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Interaction of free charged particles with a chirped electromagnetic pulse
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We study the effect of chirp on electromagnaiitM) pulse interaction with a charged particle. Both the
one-dimensiona{1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped
pulse, the charged particle energy can be changed after the interaction with a 1D EM chirped pulse. Different
types of chirp and pulse envelopes are considered. In the case of small chirp, an analytical expression is found
for arbitrary temporal profiles of the chirp and the pulse envelope. In the 3D case, the interaction with a chirped
pulse results in a polarization-dependent scattering of charged patrticles.
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In the field of an electromagnetitEM) pulse, a free nonzero components of the electric fiéfdand the magnetic
charged particle experiences the ponderomotive force difield B. The pulse can be described b¥=¢E,
rected to regions of lower intensifyt]. However, the overall =gEq({)codw({){] andB=¢B,=¢FE,, where{=Z/c-t is
interaction of a free charged particle with a pulse of a onethe retarded time, and({) is the local frequency in the
dimensional(1D, plane-wavg EM field does not lead to a pulse. Note that the 1D model is valid also in the three-
change in the particle’s energy. Any acceleration in the risingdimensional case when the particle’s position remains close
edge of the pulse is compensated for by deceleration in thg the pulse axis, so that the decrease of the EM field in the
trailing edge, unless the particle is “born” inside the pulse transverse direction can be neglected. Next, consider a free
for example due to tunneling ionizatig@]. The situation is  electron with an initial momentunPy(Pgy, Poy,Pg,). To
different when using an EM pulse, the field envelope ofstudy the electron’s dynamics, we write the relativistic equa-
which varies in at least one transverse direction, such as, fQfon of motion of an electron in an EM field,
example, in the waist of a focused Gaussian laser beam.

Here, an electron can gain energy if it leaves the pulse in the dp/dr=d(yB)/dr=-E - B X B. (1)

transverse direction before the decelerating field CompenHerep=P/mec and B=v/c are the dimensionless momen-
sates the acquired ener¢§]. Such interaction of electrons tum and velocity of the electrony=(1+p? 2 s the relativ-

W'th. a Iaser bulse has been ob;erved expe ”me’?ta”y by fofstic factor, m, is the electron mass, ardis the speed of
cusing an intense laser pulgeith a peak intensity ofly

~10% W/cm?) onto free electrons in vacuufd]. light in vacuum,7=wt, and the spatial coordinat&sy, and

: . ) z are normalized tac/ wy, where wp=w({=0) is the local
In this article, we predict that the energy of a Ch‘r’“gmfre uency in the center of the pulse; the variation of the
particle can be changed through the interaction with a q y P ’

chirped electromagnetic pulse, i.e., in which the logat dimensionless temporalspatia) variables by 2 corre-

stantaneoysfrequency changes over the length of the pulsesﬂi)sr;ds_;ﬁeth;evg?r\if gﬁgqg:vﬁ;r:;gg?ezz;h:rges(t)?;q(;ﬁi;g% o
even in 1D. We show that the energy gain of the particlep ’ g

increases with the EM pulse amplitude and with the relative. Cwole, wheree is the absolute charge of the electron. Mul-

chirp. Presently, high-intensity(lo~ 10'° W/cn?) laser iplying Eq. (1) by 8, we obtain an equation for the energy of
. . . ; the particle,

pulses with a relative chirp of a few percent are available

from infrared solid-state laser systerff§ and up to a few dyldr=-B-E. 2)

tens percent should be possible with existing few-cycle sys- o ]

tems [6] or after propagation of an intense fs laser pulseNote that Eqs(1) and(2) are also valid in the field of a 3D

through a plasma chann@l]. Generation of a subpicosecond EM pulse. From Eq(1), in the 1D case, we have

EM pulse with more than 10% chirp from a free-electron

laser was demonstrated experimenté8, To generate even dpddr=-(1-5)E, ©)
larger chirps, the reflection of EM pulses from a relativistic

ionization front[9] looks promising when the gamma factor dp/d7=0, (4)
of the front changes during the reflectipt0]. In the follow-

ing, we investigate the interaction of an electron with a dp/dr=- B,E,. (5)

chirped EM pulse. Note, however, that our predictions re- . .
main valid also for any other type of charged particle, if oneACCordIng to Eq.4), they component of the momentum is

simply replaces the electric charge and the mass of the pafPnServed. i.epy(7)=p,(7=0)=p,o. From Egs(2) and(5),

ticle. We start with a 1D theory and then present 3D results'Ve find the following integral of motiotsee, e.g., Ref11)):
First, consider a 1D chirped pulse propagating in Zhe _ = v —pn = C = const 6
(longitudina) direction, and suppose that the field is linearly M) =P =% Po ' ©)

polarized in thex direction, such thaE, andB, are the only ~ To obtain the transverse momentum, we integrate(8y.
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Px= pr+A: (7)

whereA is defined as
3

Azf
o

with é=wpl=z—-7and&,=&7=0). One can see that the value
of A is equal to the difference of the normalized vector-
potential componenth,, defined ask,=-0A./dr, in the
points¢ and&,. Thus, Eq(7) shows the well-known fact that
the transverse canonical momentym—A, is conserved.
Oncep, is calculated from Eq(7), one can easily find the
longitudinal momentunp, and the relativistic factor from
P, P

Eq. (6),
(‘}’ ) - ()’0

wheref=A(A+2p,o)/2C. When the electron is initially non-
relativistic, |po| <1, one obtainsC=1 and thusf=A?/2
+Ap,o. For an initially relativistic electron with the longitu-
dinal momentum prevailing(p.)?, (pyo)*<(p,0)>1, we
have from Eq(9)

() -

where y, o=[1+(py0)?+(p,0)?]*/% s=~1 for p, ands=1 for
v. When initially the transverse motion dominates
((pyo)zu (pzo)2<(px0)2>1!|px0| =~ ¥0), then

<pz) ~ <p20> + A(A+ 2px0)
y Yo 2y

Equations(7)—«11) describe the dynamics of an electron
which is determined by the electron initial momentpgand
its gain in transverse momentum as givenAiy,, £).

Ex(£)d¢, (8

) + f(A, ﬁO)i (9)

pZO>Or
P <O.

-2
Yior

45,

Pz
Y

Po

)[1 +A(A+2p,o) X {
Yo

(11

Let us consider the interaction of an electron with a

chirped EM pulse over an infinite interaction regiof,

=+ and £é=-«. For definiteness, let us choose a chirped
pulse with a Gaussian field envelope and the local frequenc

varying linearly with the retarded coordinatdinearly
chirped pulsg
Ex = ag9(§)cod Q(§)é&]. (12)

Here g(é)=exp-&/d?) is the field envelope, and)(é)
=wlwy=1+A0¢/ o is the normalized local frequency, with
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FIG. 1. Transverse momentum ga#q of an electron after in-
teraction with a 1D linearly chirped EM pulse;=50 (the curve
with larger period) and 0=100,ap=1.

example of the dependenég(A()), obtained by numerical
integration of Eqs(3) and(5). According to expressio(l3),
when ¢?/4(1+v?)> 1, the momentungenergy acquired by
the electron is small. To increase the valueAgf one can
choose a shorter pulse or a pulse with a bigger chirp. For a
nonchirped puls¢éAQ=0) A, =-7"%a,0 exp(-0?/4) and the
value of A, is maximum for o=2Y2:A,=-(2m)%?
xexp(—1/2)a,. The latter expression describes the case of a
subcycle EM pulse as studied in RgE2]. In contrast to the
case of a nonchirped pulse, the moment(energy trans-
ferred to the electron can be substantial for a lomgiltiple-
cycle, o>1) pulse as well if the chirp is sufficiently strong,
so that?> 1. In this case, we obtain from E(L3)

To 1/2 1
A a°<m> exp(" 4(A9>2)C°S(

It can be seen thak, is a periodic function with its ampli-
tude and frequency depending on the pulse duration and
chirp paramete¢see Fig. 1. To illustrate such interaction of
an electron with a chirped pulse, we solved E&—5) nu-
merically for a case whea(Q)=0.255,a,=3, ando=100; the
latter two values approximately correspond to the experi-
thental conditions of Ref[4]. With these parameters and
assuming thap,=0, we obtain momentum components of
p=A,~2.19 andp,=p2/2~2.39 after interaction with the
linearly chirped pulse. However, whem,=3 (this corre-
sponds to a kinetic energy of approximately 1.1 Methe
transverse momentum dynamics are the same, but the final
longitudinal momentum is much higherp,~17.71

w

o _)_

4A0| 4
(14)

AQ=0(0) -1 being the relative frequency span to charactery~g 55 Me\). The numerical results show a good agreement
ize the strength of the chirp. For the linearly chirped Gaussyiin formulas(6)~(11). Note that for nonchirped pulses, the

ian pulse, we obtain

-0

71_l/ 2a0 o

Edé= - 1+

0,2
A= f exp[' a1 +v2)]
2y }

XCO{ _4(1+V2)

wherev=AQ0o. Note that the value oA; does not depend
on the sign of chirpA;(AQ)=A;(-AQ). Figure 1 shows an

arctariv)
2

(13

electron momentum is found to be unchanged after interac-
tion.

As follows from Eq.(14), for a linearly chirped pulse the
transverse momentum ga#y, is exponentially small for a
small chirp(JAQ|<1). However, for other types of chirp or
(and other pulse envelopeas ¢) (such pulses can be gener-
ated, for example, with spatial light modulatoik3]), the
result can be qualitatively different. For example, consider an
EM pulse with a Gaussian envelope and a nonlinear chirp,
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such that the local frequency has a minimgmaximun) at 0.016+
the pulse centet¢=0) and is growing(decreasinglinearly 0.012- 2
to the pulse edges, i.€)=1+A0|&/o. For such a pulse, the )
value of A; can be calculated analytically when the chirp is 0.008-
small,
o 0.004-

A = —4a,AQ/ o, (15)
, , o ) 0.000
in a good agreement with a numerical integration of expres-
sion (8) as well as with numerical solution of Eg&)—5). -0.004 1
Note that Eq.(15) describes a qualitative difference with
regard to a linearly chirped pulse, because néwis in- -0.008+ 0 3 50 200
versely proportional to the pulse length. Suppose that the X,
central wavelength in a chirped laser pulse is QrB, a,
=1 (peak intensity of~2x 10'® W/cn?), the full width at FIG. 2. The transverse momentum of an electron after interac-

half maximum corresponds to 30 fs duratior=42.45, tion with a focused nonchirpe¢turve 1) and a linearly chirped
andAQ=0.1. Then, from Eqg9) and(15), one has=23 eV  (curve 2 pulse as a function of the initial radial position of the
for the energy of an electron, initially at rest, after interactionelectron;a;=0.1, 0=100, Wo=50, AQ1=-0.213,po=0, andy,=2
with a nonlinearly chirped pulse. Larger energy gain can bé& 0

obtained for larger chirp and charges initially copropagating,. . . . . .
with the pulse, as it is described above. gf|c|ently high amplitude. In this 3D case, besides the change

Consider another case when a chirped pulse possesses%{nthe field in the transverse direction, the longitudinal com-
asymmetrical Gaussian envelope, such thato,) andAQ, ponents of the EM field also nee_d to be considéssg, e.g.,
(AQ,) describe the field whe&< 0 (£>0). Such asymmetri- Rekf. [.l?)' Furthertrrlttr)]ret, tfr?r a Ch;fp‘?d pclijlse, c:jne als?hhaf tol
cal envelopes are of interest for various applications and ca € Into account hat the spot siz€ depends on the foca

be generated, for example, by appropriate adjustment of éequency(see, €.9.{16]). To describe the focused EM field,

; ; ; - : e suppose that before focusing, the pulse radiys con-
rating-pair compressor in a femtosecond Ti:sapphire lase
?14] lgorr) small cphirp in the case of an asymmzltarical EM stant over the pulse length. Then, from the well-known ex-
puls.e we have ’ pression for the focused Gaussian beam raditsny(1

+22/Z3)Y2, wherew, is the focal radius andg=wwWj/2c is
A, = 2a9(AQ0y /o1 = Ayl 0y). (16)  the Rayleigh length, one can see thgt~1/w [16]. So, for
the focused chirped pulse we can writg=wgo/ (2, where
Woo=Wp(wp). One can see also that because at higlosver)
local frequency the field is focused to a smallergen spot
size, the field strength is relatively strorgeak). Indeeczi,
™ dQ( _dg d’g due to the energy conservation, we can wifigg,(&)w; |
A= Zaof_oc d_§<3d_§+2§d_§2>dg' (A7) =[a(@wy(H ]2, wherea,,(&=a,9(&) and a(¢) are the local
amplitudes before focusing and in focus. Because
provided thaty and Q) change on a characteristic time scale=const andvy~ 1/, one findsa=ayg(¢)Q(é), ag is a con-
much longer than the local wave period and that the chirp istant. We substituted the latter expression for the field ampli-
small. To calculate Eq(17), we divided the electrical field tude andwgg/ () for the spot radius in the well-known expres-
into segments in which the wave pha&¢ changes from sion for the focused monochromatic pulse fi¢kke, e.g.,
2mn to 2m(n+1), wheren=0, +1, +2,... .Then the integral Eqgs. (168166 in Ref. [15]] to describe the focused
in Eq. (8) was calculated for such a segment expandj(§  chirped-pulse field. This is a good approximation when the
and(Q(¢) in a Taylor series and keeping only the first deriva-characteristic spatial scale for the chirp is much larger than
tive of Q. The value ofA; is a sum of the results for all the wavelength. We also neglect a small effect of finite pulse
segments. Because the number of segments is large indaration[15].
multiple-cycle pulse, the sum can be approximated by an With the described field, choosing¢) =exp-£%/o?), we
integral taking into account that the segment’s length deinvestigated the 3D interaction of an electron with a focused
pends on the local frequency. This yields the expresgi@n ~ Gaussian chirped pulse by numerical solution of ED.
from which one can derive Eq$15) and (16) by choosing Figure 2 compares the final transverse momenpynafter
the corresponding pulse envelope and chirp profile. Note thadnteraction with a chirped pulse to that with a nonchirped
formula (13), which describes an interaction with a linearly pulse, in dependence on the initial transverse position of the
chirped pulse, cannot be calculated from E&j7); in this  electron along the axis (along which the EM field is polar-
case, higher-order derivatives 9f should be retained when ized. One can see that an interaction with a nonchirped
deriving Eq.(17). pulse leads to the well-known ponderomotive scattering
Finally, we discuss the implications of our findings for the without a transverse momentum gain for on-axis particles,
case of an electron interaction with a focug@8®) chirped and with a negligible ponderomotive energy gain for elec-
pulse. This is of importance because in experiments, therons withry=(x3+y3)*?> 2w, [15]. We found also that this
pulse is usually focused to a small spot size to provide sufscattering does not depend on the polarization of the field

Furthermore, in the case of an arbitrary pulse envelg(®,
and an arbitrary chirpQ)(£), we obtained the following ex-
pression for the transverse momentum gain:
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that agrees with the results of R¢L5]. However, when the

pulse is chirped, there is an energy gain both for initially 0.008 1
near-axis particles and for electrons wi™> 2w,. In Fig. 2, ;
the value of 50 is chosen for the dimensionless spot radius 0.004 -

Wqo that corresponds to 5042= 8 wavelengths and is typical
for focused high-intensity laser pulsg4. The results of an
electron interaction with a chirped pulse do not change quali-
tatively when the spot radius is changed. For an inspection of
the polarization dependence of chirped pulse interaction, we -0.004 -

[}
3 0.000 4
a

plot in Fig. 3 the final transverse momentum components as l 2

functions of the initial positiorny, (in the direction perpen- 0.008

dicular to the direction of polarizationit can be seen that in " 200 100 0 100 200
this casepy(y,) is about the same as that for a nonchirped A

pulse whilep,(yo) (which is equal to zero for a nonchirped

pulse clearly shows the “pure” effect of chirp. Thus, Figs. 2  FIG. 3. The final momentum componergs (curve ) and p,
and 3 show that an electron can gain momentemergy (curve 2 after interaction with a focused chirped pulse in depen-
from a chirped pulse also in the 3D geometry of focuseddence ony,. The pulse parameters are the same as in Figng2.
Gaussian beams, and that this interaction is polarization=0, Xo=2,=0.

dependent. In the 3D case, the longitudinal momentum

scales approximately g£/2 (see also Ref{15]).

In summary, it has been shown that a charged particlgsih jn 1D and in 3D. When charged particles lose energy
receives a transverse momentum gain in the direction of posfter interaction with a chirped EM pulse, the pulse gains

larization and a longitudinal momentum gain related to thegnergy and this can be used for amplification of the pulse.
transverse one from the interaction with a chirped electro-

magnetic pulse. This novel effect can influence the interac- This work is supported by the Stichting voor Fundamen-
tion between chirped EM pulse and charges qualitativelyteel Onderzoek der Materi&OM).
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