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We study the effect of chirp on electromagnetic(EM) pulse interaction with a charged particle. Both the
one-dimensional(1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped
pulse, the charged particle energy can be changed after the interaction with a 1D EM chirped pulse. Different
types of chirp and pulse envelopes are considered. In the case of small chirp, an analytical expression is found
for arbitrary temporal profiles of the chirp and the pulse envelope. In the 3D case, the interaction with a chirped
pulse results in a polarization-dependent scattering of charged particles.
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In the field of an electromagnetic(EM) pulse, a free
charged particle experiences the ponderomotive force di-
rected to regions of lower intensity[1]. However, the overall
interaction of a free charged particle with a pulse of a one-
dimensional(1D, plane-wave) EM field does not lead to a
change in the particle’s energy. Any acceleration in the rising
edge of the pulse is compensated for by deceleration in the
trailing edge, unless the particle is “born” inside the pulse,
for example due to tunneling ionization[2]. The situation is
different when using an EM pulse, the field envelope of
which varies in at least one transverse direction, such as, for
example, in the waist of a focused Gaussian laser beam.
Here, an electron can gain energy if it leaves the pulse in the
transverse direction before the decelerating field compen-
sates the acquired energy[3]. Such interaction of electrons
with a laser pulse has been observed experimentally by fo-
cusing an intense laser pulse(with a peak intensity ofI0
<1019 W/cm2) onto free electrons in vacuum[4].

In this article, we predict that the energy of a charged
particle can be changed through the interaction with a
chirped electromagnetic pulse, i.e., in which the local(in-
stantaneous) frequency changes over the length of the pulse,
even in 1D. We show that the energy gain of the particle
increases with the EM pulse amplitude and with the relative
chirp. Presently, high-intensitysI0,1019 W/cm2d laser
pulses with a relative chirp of a few percent are available
from infrared solid-state laser systems[5] and up to a few
tens percent should be possible with existing few-cycle sys-
tems [6] or after propagation of an intense fs laser pulse
through a plasma channel[7]. Generation of a subpicosecond
EM pulse with more than 10% chirp from a free-electron
laser was demonstrated experimentally[8]. To generate even
larger chirps, the reflection of EM pulses from a relativistic
ionization front[9] looks promising when the gamma factor
of the front changes during the reflection[10]. In the follow-
ing, we investigate the interaction of an electron with a
chirped EM pulse. Note, however, that our predictions re-
main valid also for any other type of charged particle, if one
simply replaces the electric charge and the mass of the par-
ticle. We start with a 1D theory and then present 3D results.

First, consider a 1D chirped pulse propagating in theZ
(longitudinal) direction, and suppose that the field is linearly
polarized in thex direction, such thatEx andBy are the only

nonzero components of the electric fieldE and the magnetic
field B. The pulse can be described byE=exEx
=exE0szdcosfvszdzg and B=eyBy=eyEx, wherez;Z/c− t is
the retarded time, andvszd is the local frequency in the
pulse. Note that the 1D model is valid also in the three-
dimensional case when the particle’s position remains close
to the pulse axis, so that the decrease of the EM field in the
transverse direction can be neglected. Next, consider a free
electron with an initial momentumP0sP0x,P0y,P0zd. To
study the electron’s dynamics, we write the relativistic equa-
tion of motion of an electron in an EM field,

dp/dt = dsgbd/dt = − E − b 3 B. s1d

Here p=P/mec and b=v /c are the dimensionless momen-
tum and velocity of the electron,g=s1+p2d1/2 is the relativ-
istic factor, me is the electron mass, andc is the speed of
light in vacuum,t=v0t, and the spatial coordinatesx, y, and
z are normalized toc/v0, where v0=vsz=0d is the local
frequency in the center of the pulse; the variation of the
dimensionless temporal(spatial) variables by 2p corre-
sponds to the wave period(wavelength) in the center of the
pulse. The electric and magnetic fields are normalized to
mecv0/e, wheree is the absolute charge of the electron. Mul-
tiplying Eq. (1) by b, we obtain an equation for the energy of
the particle,

dg/dt = − b ·E. s2d

Note that Eqs.(1) and(2) are also valid in the field of a 3D
EM pulse. From Eq.(1), in the 1D case, we have

dpx/dt = − s1 − bzdEx, s3d

dpy/dt = 0, s4d

dpz/dt = − bxEx. s5d

According to Eq.(4), the y component of the momentum is
conserved, i.e.,pystd=pyst=0d;py0. From Eqs.(2) and(5),
we find the following integral of motion(see, e.g., Ref.[11]):

gstd − pzstd = g0 − pz0 ; C = const. s6d

To obtain the transverse momentum, we integrate Eq.(3),
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px = px0 + A, s7d

whereA is defined as

A ; E
j0

j

Exsjddj, s8d

with j=v0z=z−t andj0=jst=0d. One can see that the value
of A is equal to the difference of the normalized vector-
potential componentAx, defined asEx=−]Ax/]t, in the
pointsj andj0. Thus, Eq.(7) shows the well-known fact that
the transverse canonical momentumpx−Ax is conserved.
Oncepx is calculated from Eq.(7), one can easily find the
longitudinal momentumpz and the relativistic factor from
Eq. (6),

Spz

g
D = Spz0

g0
D + fsA,pW0d, s9d

where f =AsA+2px0d /2C. When the electron is initially non-
relativistic, up0u!1, one obtainsC.1 and thus f =A2/2
+Apx0. For an initially relativistic electron with the longitu-
dinal momentum prevailing,spx0d2, spy0d2!spy0d2@1, we
have from Eq.(9)

Spz

g
D < Spz0

g0
DF1 + AsA + 2px0d 3 Hg'0

−2 , pz0 . 0,

s/4g0
2, pz0 , 0.

G ,

s10d

whereg'0=f1+spx0d2+spy0d2g1/2, s=−1 for pz, ands=1 for
g. When initially the transverse motion dominates
(spy0d2,spz0d2!spx0d2@1,upx0u<g0), then

Spz

g
D < Spz0

g0
D +

AsA + 2px0d
2g0

. s11d

Equations (7)–(11) describe the dynamics of an electron
which is determined by the electron initial momentump0 and
its gain in transverse momentum as given byAsj0,jd.

Let us consider the interaction of an electron with a
chirped EM pulse over an infinite interaction region,j0
= +` and j=−`. For definiteness, let us choose a chirped
pulse with a Gaussian field envelope and the local frequency
varying linearly with the retarded coordinate(linearly
chirped pulse),

Ex = a0gsjdcosfVsjdjg. s12d

Here gsjd=exps−j2/s2d is the field envelope, andVsjd
=v /v0=1+DVj /s is the normalized local frequency, with
DV=Vssd−1 being the relative frequency span to character-
ize the strength of the chirp. For the linearly chirped Gauss-
ian pulse, we obtain

A1 ; E
+`

−`

Exdj= −
p1/2a0s

s1 + n2d1/4 expF−
s2

4s1 + n2dG
3 cosFarctansnd

2
−

s2n

4s1 + n2dG , s13d

wheren;DVs. Note that the value ofA1 does not depend
on the sign of chirp,A1sDVd=A1s−DVd. Figure 1 shows an

example of the dependenceA1sDVd, obtained by numerical
integration of Eqs.(3) and(5). According to expression(13),
when s2/4s1+n2d@1, the momentum(energy) acquired by
the electron is small. To increase the value ofA1, one can
choose a shorter pulse or a pulse with a bigger chirp. For a
nonchirped pulsesDV=0d A1=−p1/2a0s exps−s2/4d and the
value of A1 is maximum for s=21/2:A1=−s2pd1/2

3exps−1/2da0. The latter expression describes the case of a
subcycle EM pulse as studied in Ref.[12]. In contrast to the
case of a nonchirped pulse, the momentum(energy) trans-
ferred to the electron can be substantial for a long(multiple-
cycle,s@1) pulse as well if the chirp is sufficiently strong,
so thatn2@1. In this case, we obtain from Eq.(13)

A1 < − a0S ps

uDVuD
1/2

expS−
1

4sDVd2DcosS s

4uDVu
−

p

4
D .

s14d

It can be seen thatA1 is a periodic function with its ampli-
tude and frequency depending on the pulse duration and
chirp parameter(see Fig. 1). To illustrate such interaction of
an electron with a chirped pulse, we solved Eqs.(3)–(5) nu-
merically for a case whenDV=0.255,a0=3, ands=100; the
latter two values approximately correspond to the experi-
mental conditions of Ref.[4]. With these parameters and
assuming thatp0=0, we obtain momentum components of
px=A1<2.19 andpz=px

2/2<2.39 after interaction with the
linearly chirped pulse. However, whenpz0=3 (this corre-
sponds to a kinetic energy of approximately 1.1 MeV), the
transverse momentum dynamics are the same, but the final
longitudinal momentum is much higher,pz<17.71
s<8.55 MeVd. The numerical results show a good agreement
with formulas(6)–(11). Note that for nonchirped pulses, the
electron momentum is found to be unchanged after interac-
tion.

As follows from Eq.(14), for a linearly chirped pulse the
transverse momentum gainA1 is exponentially small for a
small chirpsuDVu!1d. However, for other types of chirp or
(and) other pulse envelopesgsjd (such pulses can be gener-
ated, for example, with spatial light modulators[13]), the
result can be qualitatively different. For example, consider an
EM pulse with a Gaussian envelope and a nonlinear chirp,

FIG. 1. Transverse momentum gainA1 of an electron after in-
teraction with a 1D linearly chirped EM pulse;s=50 (the curve
with larger period) ands=100,a0=1.
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such that the local frequency has a minimum(maximum) at
the pulse centersj=0d and is growing(decreasing) linearly
to the pulse edges, i.e.,V=1+DVuju /s. For such a pulse, the
value ofA1 can be calculated analytically when the chirp is
small,

A1 < − 4a0DV/s, s15d

in a good agreement with a numerical integration of expres-
sion (8) as well as with numerical solution of Eqs.(3)–(5).
Note that Eq.(15) describes a qualitative difference with
regard to a linearly chirped pulse, because nowA1 is in-
versely proportional to the pulse length. Suppose that the
central wavelength in a chirped laser pulse is 0.8mm, a0
=1 (peak intensity of<231018 W/cm2), the full width at
half maximum corresponds to 30 fs durationss<42.45d,
andDV=0.1. Then, from Eqs.(9) and(15), one has<23 eV
for the energy of an electron, initially at rest, after interaction
with a nonlinearly chirped pulse. Larger energy gain can be
obtained for larger chirp and charges initially copropagating
with the pulse, as it is described above.

Consider another case when a chirped pulse possesses an
asymmetrical Gaussian envelope, such thats1 ss2d andDV1

sDV2d describe the field whenj,0 sj.0d. Such asymmetri-
cal envelopes are of interest for various applications and can
be generated, for example, by appropriate adjustment of a
grating-pair compressor in a femtosecond Ti:sapphire laser
[14]. For small chirp, in the case of an asymmetrical EM
pulse we have

A1 < 2a0sDV1/s1 − DV2/s2d. s16d

Furthermore, in the case of an arbitrary pulse envelope,gsjd,
and an arbitrary chirp,Vsjd, we obtained the following ex-
pression for the transverse momentum gain:

A1 < 2a0E
−`

+` dV

dj
S3

dg

dj
+ 2j

d2g

dj2Ddj, s17d

provided thatg andV change on a characteristic time scale
much longer than the local wave period and that the chirp is
small. To calculate Eq.(17), we divided the electrical field
into segments in which the wave phaseVj changes from
2pn to 2psn+1d, wheren=0, ±1, ±2, . . . .Then the integral
in Eq. (8) was calculated for such a segment expandinggsjd
andVsjd in a Taylor series and keeping only the first deriva-
tive of V. The value ofA1 is a sum of the results for all
segments. Because the number of segments is large in a
multiple-cycle pulse, the sum can be approximated by an
integral taking into account that the segment’s length de-
pends on the local frequency. This yields the expression(17)
from which one can derive Eqs.(15) and (16) by choosing
the corresponding pulse envelope and chirp profile. Note that
formula (13), which describes an interaction with a linearly
chirped pulse, cannot be calculated from Eq.(17); in this
case, higher-order derivatives ofV should be retained when
deriving Eq.(17).

Finally, we discuss the implications of our findings for the
case of an electron interaction with a focused(3D) chirped
pulse. This is of importance because in experiments, the
pulse is usually focused to a small spot size to provide suf-

ficiently high amplitude. In this 3D case, besides the change
of the field in the transverse direction, the longitudinal com-
ponents of the EM field also need to be considered(see, e.g.,
Ref. [15]). Furthermore, for a chirped pulse, one also has to
take into account that the spot size depends on the local
frequency(see, e.g.,[16]). To describe the focused EM field,
we suppose that before focusing, the pulse radiusw1 is con-
stant over the pulse length. Then, from the well-known ex-
pression for the focused Gaussian beam radiusw=w0s1
+z2/ZR

2d1/2, wherew0 is the focal radius andZR=vw0
2/2c is

the Rayleigh length, one can see thatw0,1/v [16]. So, for
the focused chirped pulse we can writew0=w00/V, where
w00=w0sv0d. One can see also that because at higher(lower)
local frequency the field is focused to a smaller(larger) spot
size, the field strength is relatively strong(weak). Indeed,
due to the energy conservation, we can writefainsjdw1g2

=fasjdw0sjdg2, where ainsjd=a1gsjd and asjd are the local
amplitudes before focusing and in focus. Becausew1
=const andw0,1/V, one findsa=a0gsjdVsjd, a0 is a con-
stant. We substituted the latter expression for the field ampli-
tude andw00/V for the spot radius in the well-known expres-
sion for the focused monochromatic pulse field[see, e.g.,
Eqs. (16a)–(16e) in Ref. [15]] to describe the focused
chirped-pulse field. This is a good approximation when the
characteristic spatial scale for the chirp is much larger than
the wavelength. We also neglect a small effect of finite pulse
duration[15].

With the described field, choosinggsjd=exps−j2/s2d, we
investigated the 3D interaction of an electron with a focused
Gaussian chirped pulse by numerical solution of Eq.(1).
Figure 2 compares the final transverse momentumpx after
interaction with a chirped pulse to that with a nonchirped
pulse, in dependence on the initial transverse position of the
electron along thex axis (along which the EM field is polar-
ized). One can see that an interaction with a nonchirped
pulse leads to the well-known ponderomotive scattering
without a transverse momentum gain for on-axis particles,
and with a negligible ponderomotive energy gain for elec-
trons withr0=sx0

2+y0
2d1/2.2w0 [15]. We found also that this

scattering does not depend on the polarization of the field

FIG. 2. The transverse momentum of an electron after interac-
tion with a focused nonchirped(curve 1) and a linearly chirped
(curve 2) pulse as a function of the initial radial position of the
electron;a0=0.1, s=100,w00=50, DV=−0.213,p0=0, andy0=z0

=0.
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that agrees with the results of Ref.[15]. However, when the
pulse is chirped, there is an energy gain both for initially
near-axis particles and for electrons withr0.2w0. In Fig. 2,
the value of 50 is chosen for the dimensionless spot radius
w00 that corresponds to 50/2p<8 wavelengths and is typical
for focused high-intensity laser pulses[4]. The results of an
electron interaction with a chirped pulse do not change quali-
tatively when the spot radius is changed. For an inspection of
the polarization dependence of chirped pulse interaction, we
plot in Fig. 3 the final transverse momentum components as
functions of the initial positiony0 (in the direction perpen-
dicular to the direction of polarization). It can be seen that in
this casepysy0d is about the same as that for a nonchirped
pulse whilepxsy0d (which is equal to zero for a nonchirped
pulse) clearly shows the “pure” effect of chirp. Thus, Figs. 2
and 3 show that an electron can gain momentum(energy)
from a chirped pulse also in the 3D geometry of focused
Gaussian beams, and that this interaction is polarization-
dependent. In the 3D case, the longitudinal momentum
scales approximately aspx

2/2 (see also Ref.[15]).
In summary, it has been shown that a charged particle

receives a transverse momentum gain in the direction of po-
larization and a longitudinal momentum gain related to the
transverse one from the interaction with a chirped electro-
magnetic pulse. This novel effect can influence the interac-
tion between chirped EM pulse and charges qualitatively

both in 1D and in 3D. When charged particles lose energy
after interaction with a chirped EM pulse, the pulse gains
energy and this can be used for amplification of the pulse.
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