which shows an increasing anti-correlation gome integes= 1. Geometrically, satisfying Eq15) guar-

with increasedT. With an anti-correlation at the period antees that if the first defect is located at sitef the lattice,
boundaries, particle blocking in the interior of the lattice the |ast defect will be located at lattice she- 5.

would be reduced and the values efor 8 at which the To see that a value dfl satisfying Eq.(15) will never
internal movements of the particles would become the ratgonfuse particle movements occurring at ragefor those
limiting step would increase. occurring at rate,, consider the case whésmT+y where

v=<T, v# 6. Then under symmetry exchange, a particle
move occurring at rate, would be mapped to a move oc-

V. OTHER PERIODIC ARRANGEMENTS curring at rate

The dual-rate TASEP model investigated in the previous
sections was built on lattices composed of an integer number
of {p1,P1.,P1, - - . .P2} periods. While a useful extension to the  As y, §<T and y+ &, there are no integens,n,s such
TASEP, it is also interesting to investigate other periodicthat (s—m)T+8+(5—vy)=nT+4. Thus a particle movement
arrangements of defect sites. For example we can consideccurring at a ratg, cannot be mapped to a movement
the case where the first defect is located at an arbitraryssite occurring at ratgp, under the symmetry exchange operation.
within the firstT sites of the lattice, as well as lattices that do An interesting consequence of the restrictionNms that a
not contain a whole number of periodsf. Fig. 9. When lattice with the firstp, site located at sitd& and containing a
considering these variations on the dual-rate TASEP modekhole number of periods preserves symmetry regardless of
however, the issue of particle-hole symmetry arises. the value ofT, while a lattice with the firsp, site at lattice

To investigate the conditions under which a periodic dualsite 1 and containing a whole number of periods violates
rate TASEP would preserve particle-hole symmetry, first desymmetry if T # 2.
fine a vectorr consisting of all the movement rates in the  Figure 1@a) shows the phase diagrams for various sym-
TASEP lattice. Specifically; is constructed so that element metric and non-symmetric realizations of the dual-rate
r; gives the rate at which particles in lattice ditmove to the  TASEP withT=3. From Fig. 10a) it is clear that violations
right. Additionally, N is defined to be the total length of the of condition (15) produce a phase diagram that does not
TASEP lattice. Now consider the  probability preserve the symmetry about thes 8 line that is found in
P(a, B, X1,%,, ... Xy) of finding the TASEP lattice in an standard TASEP phase diagram. Conversely, when condition
occupancy statey,X,, ... Xy With injection ratea, extrac-  (15) is satisfied, this symmetry reappears. Note that, within

IN-k = I (s=m)T+5+(5-)- (16)
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@ 1 ' ' ' 1205 field method provides reasonably accurate estimates for the

1204 phase boundaries in all three nonsymmetric cases displayed.
1203 We note however that the convergence properties of the finite
segment method are most advantageous inSth€ case.

0.8

0.61

[--%

0.4r 1 VI. CONCLUSION

We have developed three approximate methods to com-
gt pute the current and densities of totally asymmetric exclu-
0.2 04 0.6 03 1 sion processes involving two internal hopping rates. Addi-
tionally, we have simulated the two-rate TASEP and have
1203 explored its phase diagram. We find that the dual-rate TASEP
1204 retains the three phases found in the standard TASEP model.
Within each of these phases the best of our mean field theo-
Py o ries provide reliable approximations to the particle currents
= and densities. In particular, a maximal current phase mean
oal  1° field theory was developed that provides accurate estimates
[Eq. (8)] for the current and the densitiFigs. 2a) and 4 in
the (6=2,T=2) case. Similarly, in the boundary limited
phases a mean field method was introduced for(vwe2,T
02 04 06 0.8 1 =2) case[Egs.(11) and(12)], which produced accurate es-
timates for the boundary currents, and reasonably accurate
FIG. 10. (a) Phase diagrams for the=3 dual-rate TASEP for  estimates for the maximal currer(®&ig 3). In addition to the
various values o6 andN derived from Monte Carlo simulations. generally inferior simple mean field approddtys. (2), (4),
The lines are the best-fit phase boundaries for TASEPs with valueg,q (6)], we have developed a primarily numerical mean
of N t?at Shatis‘z Eq(éS). Tdhe'poin;stzrgEtr;e M?L‘te (l:ariglgj:edic' field approach that we have termed the finite segment mean
tions for the phase boundaries o s with valueNdhat 014 method(FSMP). This method can rapidly produce ac-
violate Eq.(15). Note that in both thé5=1,l_\|=1203 TASEP and o, rate estimates for the currents and dgns)i/tigs in all three
the (6=2,N=1204 TASEP the last defect is Ioc?ted at _Iattlce site phases of the dual-rate TASEP. However, as shown in Fig.
N-2 and the TASEP share a common value fbr Additionally, 2(b), an increasing number of periods must be included in

TASEPs(6=2,N=1203, (6=3,N=1204, and(6=1,N=1209 all s . . .
share a common location for the last defect site, and share a corﬁbe finite segment as the period lengtis increased in order
to accurately model the dual-rate TASEP.

mon value of8". (b) A comparison of the Monte Carlgoints and - o .
finite-segment mean fieldines) predictions for the phase bound-  Finally, we have used the finite segment mean field
aries of variousT=3 TASEPS that violate particle-hole symmetry. Method and Monte Carlo simulations to briefly investigate

The FSMF predictions were generated using segments that werBASEPS with alternative arrangements of periodic defects.
3+6 sites long. Specifically, we investigated dual-rate TASEPs where the

first defect was located at an arbitrary positi®nvithin the
simulation accuracy, the phase diagrams of the nonsymmefirst T sites of the lattice. We found that these dual-rate
ric dual-rate TASEPs retain the general three phase form theASEPs do not possess particle-hole symmetry unless the
standard TASEP phase diagram for all valuessodnd N number of sites in the TASEP lattice equalg+26 for an
tested. . . integerm= 1. When the particle-hole symmetry condition is
The values olx andg for the nonsymmetric phase dia- not met, the phase diagram of the dual rate TASEP is no
grams of Fig. 10a) suggest that the location of the first de- jonger symmetric about the:=g line. Additionally, both
fect site determines the value @T, while the Iocation* of the Monte Carlo simulations and finite Segment mean field meth-
last defect site independently determines the valyé oFor  ods suggest that in the nonsymmetric case, the valué f
example, consider th€=3 case with(6=1,N=1203 where  determined by the position of the first defect in the TASEP

a’=~0.27 andB” =0.19. By construction, this realization of |attice, while the value of" is independently determined by
the T=3 dual-rate TASEP and the symmetric version of thethe position of the last defect.

T=3 dual-rate TASEP with{§=1,N=1205 both place the
first defect at lattice site 1. The two realizations of the
TASEP then share the same value fer (=0.27. Con-
versely, the nonsymmetri@=1,N=1203 case and the sym-  G.L. acknowledges support from the Natural Science and
metric (6=2,N=1204 case both have the last defect in lat- Engineering Research Council of Canada. T.C. acknow-
tice siteN—2, and share the same value @f~0.19. This ledges support from the NSIPMS-0206733, and the NIH
pattern held for all values of andN examined. (K25A1058673. A.B.K. acknowledges support from the
Finally we note that mean field methods similar to thoseCamille and Henry Dreyfus New Faculty Awards Program
worked out in detail for theS=T case can be applied to both (under Grant No. NF-00-056from the Welch Foundation
symmetric and nonsymmetric cases independent of the valugnder Grant No. C-1559and from the U.S. National Sci-
of 8. As can be seen in Fig. {if), the finite-segment mean ence Foundation through Grant No. CHE-0237105. The au-
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h,h B B B F
T=1 i=2 7=3 i=4 | (L
T N=4Segment '
FIG. 11. The arrangement of lattice sites used foNa finite

segment mean fielFSMP) approximation to thd =2 TASEP. The
master equation for the state of the four marked lattice sites is

solved exactly. The four sites are coupled to the rest of the lattice by F'_G' 12. The steps in the algorithm to gene_rate th? transition
assuming an effective injection rate @f;=p,o; on the left, and an matrlx for a TASEP model. For the purposes of illustration a th.ree.
effective extraction rate 9B.;=p,(1-c) on the right. site model has been used. Each possible occupancy of the lattice is

treated as a bit pattern, and each state is labeled with the corre-
sponding decimal valué.e., lattice occupancy 01% state3). The
thors thank B. Bergersen and G. N. Patey for valuable comstates are divided into two groups: states where the first lattice site
ments on the manuscript and C. Greif for his assistance withy occupied(1-states)and states where the first lattice site is empty
the Arnoldi diagonalization routines. (O-states) Regardless of the number of lattice sites in the TASEP,
the transitions between the two classes of states always occur be-
tween the first half of the 1-states and the second half of the O-states
(solid arrows. Calling the algorithm recursively on both the
1-states and the O-states, and ignoring the highest ordérebjtthe

Here we give a detailed description of the the finite SegJeftmost lattice sitg enumerates all the remaining state transitions
ment mean field method, and focus on using the method tgplashed arrows Finally the transitions between each 0-state and
solve for the currents and densities in the maximal curren ach 1-state generated by injection at the left edge of the lattice
phase. Consider a finite lattice containNgites and a whole (dotted arrowsare enumerated.
number of (py,py, ....p2) periods(Fig. 11). Assuming the g state 5{101) to state 3{011}). To determine the rate of
bulk densities in the TASEP lattice are periodic and inheritthe transitions, we make use of the rate Veet(ﬁpecifica”y,
the same periodicity as the movement rates, we define age consider the current recursive iteration of the algorithm,
effective injection ratea.) and an effective extraction rate and use this as an index for the rate vector. For example, if it
(Ber) for this finite segment. Specifically, we sefs=p,on  is currently the second recursive iteration then all the transi-
and Bs4=po(1-0y). Using these rates and the known valuestions enumerated involve a particle occupying site 2 moving
of p; andp,, we can build the transition matrix for the mas- to site 3. Thus all the transitions occur at rate the rate
ter equation describing the motion of the particles in theassociated with the second site in the finite segment. In gen-
N-site finite segment. eral, theith recursive iteration of the algorithm will enumer-

To construct the master equation, define a vectoon-  ate transitions where a particle occupying sitef the finite
taining the internal hopping rates of the finite segment, andegment moves to site- 1. These transitions occur at rate
supply an initial guess for the densities and oy. Specifi- (4) Recurse on the O-states and on the 1-stalRecurse
cally, set thé™ entry off equal to the hopping rate of thith ~ on the O-states, and the 1-states, ignoring the leftmost lattice
lattice site in the finite segment. The hopping rate of the lassite and starting the recursion from st@). For example, if
site in the finite segment however is setf®g, so thatry  on iterationi we are working with arN=3 site segment, in
=B With the finite segment and the rate veddrdefined, iterationi+ 1, we work withtwo N=2 site segments. The first
the algorithm to construct the master equation transition maef theseN=2 site segments is generated by ignoring the
trix is (see Fig. 12 as follows. leftmost lattice site of the O-states of the=3 segment, while

(1) Label the occupancy states of the finite segmieaibel  the secondN=2 site segment is generated by ignoring the
each occupancy state of the finite-segment with a numbdeftmost lattice site of the 1-states.
determined by treating the occupancy of the lattice as an (5) Enumerate the injection event®nce the recursion
integer value expressed in base-2. For exampléy=aB lat-  specified in stepgl) through(4) has been completed, enu-
tice with only the last site filledi.e., an occupancy dD01}), merate all the transitions representing injections into the fi-
is said to be instate 1 while the same lattice with the last nite segment. These transitions take the O-states to the corre-
two sites filled(an occupancy 0f011}) is said to be instate ~ sponding 1-states at ratgs. For example, if we are working
3. on anN=3 finite segment, we enumerate the following tran-

(2) Separate the states into two groueparate the states sitions; {000} — 4({100}), 1({001)—5({101), 2({010})
labeled in stefl) into two groups; one group containing the —6({110}), and 3{011)—7({111). All these transitions
states with the leftmost lattice site unoccupiélte O-state$,  occur at ratengg.
and the other group containing the states with the leftmost Using this recursive algorithm to produce the transition
lattice site occupiedthe 1-states. matrix for the finite-segment master equation, we can apply

(3) Enumerate the transitions between the 1-states and then iterative procedure to find the densities and currents
0O-states The transitions between the O-states and the 1-statelRrough any finite segment of the TASEP lattice. This itera-
will always occur between the lowest half of the 1-states, andive procedure proceeds as follows.
the highest half of the 0-states. For example, ilNar8 finite (1) Build the master equatiorGiven an initial guess for
segment, the transitions take statg§400}) to state 2{010}), the values of oy, o), use the recursive algorithm to produce

APPENDIX A: THE FINITE-SEGMENT MEAN
FIELD METHOD
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the transition matrix [M(oq,0n,pP1,P2)] for the finite- ARPACK linear-algebra software libraf23] and built into
segment master equation. The finite segment densitigbe commercial program MATLAB, we could easily treat
(oq1,0) are introduced intdM solely through the effective segments containing 20 lattice sites.
injection rate a.s=p,oyn, and the effective extraction rate
Bett=P(1=0y). ' . APPENDIX B: CLUSTER MEAN FIELD METHODS
(2) Solve the master equatioifo find the steady-state ) o ) )
currents and densities, Compute the eigenvector To begln the derivation of the current and denS|ty approxi-
v ; ; mations displayed in Eq@8) consider the pair probability
[V(oy,2,p1,p2)] 0f M(0ry,,p1,pp) associated with the P(x,X+1)- The pair probabilityP(x;,x.;) is the probability
zero eigenvalue DA O : NN
of finding ap, site with occupancy; ( x;=0 if lattice sitei is

M (0, o, Pl,pz)\7: 0. (A1) empty,x =1 if lattice sitei is occupied, followed by ap, site
R with occupancyx;,;. The time evolution of the occupancy
NormalizeV using the expression state of any two adjacent sites in a TASEP will depend on the
R two sites themselves along with the pair of lattice sites im-
V= \% (A2) mediately to the left or the right of the two site grouping.
- EgN v, ' Thus the master equation for the two site probabifitp, 0)
' is
The vector elemenV, gives the steady state probability of dP(0,0)
finding the finite segment in the state with labelFor ex- — =-p,[P(0,1,0,0 + P(1,1,0,0]
ample, with arN=3 finite segmenV; gives the steady state dt
probability of finding the finite-segment in occupancy state +p,[P(0,1,0,0 + P(0,1,0,2]. (B1)

{011, _ ,
(3) Compute new density estimat&ith the steady state NOW assume that each pair dfp;,p,) sites behaves
occupancy probabilities from stef2), compute new esti- ke a statistically independent unit, uncorrelated with the

mates fora; and oy other(pl,pz)_ _p_erion in the lattice. Using these assumptions
N the probabilities in Eq.(B1) can be decomposed into
. =271 products of pair probabilities, P(Xi,Xs1,X+2,Xi+3)
o= 2V, =~ P(x;,Xi+1)P(X+2,Xi+3). This yields the following equation
=2\ for P(0,0) in the steady state:
(A3)
oN-1 dP(0,0) _

2_ =
o= S Vs, 5 =PAP(0.2’-P(O,0P(1,D]=0. (B2
i=1

. ) o Additionally, by definition
(4) Start a new iteration or finishCompare the new den-

sity estimatega;,0y), to the previous estimatds-, oy). If o =P(1,0 +P(1,1),

|0y — 1| < € and| oy — 0| < €, then the iteration has reached a (B3)
fixed point and the procedure ends. Otherwise return to step o,=P(0,1) +P(1,1),

(1), settingo, =03, and oy=0y. Heree is an arbitrary con-

vergence parametéset to 104 in this study. P(0,00=1-P(0,1) - P(1,0) - P(1,1).

Once a fixed point in the finite-segment densities, oy) )
is finally reached, the current through the finite segment cal’sing Eq.(B3)
easily be computed from the expression — ) = (5a— 7))

y P P P(1,0) = a1 -0y — (03— 0y) _ (B4)
J=ae(1 - 09) = pron(l —09). (A4) 1+ (0= 09)

In this appendix we have described an implementation oAn equation forQ(1,0), the probability of having an occu-
the finite-segment method useful for generating current angied p, site followed by an unoccupieg; site, can be found
density estimates in the maximal current phase. However, thitom Eg. (B4) by interchangingy; andp,, as well ass; and
finite-segment method can be extended to treat the boundany. Applying the current continuity conditiorp;P(1,0)
limited phases as well. This can be accomplished by setting p,Q(1,0), results in the relation
asf=a OF Beg=pB as appropriate, and applying the density
self-consistency condition at the end of the finite-segment . 91(1 = 0,) = (03— 0)? _ 02l-0y)—(oy- 02)°
that lies in the interior of the TASEP lattice. ! 1+(op—0y) 2 1+(o1—0y)

While a simple and effective approach, the exponential (B5)
increase in the size of the transition matrix with the length of
the segment quickly renders E¢A1) analytically intrac- Now make the substitutioo,— o=k and definep, to be the
table. As a result, EA1) was solved numerically. Employ- larger of the two rates. Thus, <o, andk>0. Solving Eqg.
ing the fast Arnoldi-method eigensolvers in the well-known (B5) for o, yields

in Eq. (B2), produces the relation
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_ [p2(1 =k?) = py(k = 1)?] + V(1 = K*)[k(py + p2) = (p1 = P I[3K(Py + P2) = (P1— Po)] .

o (B6)
! 2[k(py+ p2) = (p1 = P2)]
[
Equation (B6) shows thatoy is real only when —-Xk dP(1,1)
<(P1=P2)/3(p1+P2) Or (p1=P2)/(p1+p,) <k<1. Substitut- T p2P(1,D[P(0,0) + P(0,1)] + «P(0,1).

ing Eq. (B6) into Eq. (B5) gives J=kp,p,/[(p1—p2) —k(p; o . o . _
+p,)], which showsJ <0 for k> (p;—p,)/(p1+p,), J>0 for ~ Similarly, in the exit limited phase we find the following
0<K<(p;—p,)/(p1+p,), and dJ/dk=p;p(py—po)/([k(p, Master equation for the last two sites in the lattice:

+py) +(p,—py) 1% >00k. Sinced must be positiveg; must dP(0,0)

be real, andl is monotonically increasing with k, the maxi- dt =BP(0,1) — pzP(0,0[P(0,1) + P(1, 1],

mum value of the current must occur whek=(p;

-p,)/3(p1+py). Substituting this value ok into Eq. (B6) dP(0,1)

yields Eq.(8). T = BP(0,1) - p,P(0,D[P(0,1) + P(1,1)]

An analogous approach can be used to find current and

density estimates in the entry and exit limited regions. Con- +p1P(1,0),

sidering the entry limited case first, we find the following (B8)

master equation for the occupancy of the first two sites in thedP(1,0)

lattice: G = APLD+pPO,0[P0,1 +P(1,1]-pP(1,0),
arLy __ BP(1,1) + p,P(0,D[P(0,1) + P(1,1)].

dro.0 __ P(0,0) + p,P(0,1[P(0,0) + P(0,1)] o
gt TP TR : el EquationgB7) and(B8) assume that the occupancy prob-

abilities P(x;,%i,1) do not vary significantly as a function of

position near the entrance and exit of the lattice. This as-
sumption is analogous to that used with the standard TASEP
in the boundary limited regions, where the density is as-

dP(O,1) =-aP(0,1) - p,P(0,1)[P(0,0) + P(0,1)] sumed to be essentially constant near the rate limiting bound-
dt ary. Applying the normalization condition on the probabili-
+p,P(1,0) ties P(x; '.X”l) and.solving Eqs(B7) and (B8) generates the
B results displayed in Eq$11) and(12), respectively. We note
(B7) that Egs.(11) and (12) are equal to the results of the finite-
dP(1,0 _ segment mean field method wil=2 and a segment length
- aP(0,0) + p,P(1,1)[P(0,0 + P(0,1)] - psP(1,0), of N=2
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