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Slow flows of yield stress fluids: Complex spatiotemporal behavior within a simple
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A minimal athermal model for the flow of dense disordered materials is proposed, based on two generic
ingredients: local plastic events occuring above a microscopic yield stress, and the nonlocal elastic release of
the stress these events induce in the material. A complex spatiotemporal rheological behavior results, with
features in line with recent experimental observations. At low shear rates, macroscopic flow actually originates
from collective correlated bursts of plastic events, taking place in dynamically generated fragile zones. The
related correlation length diverges algebraically at small shear rates. In confined geometries, bursts occur
preferentially close to the walls, yielding an intermittent form of flow localization.
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Many disordered dense systems exhibit a peculiar flowingver the system. We then show that the simplicity of the
behavior which strongly departs from the academic Newtondescription contrasts with the complex rheological behavior
ian description, with a shear rate dependence of the viscosityeriving from it. In particular, we find the global rheology to
and indications of an actual yield stress value. For suclibe associated with a complex spatiotemporal organization
“yield stress fluids,” it has been recognized recently thatwhich builds up as the system is sheared steadily, with an
theseglobal characteristics are, in most cases, associatethtermittent behavior corresponding to “bursts” of correlated
with a peculiarspatial behavior, in the form of heteroge- events, the typical size of which diverges at small shear rate.
neous flow behavior, where a frozen region coexists with ape argue that in its present simple form our model seems to
flowing one(the so-called “shear band"A striking remark  capture many observed experimental features and thus stands
is that such generic behaviors are observed in a wide class gk a promising starting point for the elaboration of a generic
experimental systems, with very different length/time/scenario for the slow flow of yield stress fluids.
interaction scales, such as foarfis2], granular systems Let us now define the ingredients of our approach, which
[3,4], emulsiony3,5,8, colloidal glasse$7], and polymers, e implement here in the simplified frame of a two-

but also in simulations of granular systems, foams, angjimensional (2D) scalar approach, focusing only on the

model glassef8—11]. These generic features suggest an Ungimple shear components of the stress and strain. We con-

derlying common scenario for the flow properties, and hagjjger a two-dimensional material to which an average shear
motivated various macroscopic phenomenological ap;ate y is applied macroscopically(corresponding to a
proaches(see, e.g., references cited [i6,8]). However, a  ; janendent displacement in thalirection. The material is
consistent framework linking the global rheology to the local yegerined at a coarse-grained level, intermediate between the

microscopic dynamics is still lacking, although some icroscopic(particle and macroscopic scale. The quantity

progress in this direction has been made in recent years interest is thexz component of the time-dependent local
[12-14. In particular, studies have put forward the role of

. X ' shear streser(x,z;t). First, without entering into details at
local plastic rearrangements in the global flow behavio

.- . .
. ; this level, a few basic rules are statdd: below a(locally

[11,15,16. Such an idea actually goes back to the Princefafined vield stressov. the svstem responds elastically to

model for the deformation of foani4.7]: flow occurs via a ined yi v, y b ca’y

: . ) . ; . the imposed deformatiorji) aboveay, plastic events may
succession of reversible elastic deformations and wrevermblgccur in the systentalong laws discussed in the following
plastic eventg“T1” events in foamp associated with the

ot t 2 local vield st H £ th d(iii) plastic events take the form of a localized shear strain;
existence ot a local yield stress. HOWEVer, I In€ COrreéspondy;, ) g ch g plastic event induces a long-rardgstic pertur-
ing physical picture seema priori quite clear, a gap still

) SO ) ; ; bation of the shear stress field in the material. A few remarks
persists betwgen this simple microscopic scenario and thc‘?an be made at this level. First, although the notion of indi-
complex spatlotempo_ral organization responsible for the rhe\'/iduaI events is quite intuitive, in particular in foams, it has
ology of these materials at finite shear rates. Eeen evidenced unambiguously only recently at the micro-

Intthlst gapert,hweb prppofs? a ;lmgnlle r;esosc.opm mode copic level in disordered systeriikl,16. Second, the shear
constructed on Ine basis ol twbinimal andgenericingre- - gyragq perturbation alluded to fiiv) is computed exactly

d_|ents: localized plastic eve_nts assogated W'Fh a MICTOSCOPIG;ivhin the framework of tensorial linear elasticity for an iso-
yield stress, and the resulting elastic relaxation of the Strest?opic incompressible material as reported in R&8]. This
provides the explicit Green’s functiorG,,,, relating the
stress variationgo, at any point in the system, to the
*Electronic address: Ibocquet@lpmen.univ-lyoni.fr component of the plastic straif'({x’,z'};t), associated with
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the plastic event localized gx’,z'}. Using the simpler no- SO
tation G for this function yields T ] gy
> 4
o 2 | gl
So({x,z}:t) = ZMI dr'G(x,x’,z,2) P ({x",.z};t). (1) g SF ° #
° % 200 4(/')0 600 800 ¥
t/ %
The shear modulug has been exhibited for convenience. In || ittt iimirterte-tes g ——————1
a 2D infinite system@G decreases a8(r)=1/7r? cog46) in 051 SN S ]
cylindrical coordinates{r, 6} (in agreement with Refs. 1
[16,19). In general, its precise form depends on the specific 00000 60T 0T e T T 0

geometry of the system: infinite, periodic, or confined be- VY

tween two rigid walls[18]. Summing up at this point, the ¢

evolution of the shear stress field results from the global G 1. Shear stress vs shear rate in unitsogf and ¥
elastic loadingy plus the perturbations induced by the local- = 4 / 47 (log-log ploj. The various symbols correspond to four
ized plastic events, different system size§rom 4x 4 to 32x 32 blocks. Inset: time-
dependent stress at the low shear rate corresponding to the arrow.
The dashed line corresponds to the microscopic yield stress

do({x,z}t) = uy+ ZMJ dr'G(x,x’,z,2')e’'({x",2'};1).

7';Ilast 7'«gllast
(2 n{x,z,t); 0 — 1 0 1. (3)
if o>oy Oo

The last part of the modelization is the choice of a dynamicaEquations2) and(3) constitute our minimal starting point to
law for the plastic events, i.e., the feedback law relating thedescribe the dynamics of yield stress materials under flow.
plastic relaxatione?({x,z}:t) to the stress field({x’,z'};t’ Note that, as in the somewhat related analysis of Lafggr
<t). As in the Princen model, we chooselatal relation  neither the stress nor the state variable are convected by the
with a threshold stress valus,. In addition, an intrinsic time ~ displacement field within the present simplified model. In
scaler is introduced to describe the dynamics of the eventother words, although the system locally flo¢es described
We anticipate that this will lead to a shear rate dependence &¥ a local shear rajethe net relative motion between the
the dynamical structure in the flow, driving the system awayelements is neglected.
from the critical quasistatic limitself-organized criticality in Before turning to their resolution, Eq¢2) and (3) are
a related quasistatic model was reported26]) to a more made dimensionless using, and r as stress and time units.
homogenous situation at large shear rate. Another importarftn important point emerging from this procedure is tta
outcome is that the local stress may exceed the yield streg¥1ear rate only appears in the form of the ratdy., with
oy for a finite time interval so that the averaged stress carvc=0y/u7. In this dimensionless form, our model therefore
also grow beyond this value, as observed experimentally. Points out to a very general scenario, in which specific mi-
There are actually many possibilities to introduce such ar$roscopic details are embeded in the precise values ahd
intrinsic time scale for plastic events, and few guides as tdr., as already suggested by some experimgsad].
how we should do so. We make here a simple arbitrary The dynamical equations in this dimensionless form have
choice and assume that the system locally alternates betweBgen solved numerically by discretizing the material into
a purely elastic state and a plastic stataring which stress blocks of elementary size. A pseudospectral method is
is releasel] with finite transition rates 7., is the rate of ~used, which allows us to express easily the stress increments
transitions fronelastic to plasticwhile the reverse transition in reciprocal space at each time step. On the other hand, the
is characterized by a time,,s Since plastic events only state variable(ia, ja) in the block{i, j} evolves in real space
occur above the yield stress,, we take ry,s{o)= if lo- according to the stochastic laws enounced above. We have
cally o<oy. We otherwise assume for sake of simplicity focused on two geometries bf=(L/a)® blocks: a biperiodic
fixed values for thereas; and 7y, independent of the local geometry and a confined one, where the system is bounded
stress. In order to finalize our model, we eventually have tdy two rigid parallel walls. Practically, we have chosen
quantify the amount of plastic strain released in an event an@ias= Telas= 7 fOr the results reported here.
simply assume a Maxwell, viscoelasticlike relaxation of the ~We first quote the results for the biperiodic system. In Fig.
material in the plastic state,,s=o/2u7, with 7a mechani- 1, we plot the results for the macroscopic flow curve, which
cal relaxation time. All the previous discussion is best sumdisplays the essential features observed in experiments. First,
marized by introducting a “state variablei(x,z) such that @ plateau is found at small shear rate, definimgaeroscopic
n=0/1 identifies the elastic/plastic state, yield stressat vanishing shear rateel}". The latter is found
to be smaller than thenicroscopicyield stressoy, and also
lower than the related peak value of the stress versus time at
Pl({x,2t) = in({x 21 o{x,2h1) small shear rateésee inset in Fig. 1 A different regime is
T 2ur T Y found at large shear rates, where a Newtonian behavior is
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FIG. 2. Spatial distribution ifx,Zz} plane of the cumulated plas-
tic activity for a N=16X 16 system after I9=512 plastic events.
From left to right the dimensionless shear ratg/y,, Iis 06001001~ 011010016007 6000
5.10%,5.10°3,0.05,2. Gray levels correspond to the number of ) ’ ’ N v/v
plastic events. Note that the occcurence of bursts of plastic activity ¢
in both (x andz) directions is due to the presebiperiodic geom-
etry. In the confined geometry where walls perpendiculaz tve
present, only bands parallel toshow up.

FIG. 3. Mean stress drofnormalized by the average strgss
Ao, as a function of the renormalized dimensionless shear rate,
Ny/ .. Results in the inset are shown for five different sigfesm
) ) 2X2 to 32x 32 blocks from top to bottojn while in the main
recovered. The dynamics of the time-dependent shear streggph all curves are rescaled using variabhs/ v, A5(y)/ AG(0)}
is also quite different in these two regimes. In particular,to emphasize the scaling of the transition between the small shear
relative stress fluctuations around the mean value increase age plateau and the intermediate regime. The dotted lines in the
the shear rate decreasemt shown, in agreement with ob- inset sketch the separation between the three dynamical regimes.
servations in experiments and simulatidis8]. A zoom on
the dynamics at a shorter time scale actually shows that 4he low shear rate plateaus. This remarkable collapse of the
small shear rate the stress exhibits successive periods of eldgscaled curves suggest a quantification of the spatial corre-
tic raise and abrupt drops, as observed in the quasistatic limi@tions. Assuming the existence of a shear rate-dependent
in various systemg16]. These drops encompass manyCOI’re|ati0n length&(y) in the system, a saturation effect is
events, constituting “bursts” of correlated plastic activity. expected for the mean stress drop wh&n) reaches the
More interestingly these dynamically correlated events arsystem sizeNY2a. Note that we describe the correlations
also highly correlated in space, as emphasized in Fig. 2with a single diverging correlation length, in line with our
where the spatial distribution of the cumulated plastic activ-observation that directionsandz are equivalentsee Fig. 2
ity is plotted for a given succession of plastic events. This The rescaled graph indicates that such a saturation occurs
figure clearly shows that while at high shear rate plastidor a fixed value ofNy/y,, which suggestg(y) ~y ¢, with
events are spatially decorrelated, a correlation pattern shows=1/2 from these data. Our model therefore explicitly
up as the shear rate is decreased, leading to the developmesilds indication of(at least one diverging length scale at
of long-lived “fragile” zones in the system where nearly all small shear ratesa feature absent in previous studies of
the plastic activity takes place. This graph therefore suggestgeld stress fluids. Interestingly, the transition between the
the development of a shear rate-dependent length scale in th@ermediate to the large shear rate regime on Figright
system, which grows at small shear rates. In order to gedotted line in the insg¢toccurs roughly at the characteristic
more insight into this aspect, a possible route is to measurshear ratey,, independent of system size, as for the macro-
the length via measurements of correlation function. This isscopic flow curve in Fig. 1. From these first results, our
however, a difficult task in genergl2] and we have fol- model yields a flow behavior with three different regimes as
lowed a different strategy here, analogous to finite-size scakketched on Fig. 4(i) for y> v, (or o> oy), the blocks are
ing. Namely, since such a length is associated with the comncorrelated in their dynamics and the flow is homogeneous;
relation of plastic events during a macroscopic stress drop, {ii) for y< ¥, correlations extend up to a correlation length
should show up in the statistics of stress drops. To this endi(y) which diverges algebraically at small shear ratgis)
we have computed the average amplitude of the drops of that very low shear rates, the correlation length saturates at
global stressAo, as a function of the applied macroscopic the size of the system, leading to a quasistatic dynamical
shear ratey [23]. Results are shown in Fig. 3 for various behavior.
system sizes. Let us first discuss the inset which exhibits the We have also studied a confined geometry where two
bare results for the average stress drop normalized by thégid walls bound the system in thedirection. A delicate
average stressAo=Ao(y)/o(y). Three different regimes technical point is then the calculation of the Green’s func-
can be identified for all system sizes: two plateaus at largéion, which shows that shear stress perturbation is amplified
and small shear rates and an intermediate regime relatingose to the wall$18]. Essentially, the picture in the confined
these two. We remark that the transition between the intergeometry is very similar to that of the biperiodic system
mediate and “saturation” regime at log shifts to lower described abovéFigs. 1, 3, and ¥ One important specific
shear rates when the size of the system is increased. Tlieature, however, concerns the localization of the flow: while
system size dependence of this transitivihow shear ratds  at high shear rate the flow is homogeneous, at low shear rates
best evidenced if one rescales the shear ratd$ydy., and the plastic bursts occur preferentially close to the walls, and
the stress ado(y)/Ao(0), with AG(0) ~N98 describing appear as spatially correlated structures that are parallel to
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1/N4 tion, and an otherwise elastic behavior of the matefiiad
~ 11 — cluding redistribution of stress during the evenfhese two
finite size homogeneous ingredients lead to a complex spatiotemporal behavior of the
regime regime system at small shear rates. More precisely, a correlation
length is exhibited which diverges at small shear rates, cor-
E:» ( orgamzed" & ~a responding to intermittent collective evelit®rrelated bursts
regime of plastic events leading to the creation gfong-lived) frag-
ile zones where the deformation of the system takes place.
&..\ when 7/ - These bursts take place preferentially close to the walls. At
~1 ,9/,?' high shear rates, this correlation length is comparable to the
¢ size of the individual elements which flow independently
FIG. 4. Sketch of the emerging flow scenario in théy,,1/N)  [rom one another. These features are essentially compatible
plane. Successive transitions from a homogeneous flow to an org¥ith recent observations in experimental or numerical sys-
nized and a finite-size regime occur as the correlation lesgth tems: localization of the time-averaged deformation
grows from the block size to the system size, as the shear rafel—5,8,9, intermittency at low shear rat4,6,8,14, a diverg-
decreases. ing length scale at small shear rate in granular sys{@#is
Moreover, numerical simulation of glassy systef@§show
the walls. In this last regime, thaverageflow corresponds that flow heterogeneities occur for global shear rates such
to an increased shear rate close to the walls, but this “locathat c<oy, a conclusion which is recovered within our
ization on average” of the flow is only part of a complex minimal model. Although our model should be refined to
spatiotemporal pattern. A more detailed analysis of this retake into account convection and the full tensorial nature of
gime is left for a future publication. the problem, the present early results suggest that the generic
To sum up, we have proposed an athermal elastoplastiocehaviors observed in the experiments and molecular simu-
model for the flow of yield stress systems, constructed on théations originate in a minimal number of ingredients. This
basis of two generic ingredients: localized plastic events, ocepens the possibility for a coherent and robust scenario for
curring above a microscopic yield stress with a finite dura-the slow flow behavior of disordered materials.
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