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Perturbation theory for dark solitons: Inverse scattering
transform approach and radiative effects

Volodymyr M. Lashkirf
Institute for Nuclear Research, Prospekt Nauki 47, Kiev 03680, Ukraine
(Received 23 September 2004; published 21 December)2004

A perturbation theory for dark solitons of the nonlinear Schrédinger equation is developed. The theory is
based on the inverse scattering transform method. Equations describing dynamics dsstiteteic) and
continuougradiative scattering data in the presence of perturbations are derivéd-$otiton case. Adiabatic
equations for soliton parameters and the perturbation-induced radiative field are obtained. The problem of the
absence of a threshold for the creation of dark solitons under the action of a perturbation is discussed. A
temporal one-soliton pulse with random initial perturbation and a spatial soliton with linear gain and two-
photon absorption are considered as examples of application of the developed theory.
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[. INTRODUCTION However, these methods are suitable for deriving the corre-
sponding evolution equations only in the lowest approxima-

tion, when an unperturbed instantaneous shape of one soliton
Xwith slowly varying parameters is assumed. They become

A ) , i irrelevant when considering the-soliton solution or when
tons in time(temporal pulses in the optical fiberand space one wishes to take into account the effects that arise in

(spatial beams in the waveguideloth bright and dark, have higher orders of perturbation theory. These effects include, in

been the object of intensive theoretical and experimental = . o o o
studies[3-5]. particular, perturbation-induced emission of radiation by

The classical, mathematical model for the nonlinear puls olitons and long-range corrections to Fhe soht_ons shape.
(beam propagation is the famous nonlinear Schrédinge ote that an effort to derive the adiabatic equations for the

equation(NLSE). As is well known, the NLSE is a com- dark soliton parameters with the aid of the IST was at-

letely integrable Hamiltonian system for both vanishin anatempted_ in Ref{15]. T_he authors of Ref[15] us_ed the so-
Eonvgnishi?lg at infinite bounda¥y conditiof@]. Dark sol?— called direct perturbation theory and based their approach on

ons corespond 1o nonarishing boundar condiions, anfl 2SSTPUEY AL e P 2 Srk ehen e pres
negative(positive) sign of the dispersion term with positive P y y

. : ) . . (it does not change. As was pointed out in R, this as-
(negative sign of the nonlinearity. They appear as an inten sumption is, generally speaking, wrong. As a result, the

sity dip in the constant background. Many of their properties . . : o
have been reviewed in Re7]. equations derived in Refl5] have very narrow applicability

. S . imits. In particular, the theory presented in REf5] cannot
In physical applications, additional terms are often presen&eproduce the adiabatic equations obtained eaflié;14

in the NLSE. These terms violate the integrability, but, beingfrom a simple, but reliable, approach based on the renormal-
small, they can be taken into account by perturbation theory, ' i

The most powerful perturbative technique, which fully uses'tﬁidﬁg}gegvraa;sn%i ?oor:ggérz?jsilr?el?s Qtﬁhﬂat’ the radiative part of
the natural separation of the discrete and continuaes, The aim of this paper is to develo : a perturbation theor

solitonic and radiative degrees of freedom of the unper- ! IS paper is | Velop a pertu : eory
turbed NLSE, is based on the inverse scattering transforr‘l[c'ij"’lsed on the IST to investigate dark soliton propagation in

: ) . . e presence of a perturbation. For concreteness, we will
(IST). While the 1ST-based perturbation theory for bright consider optical dark solitons, although all results can be

NLSE solitons was developed long aff-10, and the cor- applied to an arbitrary physical model described by the

responding perturbation-induced dynamics of the solitons . s . .
including radiative and nontrivial many-soliton effects, wasNLSE with no_nvams_hmg boundary cond|t_|ons _and different
signs of the dispersion term and the nonlinearity.

well understood 11,12, the analogous theory for dark soli- . i ) )

tons was absent. Partly, that can be explained by the fact th% r;l'he propagation of dark solitons is described by the equa-

the IST formalism for the NLSE with nonvanishing bound-

ary conditions is much more complicated than the one for . _ 2 1

va);lishing boundary conditions. Ingtead, the simplest tech- |(9tu+(9§u 2Jufu+plu,u*]=0 @

niques based on modified conservative laws or the Hamilyin |u(x, 0)] — po at || — o, which is often referred to as the

tonian formalism have been applied successfglly to Variou%iefocusing NLSHnote, in this connection, that in the case

problems in the theory of perturbed dark solitdd,14. ot temporal dark solitons the Kerr nonlinearity is always fo-
cusing, but the group-velocity dispersion is positive, so that
the resulting equation has the form of Ed)]. We use clas-

*Electronic address: vlashkin@kinr.kiev.ua sical mathematical notation for the independent variables

The possibility of propagation of optical bright and dark
solitons in lossless fibers was theoretically predicted first b
Hasegava and Tappert in 1978,2]. Since then, light soli-
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andx. In Eq. (1), uis the complex field envelope, ands the  effects, and an expression for the radiative field with the use

propagation distance along the optical waveguidpatial  of a specific form of the one-soliton Jost solutions are pre-

problem or fiber(temporal problem In the case of temporal sented. Some applications of the developed theory, namely, a

solitons,x is a retarded time measured in a frame of refer-temporal one-soliton pulse with random initial perturbation

ence moving at the group velocity, while for spatial solitonsand a spatial soliton with linear gain and two-photon absorp-

the variablex stands for the transverse coordinate. The pertion are considered in Sec. V. The conclusion is made in Sec.

turbation is represented by the temfu,u* ]. All variables  VI.

are written in normalized form. Regarding notation, we will use asterisks for complex
As is well known, the unperturbed defocusing NLSE, i.e.,conjugation, and X2 matrices will be written with bold

Eq. (1) with p=0, has an exact solution in the form of the letters, except for the Pauli matrices

continuous-wave background (01 (0 -i (10
U= poexp(- 2ipat), ©) 77\1 0/ 27\ o) ®T\o -1/

which is modulationally stable. The dark soliton can be re-

garded as a localized nonlinear excitation of the background

wave. The corresponding solution is Il. INVERSE SCATTERING THEORY FOR THE

) DEFOCUSING NLSE
1+exgif+ v(x—uvt—Xg)]

1+exgv(x—uvt—Xg)]

i 2,
= Po e 2t (3 A. Scattering data

In this subsection we review the theory of the scattering
. o ) o transform for the Zakharov-Shabat eigenvalue problem cor-
out in Ref.[14], when considering Eq1) with p#0, itiS  regnonding to a defocusing NLSE with nonvanishing bound-

necessary to distinguish the cases of perturbations vanishir}:gy conditions. Equatios) with p[,* ]=0 can be repre-
and nonvanishing gk — . These cases correspond to the cohted as the compatibility conditio,n

constant and varyingn t) backgrounds. In the first case, i.e.,
when p[u,u*]—0 at |x]—o, the perturbation does not dU -4V +[UV]=0 (7)
change the continuous-wave background. Theywconst
(constant backgroundand introducing the new function

wherev=2p4sin(0/2) andv=-2pycodq 0/2). As was pointed

of two linear matrix equationgg] (the Zakharov-Shabat sys-

(x,t) through the relation tem:
! oM =UM, 8
u(x,t) = e 2A0ty(x, 1), 4) " ®
one can transform Eql) into M =VM, (9
i+ o= 2(|W% = pdp+plpp* 1=0 (5)  Where\ is a spectral parameteV,=-AU+iL,

with nonvanishing boundary conditiofgl?— p3 at x— . u=|" IN2 g A N
Without loss of generality one can set oy i) o p2—yl2)

P as X— — o, (10

#(x,0) ={ ° i0 (6) . . .
po€~ as X— +o. Consider the linear probleii8) for some fixed. In terms of

In the second case the perturbatiprioes not vanish gk| the matrixU the boundary condition&) can be rewritten as

.o and it will affect the background wave. The background!IMx-+=U(x,A)=U.(A), where
amplitudepg is no longer constant. In this case the substitu- 1/-iN a

tion u(x,t) = (X, t)exd —2i [po(7)]d7 transforms Eq(1) into u.= —( .

Eq. (5) with py being dependent oh However, as was a I
shown in[14], in many important practical cases of varying and we have introduced the notatiar 2p,. The continuous
background Eq(1) may be transformed into Eq5) with  spectrumR, of the problem(8) consists of reak satisfying
some effectivep,=const after appropriate change of vari- \2=a2. For\ e R, denote byM*(x,\) the 2X 2 matrix Jost
ables. So we will consider Eqg5) and (6) as our starting  solutions of Eq(8), satisfying the boundary conditiond*

>, U+ - e—i 6)03/2u_ei 6(73/2’ (11)

point. —E*(x,\) asx— . It follows from Eq.(8) that
The paper is organized as follows. Section Il begins with . .
a review of the theory of the scattering transform for the okE™=U.E*. (12

corresponding linear eigenvalue problem. Théhsoliton The matrixE~(x,\) is taken in the form
Jost solutions are calculated. In Sec. Ill the dynamics of the '

scattering data in the presence of a perturbation is considered ~ 1 ik=Na) oo

and corresponding equations for thesoliton case are de- E"(xN) = i\ —k)/a 1 e, (13
rived. One-soliton perturbation theory is formulated in Sec.

IV. Adiabatic equations for the soliton parameters, an equawhere k(\)=y\?-a?> with sgnk(\)=sgn\ and E*
tion for continuous scattering data, which describes radiative expg(—i o3/ 2)E~. Analytical properties of the Jost solutions
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are formulated on the Riemann surface determined by the M1(x,¢;) :—iijg(x g). (24)
functionk(\). The Riemann surfacg consists of two sheets
S* and S~ of the complex\ plane with branch cuts on the Denote r({)=$:(9)/S;(¢) (reflection coefficient and

real axis from <o to a and froma to «. It is convenient to  S11(£)=9:S11()|=;- One can show16] the following.

introduce a change of variables (i) Zeros Ofsn(f) are simple and lie on the circlég|=a |n

5 5 the region Im¢>0 [the latter follows from EQ.22)].

A = }(§+ a_>, KO = }<§_ a_)' (14) addition, the quantitiesy =—i;/(S;y(¢))¢)) are real negatlv_e.
2 4 14 (ii) The functionr({) possesses the following properties:

which maps the sheef& onto Im¢>0 and ImZ <0, respec- r(0)=0, (25)
tively, and the continuous spectrul onto the real axi®t
on the complex plane. Under this, r(0)) <1, (26)

1 -ial .

E(x,0) = ( g)e—'k@)‘fsﬂz. (15) r@4y)=-r* (. (27)
iall 1

Equation(25) is also valid for all derivatives of ({). The
The matrix Jost solutiond!*(x,{) can be represented in the equality in Eq.(26) occurs only at=+a with r(xa)=
integral form (i) In the case of nonreflectionlesse., nonsollton@
+o0 potentials, the coefficientS,,({) and S;4(¢) are singular at

M=*(x,2) = E*(x,{) if T'*(x,y)E*(y,0))dy. (16) the vicinity {=+a, so that

X

The potentialy(x) is expressed through the element of the Su(d) ~ 7 7 and$u(f) = +iSu(f) (28)

kernell'™ as
at{— *a.

P(X) = po + 2I51(X,X). (17) (iv) There is a condition

The fundamental solutiord *(x, ¢) andM ~(x, {) with real ¢ e H _L “ In(1 - |r(§)|2) ,
are linearly dependent and connected with each other g m df (. (29
through the monodromy matri®(¢), I=1 2]

(v) The coefficientS;4({) can be expressed in terms of its

M™(x,§) = M"(x,9)S(0), (18 zeros and the values d:f(g)| on the real axis:
with the symmetry properties = In(1 - |f(,u)|2)
g _g Su(0=¢ f »
S0 =S40, S =Su(0), (19 =1 g §1 2mi ). (-p+i0
+ +* + +* (30)
M12(0) =M3(0), M0 =M35,(0) (20)

The matrix function I'(x,y) satisfies the Gelfand-

and normalization conditior}Sy;|*~|S,/*=1. In addition,  |evitan-Marchenko equation
since the scattering probleig8) possesses symmetry with

respect to the inversiog— a?/¢{, the following important
involution properties are valid:

M*(x,a/{) = ({lAM*(X,{) o, (21 (31)
wherey=<x, and the matrix kernef(x) is

F‘(x,y)+F(><+y)+f I'"(x,y)F(y' +y)dy' =0,

S(@¢) = ;S0 (22) .
Fx) = (A (x) B(X)) (32
It follows from Eq.(18) that B* (x) AX)
Su(9) = A™H(Q)detMi(x, ), M3(x,)), (23)  with
WhereM means thgth column ofM*, and we have intro- (é,) aN T
duced 'the notation A(Q)=1- a2/§2 The columns A= el By e kOX2qr + =D —gTk@G2 - (33)
77 j=1 %j

M1(x,2), M3(x,{) turn out to be analytically continuable to
Im ¢>0, while M3, M7 are analytically continuable to Iif

< 0. Then, the coefficien§;4(¢) is analytically continuable 1 f N

r(é/)e—|k(§)x/2dg + ZE 'E e—lk(gj)xIZ (34)
=1

to Im >0, except for the pointg=ta. In addition to{=0, =
the analytic functiorS;4(¢) may have zerog,...,{y in the

region of its analyticity Imy>0. Equation(23) then shows where the notations T({)=-S,({)/S;({) and T
that the column#/; andM] are linearly dependent and there =i/[%S11(¢j)] have been introduced. Here, unlike the case
exist complex numbers, ..., vy such that with vanishing boundary conditions, the matixcontains
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both off-diagonal and diagonal parts. Note that the integrand

in Eq. (33) is regular atZ=0 due to Eq(25). After solving
Eq. (31), the potential/(x) can be found from Eq.17).

PHYSICAL REVIEW E 70, 066620(2004

(43

_ vz g ¢
ro(xy) = ( Y,

2a(y,+eM\-¢; ia

In conclusion of this subsection we note that the elementsvith /;=-ae?? andv=a sin(#/2). It then follows from Eq.

M;;(x,t,N) of the matrixM, whereM is an arbitrary solution

of Eq. (8), and the corresponding potenti#lx,t) satisfy the
important relations

M1 Mo+ > MyMop = 6, (M1oMyy), (35

YMI;+ g% M3 = 9(M1M ), (36)

which we will use below. These relations can be easily veri-

fied by taking the derivative in Eq$35) and(36) and using
Eq. (8).

B. The Jost solutions and the potential
in the reflectionless case

An important particular case is that of the reflectionless
(solitonic) potentialsy(x) whenS,,(t, £ =0 as a function of

{ for some fixedt. It then follows from Eq.(30) that

LG
Su(9) =[] —. (37)
i=1 £ = ¢
The kernell’™(x,y) in this case i§16]
N
I (xy) = 2 f;(xg/e?, (38)
j=1

wherey;=Im ¢; andg’ means the transpose of the colugyn
the columng(x) are determined from the systemdfinear
equations

N

fi(X) + 2 Bjp(X)fp(x) = — hje"2, (39
p=1
where the columng; andh; are
g' = . 3 i= ..~ 3 40
o2 \ylia o2 \ig
and the matrixBj,(x) is
ia\/b;b
Bjp(X) = —— €2, (41)

J p

with b;=i/[{;S;1(£)) ¥;]. TheN-soliton potentiak/(x) is given
by Eq. (17). Substituting Eq.(38) into Eq. (16) yields the
N-soliton matrix Jost solutiot ~:

N £ (x)g! o3E (%, 0)e"¥?
M0 = E-(x.0) + 23] i(X)gj o3 .( 4]
=1 v~ k()
The matrix functionM* can then be found from Eq18).
The reflectionless scattering data with the singie=1)
zero {;=v +iv of the functionS;;({) in Eq. (30) correspond
to the one-soliton solution. The one-soliton kerhé(x,y) is

(42)

(17) that the one-soliton potential is

1+exgif+v(x-2)]
1+exgr(x-2)]

Us=po

: (44)

where we have introduced the notatonin(y,)/v. The one-

soliton Jost solutions and the corresponding scattering data

are given in Appendix A.
IIl. DYNAMICS OF THE SCATTERING DATA
Equation(5) can be cast in the matrix form
aqU -4V +[UV]+P=0,

0 ip*
p=( 0 P7).
-ip O

From Eq.(45) and the fact thaM* satisfies Eq(8) one can
get

(45)

where

(46)

(3= U)(d, - V)M* +PM*=0. (47)

Introducing a new unknowld*(x,t,/) defined through the
relation

(6= V)M*=M*J*, (48)

one can obtain that* satisfiess,J*=-M*1PM*, and there-
fore J*=C*+ [;”"M* !PM*dx’, where the constant matrices
C* are determined from the boundary conditionxat + .
SinceV=-\U_, M™=E~ asx—-», Eq. (48) for M~ at X
——oo becomes\U_E"=E"J” or, taking into account Eq.
(12), I"=\(E")%9,E", and after using Eq(15) one obtains
C =3 (%) =-iQ({) o3/ 2, where

1 4
0= (e 5)

Similarly, one can show tha*=C". Then we have

(49)

+oo

J=- 'Eﬂ(g)03+ J M= IPMEdx’ (50)

X

and, hence, the following equations of motion fdF:

(—-V)M*= Mil— i50(5)(f3+ f_ Mi‘lPMidx’} :

(51)

Equation(51) is valid only for Im¢=0. Introducing the ma-
trix M(x,t,\)=(M7,M3), the columns of which admit ana-
Iytical continuation to Iny>0, and as before defining the
new unknown matrixJ(x,t,\)=(J;,J,) through the relation
(&—V)M =MJ, one can similarly obtain

3= (_m@/2> —J M~PM7dx’,

0 B (52)

066620-4
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J =( 0 ) + JOC M~PMdx’ (53)
2\ior) ), 25
Thus, we have the equations of motion
(= VIMI=MJy, (54)
(0 =VIM;=MJ,, (55

valid for Im >0 except atf; and {=*a, whereM fails to

PHYSICAL REVIEW E 70, 066620(2004
poles, multiplying the matrices and applying the I'Hépital
rule, we arrive at
7 &

ot +iQ(¢)y; = m
+P* Ma1dgiyjMz,+ M3p)tdx,

f {pM119,(iy;M1,+ M1y

(62)

with {=¢;. Equations(58), (60), and(62) describe the evo-
lution of the scattering data. It is necessary to stress that no

be invertible. Making the natural assumption that the zero@issumptions about the perturbation tePninave been made

{=¢; are simple, one can sho@ee belowthat each singu-
larity is removable since dél =S;;A.

The equations of motion foM* and M determine the
evolution of the scattering data. Differentiating E#j8) with
respect ta and using Eq(51) yields

78D = SO, S(1.0)]

=- fm (M) Y(x,t, ) PM(x,t, ) dx. (56)

The equations of motion for the coefficien8,(t,{) and
S,y(t,¢) are contained in Eq56). Taking into account that

detM*=A, we have
S Y o R
a_tlz_'A 1j (MM, +p* MiMy)dx,  (57)
ISy b e
T +iQ()S; =A™ (lelMll+p M3;M5)dx.

(58)

The expression defining the zera§(t) of S;y(t,¢) is
Sii(t, ;(1))=0. Differentiating with respect to gives

Fye
S, ¢ (1) + ﬁ—t'sh(z,-) =0. (59

Using Eqgs.(24) and(57), one therefore finds
¢

8 fx -2 -2
= M * (M dx,
9t @ Dsg oy ), P P M lx

(60)

where the integrand is evaluatedxatt, and/=¢;. To obtain
the evolution equation foy;, we differentiate Eq(24) with
respect tot, use Eqgs.(54) and (55), and take the limit{
—{j. As a result, one obtains

1 <9
l(x {j) + |‘Q(§J)M1(X gj)

j 9

- Iimj M (x, )M ~HX', HP(X)M7(X',£;)dx
[Sad i

(61)

Assuming that singularities at=¢; in M~Y(x,¢) are simple

yet, and these equations are valid for arbitrafy, ¢* ] in

Eq. (5). However, Eqs(58), (60), and(62) are coupled to the
equations for unknowmM and M* and, in this sense, are
practically useless. As is well known, the coupling disap-
pears forP=0 and the dynamics of the scattering data in this
case turns out to be trivial:

S1(t) = S1(0)exd - iQ()t], (63
() =¢(0), (64)
(1) = ¥ (0)exd - iQ(¢)t]. (65)

In particular, substituting Eqg64) and (65) with j=1 into
Eq. (44) yields the one-soliton solution3) with vx,
=In[y.(0)].

One can also immediately write equations for variations
of the scattering data under the variations of the potentials
Sy(x,t), Sy (x,t) for some fixedt. We make use of the
formula

d8(¢) = f (M*)™(%,0) QXM (%, {)dX, (66)
where

_(o &/f*) 67
Q(x) = s0 0 ) (67)

Comparing this expression with E¢b6), we get

851(0) = 1; J (SYM M7, + Sy* M5M5)dx,  (68)

1 (>
) =% J (SYM1 M7, + Syr* M3 M5 )dx.  (69)

If plu,u*]is a small perturbation, one can substitute the
unperturbedN-soliton solutionsy, ¢* determined by Egs.
(17) and(38) andN-soliton Jost solution* determined by
Eq. (42) into the right-hand side of Eqg58), (60), and(62)

[or into Eqs.(68) and(69) for small variations of the poten-
tial]. This yields evolution equations for the scattering data in
the lowest approximation of perturbation theory. This proce-
dure can be iterated to yield higher orders of perturbation
theory. The appearing hierarchy of equati@¢s8), (60), and

(62) is applied to an arbitrary number of solitons and, in
particular, describes nontrivial many-soliton effects in the
presence of perturbations. In this paper we restrict ourselves
to the case of a one-soliton pulse.
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So far, we implied thaa is a constant. As was said in Sec. vy, ia % (v—w)? we ¢

|, this corresponds to a perturbation that vanishelg|at . T i)y, = PRef pe”™ 1-—
S o S v o w v—Ww

However, it is not difficult to get a generalization for the case

of varying backgroundi.e., whenp does not vanish ai| _

— ). Since all results presented in Sec. Il are valid for ar- —xw(l +e‘”’)}dx, (76)

bitrary fixedt, anda enters expressions of Sec. Il only as a

parameter, we can formally pata(t) in Eqs.(58), (60), and  wherew is defined by Eq(A8). Equations forS;;({) and

(62). If p=0, it immediately follows(since|j|=a) from Eq.  S,,(¢) with Im =0 follow from Eqs.(57) and (58):

(60) that da/at=0. To obtain the equation fa, we follow

the idea suggested in Refg,14]. Considering the nonpropa- ISy e’ (=g~ o A
gating(i.e., that which does not depend wnbackground, at A (-8 )- {PM1 Mo+ p* M3 Moprdx,
and taking the limifx| —c in Eq. (5), we get the evolution v
equation (77)
9ty . B2 (Y [
i—— + plh, Y] = 0. (70) ISy . ie"' " (- &) —\2
at —=+iQ()S;; = {p(M7)
gt TSI ) P
Writing the background field ag,=(a/2)expia), and split- .
ting real and imaginary parts in E@70), one can obtain +p* (Mg)}dx, (78)
equations for the background intensity and phase, where the function®;(x, ) are defined by EGEA4){AT).
Jda ] Equations(77) and (78) are completed by initial conditions
T 2(cosaRep+sinalmp), (7D $,(0,0)=S,1(¢) and S,4(0,¢) =0, whereS;y(¢) is defined by

Eqg. (Al). Note that due to the propert28) the coefficients
S11(¢) and S,4(¢) are singular functions at the poinis +a

da_ g(sin aRep-cosalmp), (72)  andt>0, so that the singular factor (?-a?) does not enter

Jt a in the expansion parameter.
wherep[#, y* ] is evaluated atf,. Equations(71) and (72) If the perturbation term has the forpiy, y* 1=1(|yf?)y,
complete Eqs(58), (60), and (62) for the case of varying Wheref is some arbitrary real function, then Eqg.7) and
background. (78) can be simplified with the aid of Eqé35) and(36).

The action of the perturbatigmon the soliton generates a
IV. ONE-SOLITON PERTURBATION THEORY radiation fieldy,, so that at any the total field is
In this section we consider the simplest, but important, P(X,1) = (X, 1) + (X, ) (79
case of a one-soliton initial pulse. TakifdF1 in Eq. (60),
we have with :(x,0)=0. The reflection coefficiet()=-S,,/S;; is
a measure of the radiation field present in the pulse; for a

90 2ida_ 4sino2)

=— * V24 0% (M=)2 pure soliton¥({)=0. The perturbation change&j,(¢) and
at adt (8'0—1)71J_x[p(M11) +p* (M3y)]dx, )

Slz(g):szl(g) in accordance with Eq$77) and(78), respec-
(73) tively. To obtainy,, we represent the matrix functiods and

F in Eq. (31) in the formI'"=I';+ 81", F=F¢+ 6F, where
whereMy, and M, are defined by EqgA9) and(A10). We T andF correspond to the one-soliton solution. The func-

further assume thad is a constant, since in many practical tion I'; is given by Eq.(43), and from Egs(32)<34) we
cases the perturbation term which does not vanishxlat have

— oo can be transformed into a vanishing one after an appro-

priate change of variablg44]. One can easily check that _ Veux/2< 1 - i§1/a> .
- 2= 4y, I T2y \igla 1)’
[Mll(gl)] - a3sin 0(8'0—1) ot . (74) i
Noting also thatdys/ dt=—expi0)(ays/ ) and [M5y(£y)]* ()= f E‘(x,é“)<~ r(g))dg. (81)
87) Fe(@) 0

=—expif)[M1,(£{)]% we get from Eq.(73) the following

equation for the phase Substituting these expressions into E§1), and assuming

96 4 f* alp;d oI'"<I'y, 6F <F4 one can obtain the integral equation for
—_— = Re X, 75 _
at  aScod6/2)sirk(012) ) _. Pt (79 T (x,y),

X
which coincidegup to notation®=7—-2¢, p— —p and scal- - f —(y 7 Ny =
ing) with the equation obtained by Kivshar and Yafigf]. A (xy)+ " A xyIFy+yhdy =@, (82)
The equation for the second soliton paramejgrfollows

from Eqg.(62) and has the form where
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x sponding multisoliton Jost functions into the right hand side
D(x,y) = - SF(x+y) —f I(xy")oF(y +y')dy’ of Eq. (75). The criterion of the validity of the one-soliton
— perturbation theory can be written as
(83

is a known function. Equatio82) is an integral equation , . ,
with degenerate kernél(y+y’) and can be easily solved. In Equation (87) is a transcendental equation and, generally

fact, we need onlyT'5,(x,x,t). Details are given in Appen- speaking, it has an infinitéor large set of close roots with
dix B. and the result is small Im{ and Ref~ a. As is known[16], in the case of the

focusing NLS with vanishing boundary conditions, such
_ * T2 0 clustering and condensing of the zerosSpfis equivalent to
Al1(X,x,t) = = aj m(Mzﬁ x,t.0) emerging of a radiative componee., the continuous spec-
- . trum can be exactly reproduced by taking the lmiow-
T* () 2 ever, this is not true for the defocusing NLS with nonvanish-
+ m('\/‘zz) (xt,0) (dg, (84) ing boundary conditions. In this case, as was pointed out in
! Ref. [16], dispersion relationfi.e., equations connecting the
where M7;(x,t,0), M3,(x,t,{) are defined by Eqs(A4), energy E to the momentumP; see Eqgs.(104) and (105
(A5), and(A7). Then, as follows from Eq17), the radiation  below] for continuous and discrete spectrum modes are es-
field ¢ is given by sentially different(the solitonic one cannot even be written
_ in an explicit form and the continuous spectrum cannot be
PelX,t) = 2815 (X, %, 1).. (85 obtained from the solitonic part of the spectrum by such zero

Equation (75) loses its validity asé—0, i.e., at small condensingor in any other way.
amphtude; of the orlglnal soliton. T_hls can be understood. in V. APPLICATIONS
the following way. It is known that in the case of dark soli-
tons the presence of certain perturbations in the initial soliton ~ A. One-soliton pulse with random initial perturbation
pulse result in the creation of new solitons with small ampli-

tudes and large velocities without a threshi@d,23. This is : P ; . _
. soliton propagation in optical fibexsSuppose thap=0, but
connected to the fact that the continuous spectrum of th e soliton input is randomly perturbed so that a pujée

linear problem(8) has edges at the branch points +a =i(X)+ S(x) is injected into the fiber. This case corre-

which correspond to the so-called virtual levels. An analo-S onds to an inhomoaeneous stochastic perturbation in the
gous situation takes place for external perturbations too. InzP g P

deed, formal exact solution of E(77) can be represented as termmolo_gy of Refs.[12,17,1§. The_ StOChé.lSt'C'ty arises
from an indeterminacy associated with the input pulse, and
2

i not from any agency in the fiber itself. One of the sources of
Sul4) =Su(£,0) + a2 - §2€G(§’t)' (86  the inhomogeneous stochasticity is the amplified spontane-
ous emissiofASE) noise. The ASE leads to random jitter in
where e<1, the complex functiorG({,t) is regular at the the soliton arrival timgthe Gordon-Haus effer, which is
vicinity {=+a, andS;;(£,0) is defined by Eq(Al). As fol-  connected with the soliton velocity by the relationT=vx.
lows from Eq.(86), an equation defining zeros 8fy({,t) is  Thus, the variancésT?) is proportional to{6v?). The theory

sin > €/ReG(a)|. (90)

In this subsection we consider temporal dark solitores,

a2 of the Gordon-Haus effect for dark solitons was given in
P=— - , (87) Refs.[19,20, where the noiseSy(x) was assumed to be a
1+ieG(¢ Dexd-ie(d)] homogeneous random procedscorrelated in time(white

where o(¢)=arg 8/2+2,-2¢,). Then, sincee<1, one can NOis8. As long as we consider the influence of the noise on

easily show that there always exist at least two eigenvalue9calized structuregthe solitons over the backgrounend
with Im ¢>0: calculate adiabatic changes of the soliton parameters, the ap-

proximation of noise’ correlated inx is quite justified, if the
width of the noise spectrumw> v, wherev is the charac-
teristic localization length of the structusoliton width.
However, when considering a continuous spectrum, i.e., un-
€ localized objects (radiation, the approximation of
Rel.= ta{l - sgr(ReG)Elm G(a)}, (890  s-correlated noise is no longer valid, singes will be seen
below) it results in infinite total energy of the radiation emit-
corresponding to a pair of dark solitons with equal smallted by the soliton. Moreover, the homogeneous random part
amplitudes and opposite large velosities.Gf?) # G(-¢), oy, i.e., with a correlator depending only on the difference
another such pair can be obtained by replaci®(r) Xx—X', leads to infinite spectral density of the radiation. So we
— G(-a). Thus, if the amplitude Ing; of the original soliton ~assume that the noise is concentrated in the region occupied
is small enough so that Ify<Im ¢, i.e., it is comparable by the soliton, and tak&y(x) in the form 5y(x)="f(x)e(x),
with or less than the amplitudes of the spontaneously emergvheref(x) is a real deterministic function that vanishes fast
ing solitons, then one-soliton perturbation theory fails. In-enough at the infinity, ane(x) is a zero-mean, homogeneous
stead, as the first step, it is necessary to substitute the correandom process with correlation function

Im ¢, = gE|ReG(a)|, 89)
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(e(¥)e* (x'))= (91)

where(---) means statistical averaging. The noi&g is an

D(x-x"),

inhomogeneous random process and its correlation functior

depends not only on the differenge-x’, but on the obser-
vation point x too. A suitable choice forf(x) is f(x)
=sechlivx/2) (the noise envelope traces the soliton shape

though, as we will see below, final results are not too sensi-

tive to the specific form of(x). It is assumed that the inten-

sity of the noise is small compared to the square of the soli-

ton amplitude, so thaiy?) < 1. The presence afy(x) will
modify the soliton eigenparametéy in a random way, and,
aside from this, will result in a continuuinadiative contri-
bution 6y, accompanying the modified soliton into the fiber.
The corresponding variation of the eigenparameé@rcan
be written as

9S11(8)

551:< Y

where 6S;; is the variation of the transmission coefficient
S,1(¢) induced by the given realization &fp. It follows from
Egs.(68) and(All) that

5511(51)_ §1 zf (
—0J

whereMj; is determined by EqA9). Using Eqs(91)—(93)
and performing averaging, one can obtain

(92

-1
) 8S11(&h),
=4

a2
o= 200"

me%x (93)
1

(80P =2%(v), (85 =-ate(v), (94)
where we have introduced the function
(x=x")f(x)f(x")dx dX
10) = f j_x 8 cost(vx/2)costt(vx'/2)’ (95)

which depends on the specific form of the noise correlation

function. It then follows from Eq(94) that the variance of
the soliton velocity is

(6v?) = a2l (v)sir(612). (96)

If the noise isé correlated in timegzero correlation timg so
that D(x)=Dyd(x) and f(x)=1 (pure homogeneous noise
from Egs.(95) and (96) one obtains(sv?)=(a/3)sin(6/2),
which coincides with the result obtained in REf9]. Choos-
ing f(x) in the form suggested above, we gébv?)
=(4a/15)sin(6/2).

Introducing the Fourier transform db(x) in the form

D(x)=f7 . C(w)exp—iwX)dw and performing integration
overx in Eq. (95), we have
(1P + 40°)?
I(v)=—% 7
)= J Cosﬁ(ﬂ'w/v)d 97

Equationg96) and(97) determine the variance of the soliton
velocity for arbitrary formC(w) of the noise spectrum. Con-
sider, for example, the case when the random function
has the forme(x)=goexpimwpx+i@), where the random am-
plitude &y is a zero-mean, normally distributed value with
variances?, and the random phaseis uniformly distributed

PHYSICAL REVIEW E 70, 066620(2004
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FIG. 1. The dependence of the variance an the parametes
for different values of,.

between 0 and 2. The correlation function of such a process
in the frequency domain is

Clw) = (6?12) 8w — wy). (98)

In this case the noise has an infinite correlation time and is
concentrated at the frequeney. The variance of the soliton
velocity is

o2 (1P + 4w(2))2
16v*cost(mwy/v)

(8% = (99)

To take into account a finite correlation time we consider an
important particular case, when tlkenoise spectrum has a
Lorenzian shape

Do

WTC[(‘U - C"O)2 +

Clw) = (100

(1/7'0)2] '
where Dy is the integral intensity of the noise. In the time
domain this corresponds to the correlation functidfx)
=Dgexp(—|x|/ 7)cod wyX), where 7, is a correlation time. It
follows from Eqgs.(96) and(97) that

(w + 4£%)7dlg
3 ). 12 + (6~ &) IoosifE’

whereu=7/(v7.), &=mwgl (v). In Fig. 1 the dependence of
the variance of the soliton velocity on the parameteg is
shown for different values of, at Dg=0.1 andv=1.
Consider now the radiative contribution. Equati¢b)
with p=0 conserves the field momentuPrand the energ¥,

DOM

(&%) = (101

Jd J
2 (ot oo
E:Jac A 2+(|1,[/|2—p2)2 dx (103
o [ 9% 0 '

These quantities are written in the regularized fqim,14,
so that the corresponding contributions of the background
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are extracted and, in particular, the integrdl62 and(103) 0.05 s
are finite on the soliton solutiof@4). The integrals of motion 0.045} — 05}
(102) and(103) can be explicitly expressgd 6] in termsof [ v 0.2
the continuum(ZeR) and discrete(solitonic) scattering 004r
data: 0.035
N L
o Nk N 0.03
- i a2 ! <
P= f_x Praa(0)ds + 2'% ( 2 PoarCCC)S;) , it 0.025}
(104 0.02
0.015f
oo . N
i L
E= f Erad(DdZ+ 22K, (105) oo
- =1 0.005} AN
where\;=\({j), kj=k(¢j), and the spectral densities of the 9% > A s
momentum and the energy are q
Prag(d) = iAz(g)ln[l + |321(§)|2], (1006) FIG. 2. The frequency distribution of radiation for different val-
8m ues of the parametes..
Erad(d) = 5(1 +a—2>P (2 (107) ci
PO\ ) e (@) =2-20(1=in)+ (3= ~4in), (11D
In Egs.(104) and(105) the soliton contribution is separated
from that of the radiative componetfd?) of the wave field a2 _ C% _
described by the continuous-spectrum scattering data. The () =- ? 2-20(1-ip+ 2(3 -7 =4in) |,

dispersion relationtaking ~expigx—iKt)] corresponding

linearized version of Eq5) is K(q)=0?/2, which means the (112
t dependence-exp(-ig?t/2). On the other hand, as follows it

from Eg.(63), in the nonlinear case thedependence for the

continuous spectrum data isexd —iQ()t]. Then, consider- _2o+k(Q)] _v1+4/)) _ ¢
ing the radiative component as a superposition of free waves = v T - ik(9) C2= Clgl'
governed by the linear Schrodinger equation, one can con- (113
clude that the spectral parameteis connected to the fre-
quency of the emitted quasilinear wawe®y the relation In accordance with the proper28), the function(|S,,(2)[?)
1 a* has singularities af=*a. However, as one can see from
o= Z(gz - ?> . (108 Eqgs.(106) and(107), the spectral densities of the momentum

and the energy are finite, and, moreover, equal zerg at
Note thatg?>0, since sgrk(\)=sgni({). The quantiies =%a, thatis, at the frequency=0. The frequency distribu-
P..4(Q) andE,.(q) can be regarded as spectral densities ~ tion of the radiative energy, when the noise correlator has the
the frequency domajrof the momentum and the energy car- Gaussian form

ried by the radiation. — 2 2
=(D - 114
The coefficientS,;({) is no longer zero and, for a given Clw) = (Do we)expl= wFw;), (114
realization ofs(x), we have from Eqs(69) and (A4)—A6) wherew.=1/7, is shown in Fig. 2 for different values of the
il o e parameterw, with Dy=0.1, v=1. The distribution has two
Su(0) = € -4 {8(M1)? + 8y* (M3,)?}dx. asymmetrical peaks and exponentially decaying tails.
A (-4 )
109 B. Linear gain and two-photon absorption
(109
Note that (S,;())=0. Writing down the expression for In this subsection we consider spatial dark solitons. As an

example of the external perturbation we take the simulta-
neous action of two-photon absorption and gain. This is the
usual situation in the problem of the propagation of spatial
solitons[5,7]. The corresponding equation has the form

[S:1(2)|?, performing averaging oveg(x), introducing the
frequency noise correlatdC(w), and calculating integrals
overx andx’, one can obtain

7 [* Clo){|ly(w)]?+]1(w)?

2\ — . . .
- do, _ 2= _ 2
(1S40 202 cosR(m712) w iU+ d2u—2uPu=iau—-igluffu, (115
where on the right-hand side the first term represents the
(110 : oo
constant gain contribution and the second one accounts for
where the intensity-dependent saturation of the g&imy., due to the

066620-9



VOLODYMYR M. LASHKIN

absorption. In the absence of solitons, the background may
be stabilized by the simultaneous action of gain and absorp-

tion [14,23. One can see that Eq115 has a stationary

PHYSICAL REVIEW E 70, 066620(2004

2mak(Q[ik(2) + v]a(f® +a%)
313¢%sinH 7wk(9)1v]

AQ) = (124

solution in the form of a stable continuous-wave background et ys integrate Eq(122), the right-hand side of which

u(t) = peexp(—2ipit) with the amplitude

po=alB. (116

After the substitutioru= s exp(—2ip3t), wherep, is defined
by Eq.(116), we get Eq.(5) with the perturbation term

p=iB(|y? - pdy. (117)

Substituting Eq(117) into Eq.(75) yields the adiabatic equa-
tion for the slowly varying soliton phasg

29 Zgine (118
ot 37
Equation(118) has the solution
6(t) = 2 arctahe™*"3*tan(6/2)], (119

where 6,=06(0) is the initial phase of the soliton. Equation
(118) was first obtained in Ref14] with the aid of the renor-
malized integrals of motion.

Let us consider radiative effects, which are described b

the off-diagonal terng,; (or, equivalentlyS;,) of the mono-

dromy matrixS. These effects include, in particular, emis-
sion of radiation by the soliton and distortion of the soliton
shape. The emission intensity is characterized by its powe

i.e., the energyor the momentumemission rate. As follows

from Eq.(106), the momentum emission power spectral den

sity Wp({) =dP,,4/dt is

_< a_); . dSy
WP(O_47T(1 £ 1+|521(§)|2RE{321 dt }

(120
The energy emission power spectral densit:({)
=dE,4/dtis
4 a
WE(OZE 1+? Wp(8). (129
Inserting the perturbation(117) into the general

perturbation-induced evolution equati¢nd) for the coeffi-

cientS,4(£,t) and calculating the integrals, one can obtain for

S(£,D=$(Z, hexd i (]

ds(o) _ e"(¢-¢y)
dt A -4

A(g)ei(ﬂ_k’-’)t_ikxo, (122)

whereA({) is some function that can be written in an explicit

form. For example, for the soliton with~ m, that is, the one
which is close to the motionlegsr absolutely darksoliton
ths= = potant(pox), (123

the functionA(¢) takes the form

should be multiplied by exgt) with an infinitely smalle
>0. As usual, this implies adiabatically turning on a pertur-
bation that was absent &t —c. Thus, we get

L €7 A
o

= _ri-ko)tHkeg
AQ-kv+ie)(-¢)

(129

Then, making use of the relation ljmg(y—ie)™=P(1/y)
+imd(y), where P is the symbol of the principal value, one
can find

AQ)P
2
S0 = - k0)220) (126)
and
. d AQQ))?
Re{gld—s’fl} - ”'Azg Q- ko). (127)

Equations(120) and (121) together with Eqs(126) and
127) give the spectral distribution of the emitted momentum
nd energy rates in terms of the spectral paramgtdihe

wave numbenq of the emitted waves is connected wiftby

the relation(108). Sincev <a, one can see that the emission
irs concentrated at one point of the spectrga0.

' The radiative part of the field in physical space can be
determined from Eqs(84) and (85). It follows from Egs.

(77) and(78) that in the first order the reflection coefficient

T=-S,/S is

iA * (g)eik(é)xo
AL = k(Q)v]
Expression(128) has singularities at=+a. The detailed

structure and evolution of the radiative tail are described by
Egs.(84) and (85) with the use of the more correct form of

(eik(g)vt _ eiQ(g)t) )

()=~ (128

T(2), when the singularities are absent. However, an approxi-

mate asymptotic estimate at timesO(e), where the small
parametefe characterizes the perturbation, can be obtained
in a way similar to the one suggested in R¢#31,25, where

the well-known problem of a perturbation-induced shelf gen-
eration by a soliton of the Korteweg—de VrigsdV) equa-
tion was studied. In that problem the corresponding reflec-
tion coefficient also has a singularity in the first
approximation of perturbation theory. We simply substitute
Eq. (128 and the corresponding one-soliton Jost functions
into Egs.(84) and(85). The main contribution in the appear-
ing integrals arises from the vicinities of the poirits ta.
The functionA(¢) has no singularities, andi(a)=A(-a). In
particular, for A({) defined by Eq.(33), we get A(a)
=2aal3v. For example, at —a we can write

iaA(a)[eiv(é'a)t_ ia(g—a)t]
2(,-a)?*(v-a)

T(Q) ~ , (129
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4 ' ' ; field were obtained. The evolution equation for the dark
NLSE soliton phase perfectly reduces to that obtained earlier
in Ref. [14] with the aid of integrals of motion. We pointed
out also that the threshold creation of new solitons with
small amplitudes is possible under the action of a perturba-
tion. As applications of the developed theory, we considered
a temporal one-soliton pulse with random initial perturba-
tion, and a spatial soliton with linear gain and two-photon
absorption. The spectral distribution of the radiation was cal-
culated in both cases.

The general approach presented in this paper may be use-
ful for other physical systems described by the NLSE with
nonvanishing boundary conditions and supporting propaga-
tion of dark solitons.

¥ 2

APPENDIX A

FIG. 3. The normalized intensity of the radiation fieldnsx The scattering data corresponding to the one-soliton solu-
—xo—vt for a=10, #=2.5,t=1.0. tion (44) are

2 _gmb~ & i o
(M§1)2(§,X,t)~—e‘i(é”—a)x{l——(1+a/§1)w(x,t)}, Sup=" — n=vriv=-act, (AL

(130

and similar expressions f@r— —a. Here, the functionw(x,t)

is defined by Eq(A8). The :;Iowly v_arying pqrts are evalu- y1(t) = y1(0)exp(- 2p%t sind) (y,isrea). (A3)
ated at{=ta and taken outside the integrals in £§4). The ] .

rap|d|y Varying parts are integrated_ Under thiS, we make usa—he One-SO|It0n Jost SO|utI0nS can be Ca|Cu|ated from EqS

SiAL) =0 ({is rea), (A2)

of the formula (39+42). They are(t dependence is omitted
- _ ] ; (L+8/0)
Lo cosr)fgzcosqé dé=n(la| - [p]). (131) M1 (x,0) =€ k<£>x/2{1 e ikl( §)]W(X)}’ (A4)
As a result, for the radiative field one can obtain Mo(x.0) = iae—ik(s”)xlz{ 1+ W(X)} (A5)
__iaA@®) [1 ,_expion) }2 Py D=y [v=ik(@])"
¢ 8 l+exg-7) | a-v
. M10GO ) _ (€= 4) (ML)
exp—i0l2) |> p ( 1 ) :e|a/2_l< 11 ) A6
' {1 T 1vex- 77)] a+2v } ’ (132 M21(x,0) (=4 \Mz1(x,.0) (Ao
where 7=v(x—Xo~vt), and py=|n+-ajt|-|7|, po=|7+(v ME,= (ME)*, M= (ME)*, (A7)

+a)t|=|n|. The structure of the radiation with corresponding
normalization[by the factor beforg---} in Eq.(132)] is pre-  where Im{=0 andk(¢) is the same as in Eq14). Here we
sented in Fig. 3 fom=10, #=2.5,t=1.0. It is necessary to have introduced the notation

stress that this picture has only qualitative character. As one »

can see, the radiation has asymmetrical tails. Unlike the KdV wW(x) = v____ ¥ (A8)
soliton, there is no shelf behind the soliton in our case. 1+ g +e™
Sincek({;)=iv, we have also
VI. CONCLUSION
vX/2
In conclusion, we have developed a perturbation theory M1,(%,¢p) = %, (A9)
based on the IST for perturbed dark NLSE solitons. This 1+e”

approach fully uses the natural separation of the discrete and

continuous degrees of freedom of the unperturbed NLSE. ~ ia

N-soliton Jost solutions were calculated, and equations de- M2q(X,{1) = ZMM(X,Q)- (A10)
scribing the dynamics of discretsolitonic) and continuous !

(radiative scattering data in the presence of perturbationdn addition, it follows from Eq.(24) that

were derived for théN-soliton case. Adiabatic equations for N ) ~

the soliton parameters and the perturbation-induced radiative M3 (X, &1) = (i/y)M1(X,&p). (A11)
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APPENDIX B

The integral equation Eq82) for dI',; and 8I',, can be
written as

ST 21(%,y) + CL(0f1(y) + Co(¥)fa(y) = Poy(xy), (B1)

O 25(%,y) + C1(X)f(y) + Co(x)f1(y) = Po(X,Y),

where

(B2)

1 (" ’ _
<I>21(x,y):—§ f T* (OEM2Mo(x,0)d¢,  (B3)

1 (. : _
Dyo(xy) = - Erf_ (e ™Mz (x,0)ds,  (B4)

and we have introduced the notation

x ’ VeVy/Z
Ci(x) = J o pi(x,y")e” /Zdy/, fily) = P
o Y1
X , Vg el/y/Z
Co(x) = f ST (x,y )Y 2y, fy(y) = 2.1 :
—x | )/1a

The functionsM3,(x,¢) and M3,(x,{) are defined by Egs.
(A5) and (A7). Equations(B3) and (B4) follow from Egs.
(15), (16), and (83). Multiplying Egs. (B1) and (B2) by
exp(vy/2), and then integrating them ovgrfrom —o to x,

PHYSICAL REVIEW E 70, 066620(2004

1 e
Cl(x)<1 + 2'yleyx> +Cy(x) ZIfllaeVX =dy(x),
1 VX i VX —
Cz(X)<1+ 2719 )Cl(x) 2y1ae =®y(x),  (BH)
where
. isz T (g)eik({)X/Z _
(I)l(x) - 477_ f_w v+ |k(§) MZZ(Xv g)dgv (BG)
. ixlz o ~r~(§)e—ik(g)x/2 )
Dy == 2~ f i Maods. (87)

Having solved the systeii85) and using Eq(B1), we have

ST (%, X) = B py(X,X) = Y[ F1(0P1(x) + F(X)D(X)]

y + e
(B8)
Then we insert the equations

eik></2W eikx/2 -M
— = —Z, (B9)

v+ik 1+4,/¢

e—ikx/2W e—ikx/2+i M.-/a

_ {Myy (B10)

v—ik  1+Y

into Egs.(B6), (B7), and(B8). When making the change of
variable/— a?/ in the integrand containing a single power
of M4, and using the involution propertig21) and (27),

we get a linear algebraic system of equations for the unsome integrals are canceled, and after some manipulations

known coefficientsC;(x) and C,(x):

we get Eq.(84).
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