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Vectorial two-beam coupling with arbitrary shifted photorefractive gratings:
An analytical approach
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An analytical solution is presented to the vectorial coupled wave equations for the steady state amplitudes of
two waves interacting in cubic photorefractive crystals. The solution accounts for pump depletion as well as an
arbitrary phase shift between the interference pattern and photorefractive grating. It is shown that bidirectional
vectorial amplification and polarization orthogonalization of the interacting beams take place in photorefractive
crystal with diffusion, drift or mixed mechanism of space-charge formation.
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[. INTRODUCTION Our analysis is based on the vectorial equations for the
steady-state amplitudes of the coupled waves in photorefrac-
The photorefractive two-wave mixingfWM) allows an  tive crystal, the same as have been used in the other pub-
amplification of complex optical waves with high gain and lished works[5,10,16,17. Many effects associated with the
high signal-to-noise ratio, which is a basis for many applicawave’s polarization evolution caused by the vectorial TWM
tions of photorefractive materialgl-3]. The requirements have been analyzed and understood using analytical or nu-
for the crystal sensitivity and response time vary stronglymerical solutions of these equations. In particular we have
from one application to another, nevertheless the cubic phgyresented the numerical analysis of bidirectional light ampli-
torefractive crystals nowadays meet the requirements of thication in cubic crystals with local photorefractive gratings
biggest part of the potential applications. As a result, thg5]. The numerical analysis should give a deep inside into
cubic crystals of sillenite familyBSO, BTO, and BGQand  mechanism of nonlinear optical effects due to inherent flex-
cubic semiconductorénP, GaAs, and CdTiehave been the ibility to explore and manipulate the model. Nevertheless
objects of many studies during the past years. All these crysanalytical methods remain a powerful tool for the theoretical
tals possess sufficiently strong response only when an exteifvestigation of these phenomena and we apply it here to
nal electric field, direct or alternating, is applied to assist inanalyze in detail the vectorial bidirectional amplification in
the photorefractive grating recording. The ac field enhancegrystals with local, nonlocal and arbitrary shifted photore-
nonlocal photorefractive gratings, which are 90° phaséractive gratings.
shifted with respect to the interference pattern. The recording The organization of our paper is as follows: In Sec. Il we
of local gratings with 0 or 180° shift is assisted by dc electricdescribe a derivation of the coupled wave equations for the
field. The nonlocal character of the photorefractive gratingcase of arbitrary phase shift between the photorefractive grat-
was considered for many years as the necessary condition fifg and interference pattern. We specify the crystal configu-
light amplification in nonlinear medi§l-4]. Recently, the rations, which should be analyzed using the results of present
vectorial light amplification with unshifted local gratings in work, and restrictions of the model. In Sec. lll we obtain the
cubic photorefractive crystals was demonstrafgfi This  general solution of the coupled wave equations. Sections IV
prompted us to develop a theory of the vectorial TWM, and V are devoted to the applications of the obtained solution
which include both local and nonlocal gratings as well as the@o an analysis of the vectorial TWM in cubic crystals with
case of an arbitrary phase shift between the interference pabcal and nonlocal gratings. Finally, in Sec. VI we describe
tern and the grating. The latter is important since in the mathe peculiarities of TWM with gratings, which have the
jority of the experiments the phase shift does not equaphase shift different from 0 and 90°.
strictly to 0 or 90°. Among the typical causes for this we can
mention an almost unavoidable bias voltage in the experi-
ments with ac field and the contribution of the diffusion
mechanism of the space-charge formation in the experiments We consider vectorial TWM in cubic photorefractive
with dc field. crystals without optical activity. Among these crystals are
Recently, many experimental works were done with thenumerous photorefractive semiconductors of point group
samples of cubic crystals of high optical quality, long length43m (e.g., CdTe, GaAs, InPThe results obtained neglecting
of beam interaction and strong enhancement of the photoreptical activity should be also applied in some extent to crys-
fractive response by high electric figlé—11]. These samples tals of the sillenite family(Bi;,SiO»q and Bij»TiO5g), when
have allowed reaching high gain of signal waves when thehe photorefractive response is strong enough. In this case
depletion of the pump beam is inevitable. Therefore, it is ofthe inter-beam coupling dominates and the coupling between
utmost importance for the realistic modeling of the vectorialthe linearly polarized modes of each wave provoked by the
TWM to include the effects of pump depletion, which were optical activity can be neglected. Assuming a typical experi-
neglected in many previous work$2-14. mental configuration with the wave vector of the photore-

Il. THEORETICAL MODEL
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fractive grating parallel to the external electric field we ex- z,[110] [110] z,[111] [110]
clude from consideration the refractive index changes
induced by the external electric field. The birefringence in-
duced by the external field affects the photorefractive TWM
only in the crystals with optical activity and/or in the case of
nonconcurrency between the external and space-charge
fields. We write the coupled wave equations for steady-state (@)
amplitude vectorsS and R of reference and signal waves
using an approach similar to those of Rqfkl,16,17,

dS ikgn®
dz 2

[001]

FIG. 1. Mutual orientations of crystal axes, the principal axes of

the index ellipsoidx andy, and external electric fiel&, for two
configurations of cubic crystal. Light propagates alongzlais.

configuration[Fig. 1(b)], the light is directed along the crys-
drR ikon®Egc. tal axis[111], while the external field should be applied in
dz 2 rs, @) any transverse directiofl]. The principalx axis is directed
at the angley=m/4-v/2, wherev is the angle between the
wherek,=2m/\ is the wave numben is the wavelengthn  direction of the external fiel, and the[110] axis [1]. In
is the refractive index of the crystal, aidcis the complex  this case the effective electro-optic coefficients Bre-r,
amplitude of the space-charge field. The mafriincludes =273,
the effective electro-optic coefficients, which depend on the  after the substitution of Eqs2) and (3) we rewrite Eq.
crystal cut. In the principal coordinate system this matrix hag1) in the form
a diagonal form

0 95 L(S(R* +SR)R
F:{rx } 2) dz 2, <~ SRR
0ry
We calculate the complex amplitude of the space-charge field das - _ I R +SRIR
as dz 2IO(S( SRRy,
ESC: Emaxm eXIO(i d’)- (3) *

y . dr, I . .
wherem=[S,2)R,(2)+S,(2)R}(2)]/1 is the depth of the in- Tz 2, SR SRS
terference pattern modulatio8,(z), S/(z), R(2), andR(2)
are the linearly polarized components of the vector ampli- dr, . .
tudesS andR along the principal axes andy, respectively, 0 E(S(Rﬁ SR)S, (4)

0

10=]Sd?+|S,|2+|RJ2+|R,|? is the total light intensityF sy is
the maximum amplitude of the space-charge field, whichwhere I =ikon®r,E..€xpli¢) is the complex coupling con-
should be reached, whem=1. Equation(3) determines the stant for the photorefractive grating, which has theshift
linear dependence of the amplituigc on the modulation  with respect to the interference pattern.
depth of the interference pattem, though in general this The formally similar set of equations had been used pre-
dependence should be in some extent nonlinear especially @ously for analysis of other nonlinear optical phenomena
high modulation deptti18,19. In the present work, we do concerned with photorefractive wave coupling in cubic pho-
not consider the effects associated with the nonlinearity oforefractive crystals. Analytical solutions had been found for
the photorefractive response. Recently it was shown that thigur-wave mixing and phase conjugatig@l]. Later the
problem of nonlinear vectorial photorefractive TWM could similar theoretical approach was applied to the coupling mu-
be reduced to the linear one by a renormalization of theually incoherent pairs of beams, which share a common
propagation coordinatf20]. The phase shifgp in Eq. (3)  grating [22]. The description of the polarization evolution
represents the spatial displacement of the space-charge fiakkre presented for vectorial unidirectional TWE3,24. In
Esc with respect to the interference pattern or, in otherthe present paper we focus our attention on the case of bidi-
words, the phase shift between the photorefractive gratingectional vectorial TWM in cubic crystal with photorefrac-
and the interference pattern. tive gratings possessing complex coupling constants. In our
An analytical solution of Eq(l) can be found for the case Eqs(4) describe the coupling betweenandy polar-
crystal configuration, which yields,=-r,. This relation ization modes of the two beams. The interference wfodes
should be met with the crystal configurations shown in Fig.affects the coupling of modes and vice versa via the inten-
1. In the first configuratioriFig. 1(a)], the direction of the sity modulation responsible for the recording of the photore-
light propagation coincides with the crystal axiklQ], and  fractive grating. According to Eqg4) the amplitudes incre-
the external field is applied alod10]. The principalx axis  ments ofx andy components have different signs. Taking
is directed at 45° angle counted from {HHL.0] direction, and  into account the tensor nature of the photorefractive effect
the effective electro-optic coefficients arg=-r,=r,, with-  we should interpret this as =shift between the two refrac-
out an elasto-optic contribution, wherg, is the component tive index gratings. One of them is responsible for the cou-
of the electro-optic tensor of a cubic crystal. In the seconcpling between x-polarized components of two beams,
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whereas the other couplespolarized components. The en- 6
ergy flux associated with each polarization component has Z /T\
opposite direction in respect to each other that yields a bidi- 5 47 Iy N
rectional overall energy transfer between the beams as it will £, — IS‘
< N 1 Rx
be shown below. s Sy
b

Ill. ANALYTICAL SOLUTION

Following to Refs.[2,21] we rewrite Egs.(4) for new
variablesu=S,/R andv=S//R, as

du r .

d—z——io(bu—au—b),

dv T

—=—(b'v*+ov-b), 5
pr 2IO( v+ ov-b) (5)

where o=lg~loy, lox =S4+ (R, IOy:|Sy|2+|Ry|21 and
b=SR/+SR,. As a result of energy conservation and the
reciprocity theoremy,, Iy, andb are the constants of inte-
gration determined by the boundary conditions. The integra-
tion of Egs.(5) gives

S -2b'u
u=- —*tanf{—xz+ tanh‘%%)} T

2b 2b"’
* d
S [ o+ 2b vy o (@) % T
v=-—=tanh yz-tanh*{ —— | |- —=, (6) . ) )
2b S 2b FIG. 2. Two beam coupling in a cubic crystal with local photo-

_ . _ " refractive grating(a) Intensities of the polarization modes as func-
Whereuo—S((O)/Ry(O) andvo—Sy(O)/RX(O) are the boundary tions of the propagation distance. Pangdlys (c), and(d) show the
conditions, s=\o?+4|b|* and x=sI'/4l,. Using the defini- interference patternix’,2), I(x’,2), andl,(x’,2), respectively.
tions and the constants of integration, the intensities of the

polarization components can be written —IsJry). The S-beam increases its intensity, when the light
lox — loylU[? lov— loxlv ]2 polarization is along the axis. The energy flux changes the
|l re= Oi‘—|°y|—2, lry= 01 |°X o direction for opposite if the beams have the orthogonal po-
—|Uv —|Uv

larization. When the light is polarized alomgr y axes, Egs.
) ) (8) reduce to the well known case of scalar TWM, which was
lsx= Uy 1sy=[v[*IRs (7)  analyzed in many previous works. In the case of scalar TWM

The solutions are valid for an arbitrary input polarization andtn® €nergy flux in is unidirectional and coincides with the
arbitrary phase shift between the interference pattern and triPatial shifts between the interference pattern and refractive
refractive index grating, which allows analysis of the inten-INdex gratings, which are different for two orthogonal polar-
sities evolution of the interacting beams as well as evolutiofZations. The process of the beam interaction in a long crystal
of their polarizations. comes to the end when one of the beams is completely de-

pleted so all its energy, which was not absorbed by the crys-
IV. NONLOCAL GRATING, ¢=90° tal, is transferred to the other beam.
The solutions presented by Ed$) and (8) yield the bi-

ca:;rf)tf mz ﬁgﬁ%ﬁ;thfaﬁ:a'gvﬁ'ﬁSgluf,'fhne’nEﬁ’ ;gL ﬂl}ﬁ directional amplification when botlkx- and y-polarization
g 9 Lo ping components are not zero at the input plane of the crystal.

constantl” is a real number. To demonstrate how the dIreC'Figure 2 shows the calculation results for 45° input polariza-

tion of the energy flux depends on the polarization we re-. _ = :
write the Egs.(4) as increments of the beam intensities tion, when $(0)=5,(0) and_ RX(O)._RY.(O)' The. calf:ulauons
=t _ were done for the beam intensity input ratio 1:10 and the
=lgytlgyandlg=Ig,t IRy

coupling constanE'=20 cnT™. To trace the phase changes of
dig T the polarization modes we present the fragment of the inter-
E‘E(ISJRX_ISJ Ry ference pattern calculated as the sum of the intensities of
both polarization componentsi(x’,z)=I(x",2)+1,(X",2),
dig_ T where 1i(x',2)=|S(2)*+|R(2)[*+2|S(2)R(2)|cos KX +¢),
e :_I_(|SXIRX_ Isyry)- (8)  i=x,y, K is the length of the grating vector, ang is the
0 phase difference between the complex amplitugendR,.
The sign of the intensity increments and so the direction ofThe axisx’ coincides with the direction of the external field
energy flux depends on the sign of the factdglgry  and the grating vector. Figur€&® shows that near input face
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of the crystal, wherz<<1 mm, the intensity increments of 6 11
different polarization components of the same beam have z Sx Sy
different signs, thus the total intensity of each beam is almost 547
constant in this part of the crystal. Tlyecomponent of the —g 5
weak beam.,S, decreases and at the distarce 1l mm it r
passes via the zero amplitude. At that paftchanges the @ 0 1 1 1 L
sign, so aiz>1 mm ¢,=180°, while,=0. The subsequent
increment of theS-component leads to the decrement of the 5F
overall interference pattern contrast, as it is shown in Fig. =
2(b). The energy exchange between the beams, as well as the = 0r
changes of their polarization come to the end, when the w
modulation depth of thd(x’,2) interference pattern ap- (b) SE
proaches the modulation depth of thgx’,z) interference
pattern that ISR, =-SR. This relation means that the two St
beams have mutually orthogonal polarization and equal in- g ol
tensities. Recently the polarization orthogonalization of the 3
beams interacting in cubic photorefractive crystals due to 5t
vectorial TWM or multiwave mixing has been predicted as a (©
result of numerical study and demonstrated experi- s
mentally [25]. g
=0}
V. LOCAL GRATING, ¢=0, 180° ~ sl
In the case of the local photorefractive respoise 3,
whereg is real and we rewrite Eq$4) as increments of the (d) z, mm
beam intensities and phase shifts in the form
FIG. 3. The same as Fig. 2 but for the crystal with local photo-
dis_ _ 4B¥Sin - refractive grating.
dz lo
lar or elliptic polarization. If we consider the net effect of the
dig Vo beam interaction in the long photorefractive crystal, the con-
i 4B|—sm Pxy» dition ¢,,# 0 is not mandatory for the energy exchange be-
z 0 tween beams. Equatiori9) show that the phase increments
de,/dz and de,/dz have opposite signs. Thus, vectorial
dox :_E“ - )—BMcow TWM first yields the phase shift between the interference
d, lo Rx S lolrod sx X patterns of the polarization components without energy ex-
change between beams. In turn, the nonzero phase shift re-
d V(leo— | sults in the change of the beam intensities. The signs of the
FZY = E(IRy_ Isy +,3(Tjiﬁ200590xy' (90 intensity increments and so the direction of the energy flux

between the beams depends on the sign of the phase shift

whereV=ylg|l syrdry @Nd gy, is the phase shift between the ¢,,. If the intensity of theR beam is higher than the intensity
interference patterns of and y polarization components, of theS beam, therte,,/dz<0 results in the energy transfer
xy= Px~ Py from R to S beam. In the opposite case, when thbeam is

Equationg(9) are reduced to the case of the scalar TWM,stronger, Eqs(9) give de,,/dz>0 and the energy flux is in
when the interacting beams have ondyor y polarization  the opposite direction. Thus the vectorial beam coupling in
component, which give¥=0. In this case, the obtained ex- the photorefractive crystal with local grating always yields
pressions predict the well-known fact that in the photorefracthe amplification of the weak beam independently of the mu-
tive crystal with the local response the interacting beams deual position of the strong and weak beam, in other words,
not change the intensities, nevertheless the phase changég amplification is bidirectional.
yield the inclination of the fringes of the interference pattern.  Figure 3 shows the vectorial beam coupling in the photo-
In the case of vectorial TWM, when the beams have botlrefractive crystal with local response. These results were cal-
polarization components, 96+ 0, the energy exchange be- culated using Eqg9) for the beams with the intensity ratio
tween the beams is possible even in the crystal with the locdl:10, the coupling constag@=20 cni?, and the 45° polar-
photorefractive response. The second condition for the nonzation of the beams at the input of the crystal. In our previ-
zero energy flux between the beams is a nonzero phase shdtis work the similar results have been obtained as a numeri-
between the interference patterns of the two polarizatiortal solution of the vectorial equations for steady-state TWM
component,(x’,2) andl(x’,2), i.e., ¢, # 0. As an example, [5]. As one can see in Fig. 3, near the input face of the crystal
both conditionsV # 0 and¢,,# 0, should be met when one (z=0) the fringes of the interference pattefp(x’,z) are
beam has a 45° polarization, while the other beam has circusended in the opposite direction with respect to the fringes of
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I, arb. units

D
£

15

I(x’,z) FIG. 5. Photorefractive gain as a function of the propagation
distance plotted for different phase shiftsbetween the interfer-
ence pattern and photorefractive grating.

have discussed in the case of the nonlocal grating: the output
intensities of the beams are equal and the polarizations are
orthogonal. The fringes of the interference patterns are
bended, which is the specific feature of the beam coupling
with the local grating. At the same time Fig. 4 shows the
decrease of the contrast of the overall interference pattern
I(x",2z), similar to what has been shown for the nonlocal
grating. These features of the beam coupling reveal in the
FIG. 4. The same as Fig. 2 but for the crystal with 45° shifteddependence of the photorefractive gain on the propagation
photorefractive grating. distance, which is shown in Fig. 5. The gain was calculated
as a ratiog(z)=[|S(z)|?/|S(0)|?] for the coupling constant
l,(x',2), which results in nonzero phase shif,. The overall I|=32.5cm* and the input intensity  ratio
i%terference VN1 (! ) : £=[|R(0)?/|S(0)|?]=10. In the case of nonlocal grating,
patterni(x’,2)=I(x",2)+1,(x",2), has straight - . ;
fringes with a constant contrast. In the long photorefractiveVe€n ¢=90°, the gain monotonically approaches the satura-
crystal the phase shift,, periodically changes the sign that t'o" valuegs=(¢+1)/2 with the increase of the propagation
results in periodical inversion of the energy transfer betweefliStance. When the gating is local, i.¢:0, the gain oscil-

(d) z, mm

two beams along the axis. lates around this value as
9(2) = [(£- Dsirf(mzILy) + 1], (10)
VI. GRATINGS WITH ARBITRARY SHIFT ¢ and the beam exchange by the intensities at the distance

_ Lo/2, whereL,=\/n’|Esd [5]. All curves calculated for the
A. Vectorial TWM arbitrary phase shif situate between two extreme curves,

As was shown above, the vectorial beam coupling in thevhich correspond to the local and nonlocal gratings. Note
crystal with unshifted photorefractive gratirigg=0, 1809  that for short interacting distancess<5 mm, the local grat-
yields the monotonic changes of the beam intensities anithg (¢=0) yields the maximum amplification in comparison
polarizations. If the crystal is long enough, the coupling re-with the gratings with any other phase shift. Obviously, this
sults in equal intensities and orthogonal polarizations of theesult, which is valid for 45° input polarization, is not valid
beams at the output of the crystal. On the other hand, in thia general. The polarization dependence of the gain is pre-
crystal with nonlocal response, whet= +90°, two beams sented in Fig. 6 for different grating phase shifts The
periodically exchange by the intensities. Figure 4 shows thealculations were done using the same parameters as we used
beam coupling in the intermediate case, whgn45°. The to obtain the results presented in Fig. 5 and the crystal length
results were calculated using the similar parameters as be=3.25 mm. This length approximately corresponds to the
fore: the intensity input ratio 1:10, 45° polarization at input first maximum of the gain for the local gratirgee Fig. 3.
of the crystal, and the coupling constaht=20 cni’. Comparing the results presented in Figs. 5 and 6 we came to

In the intermediate case of the grating, the vectorial beanthe conclusion that absolute maximum of the photorefractive
coupling has similarities both with the local and nonlocalamplification should be reached with the nonlocal grating
cases. The beam intensities oscillate along the direction df$=90°) and the linear polarization aligned along one of the
propagation due to the periodical inversion of the energyprincipal axes of the index ellipsoid. However, when the
transfer between the beams as in the case of the local gratinghotorefractive response is loca$p=0) the gain reaches
At the same time the oscillations are damped and the intermaximum at 45° and-45° polarizations, when two polariza-
sities approach a steady state, which coincides with what wgon modes have equal input amplitudes. This prediction has
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(b) z, mm

FIG. 6. Gain versus polarization angle for different phase shifts

of the photorefractive grating. FIG. 7. Scalar TWM with the 45°-shifted photorefractive grat-

ing. (8) Wave intensities and relative phase shift as functions of the

. . . o propagation distance(b) Interference pattern of the interacting
been confirmed experimentally in Rgb]. Similar to the | 4yes.

results presented in Fig. 5, the polarization dependence of the
gain for the arbitrary phase shiftis somewhat in the middle
between the case of the local and nonlocal gratings. o= lo | = lo
STl+texp-x2' N 1+&texpx2)’
B. Scalar TWM (14

TWM turns into its scalar version when the input polar-
ization of the two waves coincides with one of the two po-
larization modes. In other words, when the polarization angléiere the energy flux is unidirectional and the energy of one
a is equal to 0°or 90°. Owing to the definition, the variablesOf the waves should be completely transferred to the other
u andv have a singularity atz=0° and 90°. Thus the scalar Wave. In the case of local grating=-x") Egs.(1)—«13)
TWM cannot be described directly by Eq6) and(7) and so  predict that wave intensities are constant, while the relative
the curves in Fig. 6 have breaks out at the angles, which arghase experiences a change always when two waves have
corresponding to the polarization eigenmodes. Neverthelegdifferent intensities, which is also a well-known rest3].

the polarization mode intensities presented by Egscon- Obtained solutiongl1)«13) for the scalar TWM is useful
verge to finite limits asy— 0° or a— 90°. These limits are for an analysis of scalar TWM with arbitrary shifted photo-
the solution for the scalar TWM, which is given by refractive grating. Figure 7 shows the result calculated using

these relations for the grating with intermediate shift,
=45°, Here the changes of the wave intensities and the rela-
tive phase take place simultaneously. The sign of the incre-
ment of ggg depends on the wave intensity ratio. In our cal-
where culationsy> 0, which leads to the negative incrementygfs
near the input of the photorefractive crystal, whigr<Ig.
TWM results in an increase df, and the increment oprg

|ug|*(1 = [vgl*) 1 = |ug®

' IR IO ’ (11)
= |ugvol® ?

Is=1o
|OO

) 1 1+tanhyz
Up=limau=—=—""-"—""—

a—0 v’&l _&-3 tanhyz changes the sign as tlewave intensity becomes bigger than

E+1 Ir. The changes of the relative phase result in V-shaped
fringes of the interference pattern of the interacting waves as
-1 it is shown in Fig. Tb).
1- tanhyz
_.v 1 E+1
vo=lim—=—~ : (12
amoa ¢ 1-tanhyz VIl. CONCLUSIONS

Herely is the total intensity and is the input intensity ratio.
According to the definitions ofi, andv, the relative phase
of the two waves can be written as

We have presented an analytical solution of the coupled-
wave equations for vector wave amplitudes that describe the
degenerate two beam coupling in cubic crystal with arbitrary
phase shift between the interference pattern and photorefrac-
(13 tive grating. The developed theory allows the analytical de-

scription of the beam coupling when both interacting beams
When y=y’, the grating is nonlocal and the obtained solu-experience strong changes of intensities and polarizations,
tions (11)—(13) reduces to the well-known relations for the thus the approximation of a uniform grating is not accept-
wave intensities and relative phagz3] able. It has been shown that the theory describes such effects

u
(PRS: - | In _0
Vo

Uo

Uo
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