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Preconditioned lattice-Boltzmann method for steady flows
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In this paper we propose a preconditioned lattice Boltzm@&®) method for steady incompressible flows.
For steady flows, the macroscopic equations derived from this LB model are equivalent to those from the
standard LB model, but with an improved eigenvalue system. The proposed model can be viewed as an explicit
solver for preconditioned compressible Navier-Stokes equations. Linear stability analysis is performed and the
results show that the stability of the model is the same as that of the standard LB model for low Mach numbers.
The proposed model retains the structure of the standard LB model and, hence, possesses all the advantages.
Numerical tests show that the convergence rate can be enhanced as much as an order of magnitude compared
to the standard lattice Boltzmann method. The accuracy of the solutions is improved as well.
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I. INTRODUCTION the LBM also suffers from this problem. Researchers have

. noted this problem and made efforts to accelerate the con-
The lattice-Boltzmann method BM) developed about a \6/qance rate of the LBM from different viewpoirjtsl—24.

decade ago is a kinetic approach for computational fluid dy- | g .

. . X n general, the existing accelerated LBE models fall into
na_mlps(CFD)_ [1-5. In the_LBM, the dynamic bghawor ofa two categories: a time-dependent approach and a time-
fluid is described by a lattice-Boltzmann equati@BE) for . .

independent approach. In the former, the LBE still evolves as

the single-particle distribution functioOF), and the flow e hi but th uti tion is al
variables, such as density, velocity, and temperature, are g&. lIme-marching process, but the evoiution equation s al-

termined from the DF directly. The advantages of the LBM,terEd either by including a false forcing term into Fhe_stan-
such as its parallelism, simple structure, simplicity in coding.d2rd LBE, which accelerates the convergence while it van-

and the straightforward incorporation of microscopic interac/Shes at the steady staf¢1,13, or by employing certain
tions, have been well demonstrated in the literature. As apimplicit schemes to discretize the time-dependent discrete-
plied to steady flows, however, the standard LBE usually/€locity Boltzmann equatioDVBE) so that a large time
converges rather slowli6], and the time-exhausting conver- Step can be usefll3-15. On the other hand, in the time-
gence progress prevents it from being as competitive as cofididependent approach, a linear or nonlinear algebra system
ventional CFD methods in practical applications. derived from the time-independent form of the standard LBE
The slow convergence rate is an inherent disadvantage @ DVBE is solved directly for steady Stokgh6] or Navier-
the standard LBM. It is well understood that the LBM is an Stokes flowg17-19. Alternatively, Tolkeet al. attempted to
explicit time-marching method for compressible fluid flows solve the time-independent DVBE using the multigrid
with low Mach numbers, in other words, an explicit artificial method directly{20].
compressible scheme for incompressible Navier-Stokes The accelerated LBMs mentioned above all yield im-
equations. In addition to the error due to numerical discretiproved convergence in comparison to the standard LBE.
zation, the finite Mach number effect also introduces a grid-‘rhese methodsy however, are more Comp”cated than the
independent “compressibility” error. To reduce this error, thestandard LBE, and, thus, the advantage of simplicity of the
Mach number must be sufficiently small in the LBM. As the | M is sacrificed. In this paper, we aim to propose an LBE
Mach number becomes smaller, however, it would become,,qe| for steady flows that retains the advantages of the
increasingly difficult to solve the compressible Navier- standard LBM, but with an accelerated convergence rate.
Stokes equa_ltion_s_ using_ a ge”er?' time-marchir_1g ngmerice\lhe key point,of the model is to modify the equilibrium
scheme. This difficulty is rooted in the large disparity be- iy tion function(EDF) with the addition of a parameter.
tween the acoustic wave speed and the fluid speed that COith this EDF, the macroscopic equations derived from the
verts other waves in low Mach number roW‘S—.lq..Usu— model can be viewed as certain preconditioned Navier-
ally, for any explicit scheme, the Courant-Friedrich-Levy g1 ag equationg—10, which are equivalent to the Navier-
(CFL) condition should be fulfilled for the sake of numerical i,y ag equations for éteady flows, but with a better solvable

.%bndition due to the removal of the original eigenvalue stiff-

itis inversgly proportional to the so.und speed of the acoUStiGass The rest of the paper is organized as follows. First, we
wave, during which the waves driven by the fluid changey yjine the essential ingredients of the LBM in Sec. II, fol-

slightly. As a result, a large number of time steps. are neede wed by presenting the LBE model for the steady Navier-
to reach the steady state of the flow. As an explicit schemeg; og equations in low Mach number limit in Sec. Ill. Nu-

merical results predicted by this model are compared with
the standard time-dependent LBE in Sec. IV. Finally a dis-
*Corresponding author. Email address: metzhao@ust.hk cussion is made in Sec. V.
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Il. LATTICE-BOLTZMANN EQUATION Since Egs.(5) take the form of compressible Navier-
Stokes equations, the LBA) is virtually a solver for iso-
thermal compressible fluid flows with a low Mach number.
Compared with the incompressible Navier-Stokes equations,
Egs. (5) have additional terms of ord€(M?) in the conti-
fi(x + ¢ 8,t+ &) — fi(x,t) = Q(f), (1)  nuity equation and®(M?®) in the momentum equation. As we
. . . o ) apply the LBM to solve the incompressible Navier-Stokes
where fj(x,t) is the single-particle distribution function for equations, a “compressible” error, in addition to the usual
particles moving with velocity; at positionx and timet, &  gpacial and temporal discretization errors, arf@s. There-
is time step, and); is the collision operator representing the fore, in practical applications, the Mach number in the LBM
rate of change due to collisions in the BFThe most widely  ¢ou1d be kept small in order to reduce this error.
used collision operator in LBM is the Bhatnagar-Gross-  vyet a small Mach number may cause numerical difficul-
Krook (BGK) or the single-relaxation-time model, ties for the LBM as follows. First, for a flow at a fixed
1 Reynolds number Rel=U,/ v, whereL andU, are the char-
Q(f)=-—[f, - fi(e")], (2) acteristic length and velocity of the flow, from E() we
Ts obtain

The lattice-Boltzmann equation for isothermal flows is a
discrete Boltzmann equation with a finite discrete velocity
set,

where 75 is the nondimensional relaxation time, affa") is UsL 3 \3NM
the local equilibrium distribution function. The macroscopic 7s— 0.5 -0 Y3 _ V—, (7)
densityp and velocityu of the fluid are determined by the Cs & Re Re

particle velocity moments of the DFs, whereN is the number of grid points in one direction. There-

_ _ fore, for a given latticess approaches 0.5 ad approaches
p=2 T, pu=2cf. ) 6 zero. It is understood that under this circumstance the
The discrete velocities and EDF must be chosen properlgomputation of the LBE usually becomes unstg26].
such that the mass and momentum are conserved and sym-Second, a small Mach number means that LBE usually
metry requirements are satisfied. As such, the resulting madéakes a long time to reach a steady state for a steady flow.
roscopic equations derived from Eg@) describe the correct This is due to the eigenvalue stiffness of the compressible
hydrodynamics of the fluid. For illustration, we now use theNavier-Stokes equatior(s) [7]. To see this more clearly, we
D2Q9 model[21] as an example, where the EDF is definedrewrite the two-dimensional Eg5) in a vector form,

by
dQ JE IF
c-u uuge —cll) E’fg"’E:R{Qv}, (8)
9= opf 14 S ZE T
O 2 whereR represents the vector associated with the appropriate

where the discrete velocities are given by=0, and ¢,  Viscous terms on the right zhand side of E§), and Q
=\(cos@,,sin ) with \;=c, =(-1)7/2 fori=1-4, and =(p,pu,pv)’, E=(pu,pu?+ccp,puv)’, F=(pv,puv,pv?
\i=v2e, 6=(i-5)m/2+m/4 for i=5-8. Theweights are +Cep)’, Q,=(0,u,0)", whereu andv are thex andy com-
given by wy=4/9, w,=1/9 for i=1-4, w;=1/36 fori=5 po_nents of the velocity, respectively. Eq(8) can be further
-8, andce=c/\3 is the sound speed of the model, and Written as
=4,/ &, whered, is the lattice spacing. The ED®) can also 50 90 pro)
be derived from the Boltzmann-Maxwellian distribution via — +A— +B—=R{Q,}, (9)
a Taylor expansion ini/cs~M up to second orde22,23, a Xy
where M represents the Mach number. This indicates tha(/vhereA:(?E/aQ andB=F/ Q.
EDF (4) holds only for smalM. ThereforeM must be small It can be shown that the eigenvalues of the matrixesd
in the LBM. B ar

The macroscopic equations can be derived from the LBE
(1) through the Chapman-Enskog procedure in the low Mach MA)=(uuztcy, AB)=(v,vxcy (10
number limit [24]. By neglecting the term®(5,M?%) and

0(65), the derived macroscopic equations can be written asrespectlvely. Therefore, the condition numberAuf <k(A)

=maxA\;/\; over all the eigenvalues of A, is of order 1M,
ap which will be very large as the Mach number of the flow is
g +V - (pu)=0, (5a) small. Similarly, the condition number of matr& is also
large in this case. This fact means that the waves in the fluid
pu) transfer with quite different speeds, which will make a time-
——+V -(puu)=—Vp+ V - (pr9), (5b) marching scheme, including the LBE), converge very
a slowly [7]. It is noted that the viscous terms also have com-
where S=Vu+(Vu)T, p:cgp is the pressure, and the shear plex influences on the wave speeds, depending on the Rey-
viscosity v is given by nolds number and the ratio of the Reynolds number to the
Mach numbel9]. The convergence difficulty can be further
v=cX(7-3) 6. (6)  exacerbated by the magnitude of the diffusion tefiis
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[ll. PRECONDITIONED LBE =diag1,1/y,1/vy) is a precondition matrix. Now the eigen-

The arguments presented in Sec. Il show that the I_Blé/alues of the preconditioned convection maffiA become

method can be viewed as a time-marching solver for com- A(PA) = (u,ucyly, (15)
pressible Navier-Stokes equations in the low Mach number

limit. From the standpoint of reducing the “compressible” Wherecs=uy1-y+(ycs/u)? is an effective sound speed. It is
error, the LBM is more applicable to small Mach number clear that ag/=1.0,c; reduces to the original sound spegd
flows. A small Mach number, however, may induce numeri-Conversely, asy approaches zera, approaches the fluid

cal difficulties. In particular, for steady flows, a small Mach speedu. Therefore, by adjusting this parameter, we can de-
number causes the convergence to become very slow. Terease the disparity between the speeds of the acoustic wave
overcome this problem, we propose a preconditioned LBMaNd the waves propagating with the fluid velocity, and thus

in this section. accelerate the convergence rate of the LBE. It is also noted
that for Iow Mach number flows, namely, as-0, we have
A. Formulation = 705
The preconditioned LBEPLBE) takes the same form as Accordmg to the effective sound speeg we can define
the standard LBE and is rewritten here as an effective Mach numbev* as M* = Ug/c,. It is clear that

1 M*= \'yM and, thereforeM* =M for 0<y=<1. In practi-
fFX+CSt+8) —f = Z[f — flea 11 cal applications, the parametgican be chosen such thiit*
O+ Gdt+ &) - il rp[ A is low enough for a given flow condition. This can be done
by first specifying the value oM* according to the flow

but the EDF is now defined by condition and then setting=(M/M* )2,

2
Ci-u uu(cc —cgl
fe9=wp| 1+ -5 + ("4 s) , (12)
Cs 2yCg
with 0<y=<1 an adjustable parameter. The definition of the
fluid density and velocity are the same as R).
Through the Chapman-Enskog procedure we can derivi

B. Linear stability analysis

The parametery has an influence on the stability of the
PLBE. In fact, from the relationship between the viscosity
gnd the relaxation time, we obtain

the macroscopic equations from the LBEL) as \ENM
0, Tp_ 0 = Re ’ (16)
L1V (=0, (139 7
a from which we see that the deviation ef from 0.5 is in-
creased by decreasing the valueydor given M and Re on
0(PU) 1 i .1 a fixed lattice. Therefore, it is expected that the PLEH)
ot V (puu) = yV A yV (pr9), has a better numerical stability range than the standard LBE

(13b) (1) for small Mach number or high Reynolds number flows.
It is also noted thay also influencesfi(e‘”. The decrease ity

where p* = ycgp, and v= ycg(rp—0.5) 6. Clearly, for steady means an increase in the last term in the brackets of the EDF
flows, Eq.(13) reduces to Eq(5), but with a different equa- given by Eq.(12), which may make EDFs become negative
tion of state. It is clear that the effective sound spe*gd and, thus, cause numerical instability. These arguments indi-
=Vop*/ dp=\ycs is decreased ag<1. cate that the parameterhas complicated influences on the

It should be noted that if there exists a body fofee numerical stability of the PLBE.
acting on the fluid, the PLBEK11) should be modified by The stability of the PLBE can be analyzed systemically
adding a forcing tern#;F; on its the right-hand side. Several using the von Neumann linear analysis metfip@]. To this
choices for the forcing term are available in literature for theend, we first expand the DF(x,t) as
standard LBE(see, e.g.[27] and references therginand O
similar formula for F; can also be applied to the present fi ) =7+ fi(x.0), 1

.PLBE’ but W.ith a scaled body force by For instance_, if we where the global EDRY is a constant that depends only on
ignore the higher order terms I, we can express it a5 |

. ) the constant uniform densipy and velocityu,, f/(x,t) is the
=wici-F/yc§. With such a forcing term, the resultant mo- Ro Yo, fi (.1

) fluctuation off; around the global EDF. Substituting this ex-
m.entum equation takes the same form as @gh) except pansion into the LBE11), we obtain a linearized system,
with a scaled body forc€&/y.

The macroscopic equatio$3) can be interpreted as pre-
conditioned Navier-Stokes equations. In fact, Bi@) can be fi(x+ciout+ ) —fi(xt)=- _[f (x,0) = Gijf{ (x,0)],
rewritten as ™
(18
% + PA&Q + PBL3 =PR{Q,}, (14 whereG;;=df*¥(po, uo)/ df; is the Jacobian matrix evaluated

N at the uniform mean density and velocity. It is noted B4t
whereQ, A, B, andR are the same as defined earlier, exceptdoes not vary in space or time. Equatid®) can be rewrit-
that ¢, is replaced by the effective sound speed P ten in a compact form as
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fi (X +cio,t+ &) = My fi(x,1), (19
. . . 1 'WH',":.,, = > S
where the matrixM;; is given by BRI s v e
1 1 \'\. "“.’ """" .'f o
Mij ={1-— (SIJ + _Glj . (20) ~’~,~ o '~'
T Tp ~ wys
B s K4
The Fourier transform of Eq19) gives that @ 098 T — oo BN
5 '
Fi(k,t+ &) = exd-ik - ]M;;Fj(k,1), (20) ;3 *
wherei=y-1, F;(k,t) is the Fourier transform dff (x,t), k is 105 1 ¥=0.1
the wave number in units of B/, ande =c;/c is the dimen- 0.96 == ¥=0.05
sionless discrete velocity. The spatial dependence of the sta- ==+ v=0.03
bility of the PLBE (11) is determined by the eigenvalues of b 15 3!
the matrixI';;(k) =exd -ik - ]M;;. The explicit expression of o . s A
the Jacobian matrig;; for the D2Q9 model can be written k

s FIG. 1. The modulus of’ vs wave numbek for different y.
Gij =w 1+ 3(Q . ej) _ 23(2(91 . U(,)) _ u(l)Z) UO_0.0l andrs—0.501.

Y each value ofy, there exists a critical valuey(.. As ug
<Ue A\m=1.0, and the PLBE would be stable. On the con-
trary, asu)> U, A\, increases dramatically with) and the
scheme would become unstable. This critical value clearly
whereug=ug/c. It can be shown that the eigenvalues@®f depends on the parametgrthe smallery is, the 5;m{;1||(:,-u(’)C
are 1 and 0 with multiplicities 3 and 6, respectively, whichis, which means that the stable range of PLBE is reduced as
are independent of anduy. Accordingly, the eigenvalues of compared to the case for=1 (i.e., the standard LBE For-
the matrixM are 1 and 1-14,. tunately, for small Mach number flows in which LBE works,

It is clear thatl'=M ask=0; therefore, the PLBE11) is  the fluid velocity is usually much lower tham,., and under

asymptotically stable if1-1/7,|<1, i.e., 7,=0.5, which is  such a circumstance the PLBE is expected to have a stability
the same as the standard LB5]. As k # 0, the eigenvalues similar to the standard LBE.

of I has a complex dependence on the parametets, k,
and 7,. Hence, it is rather difficult to give a complete map- IV. NUMERICAL EXAMPLES

ping of all the stability boundaries. Here we restrict our-  |n this section, some numerical simulations are carried out
selves to cases where the wave numbeés parallel to the  to demonstrate the performance of the proposed PLBE. In all
uniform velocity up because under such circumstances thguns, we assume that the steady state is reached as the re-
most unstable condition occurs for the standard LBH]. sidual error e(t) =||u(t) —u(t—1008,)||,/[lu(t)|, is less than

Furthermore, we assume that bétlandu, are aligned with 106 whereu(t) is the computed velocity field at time
e;. It is also noted that for a given lattice and fix&tl and

o ue - wd |, @2
Y

Re, the dimensionless relaxation timeshould be adjusted A. Couette flow
according to Eq(16) for different values ofy. In fact, 7, can We first apply the PLBE to the planar Couette flow in a
be determined by channel where the upper plate moves with a constant veloc-
7,~0.5=(7-0.9/y, (23 B SR — — —
where 7 is the relaxation time for the standard LBE &s 251 '
=1. ’
We first investigate the dependence of the modulus of
I'(k), the maximum magnitude of the eigenvaluesItk) E 8
[denoted agl'(k)[], on the wave numbet. We note that for é '5 ;
small values ofl}, asy decreases from 1 to a certain critical g Ty fro g
value larger than zerd|I'(k)| becomes smaller at all wave
numbers in comparison to the case jor1.0. However, ay O
is lower than the critical valug]I'(k)| increases dramatically
at some wave number and the numerical stability becomes (?_g”* """
worse. As an example, we present in Fig. 1 the modulB of 055"\ ; e
with uy=0.01 andrs=0.501 for several different values of " 05 = < ~ '\04 ' 05
The global stability of the proposed PLBE model relies on -0 01 02 u/ R ' '
the maximum value ofT'(k)| over the entire range df (re-
ferred to as\,). In Fig. 2, \,, is plotted as a function of FIG. 2. The maximum modulus &f vs 7, anduy/c for different

and u;, for several values ofy. It is first observed that for 1.
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a) qo° . . r v 10°
y —_ -0- M*=0.087
107} Standard LBE 1 -6 M*20.058
==== Preconditioned LBE Y
By ‘ -a- M*=0.029
s 10} KR 1 5
5 A g 10%
T 107 sy \\ 'E
3 l' “ “ A Y 1 =1
% v ‘\ c
& 104 VAN ] 8
VN B
) [} 4
10-5|r ‘.‘ ' ' 1 = 10
] 1] \
10 Ay
1 M=0.005 001 005 005 001 0005
10_ ! ' A " 3
10° 10° 10* 10° 10° 107 10= = =) = S
Iteration number 10 10 10 Y 10 10
b) FIG. 4. The iteration number vg for the Couette flow at vari-
"""""""""""""""""""" ous reference Mach numbers. Re=100.
needed to reach the steady state can be expressed approxi-
0.005 mately asN~ " with n=0.45, for the case under consider-
=1 ation. Figure 4 also shows that the convergence rate of the
g PLBE with M <M* and y=(M/M*)? is enhanced to that of
El the standard LBE witiM =M* and y=1.0, although in both
cases the effective Mach number is identical.
Another gain of the PLBE is the improvement in accu-
pandard LBE racy. The global relative error, defined Bz |u—udl|,/|ud,
T LBE with u as the numerical solution ang, as the analytical

solution, is displayed in Fig. 5 againstwith different ref-
erence Mach numbers. As seen, the errors decrease exponen-
tially with y in all cases considered, which demonstrates the

FIG. 3. Convergence histories of PLBE and standard LBE foraccuracy improvement of the PLBE, although in all cases the
the Couette flow with different Mach numbers. Re=180:=0.1:  €ffective Mach number is identical.

(a) residual error(b) velocity at the channel center. The above findings are of practical significance: to obtain
the solution of a Steady flow problem economically and ac-
ity Ug relative to the bottom plate. An analytical solution is curately, should we use the standard LBE with a relatively
known for this problem and, thus, enables us to compare thiarger Mach number or use the PLBE with a smaller Mach
accuracy of the PLBE with the standard LBE. In simulations,number and a larger reference Mach number? The above
a periodic boundary condition is applied to the entrance andindings indicate that the PLBE with a smaller Mach number
exit, and the nonequilibrium extrapolation method for veloc-and a smallety is a better choice.
ity boundary conditiorj28] is applied to the top and bottom
plates. All the simulations are carried out on a684 lattice.
Initially, the velocity in the entire channel is set to zero, and == M"=0.087
the density is set to unity. The Reynolds number basedpn -~ M*=0.058
and the channel widtHl is fixed at 100.0, and the precondi- 8- M*=0.029
tion parametery is set to bey=(M/M*)? with different
values ofM and M*.

The convergence processes for variddsof the PLBE
with M*=0.1 are presented in Fig. 3 together with the re-
sults of the standard LBE. In simulations, the channel width
H is fixed and the relaxation time, is adjusted to keep the
same Reynold number Re. It is seen that in all cases the
PLBE converges to the exact solution with a faster rate than
the standard LBE, and the acceleration dependsy.0As
expected, the smallevl, the more slowly the standard LBE 107 . =
converges. On the contrary, the smaller Methe faster the 10 10 10
preconditioned LBE converges. This feature is further dem-
onstrated in Fig. 4 with some other values Mf, which FIG. 5. The global relative error vg for the Couette flow at
indicates that the relation between the iteration numbevarious reference Mach numbers. Re=100.

10°
Iteration number

107

Global relative error
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Residual error
L

Re=400

1000

400

Standard LBE (y=1.0)

Preconditioned
LBE (y=0.01)

FIG. 6. Convergence histories of PLBE and standard LBE for

2
Iteration number

3 4 5

the cavity flow with Re=400 and 1000 * =0.058.

B. Driven cavity flow

Iteration number

10

10

10

PHYSICAL REVIEW E70, 066706(2004

—8- Re=400
=9— Re=1000

-2

10

=400 and 1000.

10°

FIG. 7. The iteration number vg for the Cavity flow with Re

ditions. The reference Mach numbkl* is set to be 0.058,
The flow in a square cavity whose top wall moves with aand the precondition parametgis changed according to the
uniform velocity U, is used as the second test problem forMach numbeM as before.
the proposed PLBE. The computational mesh used is 256 Computations were carried out for Re=400 and 1000,
X 256, and, initially, the fluid is set to be stationary in the where Re is the Reynolds number basedJgrand the cavity
whole domain. The nonequilibrium extrapolation method isheightH. In Fig. 6, the time-history of the residual errors for
applied to the four walls to treat the velocity boundary con-each case is presented, and the result for the standard LBE is

a) 1 ¢ o4
Re=400
0.8 oo o ¥=0.0056
cosf \ |7
T 08 Re=400 § .
= L 00
o4t /| 0.0056 &
' Ry 002
----- 0.16
—_ 1.0
0.2 O Ghiaet. al. 0
-0.02
a 4 a s 1 . I 4 .2
82 02 04 06 08 1 08 06 0 0 0
uH2 )0, xH
b) 0.4 da
------- ¥=0.0056
0.3 --- 001
----- 0.16
02 08 — 10
0.1
=3 06 Re=400
Q) <
= =
: -0.1
A 0.4
-0.2
-03} | — 47 0.2
—0.4 O Ghiaet. al.
-0.5) 02 52 0 03 ’ oz 0.02 o.g:(tH/z 0506 008 041 012
x/H ¥
FIG. 8. Velocity[(a) and(b)] and pressurg(c) and(d)] distributions through the cavity center at Re=400.
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a 1 ® ¢ o.1
---------- 7=0.0056
08 oosf N [ :
— 1.0
0.06 + Botella & Peyret
0.6 Re=1000 5
z z
T I ol U 7=0.0056 z 0.04
0.4 === 0.01
'''' 0.16 0.02
- 1.0
0.2 O Ghiaet. al. 0
. . . -0.02
'y o3 TR 0 0.2 0.4 0.6 0.8 1
u(H/2,y)/U0 x/H
b) 0.4 d) 1
Re=1
02 08 e=1000
B /A NG I I (AN 7=0.0056
=== 001
ok F | 0.16
=) - — 10
) Re=1000 ES + Botella & Peyret
T
3 0.4
£ ozt [ 7=0.0056
=== 001
----- 0.16
-0.4 - 1;0 0.2
O Ghiaet. al. ’
»
-0.6 —00.02 0 002 004 006 008 0.1  0.12
0 0.2 0.4 0.6 0.8 1

H P(H/2,y)

FIG. 9. Velocity[(a) and(b)] and pressur§c) and(d)] distributions through the cavity center at Re=1000

also presented for comparison. It is clearly seen that thalter the solutions for incompressible flow or compressible
PLBE enhanced the convergence rate greatly for both casdélew with low Mach number. The suppression of such oscil-
compared with the standard LBE. Usually, the convergencéations can further accelerate the convergence process. We
acceleration depends onfor a given Re, as illustrated in will address this problem elsewhere.

Fig. 7.

It should be emphasized that the acceleration of PLBE is
achieved without sacrificing the accuracy of the solution. In
Figs. 8 and 9, the velocity and pressure distributions along The standard LBE method is usually ineffective for steady
the vertical and horizontal lines through the cavity center ardlows due to the slow convergence rate. In this paper, a pre-
presented for Re=400 and 1000, together with the benchzonditioned LBE with an accelerated convergence rate is
mark results if availabl¢29,3Q. It is seen that in all cases proposed. For steady flows, the macroscopic equations de-
the velocity distributions predicted by the PLBE agree wellrived from the model are equivalent to the Navier-Stokes
with the benchmark solutions, and the difference betweerquations, but with an improved eigenvalue system. Numeri-
these results with differenty is nearly indistinguishable. cal tests have been carried out to verify the convergence
However, some prominent differences are observed amongehavior and numerical accuracy of the model. The results
the pressure distributions for different valuesyofThe dif- indicate that the preconditioning can improve the conver-
ferences are small in the central region, but become largegence rate greatly, while maintaining or even improving the
near the walls. Also, the differences increase as Re becomescuracy of the final results predicted by the standard LBE.
larger. The comparison with the benchmark d@@] shows The convergence rate can be accelerated by orders of mag-
that the pressure distributions predicted by the PLBE withnitude, depending on the parameter
vy<1 agree better with the benchmark solutions than that by The main difference between the present LBE model and
the standard LBEy=1), which demonstrates the desirable other accelerated time-marching LBE meth¢d$—13 lies
properties of PLBE. in the definitions of the EDFs. In all of the previous models,

It is noted that some oscillations occurs during the conthe EDF is the same as that used in the standard LBE, and
vergence process. This is due to the reflection of the acoustitie acceleration is achieved by employing heuristic tech-
waves on the walls. We find that this oscillation can benique[11,12 or complicated implicit schemgd43-15. The
damped out by enhancing the bulk viscosity, which does nogigenvalue stiffness of the derived macroscopic equations is

V. SUMMARY
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unchanged, and the stability and accuracy of these method¢avier-Stokes system, in which the eigenvalue stiffness is
need further investigation. The present LBE, however, usesofter. Therefore, if we apply the multigrid technique to such
an EDF that differs slightly from the standard one, and all theDVBE, the resultant multigrid LBE is expected to have bet-
advantages of the standard LBE are maintained. The acceler acceleration than that proposed29)].
eration of the PLBE is achieved by decreasing the disparity |n summary, the proposed preconditioned LBE has the
between the speeds of different waves in the flow, which hag|iowing distinctive advantages compared with previous ac-
a clear physical significance. Furthermore, we can incorpogeleration LBE methods: First, the PLBE converges faster
rate other acceleration techniques, such as used in Refg3 the standard LBE while maintaining, even improving
[11-19, into the present PLBE to obtain more efficient \he gecuracy of the solution. Second, the PLBE has the same
methods. . _structure as the standard LBE, except for the slight difference
The convergence acceleration of the present PLBE i the EDF, and, hence, the PLBE shares the same advan-

lower than that of the multigrid LBE proposed [i20]. How- .
. . tages as the standard LBE. Finally, the PLBE can serve as a
ﬁ]vfgétgfaféfryiEaEsglfjh?SnLaBSéeCZdnbeVVI?EWV;ghatg2 IrEnDuiiufi(cai asis to develop more efficient methods by employing other
: 9% cceleration techniques.

solver for the steady compressible Navier-Stokes equations
with low Mach numbers. The equations have an eigenvalue
system similar to that of the compressible Navier-Stokes
equations derived from the standard LBE, and the eigenvalue
stiffness problem still exists. As pointed out in RE], this The work described in this paper was fully supported by a
eigenvalue stiffness may slow down the convergence rate afrant from the Research Grants Council of the Hong Kong
a multigrid procedure. A steady DVBE with the EDF defined Special Administrative Region, China(Project No.

by Eg. (12), however, can lead to a steady preconditionedHKUST6193/01E.
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