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A perturbation theory for dark solitons of the nonlinear Schrödinger equation is developed. The theory is
based on the inverse scattering transform method. Equations describing dynamics discrete(solitonic) and
continuous(radiative) scattering data in the presence of perturbations are derived forN-soliton case. Adiabatic
equations for soliton parameters and the perturbation-induced radiative field are obtained. The problem of the
absence of a threshold for the creation of dark solitons under the action of a perturbation is discussed. A
temporal one-soliton pulse with random initial perturbation and a spatial soliton with linear gain and two-
photon absorption are considered as examples of application of the developed theory.
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I. INTRODUCTION

The possibility of propagation of optical bright and dark
solitons in lossless fibers was theoretically predicted first by
Hasegava and Tappert in 1973[1,2]. Since then, light soli-
tons in time(temporal pulses in the optical fibers) and space
(spatial beams in the waveguides), both bright and dark, have
been the object of intensive theoretical and experimental
studies[3–5].

The classical, mathematical model for the nonlinear pulse
(beam) propagation is the famous nonlinear Schrödinger
equation(NLSE). As is well known, the NLSE is a com-
pletely integrable Hamiltonian system for both vanishing and
nonvanishing at infinite boundary conditions[6]. Dark soli-
tons correspond to nonvanishing boundary conditions, and
negative(positive) sign of the dispersion term with positive
(negative) sign of the nonlinearity. They appear as an inten-
sity dip in the constant background. Many of their properties
have been reviewed in Ref.[7].

In physical applications, additional terms are often present
in the NLSE. These terms violate the integrability, but, being
small, they can be taken into account by perturbation theory.
The most powerful perturbative technique, which fully uses
the natural separation of the discrete and continuous(i.e.,
solitonic and radiative) degrees of freedom of the unper-
turbed NLSE, is based on the inverse scattering transform
(IST). While the IST-based perturbation theory for bright
NLSE solitons was developed long ago[8–10], and the cor-
responding perturbation-induced dynamics of the solitons,
including radiative and nontrivial many-soliton effects, was
well understood[11,12], the analogous theory for dark soli-
tons was absent. Partly, that can be explained by the fact that
the IST formalism for the NLSE with nonvanishing bound-
ary conditions is much more complicated than the one for
vanishing boundary conditions. Instead, the simplest tech-
niques based on modified conservative laws or the Hamil-
tonian formalism have been applied successfully to various
problems in the theory of perturbed dark solitons[13,14].

However, these methods are suitable for deriving the corre-
sponding evolution equations only in the lowest approxima-
tion, when an unperturbed instantaneous shape of one soliton
with slowly varying parameters is assumed. They become
irrelevant when considering theN-soliton solution or when
one wishes to take into account the effects that arise in
higher orders of perturbation theory. These effects include, in
particular, perturbation-induced emission of radiation by
solitons and long-range corrections to the soliton’s shape.
Note that an effort to derive the adiabatic equations for the
dark soliton parameters with the aid of the IST was at-
tempted in Ref.[15]. The authors of Ref.[15] used the so-
called direct perturbation theory and based their approach on
the assumption that the phase of a dark soliton in the pres-
ence of perturbations is fixed by the boundary conditions and
it does not change. As was pointed out in Ref.[7], this as-
sumption is, generally speaking, wrong. As a result, the
equations derived in Ref.[15] have very narrow applicability
limits. In particular, the theory presented in Ref.[15] cannot
reproduce the adiabatic equations obtained earlier[13,14]
from a simple, but reliable, approach based on the renormal-
ized integrals of motion. Besides that, the radiative part of
the field was not considered in Ref.[15].

The aim of this paper is to develop a perturbation theory
based on the IST to investigate dark soliton propagation in
the presence of a perturbation. For concreteness, we will
consider optical dark solitons, although all results can be
applied to an arbitrary physical model described by the
NLSE with nonvanishing boundary conditions and different
signs of the dispersion term and the nonlinearity.

The propagation of dark solitons is described by the equa-
tion

i]tu + ]x
2u − 2uuu2u + pfu,u * g = 0 s1d

with uusx,0du→r0 at uxu→`, which is often referred to as the
defocusing NLSE[note, in this connection, that in the case
of temporal dark solitons the Kerr nonlinearity is always fo-
cusing, but the group-velocity dispersion is positive, so that
the resulting equation has the form of Eq.(1)]. We use clas-
sical mathematical notation for the independent variablest*Electronic address: vlashkin@kinr.kiev.ua
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andx. In Eq.(1), u is the complex field envelope, andt is the
propagation distance along the optical waveguide(spatial
problem) or fiber(temporal problem). In the case of temporal
solitons,x is a retarded time measured in a frame of refer-
ence moving at the group velocity, while for spatial solitons
the variablex stands for the transverse coordinate. The per-
turbation is represented by the termpfu,u* g. All variables
are written in normalized form.

As is well known, the unperturbed defocusing NLSE, i.e.,
Eq. (1) with p=0, has an exact solution in the form of the
continuous-wave background

u = r0exps− 2ir0
2td, s2d

which is modulationally stable. The dark soliton can be re-
garded as a localized nonlinear excitation of the background
wave. The corresponding solution is

u = r0
1 + expfiu + nsx − vt − x0dg

1 + expfnsx − vt − x0dg
e−2ir0

2t, s3d

wheren=2r0sinsu /2d andv=−2r0cossu /2d. As was pointed
out in Ref. [14], when considering Eq.(1) with pÞ0, it is
necessary to distinguish the cases of perturbations vanishing
and nonvanishing atuxu→`. These cases correspond to the
constant and varying(in t) backgrounds. In the first case, i.e.,
when pfu,u* g→0 at uxu→`, the perturbation does not
change the continuous-wave background. Then,r0=const
(constant background) and introducing the new function
csx,td through the relation

usx,td = e−2ir0
2tcsx,td, s4d

one can transform Eq.(1) into

i]tc + ]x
2c − 2sucu2 − r0

2dc + pfc,c * g = 0 s5d

with nonvanishing boundary conditionsucu2→r0
2 at x→ ±`.

Without loss of generality one can set

csx,0d = Hr0 as x → − `,

r0e
iu as x → + `.

J s6d

In the second case the perturbationp does not vanish atuxu
→` and it will affect the background wave. The background
amplituder0 is no longer constant. In this case the substitu-
tion usx,td=csx,tdexpf−2ie0

t r0stdgdt transforms Eq.(1) into
Eq. (5) with r0 being dependent ont. However, as was
shown in[14], in many important practical cases of varying
background Eq.(1) may be transformed into Eq.(5) with
some effectiver0=const after appropriate change of vari-
ables. So we will consider Eqs.(5) and (6) as our starting
point.

The paper is organized as follows. Section II begins with
a review of the theory of the scattering transform for the
corresponding linear eigenvalue problem. Then,N-soliton
Jost solutions are calculated. In Sec. III the dynamics of the
scattering data in the presence of a perturbation is considered
and corresponding equations for theN-soliton case are de-
rived. One-soliton perturbation theory is formulated in Sec.
IV. Adiabatic equations for the soliton parameters, an equa-
tion for continuous scattering data, which describes radiative

effects, and an expression for the radiative field with the use
of a specific form of the one-soliton Jost solutions are pre-
sented. Some applications of the developed theory, namely, a
temporal one-soliton pulse with random initial perturbation
and a spatial soliton with linear gain and two-photon absorp-
tion are considered in Sec. V. The conclusion is made in Sec.
VI.

Regarding notation, we will use asterisks for complex
conjugation, and 232 matrices will be written with bold
letters, except for the Pauli matrices

s1 = S0 1

1 0
D, s2 = S0 − i

i 0
D, s3 = S1 0

0 − 1
D .

II. INVERSE SCATTERING THEORY FOR THE
DEFOCUSING NLSE

A. Scattering data

In this subsection we review the theory of the scattering
transform for the Zakharov-Shabat eigenvalue problem cor-
responding to a defocusing NLSE with nonvanishing bound-
ary conditions. Equation(5) with pfc ,c* g=0 can be repre-
sented as the compatibility condition

]tU − ]xV + fU,Vg = 0 s7d

of two linear matrix equations[6] (the Zakharov-Shabat sys-
tem):

]xM = UM , s8d

]tM = VM , s9d

wherel is a spectral parameter,V =−lU+ iL ,

U = S− il/2 c*

c il/2
D, L = Sucu2 − r0

2 − ]xc*

]xc r0
2 − ucu2

D .

s10d

Consider the linear problem(8) for some fixedt. In terms of
the matrixU the boundary conditions(6) can be rewritten as
limx→±`Usx,ld=U±sld, where

U− =
1

2
S− il a

a il
D, U+ = e−ius3/2U−eius3/2, s11d

and we have introduced the notationa=2r0. The continuous
spectrumRa of the problem(8) consists of reall satisfying
l2ùa2. For lPRa denote byM ±sx,ld the 232 matrix Jost
solutions of Eq.(8), satisfying the boundary conditionsM ±

→E±sx,ld asx→ ±`. It follows from Eq. (8) that

]xE
± = U±E±. s12d

The matrixE−sx,ld is taken in the form

E−sx,ld = S 1 isk − ld/a
isl − kd/a 1

De−ikxs3/2, s13d

where ksld=Îl2−a2 with sgnksld=sgnl and E+

=exps−ius3/2dE−. Analytical properties of the Jost solutions
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are formulated on the Riemann surface determined by the
functionksld. The Riemann surfaceS consists of two sheets
S+ andS− of the complexl plane with branch cuts on the
real axis from −̀ to a and froma to `. It is convenient to
introduce a change of variables

lszd =
1

2
Sz +

a2

z
D, kszd =

1

2
Sz −

a2

z
D , s14d

which maps the sheetsS± onto Imz.0 and Imz,0, respec-
tively, and the continuous spectrumRa onto the real axisR
on the complexz plane. Under this,

E−sx,zd = S 1 − ia/z

ia/z 1
De−ikszds3x/2. s15d

The matrix Jost solutionsM ±sx,zd can be represented in the
integral form

M ±sx,zd = E±sx,zd ± E
x

±`

G±sx,ydE±sy,zddy. s16d

The potentialcsxd is expressed through the element of the
kernelG− as

csxd = r0 + 2G21
− sx,xd. s17d

The fundamental solutionsM +sx,zd andM −sx,zd with realz
are linearly dependent and connected with each other
through the monodromy matrixSszd,

M −sx,zd = M +sx,zdSszd, s18d

with the symmetry properties

S11szd = S22
* szd, S12szd = S21

* szd, s19d

M11
± szd = M22

±* szd, M12
± szd = M21

±* szd s20d

and normalization conditionuS11u2− uS21u2=1. In addition,
since the scattering problem(8) possesses symmetry with
respect to the inversionz→a2/z, the following important
involution properties are valid:

M ±sx,a2/zd = sz/adM ±sx,zds2, s21d

Ssa2/zd = s2Sszds2. s22d

It follows from Eq. (18) that

S11szd = D−1szddet„M1
−sx,zd,M2

+sx,zd…, s23d

whereMj
± means thej th column ofM ±, and we have intro-

duced the notation Dszd=1−a2/z2. The columns
M1

−sx,zd , M2
+sx,zd turn out to be analytically continuable to

Im z.0, while M2
−,M1

+ are analytically continuable to Imz
,0. Then, the coefficientS11szd is analytically continuable
to Im z.0, except for the pointsz= ±a. In addition toz=0,
the analytic functionS11szd may have zerosz1,… ,zN in the
region of its analyticity Imz.0. Equation(23) then shows
that the columnsM2

+ andM1
− are linearly dependent and there

exist complex numbersg1,… ,gN such that

M1
−sx,z jd = − ig jM2

+sx,z jd. s24d

Denote rszd=S21szd /S11szd (reflection coefficient) and
S118 sz jd=]zS11szduz=z j

. One can show[16] the following.
(i) Zeros ofS11szd are simple and lie on the circleuzu=a in

the region Imz.0 [the latter follows from Eq.(22)]. In
addition, the quantitiesmj =−ig j / sS118 sz jdz jd are real negative.

(ii ) The functionrszd possesses the following properties:

rs0d = 0, s25d

urszdu ø 1, s26d

rsa2/zd = − r * szd. s27d

Equation(25) is also valid for all derivatives ofrszd. The
equality in Eq.(26) occurs only atz= ±a with rs±ad= 7 i.

(iii ) In the case of nonreflectionless(i.e., nonsolitonic)
potentials, the coefficientsS21szd and S11szd are singular at
the vicinity z= ±a, so that

S11szd ,
s±

z2 − a2 andS21szd = 7 iS11szd s28d

at z→ ±a.
(iv) There is a condition

eiu = p
j=1

N
z j

*

z j
expH 1

pi
E

−`

` lns1 − urszdu2d
z

dzJ . s29d

(v) The coefficientS11szd can be expressed in terms of its
zeros and the values ofurszdu on the real axis:

S11szd = eiu/2p
j=1

N z − z j

z − z j
* expH 1

2pi
E

−`

` lns1 − ursmdu2d

z − m + i0
dmJ .

s30d

The matrix function G−sx,yd satisfies the Gelfand-
Levitan-Marchenko equation

G−sx,yd + Fsx + yd +E
−`

x

G−sx,y8dFsy8 + yddy8 = 0,

s31d

whereyøx, and the matrix kernelFsxd is

Fsxd = SA * sxd Bsxd
B * sxd Asxd

D s32d

with

A =
ia

8p
E

−`

` r̃szd

z
e−ikszdx/2dz +

a

4o
j=1

N c̃j

z j
e−iksz jdx/2, s33d

B =
1

8p
E

−`

`

r̃szde−ikszdx/2dz +
1

4i
o
j=1

N

c̃je
−iksz jdx/2, s34d

where the notations r̃szd=−S12szd /S11szd and c̃j

= i / fg jS118 sz jdg have been introduced. Here, unlike the case
with vanishing boundary conditions, the matrixF contains
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both off-diagonal and diagonal parts. Note that the integrand
in Eq. (33) is regular atz=0 due to Eq.(25). After solving
Eq. (31), the potentialcsxd can be found from Eq.(17).

In conclusion of this subsection we note that the elements
Mijsx,t ,ld of the matrixM , whereM is an arbitrary solution
of Eq. (8), and the corresponding potentialcsx,td satisfy the
important relations

cM11M12 + c * M21M22 = ]xsM12M21d, s35d

cM11
2 + c * M21

2 = ]xsM11M21d, s36d

which we will use below. These relations can be easily veri-
fied by taking the derivative in Eqs.(35) and(36) and using
Eq. (8).

B. The Jost solutions and the potential
in the reflectionless case

An important particular case is that of the reflectionless
(solitonic) potentialscsxd whenS21st ,jd;0 as a function of
z for some fixedt. It then follows from Eq.(30) that

S11szd = eiu/2p
j=1

N z − z j

z − z j
* . s37d

The kernelG−sx,yd in this case is[16]

G−sx,yd = o
j=1

N

f jsxdgj
Ten jy/2, s38d

wheren j =Im z j andgj
T means the transpose of the columngj,

the columnsf jsxd are determined from the system ofN linear
equations

f jsxd + o
p=1

N

Bjpsxdfpsxd = − hje
n jx/2, s39d

where the columnsgj andhj are

gj =
Îcj

2
S 1

z j/ia
D, hj =

Îcj

2
S a

iz j
* D , s40d

and the matrixBjpsxd is

Bjpsxd =
iaÎbjbp

z j − zp
* esn j+npdx/2, s41d

with bj = i / fz jS118 sz jdg jg. TheN-soliton potentialcsxd is given
by Eq. (17). Substituting Eq.(38) into Eq. (16) yields the
N-soliton matrix Jost solutionM −:

M −sx,zd = E−sx,zd + 2o
j=1

N f jsxdgj
Ts3E

−sx,zden jx/2

n j − ikszd
. s42d

The matrix functionM + can then be found from Eq.(18).
The reflectionless scattering data with the singlesN=1d

zeroz1=v+ in of the functionS11szd in Eq. (30) correspond
to the one-soliton solution. The one-soliton kernelG−sx,yd is

Gs
−sx,yd =

inensx+yd/2

2asg1 + enxd
S ia z1

− z1
* ia

D , s43d

with z1=−ae−iu/2 andn=a sinsu /2d. It then follows from Eq.
(17) that the one-soliton potential is

cs = r0
1 + expfiu + nsx − zdg

1 + expfnsx − zdg
, s44d

where we have introduced the notationz=lnsg1d /n. The one-
soliton Jost solutions and the corresponding scattering data
are given in Appendix A.

III. DYNAMICS OF THE SCATTERING DATA

Equation(5) can be cast in the matrix form

]tU − ]xV + fU,Vg + P = 0, s45d

where

P = S 0 ip*

− ip 0
D . s46d

From Eq.(45) and the fact thatM ± satisfies Eq.(8) one can
get

s]x − Uds]t − VdM ± + PM± = 0. s47d

Introducing a new unknownJ±sx,t ,zd defined through the
relation

s]t − VdM ± = M ±J±, s48d

one can obtain thatJ± satisfies]xJ
±=−M ±−1PM±, and there-

fore J±=C±+ex
±`M ±−1PM±dx8, where the constant matrices

C± are determined from the boundary conditions atx→ ±`.
Since V =−lU−, M −=E− as x→−`, Eq. (48) for M − at x
→−` becomeslU−E−=E−J− or, taking into account Eq.
(12), J−=lsE−d−1]xE

−, and after using Eq.(15) one obtains
C−=J−s−`d=−iVszds3/2, where

Vszd =
1

4
Sz2 −

a4

z2D . s49d

Similarly, one can show thatC+=C−. Then we have

J± = −
i

2
Vszds3 +E

x

±`

M ±−1PM±dx8 s50d

and, hence, the following equations of motion forM ±:

s]t − VdM ± = M ±F−
i

2
Vszds3 +E

x

±`

M ±−1PM±dx8G .

s51d

Equation(51) is valid only for Imz=0. Introducing the ma-
trix M sx,t ,ld=sM1

−,M2
+d, the columns of which admit ana-

lytical continuation to Imz.0, and as before defining the
new unknown matrixJsx,t ,ld=sJ1,J2d through the relation
s]t−VdM =MJ , one can similarly obtain

J1 = S− iVszd/2
0

D −E
−`

x

M −1PM1
−dx8, s52d
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J2 = S 0

iVszd/2
D +E

x

`

M −1PM2
+dx8. s53d

Thus, we have the equations of motion

s]t − VdM1
− = MJ1, s54d

s]t − VdM2
+ = MJ2, s55d

valid for Im z.0 except atz j andz= ±a, whereM fails to
be invertible. Making the natural assumption that the zeros
z=z j are simple, one can show(see below) that each singu-
larity is removable since detM =S11D.

The equations of motion forM ± and M determine the
evolution of the scattering data. Differentiating Eq.(18) with
respect tot and using Eq.(51) yields

]tSst,zd −
i

2
Vszdfs3,Sst,zdg

= −E
−`

`

sM +d−1sx,t,zdPM−sx,t,zddx. s56d

The equations of motion for the coefficientsS11st ,zd and
S21st ,zd are contained in Eq.(56). Taking into account that
detM ±=D, we have

] S11

] t
= − iD−1E

−`

`

spM12
+ M11

− + p * M22
+ M21

− ddx, s57d

] S21

] t
+ iVszdS21 = iD−1E

−`

`

spM11
+ M11

− + p * M21
+ M21

− ddx.

s58d

The expression defining the zerosz jstd of S11st ,zd is
S11(t ,z jstd)=0. Differentiating with respect tot gives

]tS11„t,z jstd… +
] z j

] t
S118 sz jd = 0. s59d

Using Eqs.(24) and (57), one therefore finds

] z j

] t
=

z j
2

sa2 − z j
2dS118 sz jdg j

E
−`

`

fpsM11
− d2 + p * sM21

− d2gdx,

s60d

where the integrand is evaluated atx, t, andz=z j. To obtain
the evolution equation forg j, we differentiate Eq.(24) with
respect tot, use Eqs.(54) and (55), and take the limitz
→z j. As a result, one obtains

1

g j

] g j

] t
M1

−sx,z jd + iVsz jdM1
−sx,z jd

= − lim
z→z j

E
−`

`

M sx,zdM −1sx8,zdPsx8dM1
−sx8,z jddx8.

s61d

Assuming that singularities atz=z j in M −1sx,zd are simple

poles, multiplying the matrices and applying the l’Hôpital
rule, we arrive at

] g j

] t
+ iVsz jdg j =

z j
2

sa2 − z j
2dS118 sz jd

E
−`

`

hpM11
− ]zsig jM12

+ + M11
− d

+ p * M21
− ]zsig jM22

+ + M21
− djdx, s62d

with z=z j. Equations(58), (60), and (62) describe the evo-
lution of the scattering data. It is necessary to stress that no
assumptions about the perturbation termP have been made
yet, and these equations are valid for arbitrarypfc ,c* g in
Eq. (5). However, Eqs.(58), (60), and(62) are coupled to the
equations for unknownM and M ± and, in this sense, are
practically useless. As is well known, the coupling disap-
pears forP=0 and the dynamics of the scattering data in this
case turns out to be trivial:

S21std = S21s0dexpf− iVszdtg, s63d

z jstd = z js0d, s64d

g jstd = g js0dexpf− iVsz jdtg. s65d

In particular, substituting Eqs.(64) and (65) with j =1 into
Eq. (44) yields the one-soliton solution(3) with nx0
= lnfg1s0dg.

One can also immediately write equations for variations
of the scattering data under the variations of the potentials
dcsx,td , dc* sx,td for some fixedt. We make use of the
formula

dSszd =E
−`

`

sM +d−1sx,zddQsxdM −sx,zddx, s66d

where

dQsxd = S 0 dc*

dc 0
D . s67d

Comparing this expression with Eq.(56), we get

dS11szd =
i

D
E

−`

`

sdcM12
+ M11

− + dc * M22
+ M21

− ddx, s68d

dS21szd =
1

iD
E

−`

`

sdcM11
+ M11

− + dc * M21
+ M21

− ddx. s69d

If pfu,u* g is a small perturbation, one can substitute the
unperturbedN-soliton solutionsc , c* determined by Eqs.
(17) and(38) andN-soliton Jost solutionsM ± determined by
Eq. (42) into the right-hand side of Eqs.(58), (60), and(62)
[or into Eqs.(68) and(69) for small variations of the poten-
tial]. This yields evolution equations for the scattering data in
the lowest approximation of perturbation theory. This proce-
dure can be iterated to yield higher orders of perturbation
theory. The appearing hierarchy of equations(58), (60), and
(62) is applied to an arbitrary number of solitons and, in
particular, describes nontrivial many-soliton effects in the
presence of perturbations. In this paper we restrict ourselves
to the case of a one-soliton pulse.
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So far, we implied thata is a constant. As was said in Sec.
I, this corresponds to a perturbation that vanishes atuxu→`.
However, it is not difficult to get a generalization for the case
of varying background(i.e., whenp does not vanish atuxu
→`). Since all results presented in Sec. II are valid for ar-
bitrary fixed t, anda enters expressions of Sec. III only as a
parameter, we can formally puta=astd in Eqs.(58), (60), and
(62). If p=0, it immediately follows(sinceuz ju=a) from Eq.
(60) that ]a/]t=0. To obtain the equation fora, we follow
the idea suggested in Refs.[7,14]. Considering the nonpropa-
gating(i.e., that which does not depend onx) backgroundcb,
and taking the limituxu→` in Eq. (5), we get the evolution
equation

i
] cb

] t
+ pfcb,cb

*g = 0. s70d

Writing the background field ascb=sa/2dexpsiad, and split-
ting real and imaginary parts in Eq.(70), one can obtain
equations for the background intensity and phase,

] a

] t
= − 2scosa Rep + sina Im pd, s71d

] a

] t
=

2

a
ssina Rep − cosa Im pd, s72d

wherepfc ,c* g is evaluated atcb. Equations(71) and (72)
complete Eqs.(58), (60), and (62) for the case of varying
background.

IV. ONE-SOLITON PERTURBATION THEORY

In this section we consider the simplest, but important,
case of a one-soliton initial pulse. TakingN=1 in Eq. (60),
we have

] u

] t
+

2i

a

] a

] t
=

4 sinsu/2d
seiu − 1dg1

E
−`

`

fpsM11
− d2 + p * sM21

− d2gdx,

s73d

whereM11
− andM21

− are defined by Eqs.(A9) and(A10). We
further assume thata is a constant, since in many practical
cases the perturbation term which does not vanish atuxu
→` can be transformed into a vanishing one after an appro-
priate change of variables[14]. One can easily check that

fM11
− sz1dg2 =

4g1

a3sinuseiu − 1d
] cs

] t
. s74d

Noting also that]cs/]t=−expsiuds]cs
* /]td and fM21

− sz1dg2

=−expsiudfM11
− sz1dg2, we get from Eq.(73) the following

equation for the phaseu:

] u

] t
=

4

a3cossu/2dsin2su/2d
ReE

−`

`

p
] cs

*

] t
dx, s75d

which coincides(up to notationsu=p−2w , p→−p and scal-
ing) with the equation obtained by Kivshar and Yang[14].
The equation for the second soliton parameterg1 follows
from Eq. (62) and has the form

] g1

] t
+ iVsz1dg1 =

ia

4n2ReE
−`

`

penxsn − wd2

w
H1 −

we−iu

n − w

− xws1 + e−iudJdx, s76d

where w is defined by Eq.(A8). Equations forS11szd and
S21szd with Im z=0 follow from Eqs.(57) and (58):

] S11

] t
=

eiu/2

iDszd
sz − z1d
sz − z1

*dE−`

`

hpM11
− M12

− + p * M21
− M22

− jdx,

s77d

] S21

] t
+ iVszdS21 =

ie−iu/2

Dszd
sz − z1

*d
sz − z1dE−`

`

hpsM11
− d2

+ p * sM21
− d2jdx, s78d

where the functionsMij
−sx,zd are defined by Eqs.(A4)–(A7).

Equations(77) and (78) are completed by initial conditions
S11s0,zd=S11szd andS21s0,zd=0, whereS11szd is defined by
Eq. (A1). Note that due to the property(28) the coefficients
S11szd and S21szd are singular functions at the pointsz= ±a
andt.0, so that the singular factor 1/sz2−a2d does not enter
in the expansion parameter.

If the perturbation term has the formpfc ,c* g= fsucu2dc,
where f is some arbitrary real function, then Eqs.(77) and
(78) can be simplified with the aid of Eqs.(35) and (36).

The action of the perturbationp on the soliton generates a
radiation fieldcc so that at anyt the total field is

csx,td = cssx,td + ccsx,td s79d

with ccsx,0d=0. The reflection coefficientr̃szd=−S12/S11 is
a measure of the radiation field present in the pulse; for a
pure soliton,r̃szd=0. The perturbation changesS11szd and
S12szd=S21

* szd in accordance with Eqs.(77) and(78), respec-
tively. To obtaincc we represent the matrix functionsG− and
F in Eq. (31) in the form G−=Gs

−+dG−, F=Fs+dF, where
Gs

− andFs correspond to the one-soliton solution. The func-
tion Gs

− is given by Eq.(43), and from Eqs.(32)–(34) we
have

Fs =
nenx/2

2g1
S 1 − iz1/a

iz1
* /a 1

D , s80d

dFsxd =
1

8p
E

−`

`

E−sx,zdS 0 r̃szd
r̃ * szd 0

Ddz. s81d

Substituting these expressions into Eq.(31), and assuming
dG−!Gs

−, dF!Fs, one can obtain the integral equation for
dG−sx,yd,

dG−sx,yd +E
`

x

dG−sx,y8dFssy + y8ddy8 = F, s82d

where
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Fsx,yd = − dFsx + yd −E
−`

x

Gs
−sx,y8ddFsy + y8ddy8

s83d

is a known function. Equation(82) is an integral equation
with degenerate kernelFssy+y8d and can be easily solved. In
fact, we need onlydG21

− sx,x,td. Details are given in Appen-
dix B, and the result is

dG21
− sx,x,td = −

1

8p
E

−`

` H r̃szd
s1 + z1/zd

sM21
− d2sx,t,zd

+
r̃ * szd

s1 + z1
* /zd

sM22
− d2sx,t,zdJdz, s84d

where M11
− sx,t ,zd , M21

− sx,t ,zd are defined by Eqs.(A4),
(A5), and(A7). Then, as follows from Eq.(17), the radiation
field cc is given by

ccsx,td = 2dG21
− sx,x,td. s85d

Equation (75) loses its validity asu→0, i.e., at small
amplitudes of the original soliton. This can be understood in
the following way. It is known that in the case of dark soli-
tons the presence of certain perturbations in the initial soliton
pulse result in the creation of new solitons with small ampli-
tudes and large velocities without a threshold[21,22]. This is
connected to the fact that the continuous spectrum of the
linear problem(8) has edges at the branch pointsl= ±a
which correspond to the so-called virtual levels. An analo-
gous situation takes place for external perturbations too. In-
deed, formal exact solution of Eq.(77) can be represented as

S11sz,td = S11sz,0d +
iz2

a2 − z2eGsz,td, s86d

where e!1, the complex functionGsz ,td is regular at the
vicinity z= ±a, andS11sz ,0d is defined by Eq.(A1). As fol-
lows from Eq.(86), an equation defining zeros ofS11sz ,td is

z2 =
a2

1 + ieGsz,tdexpf− iwszdg
, s87d

where wszd=argsu /2+2z−2z1d. Then, sincee!1, one can
easily show that there always exist at least two eigenvalues
with Im z.0:

Im z± =
a

2
euReGsadu, s88d

Rez± = ± aH1 − sgnsReGd
e

2
Im GsadJ , s89d

corresponding to a pair of dark solitons with equal small
amplitudes and opposite large velosities. IfGszdÞGs−zd,
another such pair can be obtained by replacingGsad
→Gs−ad. Thus, if the amplitude Imz1 of the original soliton
is small enough so that Imz1ø Im z±, i.e., it is comparable
with or less than the amplitudes of the spontaneously emerg-
ing solitons, then one-soliton perturbation theory fails. In-
stead, as the first step, it is necessary to substitute the corre-

sponding multisoliton Jost functions into the right hand side
of Eq. (75). The criterion of the validity of the one-soliton
perturbation theory can be written as

sinu @ euReGsadu. s90d

Equation (87) is a transcendental equation and, generally
speaking, it has an infinite(or large) set of close roots with
small Imz and Rez,a. As is known[16], in the case of the
focusing NLS with vanishing boundary conditions, such
clustering and condensing of the zeros ofS11 is equivalent to
emerging of a radiative component(i.e., the continuous spec-
trum can be exactly reproduced by taking the limit). How-
ever, this is not true for the defocusing NLS with nonvanish-
ing boundary conditions. In this case, as was pointed out in
Ref. [16], dispersion relations[i.e., equations connecting the
energy E to the momentumP; see Eqs.(104) and (105)
below] for continuous and discrete spectrum modes are es-
sentially different(the solitonic one cannot even be written
in an explicit form) and the continuous spectrum cannot be
obtained from the solitonic part of the spectrum by such zero
condensing(or in any other way).

V. APPLICATIONS

A. One-soliton pulse with random initial perturbation

In this subsection we consider temporal dark solitons(i.e.,
soliton propagation in optical fibers). Suppose thatp=0, but
the soliton input is randomly perturbed so that a pulsecsxd
=cssxd+dcsxd is injected into the fiber. This case corre-
sponds to an inhomogeneous stochastic perturbation in the
terminology of Refs.[12,17,18]. The stochasticity arises
from an indeterminacy associated with the input pulse, and
not from any agency in the fiber itself. One of the sources of
the inhomogeneous stochasticity is the amplified spontane-
ous emission(ASE) noise. The ASE leads to random jitter in
the soliton arrival time(the Gordon-Haus effect) T, which is
connected with the soliton velocityv by the relationT=vx.
Thus, the variancekdT2l is proportional tokdv2l. The theory
of the Gordon-Haus effect for dark solitons was given in
Refs. [19,20], where the noisedcsxd was assumed to be a
homogeneous random processd correlated in time(white
noise). As long as we consider the influence of the noise on
localized structures(the solitons over the background) and
calculate adiabatic changes of the soliton parameters, the ap-
proximation of noised correlated inx is quite justified, if the
width of the noise spectrumDv@n, wheren is the charac-
teristic localization length of the structure(soliton width).
However, when considering a continuous spectrum, i.e., un-
localized objects (radiation), the approximation of
d-correlated noise is no longer valid, since(as will be seen
below) it results in infinite total energy of the radiation emit-
ted by the soliton. Moreover, the homogeneous random part
dc, i.e., with a correlator depending only on the difference
x−x8, leads to infinite spectral density of the radiation. So we
assume that the noise is concentrated in the region occupied
by the soliton, and takedcsxd in the form dcsxd= fsxd«sxd,
where fsxd is a real deterministic function that vanishes fast
enough at the infinity, and«sxd is a zero-mean, homogeneous
random process with correlation function
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k«sxd« * sx8dl = Dsx − x8d, s91d

where k¯l means statistical averaging. The noisedc is an
inhomogeneous random process and its correlation function
depends not only on the differencex−x8, but on the obser-
vation point x too. A suitable choice forfsxd is fsxd
=sechsnx/2d (the noise envelope traces the soliton shape),
though, as we will see below, final results are not too sensi-
tive to the specific form offsxd. It is assumed that the inten-
sity of the noise is small compared to the square of the soli-
ton amplitude, so thatkdc2l!n2. The presence ofdcsxd will
modify the soliton eigenparameterz1 in a random way, and,
aside from this, will result in a continuum(radiative) contri-
bution dcc accompanying the modified soliton into the fiber.
The corresponding variation of the eigenparameterdz1 can
be written as

dz1 = SU ] S11szd
] z

U
z=z1

D−1

dS11sz1d, s92d

where dS11 is the variation of the transmission coefficient
S11szd induced by the given realization ofdc. It follows from
Eqs.(68) and (A11) that

dS11sz1d =
z1

2

a2 − z1
2E

−`

` Sdc −
a2

z1
2dc*DsM11

− d2dx, s93d

whereM11
− is determined by Eq.(A9). Using Eqs.(91)–(93)

and performing averaging, one can obtain

kudz1u2l = a2Isnd, kdz1
2l = − a2e−iuIsnd, s94d

where we have introduced the function

Isnd =E
−`

` E
−`

` Dsx − x8dfsxdfsx8ddx dx8

8 cosh2snx/2dcosh2snx8/2d
, s95d

which depends on the specific form of the noise correlation
function. It then follows from Eq.(94) that the variance of
the soliton velocity is

kdv2l = a2Isndsin2su/2d. s96d

If the noise isd correlated in time(zero correlation time), so
that Dsxd=D0dsxd and fsxd=1 (pure homogeneous noise),
from Eqs. (95) and (96) one obtainskdv2l=sa/3dsinsu /2d,
which coincides with the result obtained in Ref.[19]. Choos-
ing fsxd in the form suggested above, we getkdv2l
=s4a/15dsinsu /2d.

Introducing the Fourier transform ofDsxd in the form
Dsxd=e−`

` Csvdexps−ivxddv and performing integration
over x in Eq. (95), we have

Isnd =
p2

8n6E
−`

`

Csvd
sn2 + 4v2d2

cosh2spv/nd
dv. s97d

Equations(96) and(97) determine the variance of the soliton
velocity for arbitrary formCsvd of the noise spectrum. Con-
sider, for example, the case when the random function«sxd
has the form«sxd=«0expsiv0x+ iwd, where the random am-
plitude «0 is a zero-mean, normally distributed value with
variances2, and the random phasew is uniformly distributed

between 0 and 2p. The correlation function of such a process
in the frequency domain is

Csvd = ss2/2ddsv − v0d. s98d

In this case the noise has an infinite correlation time and is
concentrated at the frequencyv0. The variance of the soliton
velocity is

kdv2l =
p2s2sn2 + 4v0

2d2

16n4cosh2spv0/nd
. s99d

To take into account a finite correlation time we consider an
important particular case, when the«-noise spectrum has a
Lorenzian shape

Csvd =
D0

ptcfsv − v0d2 + s1/tcd2g
, s100d

whereD0 is the integral intensity of the noise. In the time
domain this corresponds to the correlation functionDsxd
=D0exps−uxu /tcdcossv0xd, wheretc is a correlation time. It
follows from Eqs.(96) and (97) that

kdv2l =
D0m

8p3E
−`

` sp2 + 4j2d2dj

fm2 + sj − j0d2gcosh2j
, s101d

wherem=p / sntcd , j0=pv0/ snd. In Fig. 1 the dependence of
the variance of the soliton velocityv on the parameterm is
shown for different values ofj0 at D0=0.1 andn=1.

Consider now the radiative contribution. Equation(5)
with p=0 conserves the field momentumP and the energyE,

P =
1

2i
E

−`

` S ] c

] x
c * −

] c*

] x
cDdx− r0

2u, s102d

E =E
−`

` HU ] c

] x
U2

+ sucu2 − r0
2d2Jdx. s103d

These quantities are written in the regularized form[14,16],
so that the corresponding contributions of the background

FIG. 1. The dependence of the variance ofv on the parameterm
for different values ofj0.
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are extracted and, in particular, the integrals(102) and(103)
are finite on the soliton solution(44). The integrals of motion
(102) and (103) can be explicitly expressed[16] in terms of
the continuum szPRd and discrete(solitonic) scattering
data:

P =E
−`

`

Pradszddz + 2io
j=1

N Sl jkj

4
− r0

2arccos
l j

a
D ,

s104d

E =E
−`

`

Eradszddz +
i

3o
j=1

N

kj
3, s105d

where l j =lsz jd , kj =ksz jd, and the spectral densities of the
momentum and the energy are

Pradszd =
z

8p
D2szdlnf1 + uS21szdu2g, s106d

Eradszd =
z

2
S1 +

a2

z2DPradszd. s107d

In Eqs.(104) and (105) the soliton contribution is separated
from that of the radiative componentsedzd of the wave field
described by the continuous-spectrum scattering data. The
dispersion relation[taking ,expsiqx− iKtd] corresponding
linearized version of Eq.(5) is Ksqd=q2/2, which means the
t dependence,exps−iq2t /2d. On the other hand, as follows
from Eq.(63), in the nonlinear case thet dependence for the
continuous spectrum data is,expf−iVszdtg. Then, consider-
ing the radiative component as a superposition of free waves
governed by the linear Schrödinger equation, one can con-
clude that the spectral parameterz is connected to the fre-
quency of the emitted quasilinear wavesq by the relation

q2 =
1

4
Sz2 −

a4

z2D . s108d

Note that q2.0, since sgnksld=sgnlszd. The quantities
Pradsqd andEradsqd can be regarded as spectral densities(in
the frequency domain) of the momentum and the energy car-
ried by the radiation.

The coefficientS21szd is no longer zero and, for a given
realization of«sxd, we have from Eqs.(69) and (A4)–(A6)

S21szd =
e−iu/2

iDszd
sz − z1

*d
sz − z1dE−`

`

hdcsM11
− d2 + dc * sM21

− d2jdx.

s109d

Note that kS21szdl=0. Writing down the expression for
uS21szdu2, performing averaging over«sxd, introducing the
frequency noise correlatorCsvd, and calculating integrals
over x andx8, one can obtain

kuS21szdu2l =
p2

n2D2E
−`

` CsvdhuI1svdu2 + uI2svdu2j
cosh2sph/2d

dv,

s110d

where

I1svd = 2 − 2c1s1 − ihd +
c1

2

4
s3 − h2 − 4ihd, s111d

I2svd = −
a2

z2S2 − 2c2s1 − ihd +
c2

2

4
s3 − h2 − 4ihdD ,

s112d

with

h =
2fv + kszdg

n
, c1 =

ns1 + z1/zd
n − ikszd

, c2 = c1
z

z1
.

s113d

In accordance with the property(28), the functionkuS21szdu2l
has singularities atz= ±a. However, as one can see from
Eqs.(106) and(107), the spectral densities of the momentum
and the energy are finite, and, moreover, equal zero atz
= ±a, that is, at the frequencyq=0. The frequency distribu-
tion of the radiative energy, when the noise correlator has the
Gaussian form

Csvd = sD0/vcdexps− v2/vc
2d, s114d

wherevc=1/tc, is shown in Fig. 2 for different values of the
parametervc with D0=0.1, n=1. The distribution has two
asymmetrical peaks and exponentially decaying tails.

B. Linear gain and two-photon absorption

In this subsection we consider spatial dark solitons. As an
example of the external perturbation we take the simulta-
neous action of two-photon absorption and gain. This is the
usual situation in the problem of the propagation of spatial
solitons[5,7]. The corresponding equation has the form

i]tu + ]x
2u − 2uuu2u = iau − ibuuu2u, s115d

where on the right-hand side the first term represents the
constant gain contribution and the second one accounts for
the intensity-dependent saturation of the gain(e.g., due to the

FIG. 2. The frequency distribution of radiation for different val-
ues of the parametervc.
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absorption). In the absence of solitons, the background may
be stabilized by the simultaneous action of gain and absorp-
tion [14,23]. One can see that Eq.(115) has a stationary
solution in the form of a stable continuous-wave background
ustd=r0exps−2ir0

2td with the amplitude

r0 = Îa/b. s116d

After the substitutionu=c exps−2ir0
2td, wherer0 is defined

by Eq. (116), we get Eq.(5) with the perturbation term

p = ibsucu2 − r0
2dc. s117d

Substituting Eq.(117) into Eq.(75) yields the adiabatic equa-
tion for the slowly varying soliton phaseu,

] u

] t
= −

a

3
sinu. s118d

Equation(118) has the solution

ustd = 2 arctanfe−at/3tansu0/2dg, s119d

whereu0=us0d is the initial phase of the soliton. Equation
(118) was first obtained in Ref.[14] with the aid of the renor-
malized integrals of motion.

Let us consider radiative effects, which are described by
the off-diagonal termS21 (or, equivalently,S12) of the mono-
dromy matrixS. These effects include, in particular, emis-
sion of radiation by the soliton and distortion of the soliton
shape. The emission intensity is characterized by its power,
i.e., the energy(or the momentum) emission rate. As follows
from Eq.(106), the momentum emission power spectral den-
sity WPszd;dPrad/dt is

WPszd =
z

4p
S1 −

a2

z2D2 1

1 + uS21szdu2
ReHS21

* dS21

dt
J .

s120d

The energy emission power spectral densityWEszd
;dErad/dt is

WEszd =
z

2
S1 +

a2

z2DWPszd. s121d

Inserting the perturbation(117) into the general
perturbation-induced evolution equation(78) for the coeffi-
cientS21sz ,td and calculating the integrals, one can obtain for
ssz ,td=S21sz ,tdexpfiVszdtg

dsszd
dt

=
e−iu/2sz − z1

*d
Dszdsz − z1d

AszdeisV−kvdt−ikx0, s122d

whereAszd is some function that can be written in an explicit
form. For example, for the soliton withu,p, that is, the one
which is close to the motionless(or absolutely dark) soliton

cs = − r0tanhsr0xd, s123d

the functionAszd takes the form

Aszd =
2pakszdfikszd + ngasz2 + a2d

3n3z2sinhfpkszd/ng
. s124d

Let us integrate Eq.(122), the right-hand side of which
should be multiplied by expsetd with an infinitely smalle
.0. As usual, this implies adiabatically turning on a pertur-
bation that was absent att=−`. Thus, we get

s* =
ieiu/2sz − z1dA*

DsV − kv + iedsz − z1
*d

e−isV−kvdt+ikx0. s125d

Then, making use of the relation lime→0sy− ied−1=Ps1/yd
+ ipdsyd, where P is the symbol of the principal value, one
can find

uS21szdu2 =
uAszdu2

sV − kvdD2szd
s126d

and

ReHS21
* dS21

dt
J =

puAszdu2

D2szd
dsV − kvd. s127d

Equations(120) and (121) together with Eqs.(126) and
(127) give the spectral distribution of the emitted momentum
and energy rates in terms of the spectral parameterz. The
wave numberq of the emitted waves is connected withz by
the relation(108). Sincev,a, one can see that the emission
is concentrated at one point of the spectrumq=0.

The radiative part of the field in physical space can be
determined from Eqs.(84) and (85). It follows from Eqs.
(77) and (78) that in the first order the reflection coefficient
r̃ =−S12/S11 is

r̃szd = −
iA * szdeikszdx0

DszdfVszd − kszdvg
seikszdvt − eiVszdtd. s128d

Expression(128) has singularities atz= ±a. The detailed
structure and evolution of the radiative tail are described by
Eqs.(84) and (85) with the use of the more correct form of
r̃szd, when the singularities are absent. However, an approxi-
mate asymptotic estimate at times,Os«d, where the small
parameter« characterizes the perturbation, can be obtained
in a way similar to the one suggested in Refs.[24,25], where
the well-known problem of a perturbation-induced shelf gen-
eration by a soliton of the Korteweg–de Vries(KdV) equa-
tion was studied. In that problem the corresponding reflec-
tion coefficient also has a singularity in the first
approximation of perturbation theory. We simply substitute
Eq. (128) and the corresponding one-soliton Jost functions
into Eqs.(84) and(85). The main contribution in the appear-
ing integrals arises from the vicinities of the pointsz= ±a.
The functionAszd has no singularities, andAsad=As−ad. In
particular, for Aszd defined by Eq. (33), we get Asad
=2aa/3n. For example, atz→a we can write

r̃szd ,
iaAsadfeivsz−adt − eiasz−adtg

2sz − ad2sv − ad
, s129d
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sM21
− d2sz,x,td , − e−isz−adxH1 −

s1 + a/z1d
n

wsx,tdJ2

,

s130d

and similar expressions forz→−a. Here, the functionwsx,td
is defined by Eq.(A8). The slowly varying parts are evalu-
ated atz= ±a and taken outside the integrals in Eq.(84). The
rapidly varying parts are integrated. Under this, we make use
of the formula

E
−`

` cospj − cosqj

j2 dj = psuqu − upud. s131d

As a result, for the radiative field one can obtain

cc = −
iaAsad

8
HF1 +

expsiu/2d
1 + exps− hdG2 p1

a − v

+ F1 +
exps− iu/2d
1 + exps− hdG2 p2

a + v
J , s132d

whereh=nsx−x0−vtd, andp1= uh+sv−adtu− uhu , p2= uh+sv
+adtu− uhu. The structure of the radiation with corresponding
normalization[by the factor beforeh¯j in Eq. (132)] is pre-
sented in Fig. 3 fora=10, u=2.5, t=1.0. It is necessary to
stress that this picture has only qualitative character. As one
can see, the radiation has asymmetrical tails. Unlike the KdV
soliton, there is no shelf behind the soliton in our case.

VI. CONCLUSION

In conclusion, we have developed a perturbation theory
based on the IST for perturbed dark NLSE solitons. This
approach fully uses the natural separation of the discrete and
continuous degrees of freedom of the unperturbed NLSE.
N-soliton Jost solutions were calculated, and equations de-
scribing the dynamics of discrete(solitonic) and continuous
(radiative) scattering data in the presence of perturbations
were derived for theN-soliton case. Adiabatic equations for
the soliton parameters and the perturbation-induced radiative

field were obtained. The evolution equation for the dark
NLSE soliton phase perfectly reduces to that obtained earlier
in Ref. [14] with the aid of integrals of motion. We pointed
out also that the threshold creation of new solitons with
small amplitudes is possible under the action of a perturba-
tion. As applications of the developed theory, we considered
a temporal one-soliton pulse with random initial perturba-
tion, and a spatial soliton with linear gain and two-photon
absorption. The spectral distribution of the radiation was cal-
culated in both cases.

The general approach presented in this paper may be use-
ful for other physical systems described by the NLSE with
nonvanishing boundary conditions and supporting propaga-
tion of dark solitons.

APPENDIX A

The scattering data corresponding to the one-soliton solu-
tion (44) are

S11szd = eiu/2z − z1

z − z1
* , z1 ; v + in = − ae−iu/2, sA1d

S12sz,td = 0 sz is reald, sA2d

g1std = g1s0dexps− 2r0
2t sinud sg1 is reald. sA3d

The one-soliton Jost solutions can be calculated from Eqs.
(39)–(42). They are(t dependence is omitted)

M11
− sx,zd = e−ikszdx/2H1 −

s1 + z1/zd
fn − ikszdg

wsxdJ , sA4d

M21
− sx,zd =

iae−ikszdx/2

z
H1 −

s1 + z/z1d
fn − ikszdg

wsxdJ , sA5d

SM11
+ sx,zd

M21
+ sx,zd

D = eiu/2sz − z1
*d

sz − z1dSM11
− sx,zd

M21
− sx,zd

D , sA6d

M22
± = sM11

± d * , M12
± = sM21

± d * , sA7d

where Imz=0 andkszd is the same as in Eq.(14). Here we
have introduced the notation

wsxd =
n

1 + ensz−xd =
nenx

g1 + enx . sA8d

Sinceksz1d= in, we have also

M11
− sx,z1d =

enx/2

1 + ensx−zd , sA9d

M21
− sx,z1d =

ia

z1
M11

− sx,z1d. sA10d

In addition, it follows from Eq.(24) that

M2
+sx,z1d = si/g1dM1

−sx,z1d. sA11d

FIG. 3. The normalized intensity of the radiation field vsh=x
−x0−vt for a=10, u=2.5, t=1.0.
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APPENDIX B

The integral equation Eq.(82) for dG21 and dG22 can be
written as

dG21sx,yd + C1sxdf1syd + C2sxdf2
*syd = F21sx,yd, sB1d

dG22sx,yd + C1sxdf2syd + C2sxdf1syd = F22sx,yd, sB2d

where

F21sx,yd = −
1

8p
E

−`

`

r̃ * szdeiky/2M22
− sx,zddz, sB3d

F22sx,yd = −
1

8p
E

−`

`

r̃szde−iky/2M21
− sx,zddz, sB4d

and we have introduced the notation

C1sxd =E
−`

x

dG21sx,y8deny8/2dy8, f1syd =
neny/2

2g1
,

C2sxd =E
−`

x

dG22sx,y8deny8/2dy8, f2syd =
nz1e

ny/2

2ig1a
.

The functionsM21
− sx,zd and M22

− sx,zd are defined by Eqs.
(A5) and (A7). Equations(B3) and (B4) follow from Eqs.
(15), (16), and (83). Multiplying Eqs. (B1) and (B2) by
expsny/2d, and then integrating them overy from −` to x,
we get a linear algebraic system of equations for the un-
known coefficientsC1sxd andC2sxd:

C1sxdS1 +
1

2g1
enxD + C2sxd

iz1
*

2g1a
enx = F1sxd,

C2sxdS1 +
1

2g1
enxDC1sxd

iz1

2g1a
enx = F2sxd, sB5d

where

F1sxd = −
enx/2

4p
E

−`

` r̃ * szdeikszdx/2

n + ikszd
M22

− sx,zddz, sB6d

F2sxd = −
enx/2

4p
E

−`

` r̃szde−ikszdx/2

n − ikszd
M21

− sx,zddz. sB7d

Having solved the system(B5) and using Eq.(B1), we have

dG21sx,xd = F21sx,xd −
g1ff1sxdF1sxd + f2

*sxdF2sxdg
g1 + enx .

sB8d

Then we insert the equations

eikx/2w

n + ik
=

eikx/2 − M22

1 + z1
* /z

, sB9d

e−ikx/2w

n − ik
=

e−ikx/2 + izM21/a

1 + z/z1
sB10d

into Eqs.(B6), (B7), and(B8). When making the change of
variablez→a2/z in the integrand containing a single power
of M21, and using the involution properties(21) and (27),
some integrals are canceled, and after some manipulations
we get Eq.(84).
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