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Nonlinear supratransmission and bistability in the Fermi-Pasta-Ulam model
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The recently discovered phenomenon of nonlineguratransmissiorconsists in a sudden increase of the
amplitude of a transmitted wave triggered by the excitation of nonlinear localized modes of the medium. We
examine this process for the Fermi-Pasta-Ulam chain, sinusoidally driven at one edge and damped at the other.
The supratransmission regime occurs for driving frequencies above the upper band edge and originates from
direct moving discrete breather creation. We derive approximate analytical estimates of the supratransmission
threshold, which are in excellent agreement with numerics. When analyzing the long-time behavior, we dis-
cover that, below the supratransmission thresholdprductingstationary state coexists with thiesulating
one. We explain théistablenature of the energy flux in terms of the excitation of quasiharmonic extended
waves. This leads to the analytical calculation dbaer-transmissiorthreshold which is also in reasonable
agreement with numerical experiments.
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[. INTRODUCTION profiles have been presented in the literature, but here we use
) ) ) approximate analytic expressions for both the low-amplitude
In a recent series of interesting papers Leon and cosglitonic case and for the large amplitude situatjgh This

workers[1-4] discovered that nonlinear chains driven at aallows to perform a study of the instability at the boundary
boundary can propagate energy in the forbidden band gapnd a detailed analysis of the process which leads to the birth
Numerical experiments were performed for harmonic driv-and propagation of the discrete breather. By using these ap-
ing, and the semi-infinite chain idealization was simulated byproximate solutions, we are able to provide analytic expres-
adding damping on the boundary opposite to driving. In thissions for the supratransmission critical amplitudes as a func-
case, energy transmission occurs above a well defiftee  tion of the forcing frequencies, which are then successfully
guency dependentritical amplitude. This phenomenon has compared with numerically determined values.
been callechonlinear supratransmissioby the authors, and Besides that, we analyze the long-time behavior of the
is characterized by the propagation of nonlinear localizedystem, studying the formation of a stationary state with a
modes(gap soliton inside the bulk. Several models have given energy flux across the chain. Toeler parameterof
been considered: sine-Gordon and Klein-Gorgtblp double Fhe transition from thénsulating to the cor_lductlngsyate is,
sine-Gordon and Josephson transmission lif@s Bragg [ndeed, the average energy flux, which displays a jump at the
media[3], and an experimental realization has been proposegUPratransmission threshaiahich could then be thought of
for a mechanical system of coupled pendi@ The generic as a sort of nonequmbrlum .f|rst—order transitjotWe dis-
features of the supratransmission instability have been dﬁchoevirt;?ig;;\;vesqgget?se;T;ﬂﬁgﬁ: dbe(;?)\/evsthne();[hi;?czrrﬂg{ ?rf;ﬁrs_
scribed in terms of an evanescent wave dest_ab|||z_a{t4l¢n mission: theconductingstate survives even at smaller ampli-
Moreover, the same process has been described in[Ref.

. . - . . tudes and coexists with thasulating state(a sort of bista-
for the discrete nonlinear Schrédinger equation, suggestmgi”ty is present in the system By further reducing the

amplitude, a threshold appears below which the energy flux
Mranishes without any apparent discontinuitgre we have a
sort of second-order transitiinwe develop a theoretical

chains6]. A.t var.ia.nce with all previous!y considered Cases’analysis of this new threshold phenomenon, which was ab-
the harmonic driving frequency must lie above the phonor‘gent in previous studies

band, since the FPU interparticle potential is translationally The paper is organized as follows. In Sec. Il we introduce
mr\]/arl%nt and, hence, a:afor_b|dden Iow]:er band_ed_oes no_tl eXiShe model and the equations of motion. Section Il deals with
(:] € ph onon Is_pectrumdegmsh_athzero requen pnshengalnf the calculation of the energy flux in the quasilinear approxi-
that the nonlinear modes which propagate in the bulk arg,,iion - Section IV illustrates all analytic and numerical re-
moving discrete breather§7]. Exact static discrete breathers sults concerning the determination of the supratransmission
threshold. Section V is devoted to the characterization of the
stationary states and of their bistability. Section VI contains

enon is present for Fermi-Pasta-UlagkPU) nonlinear

*Electronic address: khomeriki@hotmail.com some conclusions. In the Appendix we report, for complete-
"Electronic address: stefano.lepri@unifi.it ness, a calculation of the nonlinear phonon dispersion
*Electronic address: ruffo@avanzi.de.unifi.it relation.
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Il. THE MODEL I - T [0)
0|00 T T 5 ]
We consider the Fermi-Pasta-UlaPU) chain [6], ' 1
which is an extremely well studied nonlinear lattice for [ 0.041 o 7 0O
which a large class of quasiharmonic and localized solutions .— 06 | pe o
is known. The equations of motion for the so-called~PU é | 0.021 9/ T o
chain (interparticle potential with a quadratic and a quartic g i ’g@/ o
& 041 & N |
term) are 2 458505 01 015 02
Un = Uns1 + Up-g = 2Un + (Upag = un)3 +(Up-q— un)sa (1) 02k o @) _
whereu, stands for the displacement oth site in dimen- 1 00 ©
sionless units(n:0,1,2,.._. ,N). All force parameters have L 060000 o | |
been chosen equal to unity for computational convenience. % 0.1 0.2 03 0.4 0.5

To simulate the effect of an impinging wave we impose Driving amplitude A

the boundary condition FIG. 1. Average energy flux vs driving amplitude for in-band

2) forcing; w=1.8 andy=5. Data have been averaged ove? fiériods
of the driving. The inset is an enlargement of the small-amplitude
Free boundary conditions are enforced on the other side ¢g9ion and the dashed line is the single nonlinear phonon approxi-
the chain. mation (7).
In order to be able to observe a stationary state in the
conductingregime we need to steadily remove the energy

(6)
injected in the lattice by the driving force. Thus, we damp a . . .
certain number of the rightmost sitétypically 10% of the are excited, we can easily estimate the energy flux. Neglect-

total) by adding a viscous term i, to their equations of ing, for simplicity, the nonlinear force terms in the definition
n

motion. A convenient indicator to look at is the averaged®! the flux(3), we have

energy fluxj==2,j,/N, where the local fluj, is given by the

following formula[9]:

Up(t) = A coswt.

o = wy(k,A)

j= %v(k,A) w’A?, (7)
wherev is the group velocity as derived from dispersion
relation (5). This simple result is in very good agreement
with simulations, at least for small enough amplitudsse
Time averages of this quantity are taken in order to characrig. 1). For A>0.15 the measured flux is larger than the
terize the insulatingzero fluxy/conducting(nonzero flux  estimatg7), indicating that something more complicated oc-
state of the system. curs in the bulk(possibly, a multiphonon transmissioand

that higher-order nonlinear terms must be taken into account.

()

. 1. :
Jn= E(Un + Un+1)[un+1 —Up+ (Upsp — Un)g]-

IIl. IN-BAND DRIVING: NONLINEAR PHONONS

For illustration, we first discuss the case when the driving IV. OUT-BAND DRIVING: SUPRATRANSMISSION

frequency is located inside the phonon band. Although | et us now turn to the more interesting case in which the
trivial, this issue is of importance to better appreciate thedriving frequency lies outside the phonon band
fully nonlinear features described later on. > wo(m,0)=2. In a first series of numerical experiments we
Under the effect of the driving2), we can look for ex-  have initialized the chain at rest and switched on the driving
tended quasiharmonic solutioisonlinear phononsof the  at timet=0. To avoid the formation of sudden shodig],
form we have chosen to increase smoothly the amplitude from 0 to

the constant valuéd at a constant rate, i.e.,

u,= A cogkn— wt). (4)

We consider the semi-infinite chain, so thataries continu-
ously between 0 and72 The nonlinear dispersion relation
can be found in the rotating wave approximati@ee, e.g.,
Ref. [10]). Neglecting higher-order harmoni¢see the Ap-
pendix for details it reads

Up=Acogwt)[1-eVm],

where typically we set;=10.
At variance with the case of in-band forcing, we observe
a sharp increase of the flux at a given threshold amplitude of
the driving, see Fig. 2. This phenomenon has been denoted
as nonlinear supratransmissiofil] to emphasize the role
(5) played by nonlinear localized excitations in triggering the
energy flux.
Thus the nonlinear phonon frequencies range from 0 to the This situation should be compared with the one of in-band
upper band edgey(m,A)=2. driving, shown in Fig. 1, where no threshold for conduction
If we simply assume that only the resonating phononsexists and the flux increases continuously from zenore or
whose wave numbers satisfy the condition less quadratically in the amplitujéndeed, the main conclu-

(8

wj(k,A) = 2(1 - cosk) + 3(1 — cosk)?A?.
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FIG. 2. Average energy flux vs driving amplitude for out-band
forcing; w=3.5 andy=>5. Data have been averaged ovex 20°
periods of the driving for a chain di=512 particles.

sion that can be drawn from the previous section is that ther -
cannot be any amplitude threshold for energy transmission i -
the case of in-band forcing. Moreover, although at the uppe
band edge the flux vanishes, since it is proportional to the
group velocity [see formula(7)], it is straightforward to
prove that it goes to zero with the square root of the distanc0.03

. .02
to the band edge frequency. Hence, the sudden jump we ob.o1
serve in the out-band case cannot be explained by any sort °,
quasi-linear approximation. I R—— 0

In the following we investigate the physical origin of non- () lattice site 0 80

linear supratransmission, distinguishing the cases of small
and large amplitudes.

FIG. 3. Snapshot of the local energy below the supratransmis-
sion thresholdA=0.15< Ay, for ®=2.1 andy=10. The initial con-
dition is an envelope solitor{1l) with x,=-1.8 (above and
A. Small amplitudes Xo=+1.8 (below).

When the driving frequency is only slightly above the
band (0< w—2<1), one can resort to the continuum enve- - acosh@/A) (12
lope approximation. Since we expect the zone-boundary om = a6

modek=1 to play a major role, we let . o ) )
In this approximation we have two possible solutions: one

1 . _ with the maximum outside the chain, which is purely decay-
u,= (- 1)“—[¢n elt+ g, e"‘”t]. (9) ing inside the chaifminus sign in Eq(12)], and another
2 with the maximum located within the chajiplus sign in Eq.
(12)]. Overcoming the supratransmission threshold corre-
In the rotating wave approximatidii0] and for slowly vary-  sponds to the disappearance of both solutions. Indeed, when

ing ¢, one obtains from the FPU lattice equations the nonthe driving amplitude reaches the critical valtyg, given by
linear Schrodinger equatidny, — y¥(x,t)] [12,13

w?=4+ 6A12h, (13
2iwy= (0= A= o~ 1201912, (10)  solution(11) ceases to exist.
We have investigated this issue by simulating the lattice
with the boundary conditiom/(0,t)=A. dynamics with the initial conditions given by Egd.1l) and
The well-knownstatic single-soliton solution of Eq10)  (12). The evolution of the local energy
corresponds to the family of envelope solitorilow- 2 1
amplitude discrete breathers e, = En + E[V(unﬂ —up) + V(U — Uyp)] (14)
U, = a(- 1)"cos w)sech \6(n - xp)a], (1D with V(x)=x2/2+x4/4, is shown in Fig. 3. The solution with

the maximum outside the chajnpper figuré stabilizes after
with amplitudea=+/(w?-4)/6. The maximum of the soliton the emission of a small amount of radiati@enerated by the
shape is fixed by the boundary condition to be fact that we have used an approximate solyti@n the con-
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o FIG. 5. Snapshot of particle displacemenis below the su-
lattice site

pratransmission threshold for a driving frequeney5.12 and a
FIG. 4. Snapshot of the local energy at the transmission thresHfVing amplitudeA=0.5<Ay=2.05. One can observe, similarly to

old A=0.253~ Ay, for w=2.1 andy=10. The initial condition is the the lower Fig. 3, that a moving discrete breather appears at the left
envelope solitort(hll) with xo=0. boundary and propagates inside the bulk, leaving behind the static

60 70

0
80

solution.
trary, the other solutiolower figure slowly moves towards s
the right and, eventually, leaves a localized boundary soliton wg(a) = 1 03\“’3772(4 +9a%) 17
behind. The release of energy to the chain is nonstationary B ' 4K(s) '

and does not lead to a conducting state. i o ) )

The scenario drastically changes at the supratransmissiof€r€K(s) is the complete elliptic integral of the first kind

H — 2

amplitudeA,,. The chain starts to conduct: a trainteéivel- ~ With arguments=3a/2(9a"+4) and the factor 1.03 takes
ing envelope solitons is emitted from the left boundgsge  into account a rescaling of the frequency of the “tailed”
Fig. 4). Here we should emphasize that the envelope solitoRreathef14] (see also Refl15]). As previously for the case
solution (11), which is characterized by thk= carrier ~ Of the envelope soliton solution, we perform a numerical
wave number, has a zero group velocity. Thus, transmissiofXperiment where we put initially on the lattice the breather
cannot be realized by such envelope solitons. Instead, trangolution of formula(15). Choosing the plus sign in this ex-
mission starts when the driving frequency resonates with theression, we do not observe any significant transmission of
frequency of the envelope soliton with carrier wave numbet€nergy inside the chain. Instead, the minus sign causes the
k=m(N-2)/N, next to them mode. However, as far as we appearance of a moving breather, which travels inside the
consider a large number of oscillatdts=500), we can still chain leaving behind the static breather solution with plus

use expressiofl3) for the m-mode frequency. sign. Figure 5 presents this numerical experi_me_nt. _
The static breather solutiqi5) ceases to exist if the driv-

. ing amplitude exceeds the threshdg, given by the reso-

The above soliton solution is valid in the continuum en- = wg(Ay) (19)
velope limit, and is therefore less and less accurate as its @~ @
amplitude increases. Indeed, if the weakly nonlinear condiAbove this threshold the supratransmission process begins
tion is violated, the width of the envelope soliton becomesvia the emission of a train of moving breathers from the
comparable with lattice spacing and, thus, one cannot use thgundary, exactly as it happens in the case of small ampli-
continuum envelope approach. Fortunately, besides thtides. It should be mentioned again that the transmission
slowly varying envelope soliton solutiofll), an analytic regime is established due to moving discrete breathers. It has
approximate expression exists for large amplitude static disbeen remarked8] that discrete breathers are characterized
crete breather solutions, which is obtained from an exacby quantized velocities, while their frequency is given by the
extended plane wave solution with “magic” wave numbersame formulg17). This explains why one can use the reso-

2713 [8] nance conditior{18) for the static discrete breather solution
(15) to define the supratransmission threshold in the large
u,=a(- l)“coin(a)t]cos(gn + xo) : (159 ~ amplitude limit.
if |(77n/3)+xo| < /2 andu,=0, otherwise. C. Supratransmission threshold: Numerical test
Herex, is defined as follows To check these predictions, we have performed a numeri-
_ cal determination of\;, for several values o, starting the
Xo = a cogA/a), (16)

chain at rest. This is accomplished by gradually increaging
where A is the driving amplitude. The breather frequencyand looking for the minimal valuéy, for which a sizeable
wg(a) depends on amplitude as follows energy propagates into the bulk of the chain. At early time,
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Priving Frequency - fol FIG. 7. Time-averaged local energgbove and energy flux
FIG. 6. Comparison between analytic estimates and numeric4P@loW versus lattice position in the case of out-band driving;
values of threshold amplitudes vs the driving frequency. Main plot:=3-5 @ndA=1.27. The 50 rightmost particles out b=512 have
the full dots are the numerical values A, and the solid line is a  °€en damped witly=5. The averages are taken ovex 20° driv-
plot of formulas(17) and(18), which are valid for large amplitudes. N9 Periods.
The inset shows an enlargement of the smag]lregion, in order to

illustrate the accuracy of the small-amplitude approximativ8) V. STATIONARY STATES

(dotted ling. The diamonds are simulation data for the lower- . ) ) .
transmission threshold;, and the dashed line is formu{@2). No- As announced in the Introduction, we have also investi-
tice how the latter is accurate only for small enough amplitydes ~ 9ated the long-time behavior of the chain. As shown in the
again the inset upper Fig. 7 the time averaged local enefgge formula

(14)] reaches asymptotically a given profile: local energy
the scenario is qualitatively similar to the one shown in Fig_monotqnously decr_eases along the chain as in the case of
4. Later on, the interaction of nonlinear and quasilinearg'mm"’ltlorls of_statlonary heat transport with two thermal
modes and their “scattering” with the dissipating right baths_[9]. The time average of the quQ@) in the stationary
boundary establishes a steady energy flux into the chain tate is almost constant along the chain, apart from statistical
conducting steady state, which is present also begywyill " fluctuations and some persistent flux oscillations at the left

be discussed in Sec. V in connection with a |ower_boundary. )
transmission threshold, However, as we mentioned above, the value of the sta-

- ; . tionary flux depends on the initial state of the chain. To il-
As seen in Fig. 6, formula@l8) [with definition(17)] and : . L . .
(13) (see the inégetare in excell)er[nt agreement vE/itZl)]simula- lustrate this effect, _Igt us excite the chain imposing a differ-
tions for largeA>2 and smallA<1 amplitudes, respec- ent boundary condition

tively. The accuracy of the analytical estimate in formulas _ __tr _ __tir
(18) and(13) is of the order of a few percent, at worst, in the uo—cos(wt)[B(l ' +(A-B)1-e 2)]’ (20

intermediate amplitude range. We do not discuss here thgnherer,> r, (in the experiment,=10r;=100), A<A, and
lower curves in Fig. 6, which are related to the '0W€r'B>Ath. Obviously, both the boundary conditiori8) and
transmission threshold. (20) lead to the same driving amplitud for t> 7. How-

_ For comparison, we have checkeq that th_e supratransmigyer, at variance with Eq8), when imposing Eq(20), the
sion threshold is definitely not associated with the quasiharsiantaneous forcing amplitude overcomes the critical am-

monic waves with nonlinear dispersion relatiéh). If this  pjityde A, for a time of the order of, which is enough to
were the case, the transmission should start when the 0SCistaplish a stationary flux regime. This drastically reduces

lation amplitude reaches the value for which the resonancg,e transmission threshold to a valug, <Ay, which we

condition w=wo(k,A) holds. Aswg(k,A) is maximal fork  genote agower-transmission threshaldhis is the first ob-
=, we can get the expression for the threshold value frongeryation of this phenomenon, of which we will give a the-

the relationw=wo(7,Ap), i.e., oretical interpretation in the following. The numerical deter-
2_ 2 mination of A, versus the driving frequency is reported
W =4+ 1A (19 with diamonds in Fig. 6.
The amplitude values one obtains from EtP) are far away In the amplitude intervalAy,,Ay], two steady states co-

from the numerical values and we do not even show them imxist, aconductingstate and arinsulatingone. Each of the
Fig. 6. This is a further confirmation that supratransmissiortwo steady states can be attained with different initial condi-
in the FPU model originates from direct discrete breathetions of the chain and different driving pathways. For in-
generation as it happens in the cases of discrete sine-Gordstance, the conducting state is reached when imposing driv-
and nonlinear Klein-Gordon latticd4]. ing (20), the insulating one when using E®). It is a typical
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nonlinear regime, i.e., mode amplitudeg and|a_,| much
smaller than 1. This condition certainly applies to the case in
which the driving frequency is close to the band edge, since,
then, the threshold amplituds,, is small. When the driving
frequency is far from the band edge, one has to take into
account higher-order corrections. The inclusion of the first
“satellite” mode(3k) produces a lower threshold amplitude,
but the agreement with numerical data extends only to
slightly larger amplitudes. To obtain a definitely better agree-
ment, one should treat all satellite modds 3k, etc. We
briefly discuss this aspect in the Appendix.

From the above considerations, it follows that the bistable
nature of the energy flux can be explained by making refer-
ence to the different excitations of the system. Indeed, with
the system initially at rest, when following the driving
method (8), extended quasiharmonic waves cannot be ex-
cited. Then, energy flow appears only when the driving am-

is revealed by sweeping the forcing amplitude in the rangePlitude reaches the value necessary for localized mode exci-

[A;,,Anl. The sweeping direction is indicated by the arrows. Thetation. On the other hand, with drivin@0), the energy flow
analytical values of the two thresholds are indicated by the verticalS initiated by the overcoming of the supratransmission
dashed lines. While the prediction for the supratransmission threstthreshold and then sustained also by extended quasiharmonic
old Ay, is quite good, the one for the lower-transmission thresholdwaves.

Ay, overestimates the numerical val(tee prediction becomes bet-
ter for smaller driving frequencies, as shown in Fig. 16 order to

It is also possible to give a heuristic argument to explain
why the transition from nonzero to zero flux is “continuous”

show that the steady state is already reached for these integratiet the lower-transmission threshokg,, while there is flux
times, results for increasing averaging times are displayed with difjump at the supratransmission threshajgl When the quasi-

ferent symbols.

bistablesituation, where tw@possibly chaotigzattractors co-
exist in a given control parameter range.
This behavior is illustrated in Fig. 8 using a different

harmonic waves are already excited, reducing the driving
amplitude diminishes also the number of resonating modes
continuously. Hence, the flux goes continuously to zero pro-
portionally to this number, producing a sort sgécond-order
phase transition when the flux is considered as amder

simulation method. The average flux is computed afteparameter On the contrary, when increasing the driving am-
changingA stepwise. A back and forth sweep around theplitude with the lattice at rest across the supratransmission

amplitude intervalAy,,Ay] reveals the presence of the two
states.

threshold Ay, localized modes are excited, which succes-
sively excite also extended waves. Hence, a nonzero flux is

A justification of the presence of the lower-transmissioncreated suddenly from the zero flux state, generating a sort of
threshold can be given in terms of quasilinear theory. Thidirst-order phase transition

theory leads to dispersion relatigh) only if one restricts to

a single right-propagating mode. However, due to reflection
with the boundary and to mode interaction, both the right-
propagating mode and the left-propagating one can contrib- We have discussed the supratransmission phenomenon for
ute to the dispersion relation. In the Appendix, we derive thigshe Fermi-Pasta-Ulam one-dimensional lattice. A theory,
more general dispersion relation. After introducing the com-based on a resonance condition of the driving frequency with
plex mode amplitudes, for the kth mode, the dispersion the typical frequency of localized excitationsolitons,
relation takes the following form: breathery gives a good agreement of the supratransmission
threshold with numerical data. Below this threshold two

w(K)? = 2(1 - cosk) + 3(1 - cosk)Ja? + 2la]. steady states coexist, a conducting and an insulating one. For
even lower driving amplitudes a further transition occurs to a
region where only the insulating state persists: we have
called this new phenomenon lower-transmission threshold.
Imposing a resonance condition for nonlinear quasiharmonic
waves, we are able to derive an analytic expression for the
lower-transmission threshold amplitude.

2_ -2 At the supratransmission threshold a jump in the energy
"= 4+ 36A" (22 flux appears. This is reminiscent of a first-order phase tran-
This analytical estimatédashed line in Fig. Bfits well the  sition. At variance, at the lower-transition threshold the flux
numerical data only for driving frequencies close to the bandjoes to zero continuously. This analogy with non-
edge(see the insgt This can be justified by taking into ac- equilibrium phase transition$l7] should be further ex-
count that dispersion relatiq21) is valid only in the weakly  plored.

VI. CONCLUSIONS AND PERSPECTIVES

(21)

In order to fulfill the resonance condition with both the right-
propagating(a,) and the left-propagatinga_,) mode, their
amplitudes must be equid, | =|a/. Sincew(k) is maximal
for k=1, the condition for the threshold amplitude is
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Fluctuations in steady states could be analyzed to verify [ w(p)?
the possible role played by the Gallavotti-Cohen out-of-

equilibrium fluctuation theorerfilg].

The supratransmission phenomenon is quite generic and

PHYSICAL REVIEW E 70, 066626(2004)

-2(1- cosp)]ap =6 E Ggl,qzaqlanagl’fqz‘P’
q1,92

(A2)

has already been observed experimentally in a chain oivhere

coupled pendula2]. Also the bistability of conducting/

insulating states is generic and could be observed experimen- Gf, ,= %[1 +cogd; + ) + cogp—qy) +cogp—0qy)

tally in similar conditions. For instance, one could apply this
theory to micromechanical experiments of the type per-

formed by Sievers and co-workef$9].
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APPENDIX A: NONLINEAR PHONON DISPERSION

In order to derive the nonlinear dispersion relation for
extended quasiharmonic waves, let us seek for the solutions

of the equations of motiofil) of the form
1 . B _
Uy = 5% [apel[w(p)t+pn] + afpe iLo(pt-pnl] (A1)

where w(p) is the frequency of theth mode anda, its

w(K)2=2(1 - cosk) + 3(1 - cosk)q |a |2 + 2|a_J?],
(A4)
which is presented as E¢(R1) in the text.
As also mentioned in the text, one must sometimes con-
sider the excitation of “satellite” modes35k, etc. The in-

clusion of the & mode produces the addition of the follow-
ing term

3[3cogk-1-2cosk](|a*+2jaydal?), (A5)

to the right-hand side of EqA4). This gives the following
resonance condition &=

-\2
W= d 3e(A;h)2(1 » 2R ) ,
0w -4

where w and Ay, are the driving frequency and lower-
threshold amplitude, respectively. Since the coefficient of the

complex amplitude. Substituting this Fourier expansion into(A;)* term in this relation is always positive, the threshold
the equations of motion, one gets the following infinite set ofamplitude one obtains is smaller that the one derived from

algebraic equations for mode amplitudés)

Eq. (22) in the text.

[1] F. Geniet and J. Leon, Phys. Rev. LeB9, 134102(2002.

[2] F. Geniet and J. Leon, J. Phys.: Condens. Maiftéy 2933
(2003.

[3] J. Leon and A. Spire, J. Phys. 87, 9101(2004.

[4] J. Leon, Phys. Lett. A319 130(2003.

[5] R. Khomeriki, Phys. Rev. Lett92, 063905(2004).

[6] E. Fermi, J. Pasta, S. Ulam, and M. Tsingou,Tine Many-
Body Problemsedited by D. C. MattigWorld Scientific, Sin-
gapore, 1998(reprinted.

[7] S. Flach and C. R. Willis, Phys. Reg95, 181(1998).

[8] Yu. A. Kosevich, Phys. Rev. Letfr1, 2058(1993; Phys. Rev.
B 47, 3138(1993.

[9] S. Lepri, R. Livi, and A. Politi, Phys. Rep377, 1 (2003.

[10] S. Takeno, K. Kisoda, and A. J. Sievers, Prog. Theor. Phys.

Suppl. 94, 242 (1988

[11] Yu. A. Kosevich, R. Khomeriki, and S. Ruffo, Europhys. Lett.

66, 21 (2004).

[12] A. Scott, Nonlinear SciencgOxford University Press, New
York, 1999, Chap. 3.3.

[13] R. Khomeriki, Phys. Rev. B65, 026605(2002.

[14] Notice that a simpler approximate expression for the breather
frequency has been proposed in Rf8] in the form wg
=3+81A%/16. We have checked that this expression is also in
good agreement with numerical data, but we prefer to use the
more accurate form in formul@l7).

[15] Yu. A. Kosevich and G. Corso, Physica Dr0, 1 (2002.

[16] R. Khomeriki, S. Lepri, and S. Ruffo, Phys. Rev.G8, 056606
(2001).

[17] D. Mukamel, inSoft and Fragile Matter: Non-Equilibrium Dy-

namics, Metastability and Flovedited by M. E. Cates and M.

R. Evans(IOP, Bristol, 2000.

[18] G. Gallavotti and E. G. D. Cohen, J. Stat. Phy&0, 931
(1995.

[19] M. Satoet al, Phys. Rev. Lett.90, 044102(2003.

066626-7



