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Rich example of geometrically induced nonlinearity: From rotobreathers and kinks to moving
localized modes and resonant energy transfer
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We present an experimentally realizable, simple mechanical system with linear interactions whose geometric
nature leads to nontrivial, nonlinear dynamical equations. The equations of motion are derived and their ground
state structures are analyzed. Selective “static” features of the model are examined in the context of nonlinear
waves including rotobreathers and kinklike solitary waves. We also explore “dynamic” features of the model
concerning the resonant transfer of energy and the role of moving intrinsic localized modes in the process.
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I. INTRODUCTION chanical experimeptsystem at hand. Such examples are
manifested in the coherent structures of the system ranging
In the past few years, there has been a dramatic increasgm the familiar kinks to the more exotic rotobreathgtg]
in interest in the behavior of solitary waves and intrinsic (or other structures such as domain walls or kinks with em-
localized modegILMs) in dynamical lattices; see, e.d1]  bedded defect§l3]). They are also evident in the resonant
for a number of recent reviews. One of the key reasons foenergy transport features of the model that relate the energy
this focus of interest has been the ability of such modegonduction with the moving intrinsic localized modes
(which are ubiquitous in nonlinear lattice modeis localize  (ILMs) that are present in the modgee below. We touch
the energy and transfer it in a targeted way3]. An addi-  upon each of the above aspects to give a flavor of the rich
tional, related feature of these modes is the important rolend diverse properties that such a “geometrically induced

they play in the conduction of headr equivalently transport nonlinearity” model is endowed with.
of energy along such simple dynamical lattices and how this
relates to fundamental macroscopic laws of thermodynamics Il. MODEL

such as Fourier’s law of heat conduction; see, ¢4.fora  The mechanical example that we examine consists of
recent review. Another application may be found in mOdel'ngmasses{“beads’) that slide orfixedrings of radiusR (even
the deformation and fracture behavior of continuous structhough the radius can be variable from ring to ring, we will
tured media with internal degrees of freedom. Some initiahere consider it to be fixgdFurthermore, the centers of the
model equations in this direction can be found . _rings are at distanceé between them. The chain of beads
On the other hand, an increasingly important theme inmoying azimuthally along their respective rings is coupled
nonllne_ar physics concerns the .|nterplay b_etween.nonhneethrough linear, elastic strings of a natural lengghsee Fig.
dynamics and geometry, especially in lattice settings. Thqg) for a schematic. There are two interesting subcases. The
relevant contexts vary from long-range interactions on &ings can be in the same plane or they can be in different
fixed curved substratff] to substrate-feedback moddlg]  pjanes. While the latter case is also of interest, we restrict

and coupled atomic chairi8], and from junctions between qyrselves to the formefcoplanar rings in what follows.
lattices with different massg9] to semicircular polymerlike Then,

chains [10] and models of geometrically nontrivial DNA )
[11]. The unifying principle in all these situations is that the Xp=nL+Rcos6, y,=Rsin(6y), (1)
geometry can significantly affect the static properties of €xnq the distance between adjacent particles is given by
citations in the latticgle.g., multistability, as well as dy- ’
namical onege.g., a variety of outcomes in the interaction of Fonet = V(Xner — X2+ (Va1 — Yn) 2 (2
intrinsic localized modes with curvatyre I . . .
. . . The model Hamiltonian for linear, elastic interactions reads
Motivated by these two emerging themes of nonlinear lat-
tice dynamical systems, we propose in this work a mechani- 1 de, \?
i1 whi o H=> | =MR? —"
cal example, in which even though the underlying interac- 2 dt
tions of the system consist dihear springs, the geometry "
renders the interactions nonlinear. This, in turn, leads to comOut of the five model paramete(particle massM, spring
plex features of the straightforwardly realizalifie a me-  constantK, disk radiusR, distance between disk centdrs

1
+ EK(rn,ml - |0)2:| . (3)
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© ¢ #{0,7} can be easily understood considering the situation

_.—-"f with all particles being at rest witl,,=¢ and one patrticle
| oscillating with a finite amplitude near the equilibrium
position. Taking into account higher order anharmonic
—— terms, one can demonstrate an asymmetry in the torques
:t acting on the particle with respect to deviation from the
— right versus deviation from the left. This asymmetry gives
;j rise to the force driving the particle toward the closest stable
—1 position, namely¢=0 or ¢=1, where the symmetry is re-
stored. There are two more symmetric structures corres-
\: ponding to¢=_77/2 and q5=—77/2_, but they are_unstable. To
] illustrate this issue, for the chain df=400 particles, we set
% 2 3 4 5 6 20 40 60 80 the initial conditionsé,=0, 6,=¢+r,, with different magni-
L t tudes of¢ andr, being a random number homogeneously

) , . . " distributed on[-0.05,0.03. In Fig. 1(c) we plot the time
FIG. 1. (a) The bead-ring configuration: the rings of raRiiare evolution Of<0n>=N_lEn0n- One can see that there are two

at distancel between them(either on the same or on different . _ _ _ .
planes. The dynamical variable of interest for each particle is itsfslta?le t[_)OSItlonS(¢—O and ¢=m) with respect to dynamic
uctuations.

azimuthal anglef,, and the chain has a nearest neighbor coupling . . . )
through linear, elastic springs of natural lendgh The distance We thus restrict our considerations to the stable equiva-

between adjacent partic|es is denotedrp’}ﬁ_l_ (b) The parameter Ient StrUCtureSgb:O,W In thIS case, the d|SperS|On re|a'[|0n

space of the moddL, lo) divided into three regions with different reads

ground state structuregc) Illustration of dynamical instability in

the regime | for all¢ except for¢p=0 and¢=+ 7. Average atomic w(k) =2v1 = (Ig/L) sin(wk). (6)

positions {6,y for the chain of N=400 particles are shown as

the functions of time. Initially the particles are placed &t ¢ In the limit I,=L, the linear spectrum collapses to a single

with different magnitudes of, and a small amplitude random per- point (in this casew=0). Such geometrically induced limits

turbation is introduced in the particle positions to initiate their where the linear spectrum collapses to a single point fdk all

vibrations. are an interesting feature of the present madek belowy
and will be calledpurely anharmonic(PA) limits, as the

and string natural lengthy), two (M,K) can be scaled out harmonic linear part of the spectrum is eliminated in this

while out of the remaining three length scales, one can béase. This is a situation that bears some resemblence to the

used as a measure for the oth@rence we seR=1 in what  anticontinuum limit of models of ILMg1].

follows). The resulting equations of motion read Regime Il is defined by <ly<L,, where structures of
) the form
O = [SIN(Onra = 6) = SIN(G = O] 2|2
1 0= £[(-1)"p+ om], st p=>—, 7
+I0Lsin(¢9n)< _ ) h= £[(-1"p+om], sif p=") (7)
Fant1 Tneap
SiN(6py— 6)  SIN(6, = 6,-q) have zero energyall springs have their natural lengths
—lo - , (4) =0, +1. In this case, the linear spectrum is of the form
rn,n+1 rn—l,n
with r2 . =L2+2-2 C0$6,1~ 6) + 2L[COK 61) —COK ) ]. w(k) = I2=L2\/L2 + (4 ~12)sin( k), (8)

For convenience, we introduce the notatloy¥ L?+4.

Ground statesThe model of Eq(4) supports numerous which for I,=2 becomesk-independent(PA limit), w(k)
complex structurega number of which we will examine be- =Ly4-L2 The spectrum of Eq8) vanishes at,=L which
low), but there are only three types of ground state structureis the border between the type | and type Il regimes.
bearing a very simple form. The parameter spécgd) is Finally, regime Il consists of the natural lengths such that
naturally divided into three regions, depending on the correly<ly when the ground state structure is
sponding types of ground state structure. We now summarize

these structurefsee also Fig. (b)]. 0= (= 1)"(7/2). (9
For Io<L, we are in regime I, where the lowest energy
structure is In this case, the linear spectrum is given by
bh=¢ (5 4 |
_ o w(k):2\/<1——§)sin2<z—7rk>+—°—1. (10
for constant¢. Note that from static considerations, struc- Lo 2 Lo

tures with any¢ are in indifferent equilibrium, but in the
presence of dynamic perturbations, only structures witfOne can see that fd5:L8/4, the width of linear spectrum
¢=0,7 are stable. The physical origin of the instability for vanishegPA limit), w(k)=L.
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7 P @) 7 ) =6, and ¢, is arbitrary. While the solutions of E¢12) with
. —_— #,=0, lead to unstable configurations, the root lying in the
0,[-1-1-¢-9-9-4 e interval 7/2< 0, < leads to a stable rotobreather which
L2 0 0 A S A B very accurately captures our numerical findifigse the cap-
® tion of Fig. 2a)].
9n 0 P 0 Note that in the case of the rotobreather presented in Fig.
) 2(a), dynamic fluctuations are absent. Introduction of such
pocodboooy, | fluctuations would result in the appearance of weak forces
) driving the particles withn<0 to the position,=0 and
- ® —_ particles withn>0 to the positions withd,=7 [see Fig.
324012 3 30 40 50 60 70 1(c)]. An equilibrium state in this case would look similar to
n n what is presented in Fig.(® only in the vicinity of the

rotobreather, but more distant particles would approach the

FIG. 2. (8 Numerical solution for a rotobreather in regime I. positions which are stable against dynamic fluctuations.
The n=0 particle rotates with angular velocity=20 atL=3 and

lo=1. We show the stroboscopic picture of motion with intervals
T/10 (a tenth of the period). Particles with positive and negative

n are practically at rest afi,=/2+0.261. Numerically we found As two prototypical examples of the structures that can be
the root of Eq(12) at #,=/2+0.259.(b) A kink solution is shown  gypported in regime II, we derive a kink solution and provide

in regime Il forv=0.2, L=1, lo=\4si? +L?, with $=(9/207 5 humerical example of a highly localized, moving ILM.
(close togp=m/2). Even and odd particles are shown by closed and Kink solution Using

open circles, respectively. Even in this casgmaft very big kink
width, Eq. (16) provides a very good approximation. The arrow 0,= (=D (7/2) + &), (13
shows the direction of propagation of the kink.

IV. REGIME I

wheree, < 7 and assuming that, varies slowly withn, we

. . . btain f Eq.(4 t bic t
Having discussed the ground states, we now give repreq ain from Eq.(4) [up to cubic termjs

sentative examples of the interesting nonlinear behavior that . _B
is possible in each of the regimes highlighted above. &n= p(sn—l‘ 2en+ £ns1) + Cep
D 3 3
Il. REGIME | " gl et en) (et eny)], (14)

Regime | supports an interesting rotobreather with ong, i, B=L2(1-4,/L3), C=4(1-l,/L,), and D:§(1—I0(L2
rotating particle. Such an example is shown in Figd2 ,1);13) |n the continuum limit Eq.(14) reduces to the
where the particle=0 rotates with angular velocity=20 at 40 Sation '

L=3 andly=1. We show the stroboscopic picture of motion ¢-ea '
with intervalsT/10 (whereT is the period of the solution &y = Beyy + Ce — D&, (15)
Particles with positive and negativeare practically at rest at

their respective positions. The neighborssfO particle can  When C>0 and D>0, the background potential has a

be at rest in the positions where the averagnar a periog ~ double-well structure and E@LS) supports topological soli-

torque acting from the moving particle is equal to zero. For 4OnS(kinks and antikinks[14]. When the kink width is much

large rotobreather frequency, the angular velocity of the 9reater tharl, the solution of Eq(15) can be used to ap-

=0 particle is almost constant and, hence, the averaging ovéfoximate the kink solution of the discrete Hg):

time can be substituted by averaging over argleThus an

. . . T B

approximate rotobreather solution can be given as follows: 0= (= 1)“{5 * \/gtanl{Q(nL— ut)]] , (16)
b=t forn=0, wherev < B is the kink velocity andQ=1/C/[2(v2-B)]. We

have verified that even for relatively small kink widttis.,

moderate discretenes<€q. (16) approximates well the nu-

merically obtained kink solutiongsee Fig. 2b)].

o= +(m=6,) forn<O, (12) We note in passing that in regime Il there exist various

i.e., the zeroth particle moves with constant angular velocitfifferent types of domains, as illustrated in E@). Hence
 while all other particles are at rest at the positions definedhere are possibilities to create additional kinks, connecting

0,= £6, forn>0,

through the angl@,, which is a root of different steady states than the ones presented above.
Moving ILM. An interesting example of a moving ILM is
2m 40 = presented in Fig. 3 fdp=2 (PA limit), L=1.2. The localized
0 M1(6o, 61)d6 =0, (12 mode emerged from the local perturbation introduced to the

n=0 particle of the structure,=(-1)"¢ by setting 6,=¢
where M1(6y, 6,) is the torque acting on the partick=1  +#/2 with zero initial velocities for all particles at=0. The
from the neighboring particles under the assumption that asymmetry in the displacements of particles renders this
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FIG. 4. (a) The power of the energy sourd is shown as a
function of the driving frequencw for L=1 and forA=0.2, 0.3,
and 0.4. Right panel: the distribution of energytat. Model pa-
] o rameters areL=1, 1y=L3/4, A=0.4 and (b) ©=0.992, () w
structure less tractable analytically. We will give a very -1 020, andd) »=1.033. The panel shows the particle energigs
simple analytical approximation for the ILMstanding and  averaged over the periodn2e. In (b) and (d) the forced particle
moving) in regime Il where the displacements are symmet-emits ILMs periodically, while in(c) it emits chaotically.
ric. However, we believe that the mechanism of ILM propa-
gation in the regime Il is the same as in the regime lll, i.e.
the relaylike resonant energy exchange between particles.

FIG. 3. Moving ILM in regime Il forlg=2 (PA limit) and L
=1.2.

forced particle oscillates with a nearly resonant frequency,
the amplitude of its neighbors can grow significantly.
Equation(18) does not take anharmonicity into account.
V. REGIME Il The latter effect was studied numerically, where we found
. . . that the anharmonicity is hard, i.e., the oscillation frequency
Standmg an.d moving ILMsRegime lII supports ILMs of the n=1 particle grows as a function of amplitude, for
which, depending on model parameters, can be moving OL | + ~1.65. and the situation is reversed for L*.
standing. We have also found that the existence of standing The dyna,mics of the chain with one forced particle differs
ILMs precludes the exis_tence of moving ones and vice Versaqualitatively for hard and soft anharmonicity. Fbr<L¥,
To better understand this phenomenon we first solve an auxghen, the free particle has maximum amplitude, it oscillates
lliary prpblem of re.sonant.energy transfer.and then gvey, phase with the forced particle, and its amplitude excceeds
some simple analytical estimates for stand_lng and_ MOVING in the resonance regime while far>L* it does not be-
ILMs. The robustness of moving ILMs against their colli- .5 56 the particles oscillate out of phase. In other words,

sions is also verified numerically. - : :

: A L efficient interparticle energy exchange occurs only for hard
f He(;e we ((:j(_)nSIder the PA limity=Lo/4. If a particle is  4pparmonicities. For the chain with soft anharmonicity, any
orced according to local perturbation remains local.

Oo(t) = (7/2) + Asin(wt), (17) We carry out the following numerical experiments. We

excite a single site according to E@.7) for times Ost<r~
with A<, we are interested in the motion of its nearestwith 7=5000 and calculate the power of the energy source,
neighbors, _,(t)=6,(t)=—m/2-&(t) with e<m, assuming W=/, whereE is the total energy of the chain &t 7. The
that all other particles are at rest at their equilibrium posi-chain is long enough so thatiat 7 the perturbation produced
tions. Retaining up to linear terms mand cubic inA, we by the forced particle has not reached the boundaries.
obtain We have found tha¥w can be nonzero only fok <L*,
w2 . : regardless of the magnitudes Afand w in Eq. (17). The
&+ wge = BA”SIM(wt) + YA sim(wh), mechanism of the energy transfer is the emission of moving
ILMs. In Fig. 4a), we preseniV as functions ofw for L
L(2-L? _2-L%+2f 1 =1 and forA=0.2, 0.3, and 0.4. It can be seen that the

@=L A= az 7" 3L 6 (18 smallerA is, the narrower the window oiV>0. The figure
. . . also shows the distribution of energy in the chairi=at for
with the particular solution L=1, Io=L3/4, and driving parametera=0.4 and(b) o
BA2 3yA3 _ BA2 =0.992,(c) @=1.020, andd) »=1.033. In(b) and(d) (edges

e)=7 5+ —— 5 sinfot) - -—; 5 Coq2wt) of the window withW>0), the forced particle emits ILMs
200 Awp— ) 2(wp ~ 4w) periodically while in(c) (central part of the windoychaoti-

yA3 . cally. ForL>L*, there is no efficient energy exchange be-
B m sin(3wt), (19 tween particles and moving ILMs are not possible. Instead,

stable standing ILMs arise that are localized at the excited
which gives the first three resonance harmonics. When thparticle. An approximate solution can be expressed by a con-
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-1.0 s
a .
) @ L0
n : B .
2.0 ,’1? \ stable roots Ve
A — ;
, 2 ®) L/ A N~
), 15 A O R\ T N
1.0 : N\ ..'I '.. .
-1.0 v A A N
0.  -15 (c) 2 N N N
w2 o d Unstable roots
-2.0 DR
20 d)
0’1 +3 15 "AVAVAVVWAXJW -i” —a2 0 w2 n
1.0 01
0 100 200 300
t FIG. 7. Torque(averaged over the anghg) acting from rotating

) ) ) particle (n=0) on its nearest neighbdin=1) which is at rest at
FIG. 5. A moving ILM is shown by the functiong,(t) for the 6, for |0_L3/4 (PA limit) andL=2 (dotted, L=1.5 (dasheq] and
four nearest nodes. Particles show the relaylike motion oscnlatlnq_ 1 (solid).

near the equilibrium positiong,=(-1)"(7/2). Model parameters
arelo—L0/4 (PA limit in regime 1ll), andL=1 (<L*). The param- ) _
eters in the solution Eq21) areA;=0.6,a=0.4. Marginal radiation Onv1 = @A Sinfwt = (27/3)], (21)

can be seen after the ILM passes a nadt large times The h dl . d to ILM L
ILM propagates rather slowly, it travels one lattice spacingn where upper and lower signs correspond to moving In
about & positive and negative directions, respectively. The amplitude

A, of the ILM is a free parameter. The relation between
the ILM frequencyw, and the third harmonic amplitud is
given by Eq.(20). Empirically we have found thaa=0.4
gives a good result over a wide range of ILM amplitudese
_ . . Fig. 5.
Oo(t) = (m/2) + Ay sin(wt) + Ag sin(3wt), In Fig. 6 we show an in-phase collision of two ILMs
defined by Eq.(21) with A=0.7,a=0.4. Model parameters

ventional perturbation method assuming that only one par-
ticle moves:

5 3_ 5 - BAf areL=1, IO:L8/4 (PA limit). Shown are the snapshotslaf
=wgt ZBAl' A= 3202 + 27TBAZ’ (20 at different timet, whereH,, is the total energy of thath
0 1 particle(kinetic and potential We can see that such moving
h 2_ 41 (L2+2)/13-2 —1 | [(5L6+8L4+16.2 ILMs can interact wnh each other in a quasielastic fashion.
\ivlg)rfsl_;]oo ol ko 37 lol( Rotobreathers Regime Il also supports a rotobreather
ol- . . . : .
The moving ILM is (practically localized at three par- with one rotating particle. Here again, as in Sec. Ill, we
ticles:
158
0,1 = aA, sinwt + (27/3)], 0, 157 A A
6, = Ay sin(wt) + Az Sin(3wt), 0, . ;
A AYAYAYAYAYAVAVAVAVAYAVAYAY
-1 7
500 5 =1 l
== % o Y
’ ’ Ui
=== Y
— 14
300 6, A ANANAANAANANNAN
1.6
200 = 1.58
- 02 1.57 NN NN NSNS NSNS
100 =
1= = — 158 5 10 ¢ 15 20
0 T L] T

FIG. 8. Rotobreather in regime Il initiated by setting initial
angular velocityf,=20 and initial positions of the=+1 particles

FIG. 6. Elasticity of the in-phase collision of two moving ILMs 6,1=-7/2+0.084 corresponding to zero averaged torque acting
defined by Eq(21) with A=0.7,a=0.4. The model parameters are from then=0 particle. Model parameters dre5 andIO:Lg/4 (PA
L=1(<L*) andl0=L8/4 (PA limit). limit). Dashed horizontal lines shoty=+ /2.
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20 " ' " which is assumed to be at rest@t for IO:L8/4 (PA limit)
0_2 18 andL=2 (dotted, L=1.5(dashegl andL=1 (solid). We are
16 interested in the position8, corresponding to zero torque.
16 For L<1.3 there are only two root®ne of them is stabje
6, 1.5/\/\/\/\/\/\_/\/\/\/ and forL > 1.3 there are four root§wo of them are stabje
:': For L=5, for example, the stable root was found @t

=-1/2+0.084 which is in a good agreement with what is

i | e e e e

8 =m/2+0.135 and the existance of this rotobreather was also

P 1_7\/\/\/\/\/\/\/\/\/\ confirmed numericallysee Fig. 9.
I 18

1.5 : * * VI. CONCLUSIONS
1.6f
1.4} n this paper we have presented a nonlinear dynamical
0, In th h ted | d |
1.2} system, consisting of an easily realizable mechanical ex-
o 5 10 p 15 20 ample where the nonlinearity is induced by the geometry of

the problem. We have illustrated the laws of motion and the
FIG. 9. Rotobreather corresponding to the root of equatiorfich static, dynamiaboth equilibrium and nonequilibrium

(M;)=0 which appeares at larde In this caseL=5, l,=L3/4 (PA  behavior of the system. We have identified some of the rel-
limit) and the root was found fon=+1 particles at7/2+0.135.  evant coherent structures including kinklike heteroclinic con-
Note that here the particlas=+1 oscillate nearr/2 but not near nections and rotobreathing periodic orbits and have seen
—-m/2 as in the case presented in Fig. 8. This is because the stab#mme of the interesting dynamical phenomenology including
root which appeares at>1.3 is shifted by, roughlyr comparedto  the “conducting”(for hard anharmonicitigsor “insulating”
the root existing for all (see Fig. 7. (for soft anharmonicitiesbehavior of the system and the role

of moving or standing ILMs, respectively, as energy carriers.
assume that for a rotobreather with sufficiently large fre-It would be of interest to examine further from an analytical
quency the torque acting from the rotating particle on its(as well as from a numerical or experimentakerspective
nearest neighbors can be estimated by averaging over angtbe phenomenological wealth of such a model. Such studies
In Fig. 7 we show thgaveraged over angldorque acting are currently in progress and will be reported in future
from a rotating(n=0) particle on its nearest neighber=1),  publications.
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