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We present an experimentally realizable, simple mechanical system with linear interactions whose geometric
nature leads to nontrivial, nonlinear dynamical equations. The equations of motion are derived and their ground
state structures are analyzed. Selective “static” features of the model are examined in the context of nonlinear
waves including rotobreathers and kinklike solitary waves. We also explore “dynamic” features of the model
concerning the resonant transfer of energy and the role of moving intrinsic localized modes in the process.
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I. INTRODUCTION

In the past few years, there has been a dramatic increase
in interest in the behavior of solitary waves and intrinsic
localized modes(ILMs) in dynamical lattices; see, e.g.,[1]
for a number of recent reviews. One of the key reasons for
this focus of interest has been the ability of such modes
(which are ubiquitous in nonlinear lattice models) to localize
the energy and transfer it in a targeted way[2,3]. An addi-
tional, related feature of these modes is the important role
they play in the conduction of heat(or equivalently transport
of energy) along such simple dynamical lattices and how this
relates to fundamental macroscopic laws of thermodynamics
such as Fourier’s law of heat conduction; see, e.g.,[4] for a
recent review. Another application may be found in modeling
the deformation and fracture behavior of continuous struc-
tured media with internal degrees of freedom. Some initial
model equations in this direction can be found in[5].

On the other hand, an increasingly important theme in
nonlinear physics concerns the interplay between nonlinear
dynamics and geometry, especially in lattice settings. The
relevant contexts vary from long-range interactions on a
fixed curved substrate[6] to substrate-feedback models[7]
and coupled atomic chains[8], and from junctions between
lattices with different masses[9] to semicircular polymerlike
chains [10] and models of geometrically nontrivial DNA
[11]. The unifying principle in all these situations is that the
geometry can significantly affect the static properties of ex-
citations in the lattice(e.g., multistability), as well as dy-
namical ones(e.g., a variety of outcomes in the interaction of
intrinsic localized modes with curvature).

Motivated by these two emerging themes of nonlinear lat-
tice dynamical systems, we propose in this work a mechani-
cal example, in which even though the underlying interac-
tions of the system consist oflinear springs, the geometry
renders the interactions nonlinear. This, in turn, leads to com-
plex features of the straightforwardly realizable(in a me-

chanical experiment) system at hand. Such examples are
manifested in the coherent structures of the system ranging
from the familiar kinks to the more exotic rotobreathers[12]
(or other structures such as domain walls or kinks with em-
bedded defects[13]). They are also evident in the resonant
energy transport features of the model that relate the energy
conduction with the moving intrinsic localized modes
(ILMs) that are present in the model(see below). We touch
upon each of the above aspects to give a flavor of the rich
and diverse properties that such a “geometrically induced
nonlinearity” model is endowed with.

II. MODEL

The mechanical example that we examine consists of
masses(“beads”) that slide onfixed rings of radiusR (even
though the radius can be variable from ring to ring, we will
here consider it to be fixed). Furthermore, the centers of the
rings are at distanceL between them. The chain of beads
moving azimuthally along their respective rings is coupled
through linear, elastic strings of a natural lengthl0; see Fig.
1(a) for a schematic. There are two interesting subcases. The
rings can be in the same plane or they can be in different
planes. While the latter case is also of interest, we restrict
ourselves to the former(coplanar rings) in what follows.
Then,

xn = nL + Rcosun, yn = Rsinsund, s1d

and the distance between adjacent particles is given by

rn,n+1 = Îsxn+1 − xnd2 + syn+1 − ynd2. s2d

The model Hamiltonian for linear, elastic interactions reads

H = o
n
F1

2
MR2Sdun

dt
D2

+
1

2
Ksrn,n+1 − l0d2G . s3d

Out of the five model parameters(particle massM, spring
constantK, disk radiusR, distance between disk centersL,
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and string natural lengthl0), two sM ,Kd can be scaled out
while out of the remaining three length scales, one can be
used as a measure for the others(hence we setR=1 in what
follows). The resulting equations of motion read

ün = fsinsun+1 − und − sinsun − un−1dg

+ l0L sinsundS 1

rn,n+1
−

1

rn−1,n
D

− l0Ssinsun+1 − und
rn,n+1

−
sinsun − un−1d

rn−1,n
D , s4d

with rn,n+1
2 =L2+2−2 cossun+1−und+2Lfcossun+1d−cossundg.

For convenience, we introduce the notationL0=ÎL2+4.
Ground states.The model of Eq.(4) supports numerous

complex structures(a number of which we will examine be-
low), but there are only three types of ground state structures
bearing a very simple form. The parameter spacesL , l0d is
naturally divided into three regions, depending on the corre-
sponding types of ground state structure. We now summarize
these structures[see also Fig. 1(b)].

For l0,L, we are in regime I, where the lowest energy
structure is

un = f s5d

for constantf. Note that from static considerations, struc-
tures with anyf are in indifferent equilibrium, but in the
presence of dynamic perturbations, only structures with
f=0,p are stable. The physical origin of the instability for

fÞ h0,pj can be easily understood considering the situation
with all particles being at rest withun=f and one particle
oscillating with a finite amplitude near the equilibrium
position. Taking into account higher order anharmonic
terms, one can demonstrate an asymmetry in the torques
acting on the particle with respect to deviation from the
right versus deviation from the left. This asymmetry gives
rise to the force driving the particle toward the closest stable
position, namelyf=0 or f=p, where the symmetry is re-
stored. There are two more symmetric structures corres-
ponding tof=p /2 andf=−p /2, but they are unstable. To
illustrate this issue, for the chain ofN=400 particles, we set

the initial conditionsu̇n=0, un=f+rn, with different magni-
tudes off and rn being a random number homogeneously
distributed onf−0.05,0.05g. In Fig. 1(c) we plot the time
evolution of kunl=N−1onun. One can see that there are two
stable positions(f=0 and f=p) with respect to dynamic
fluctuations.

We thus restrict our considerations to the stable equiva-
lent structures,f=0,p. In this case, the dispersion relation
reads

vskd = 2Î1 − sl0/Ld sinspkd. s6d

In the limit l0=L, the linear spectrum collapses to a single
point (in this casev=0). Such geometrically induced limits
where the linear spectrum collapses to a single point for allk
are an interesting feature of the present model(see below)
and will be calledpurely anharmonic(PA) limits, as the
harmonic linear part of the spectrum is eliminated in this
case. This is a situation that bears some resemblence to the
anticontinuum limit of models of ILMs[1].

Regime II is defined byL, l0,L0, where structures of
the form

un = ± fs− 1dnf + dpg, sin2 f =
l0
2 − L2

4
, s7d

have zero energy(all springs have their natural length); d
=0, ±1. In this case, the linear spectrum is of the form

vskd = Îl0
2 − L2ÎL2 + s4 − l0

2dsin2spkd, s8d

which for l0=2 becomesk-independent(PA limit), vskd
=LÎ4−L2. The spectrum of Eq.(8) vanishes atl0=L which
is the border between the type I and type II regimes.

Finally, regime III consists of the natural lengths such that
L0, l0 when the ground state structure is

un = ± s− 1dnsp/2d. s9d

In this case, the linear spectrum is given by

vskd = 2ÎS1 −
4l0
L0

3 Dsin2Sp

2
− pkD +

l0
L0

− 1. s10d

One can see that forl0=L0
3/4, the width of linear spectrum

vanishes(PA limit), vskd=L.

FIG. 1. (a) The bead-ring configuration: the rings of radiiR are
at distanceL between them(either on the same or on different
planes). The dynamical variable of interest for each particle is its
azimuthal angleun and the chain has a nearest neighbor coupling
through linear, elastic springs of natural lengthl0. The distance
between adjacent particles is denoted byrn,n+1. (b) The parameter
space of the modelsL , l0d divided into three regions with different
ground state structures.(c) Illustration of dynamical instability in
the regime I for allf except forf=0 andf= ±p. Average atomic
positions kunl for the chain of N=400 particles are shown as
the functions of time. Initially the particles are placed atun=f
with different magnitudes off, and a small amplitude random per-
turbation is introduced in the particle positions to initiate their
vibrations.
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Having discussed the ground states, we now give repre-
sentative examples of the interesting nonlinear behavior that
is possible in each of the regimes highlighted above.

III. REGIME I

Regime I supports an interesting rotobreather with one
rotating particle. Such an example is shown in Fig. 2(a),
where the particlen=0 rotates with angular velocityv=20 at
L=3 andl0=1. We show the stroboscopic picture of motion
with intervalsT/10 (whereT is the period of the solution).
Particles with positive and negativen are practically at rest at
their respective positions. The neighbors ofn=0 particle can
be at rest in the positions where the averaged(over a period)
torque acting from the moving particle is equal to zero. For a
large rotobreather frequency, the angular velocity of then
=0 particle is almost constant and, hence, the averaging over
time can be substituted by averaging over angleu0. Thus an
approximate rotobreather solution can be given as follows:

un = vt for n = 0,

un = ± u1 for n . 0,

un = ± sp − u1d for n , 0, s11d

i.e., the zeroth particle moves with constant angular velocity
v while all other particles are at rest at the positions defined
through the angleu1, which is a root of

E
0

2p

M1su0,u1ddu0 = 0, s12d

where M1su0,u1d is the torque acting on the particlen=1
from the neighboring particles under the assumption thatu2

=u1 andu0 is arbitrary. While the solutions of Eq.(12) with
u1=0,p lead to unstable configurations, the root lying in the
interval p /2,u1,p leads to a stable rotobreather which
very accurately captures our numerical findings[see the cap-
tion of Fig. 2(a)].

Note that in the case of the rotobreather presented in Fig.
2(a), dynamic fluctuations are absent. Introduction of such
fluctuations would result in the appearance of weak forces
driving the particles withn,0 to the positionun=0 and
particles with n.0 to the positions withun=p [see Fig.
1(c)]. An equilibrium state in this case would look similar to
what is presented in Fig. 2(a) only in the vicinity of the
rotobreather, but more distant particles would approach the
positions which are stable against dynamic fluctuations.

IV. REGIME II

As two prototypical examples of the structures that can be
supported in regime II, we derive a kink solution and provide
a numerical example of a highly localized, moving ILM.

Kink solution. Using

un = s− 1dnfsp/2d + «ng, s13d

where«n!p and assuming that«n varies slowly withn, we
obtain from Eq.(4) [up to cubic terms]

«̈n =
B

L2s«n−1 − 2«n + «n+1d + C«n

−
D

16
fs«n+1 + «nd3 + s«n + «n−1d3g, s14d

with B=L2s1−4l0/L0
3d, C=4s1−l0/L0d, and D= 8

3s1−l0sL2

+1d /L0
3d. In the continuum limit, Eq.(14) reduces to the

w4-equation,

«tt = B«xx + C« − D«3. s15d

When C.0 and D.0, the background potential has a
double-well structure and Eq.(15) supports topological soli-
tons(kinks and antikinks) [14]. When the kink width is much
greater thanL, the solution of Eq.(15) can be used to ap-
proximate the kink solution of the discrete Eq.(4):

un = s− 1dnFp

2
±ÎB

D
tanhfQsnL − vtdgG , s16d

wherev,ÎB is the kink velocity andQ=ÎC/ f2sv2−Bdg. We
have verified that even for relatively small kink widths(i.e.,
moderate discreteness), Eq. (16) approximates well the nu-
merically obtained kink solutions[see Fig. 2(b)].

We note in passing that in regime II there exist various
different types of domains, as illustrated in Eq.(7). Hence
there are possibilities to create additional kinks, connecting
different steady states than the ones presented above.

Moving ILM. An interesting example of a moving ILM is
presented in Fig. 3 forl0=2 (PA limit), L=1.2. The localized
mode emerged from the local perturbation introduced to the
n=0 particle of the structureun=s−1dnf by settingu0=f
+p /2 with zero initial velocities for all particles att=0. The
asymmetry in the displacements of particles renders this

FIG. 2. (a) Numerical solution for a rotobreather in regime I.
The n=0 particle rotates with angular velocityv=20 at L=3 and
l0=1. We show the stroboscopic picture of motion with intervals
T/10 (a tenth of the periodT). Particles with positive and negative
n are practically at rest atun=p /2±0.261. Numerically we found
the root of Eq.(12) at u1=p /2+0.259.(b) A kink solution is shown
in regime II for v=0.2, L=1, l0=Î4 sin2 f+L2, with f=s9/20dp
(close tof=p /2). Even and odd particles are shown by closed and
open circles, respectively. Even in this case of(not very big) kink
width, Eq. (16) provides a very good approximation. The arrow
shows the direction of propagation of the kink.
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structure less tractable analytically. We will give a very
simple analytical approximation for the ILMs(standing and
moving) in regime III where the displacements are symmet-
ric. However, we believe that the mechanism of ILM propa-
gation in the regime II is the same as in the regime III, i.e.,
the relaylike resonant energy exchange between particles.

V. REGIME III

Standing and moving ILMs. Regime III supports ILMs
which, depending on model parameters, can be moving or
standing. We have also found that the existence of standing
ILMs precludes the existence of moving ones and vice versa.
To better understand this phenomenon we first solve an aux-
iliary problem of resonant energy transfer and then give
some simple analytical estimates for standing and moving
ILMs. The robustness of moving ILMs against their colli-
sions is also verified numerically.

Here we consider the PA limit,l0=L0
3/4. If a particle is

forced according to

u0std = sp/2d + A sinsvtd, s17d

with A!p, we are interested in the motion of its nearest
neighbors,u−1std=u1std=−p /2−«std with «!p, assuming
that all other particles are at rest at their equilibrium posi-
tions. Retaining up to linear terms in« and cubic inA, we
obtain

«̈ + v0
2« = bA2 sin2svtd + gA3 sin3svtd,

v0 = L, b =
Ls2 − L2d

4L0
2 , g =

2 − L2 + 2L4

3L0
4 −

1

6
, s18d

with the particular solution

«std =
bA2

2v0
2 +

3gA3

4sv0
2 − v2d

sinsvtd −
bA2

2sv0
2 − 4v2d

coss2vtd

−
gA3

4sv0
2 − 9v2d

sins3vtd, s19d

which gives the first three resonance harmonics. When the

forced particle oscillates with a nearly resonant frequency,
the amplitude of its neighbors can grow significantly.

Equation(18) does not take anharmonicity into account.
The latter effect was studied numerically, where we found
that the anharmonicity is hard, i.e., the oscillation frequency
of the n=1 particle grows as a function of amplitude, forL
,L* <1.65, and the situation is reversed forL.L*.

The dynamics of the chain with one forced particle differs
qualitatively for hard and soft anharmonicity. ForL,L*,
when the free particle has maximum amplitude, it oscillates
in phase with the forced particle, and its amplitude excceeds
A in the resonance regime while forL.L* it does not be-
cause the particles oscillate out of phase. In other words,
efficient interparticle energy exchange occurs only for hard
anharmonicities. For the chain with soft anharmonicity, any
local perturbation remains local.

We carry out the following numerical experiments. We
excite a single site according to Eq.(17) for times 0ø tøt
with t=5000 and calculate the power of the energy source,
W=E/t, whereE is the total energy of the chain att=t. The
chain is long enough so that att=t the perturbation produced
by the forced particle has not reached the boundaries.

We have found thatW can be nonzero only forL,L*,
regardless of the magnitudes ofA and v in Eq. (17). The
mechanism of the energy transfer is the emission of moving
ILMs. In Fig. 4(a), we presentW as functions ofv for L
=1 and for A=0.2, 0.3, and 0.4. It can be seen that the
smallerA is, the narrower the window ofW.0. The figure
also shows the distribution of energy in the chain att=t for
L=1, l0=L0

3/4, and driving parametersA=0.4 and (b) v
=0.992,(c) v=1.020, and(d) v=1.033. In(b) and(d) (edges
of the window withW.0), the forced particle emits ILMs
periodically while in(c) (central part of the window) chaoti-
cally. For L.L*, there is no efficient energy exchange be-
tween particles and moving ILMs are not possible. Instead,
stable standing ILMs arise that are localized at the excited
particle. An approximate solution can be expressed by a con-

FIG. 3. Moving ILM in regime II for l0=2 (PA limit) and L
=1.2.

FIG. 4. (a) The power of the energy sourceW is shown as a
function of the driving frequencyv for L=1 and forA=0.2, 0.3,
and 0.4. Right panel: the distribution of energy att=t. Model pa-
rameters areL=1, l0=L0

3/4, A=0.4 and (b) v=0.992, (c) v
=1.020, and(d) v=1.033. The panel shows the particle energiesEn,
averaged over the period 2p /v. In (b) and (d) the forced particle
emits ILMs periodically, while in(c) it emits chaotically.
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ventional perturbation method assuming that only one par-
ticle moves:

u0std = sp/2d + A1 sinsvtd + A3 sins3vtd,

v2 = v0
2 +

3

4
BA1

2, A3 =
− BA1

3

32v0
2 + 27BA1

2 , s20d

where v0
2=4l0sL2+2d /L0

3−2, B= 1
3 − l0fs5L6+8L4+16L2

+16d /3L0
7g.

The moving ILM is (practically) localized at three par-
ticles:

un−1 = aA1 sinfvt ± s2p/3dg,

un = A1 sinsvtd + A3 sins3vtd,

un+1 = aA1 sinfvt 7 s2p/3dg, s21d

where upper and lower signs correspond to ILM moving in
positive and negative directions, respectively. The amplitude
A1 of the ILM is a free parameter. The relation betweenA1,
the ILM frequencyv, and the third harmonic amplitudeA3 is
given by Eq.(20). Empirically we have found thata=0.4
gives a good result over a wide range of ILM amplitudes(see
Fig. 5).

In Fig. 6 we show an in-phase collision of two ILMs
defined by Eq.(21) with A=0.7, a=0.4. Model parameters
areL=1, l0=L0

3/4 (PA limit). Shown are the snapshots ofHn
at different timet, whereHn is the total energy of thenth
particle(kinetic and potential). We can see that such moving
ILMs can interact with each other in a quasielastic fashion.

Rotobreathers. Regime III also supports a rotobreather
with one rotating particle. Here again, as in Sec. III, we

FIG. 5. A moving ILM is shown by the functionsunstd for the
four nearest nodes. Particles show the relaylike motion oscillating
near the equilibrium positionsun=s−1dnsp /2d. Model parameters
are l0=L0

3/4 (PA limit in regime III), andL=1 s,L* d. The param-
eters in the solution Eq.(21) areA1=0.6,a=0.4. Marginal radiation
can be seen after the ILM passes a node(at large times). The
ILM propagates rather slowly, it travels one lattice spacingL in
about 8T.

FIG. 6. Elasticity of the in-phase collision of two moving ILMs
defined by Eq.(21) with A=0.7,a=0.4. The model parameters are
L=1 s,L* d and l0=L0

3/4 (PA limit).

FIG. 7. Torque(averaged over the angleu0) acting from rotating
particle sn=0d on its nearest neighborsn=1d which is at rest at
u1 for l0=L0

3/4 (PA limit) and L=2 (dotted), L=1.5 (dashed), and
L=1 (solid).

FIG. 8. Rotobreather in regime III initiated by setting initial

angular velocityu̇0=20 and initial positions of then= ±1 particles
u±1=−p /2±0.084 corresponding to zero averaged torque acting
from then=0 particle. Model parameters areL=5 andl0=L0

3/4 (PA
limit ). Dashed horizontal lines showun= ±p /2.
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assume that for a rotobreather with sufficiently large fre-
quency the torque acting from the rotating particle on its
nearest neighbors can be estimated by averaging over angle.
In Fig. 7 we show the(averaged over angle) torque acting
from a rotatingsn=0d particle on its nearest neighbor(n=1),

which is assumed to be at rest atu1, for l0=L0
3/4 (PA limit)

andL=2 (dotted), L=1.5 (dashed), andL=1 (solid). We are
interested in the positionsu1 corresponding to zero torque.
For L,1.3 there are only two roots(one of them is stable)
and forL.1.3 there are four roots(two of them are stable).
For L=5, for example, the stable root was found atu1
=−p /2+0.084 which is in a good agreement with what is
observed for the rotobreather presented in Fig. 8. ForL=5,
another stable root for then=1 particle was found atu±1
=p /2+0.135 and the existance of this rotobreather was also
confirmed numerically(see Fig. 9).

VI. CONCLUSIONS

In this paper we have presented a nonlinear dynamical
system, consisting of an easily realizable mechanical ex-
ample where the nonlinearity is induced by the geometry of
the problem. We have illustrated the laws of motion and the
rich static, dynamic(both equilibrium and nonequilibrium)
behavior of the system. We have identified some of the rel-
evant coherent structures including kinklike heteroclinic con-
nections and rotobreathing periodic orbits and have seen
some of the interesting dynamical phenomenology including
the “conducting”(for hard anharmonicities) or “insulating”
(for soft anharmonicities) behavior of the system and the role
of moving or standing ILMs, respectively, as energy carriers.
It would be of interest to examine further from an analytical
(as well as from a numerical or experimental) perspective
the phenomenological wealth of such a model. Such studies
are currently in progress and will be reported in future
publications.
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FIG. 9. Rotobreather corresponding to the root of equation
kM1l=0 which appeares at largeL. In this caseL=5, l0=L0

3/4 (PA
limit ) and the root was found forn= ±1 particles atp /2±0.135.
Note that here the particlesn= ±1 oscillate nearp /2 but not near
−p /2 as in the case presented in Fig. 8. This is because the stable
root which appeares atL.1.3 is shifted by, roughly,p compared to
the root existing for allL (see Fig. 7).
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