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Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser

J. M. Soto-Crespo
Instituto de Optica, CSIC, Serrano 121, 28006 Madrid, Spain

Mélanie Grapinet and Philippe Grelu
Laboratoire de Physique de I'Université de Bourgogne, Unité Mixte de Recherche 5027 du Centre National de Recherche Scientifique,
Boite Postale 47870, 21078 Dijon, France

Nail Akhmediev
Optical Sciences Group, Research School of Physical Sciences and Engineering, The Australian National University, Canberra,
Australian Capital Territory 0200, Australia
(Received 2 September 2004; published 13 December)2004

We observed, numerically and experimentally, multiple-period pulsations of the soliton parameters in a
passively mode-locked fiber laser. Pulsation periods can vary from a few to hundreds of round trips. Short and
long period pulsations can appear in combination. The new periods in the soliton modulation appear at
bifurcation points related to certain values of the cavity parameters.
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I. INTRODUCTION Pulsating soliton solutions for the parameter averaged

Laser systems generating ultrashort pulies3) have a _model of a laser have beer_l studied in Ré&f]. This model
number of important applications in optics and telecommudS based on the complex Ginzburg-Landau equat@GLE)
nications. The stability of the pulse generation from oneWith constant parameters. It does not take into account the
round trip to another is one of the important qualities of suchvariation of the parameters in the cavity and the periods of
lasers. Any instability in the laser is considered to be detrithe pulsating solutions in this model do not have a direct
mental for its use in applications. Indeed, if the characterisrelation to the cavity length.
tics of the output pulse start to deviate from the average, its In the present work, we incorporated explicitly the cavity
use in an accurate technological device might stop its opera€riodicity into the model. We have found that even in this
tion. The study of the instabilities becomes a crucial pointcase the pulse can acquire a periodic evolution that is not
when the configuration of the laser is designed. On the othei€lated to the round-trip time and can consist of many round
hand, some instabilities lead to a regular change of the solirips. This “macroperiodicity” can exist independently or can
ton parameters. This happens when periodic pulsations affe combined with other periodicities such as period dou-
pear in the temporal evolution of the pulse. The pulse evobling, tripling, etc. In the latter case the pulsations become
lution with an additional periodicity can be stable itself. In quasiperiodic with two and more frequencies involved in this
this case, the pulsations can be observed in the output &ocess. The frequencies can be commensurate or noncom-
periodic Changes of the pu|se Shape and energy from on@ensurate providing arich variety of pulse outputs from the
round trip to another. Then further devices can be designetiber laser.
based on these regular changes.

A laser cavity is a “cage” that forces pulses to evolve
periodically with a period equal to the round-trip time. This
is an internal periodicity and cannot be seen externally unless We model the fiber laser using the cubic-quintic complex
we monitor the pulse shape at several points of the cavityGinzburg-Landau equation with parameter management:
When the pulse is monitored at a fixed point of the cavity, we b
can only observe its “macroevolution” at time scales Ionger-(ﬂzJr 5%4_ W2+ v =i 50+ i pl2+ i Bu + i wl

II. THE MODEL

- . i
than the round-trip time. It is usually assumed that a laser is

in a stable regime of operation when the pulse returns to (1)
exactly the same profile after each round trip. This means

that no macroevolution is present. The pulse might acquiravherez is the distance that the pulse travels in the cavity
an additional periodicity at some regimes determined by thénormalized to the cavity lengfht is the retarded timey is
parameters of the system. One of the transitions to periodithe normalized envelope of the field,is the group velocity
pulsations of a soliton is known as period doubliigpling, ~ dispersion coefficients is the linear gain-loss coefficient,
etc). Period doubling bifurcations have been found experi-i B4 accounts for spectral filteringd>> 0), €|#|% represents
mentally in various pulse generating laser systems. Theste nonlinear gain which arises from saturable absorption,
include femtosecond solid-state laspdy fiber laserd5-7],  the term withu represents, if negative, the saturation of the
additive pulse mode-locked lasef8], and nonlinear ring nonlinear gain, while the one witlr corresponds, also if
resonatorg9]. negative, to the saturation of the nonlinear refractive index.
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sion (D=d>0) is modeled by the same equation with only
Z CGLE Dispersive the dispersive term taken into accouttte right hand side
(D <0,8,B,6,v, L) f—w— (111260) box of this figure. The length of this fiber is denoted hsg.
> Ly -~ The equation in this part is linear and therefore the only

relevant parameter is the produdily). The pulse profile is
monitored every round trip at the end of this section unless
specified otherwise.

. . . i As h ns in dissipativ ms, th lution n
The laser cavity consists of several pieces of fiber, con- s happens in dissipative systems, the solution does not

. . ; . depend generally on the initial conditighe., input pulsg
necting elements and a mode-locking device. The propertlegfter the pulse has propagated several round trips. In other

of the media where the pulse propagates vary with the dis\;v - ' '
I . o ords, any input pulse converges to a fixed stable profile or
tance. Hence, the coefficients in K@) must be periodic to a limit cycle quickly after the laser is “switched on.” This

functions of the distance Our aim is to show the existence happens for a certain range of values of the equation param-

Ofﬂ:ﬁ?Tﬁg%ﬂ'gﬁl.'?étng?rl]eé T ';hse S‘E::nopfcs;trg()d.e;é |:ennc(ie’eters for which the limit cycle is stable. Only these cases are
w icl in Eql) as periodi pwise fu of interest in our problem as well as for practical purposes.

tions ofz. ngy in a few cases, when bistabiligpr multistability) is

FIG. 1. Laser model used in the numerical simulations.

This technique for modeling the fiber laser can be calle resent, the initial condition is important. The value of the

parameter management.” The term comes from the theor arameters of the system determine the period of the pulsa-

of I(_ilspergorr]l _rg_anaged sotl_lt(;‘]nifsll,la_tﬁ/vhgch uses thfe tions. In particular, the period can be equal to two, three, etc.,
nonlinear Schrédinger equatiq E) with stepwise coef- round trips rather than one. These phenomena are known as

ficient in front of the second order derivative term. The pe—period doubling, tripling, etc., in the existing literatus-g.

riodic change of the group velocity dispersion induces evoy - : : :
lution of the soliton profile that is usually chaotic but may We have found pulsating behaviors with almost any integer

becom riodic provided the initial condition is chosen in numberN of round trips as period. This observation requires
ssggialevfaey odic provided the initial co onis chose 33 careful search for the proper values of the system param-

We use a similar aporoach for our laser svstem but instea ters. Each additional frequency in the pulsations appears at
use a simi ppro ur’ y UtINSt€aome fixed valuesbifurcation poinj of the system param-
of the nonlinear Schrodinger equation we use the cubic:

intic Ginbura-Land tion with fficients that ar eters that we vary during simulations.
quintic f>inburg-Landau equatio coetncients that are 1o model that we use is an approximation like any other.
all periodic stepwise functions of. Each period in this

model naturally describes one round trip of the optical pulseHowever, it takes into account the most important feature,
In contrast to the “dispersion managing” of the NLSE, thehamely, the round-trip periodicity of the effects suffered by

| \ution i del d td d I the pulse during its propagation inside the laser cavity. As a
puise evolution in our model does not depend generally c”f'esult, it describes the soliton pulsation phenomena observed
the initial conditions after a certain number of round trips. In

the maiority of th W hot rofile to st in experiments more accurately. As an alternative, we could
€ majority of the cases we USe a sech-lype proliie 1o staffyq o lumped model in which certain devices, such as a mode
the simulations with a single pulse. The pulse evolves intq

ocker or other, are introduced at a point rather than in an

the solution provided it has the amplitude above a certaiferval. The results we obtain will qualitatively be similar as

threshold given by the parameters of the system. If the am: . : o
plitude of the initial condition is below this threshold, it de- >y o ‘{‘;]eet;‘;edgl‘to account the round-trip periodicity ex-
cays and quickly vanishes. plicitly '

The model is illustrated in Fig.1. The section of the er-
bium doped fiber together with the passive mode-locking
element is modeled by the full CGLE equation where all the
equation parameters are different from zésee the left hand We observed experimentally several of the simulated os-
side box of this figurg The dispersion in this section of the cillatory behaviors. The experimental setup consists of a
cavity is taken to be normglD <0) and the length of the dispersion-managed mode-locked fiber ring laser similar to
section isLp. The single mode fiber with anomalous disper-those used in Refs. 13 and 14. The fiber laser, which emits

Ill. EXPERIMENTAL SETUP

10%-coupler

FIG. 2. Experimental setup.

Compressed Output “Mode Locker” Variable Output Coupler
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nient way to compress the chirped pulses that propagate in
the cavity. Recording the optical autocorrelation from this
fiber output is used to distinguish the doublet and triplet
multisoliton complexes when the pulses are very close to
each other. In the present work, the path-averaged dispersion
is normal but very close to zef® = -2 (ps/nm/km] . The
main attention is focused on the amount of energy carried by
pulses at each round trigenoted ag) in simulations,Q

=JZ ¢z, 0[Pdg.

We record the output intensity from the 10% fiber output
coupler with a fast InGaAs photodiode that is connected to a
) : . : : : : : 500-MHz digital phosphor oscilloscope. At a pumping power
RS R R R REE SR of around 150 mW, fundamental mode locking is routinely
: : achieved and can be stable for hours without the use of any
external feedback. Due to the frequency chirping, the pulse
duration is typically 1 ps at the open-air section outputs, and
: . 150 fs at the compressed output peete Ref[14]). Intrac-

FIG. 3. S“?‘b'e puls_e train generation b_y the mode-locked flberavity energy of a single pulse is around 400 pJ. In a stable
laser with a single soliton in each round trip. : . - . .

regime of laser operation, monitoring the output intensity

ultrashort pulses at a wavelength of around L, is displays the amplitude peaks that repeat at the cavity.funda—
sketched in Fig. 2. The gain is provided by a 1_9_m_|ong’mental frequency of 36.6 MHz. The oscillogram for this re-

1400-ppm erbium-doped fibelEDF) that features normal 9ime is shown in Fig. 3.
chromatic dispersiofD=-40 (ps/nm/km]. The pumping
source consists of four wavelength-multiplexed laser diodes
around 980 nm, providing a coupled power of up to 350 mW.
The path-averaged cavity dispersion is adjusted with the use We call “short period pulsations” those whose period is
of an appropriate length of a SMF-28 fiber that has anomaeomparable with the round-trip time. When this period coin-
lous dispersion[D=+16.5(ps/nm/km]. A 50-cm-long  cides with the round-trip time, the laser is in the stable re-
open air section is used to insert polarization componentgjime of pulse generation, i.e., it produces exactly the same
Due to the nonlinear polarization evolution that takes placeulse each round trip. This regime is illustrated in Figp)4
along with propagation in the fibers, the transmissionlt shows the soliton peak amplitude versus the en&gyf
through the polarizeP1 is intensity dependent, and an ap- the pulse as it evolves one round trip inside the cavity. After
propriate adjustment of the preceding wave plates triggerseach round trip the trajectory returns exactly to the initial
the mode-locked laser operation. A polarization-insensitivepoint. The parameters of the simulation are written inside the
optical isolator wavelength-division-multiplexed coupler andfigure.
optical isolator(WDM-IS) ensures unidirectional lasing. The curve is a closed single loop that shows that soliton
Two other optional outputs are implemented in the cavityparameters change periodically repeating themselves after
and may be used according to which type of experiment igach round trip. The experimental equivalent of this dynam-
performed. First, a second polarid€2), preceded by a half- ics is presented in Fig. 3. For any arbitrary initial soliton
wave plate, provides a convenient variable output coupleparameters, the trajectory is out of this loop but it converges
We can use the half-wave plate to continuously tune théo it in a number of round trips. Hence, the loop is a stable
amount of cavity losses in a given range, so that oscillationéimit cycle according to the common terminology used in
can manifest accordingly. Second, a 10% fiber output couplenonlinear dynamics theory. As in the rest of this paper, any
is inserted inside the cavity in order to splice a small lengthtransitory evolution needed to reach the solution from arbi-
of dispersion-compensation fibeddCF). This gives a conve- trary initial conditions is removed from the plot in Fig. 4.

\_Ch2 J 145mV

IV. SHORT PERIOD PULSATIONS

7 ——— ' .
CGLE: 7S¢ ;
3 D=-1.98, L,=0.33 o /
= 8=-04, B=0.22 S65F ] FIG. 4. Peak amplitude vs energyfor (a) a
?g s £=1.86, v=0, = 009 period-1 solution as it evolves one round trip in-
5°[ u=-014 _ |l Esst e ] side the cavity. The vertical part of this trajectory
=4 DlslPers“’e o corresponds to the propagation during the purely
& tne 3 Dispersive dispersive staggb) Period doubled loop in pass-
d Ld—0.7 [a ¥ 4 5 N 1i p . . .
. mne ing the laser cavity twice.
dL4=0.75
K 3.5 : -
15 30 45 20 40 60
(@ Q {b) Q
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FIG. 7. Period tripling bifurcation when changing the parameter
B. (Inseh Pulse energy versus the number of round trips for the
eriod-3 solution aB=0.25(indicated by a dashed line in the main
igure). The parameters of the simulations, other tigarmre shown
in the inset in Fig. ).

FIG. 5. Output energ®) monitored at the end of the amplifying
stage as a function gf. It shows a sequence of period doubling
bifurcations in our parameter managed model of a fiber laser. Th$
laser parameters are shown in the figure.

A similar loop can be constructed, if we choose any othetthe sequence of period doubling bifurcations is presented in
soliton parameters, i.e., the widtNfh order momentum of Fig. 5. Period 4 appears at the valueof=—0.093. Further
the pulse, etc. For any two of those parameters we obtain éhange ofu gives period-8 solutions and chaotic evolution
two-dimensional projection of the limit cycle. If we use all of of pulses at arounge=—0.092. The whole sequence of pe-
those parameters and construct a trajectory in the resultingod doubling bifurcations exists but cannot be resolved in
infinite-dimensional space, we will have a periodic loopthe scale of Fig. 5. Similar evolution can be observed when
again. Hence, this is a limit cycle in an infinite-dimensionalwe continuously change one of the other system parameters.
phase space. Another example of periodic behavior is shown in Fig.

The parameters of the system define the period of thé(a). It corresponds to a pulsating soliton evolution whose
pulsations. In particular, we can find the period being equaperiod covers three cavity round-trip times. The pulse energy
to two round-trip times rather than one. One of these cases igersus the number of round trips is shown in the inset of Fig.
shown in Fig. 4b). The parameters of our model that causes?7. Each figure shows strict periodicity with the period being
such transformation are shown in the figure. As a rule, theequal to three round trips.
period-1 pulsations become unstable but the cycle with two After performing many numerical simulations, we are
loops becomes stable instead. This phenomenon is known asnvinced that it is possible to find pulsating behavior with
period doubling bifurcation. any integer numbeN of round trips. This requires a careful

In the example shown in Fig. 4, we changed several pasearch for the values of the system parameters. Depending on
rameters in order to obtain period doubling. In many caseshe choice of the parameter that we use as a variable, the
we can vary only one of the parameters in the system to havsolutions might appear as a sequence of bifurcations such as
a bifurcation or even a sequence of bifurcations. If weperiod doubling bifurcations or we can get a more compli-
choose the gain saturatignas a variable parameter we can cated sequence. In particular, the diagram with the period
also observe period quadrupling, i.e., the pulse repeats itseffipling bifurcation is shown in Fig. 7. In this case, when
only after four round trips. In this case, both period-1 andchanging the spectral filtering paramef&rwe have a tran-
period-2 solutions become unstable. The diagram showingition directly to the period-3 solution rather than to period 2

R — 8 , ,
D=-2.0, dL 06
Q © 5=-0.4
E 3 Ez(fjgs FIG. 6. (a) Period tripling loop obtained in
= 4 = 6 V=0, passing the laser cavity three timek) Period-3
g g u=-0 loop with an additional “long period” modulation
» . 5t in multiple passes through the laser cavity. The
5 g values of the parameters of the two simulations
a o . -
4t are shown in the insets.
3 PR S ST R I SR SN SR S T S S T 3 "
15 30 45 60 15 25 35 45

(a) Q (b) Q
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FIG. 9. Spectrum of soliton pair. The inset shows the optical

FIG. 8. Bifurcation diagram showing the formation of doublet . 5correlation function of the soliton pair.

and triplet multisoliton states in addition to period doublifeg

P~140 mW andP~240 mW. oscillations and chaos, a doublet soliton is formed, and
period-2 oscillations disappear.
at the bifurcation point. The bifurcation occursé=0.288. The newly formed state can be analyzed using the record-

When further reducing the paramef@rwe obtain the tran- ings of its optical spectrum and autocorrelation trace. The
sition to the period-6 solution. Further reductiondileads to  stable soliton pair, or doublet, is characterized by highly con-
chaotic solutions after a series of bifurcations with periodtrasted fringes in its spectrum, whose interfringe distances
multiplication. are inversely proportional to the temporal separation of the
The form of the bifurcation diagram depends on the tratwo pulses, as measured by the autocorrelation trace.
jectory in the parameter space that we choose for our simu- Figure 9 presents the spectrum and, in the inset, the auto-
lations. In the two cases presented above, we fixed all theorrelation trace, of the doublet state. Further increase of the
parameters except ong, or B. This is the easiest way to pumping power above 230 mW leads to another period-2
change parameters in the simulations. Experimentallybifurcation. At higher power levels we observe the creation
changing the configuration might cause a simultaneous variasf an additional third pulse, namely, a stable multisoliton
tion of several parameters. Then, the trajectory in the parantriplet is formed at aroun& = 300 mW. The spectrum of the
eter space can be more complicated. Each route createstriplet shows a characteristic fine fringe pattésee Fig. 10
specific bifurcation diagram. The autocorrelation function has five peaks rather than three
(see the inset in Fig. 30
. , The increase of the intracavity energy brings the instabili-
Experimental observations ties described above. However, large instabilities are pre-
Once mode locking is achieved at a given pumping powerented by sharing the intracavity energy between several
and a given setting of waveplates, we have some latitude tpulses that are bound togetH&éi7]. This observation of sta-
vary one or several cavity parameters to observe changes bilization through additional pulse formation was also re-
the dynamics of the output pulses. The change of the pumgently reported in Ref{6], where a recursive simple model
power and the orientation of the waveplates influences thwas given to explain that dynamic behavior.
coefficientss, e, and w, leaving 8 and v unchanged. How- In order to observe more complex dynamics associated
ever, the pump power variations influence these parametewith the circulation of a single pulse in the cavity, we have
in proportions different from the way when we change thethe latitude to vary different cavity settings. Indeed, once
orientation of the waveplates. As a result, the effects introstable single pulse mode locking is obtained, we can vary the
duced in these two cases are different. orientation of the mode-locking waveplates. This operation
In the frame of the present paper, comparisons with theoryesults in the modification of the whole nonlinear transmis-
and numerical simulations are consistent when only a singlsion function of the open-air section. This is different from
pulse is circulating in the cavity. For two or more pulses, we

have to modify our model and take into account the gain L0

saturation dependent on the total energy generated by the 208

laser[15]. This is not done in the present work. We know 5

from previous work[13,14 that multiple pulsing and the % 0.6

formation of multisoliton complexes can be favored in the - A
cavity when the intracavity energy is increased. Multiple ‘é 0.4 Time(ps)
pulsing can be seen as a possible way of restoring the energy £ o2

balance in the cavity and stabilizing the laser operation. =

The change of the mode of the laser operation with in- 0.0 , . , .
creasing pump power is shown in Fig. 8. When the pumping 1500 1520 15‘;0(nn1.|‘;’60 1880 1600
power is increased to 140 mW, period-2 oscillations appear.

These exist at higher power levels. However, at FIG. 10. The spectrum of soliton triplet. The inset shows the
P=200 mW, instead of having more complex patterns ofoptical autocorrelation function of the soliton triplet.

066612-5



SOTO-CRESPCet al.

PHYSICAL REVIEW E 70, 066612(2004)

450
r D=-3.0, L1q1=0.254 50
L. Lp=0.059 o
4004 . R B=0.25 0
q . . ® L) 8:-().4, 0 30 60
=3 . . £=2.0, round trip number
o 350 . v=0,
. " p=-0.12
3004, °
‘ ‘ ‘ 80 oo
080 085 09 095  1.00 «

Transmission of Variable Output Coupler

FIG. 11. Experimental bifurcation diagram revealing period-2
and period-4 dynamics.
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round trip number

the numerical simulations where a single parameter is varied -2 0
at a time. In the experiment, we can also tune the amount of
losses which is related to the orientation of the half wave- 5 13 an example of long perio@=38 round trip$ pulsa-

plate preceding polarizerP2. Starting from a stable jons. The lower part shows the evolution of the pulse profile. Pulse
(period-J single pulse and the amount of 20% loss due toprofiles atN=1, 20, and 39 are plotted in thicker lines for the sake
the variable output coupler, we reduce that amount and olsf comparison. The upper left inset shows the simulation param-
serve the sequence of period-2 and period-4 bifurcations thakters and the upper right one the pulse energy versus the round-trip
is represented in Fig. 11. The bifurcation points are clearlyhumber.

resolved at transmission values of around 0.9 and 0.97. We ) o

can see from this example that tuning the amount of losses f§me although it can become commensurate to it with a care-

not equivalent to tuning the pumping power, as the dynamicfl adjustment of the system parameters. There are many
involved can be quite different. types of long period pulsations. One example of such pulsa-

Dynamics with periods different from 2 and 4 can also belionS iS shown in Fig. 13. The pulse is asymmetric at any

observed. Period-3 pulsations are one of the easily observdfrticular value oz. As a result, it moves with a velocity that
dynamics. Figure 12 shows an example of period-6 pulsachanges over a period. In addition, the pulse changes its pro-
tions that appears in the sequence with the period triplingd!® continuously, which is also far from having a simple bell
bifurcation. This observation is a qualitative analog of theSh@pe. It splits into two and rejoins again. In spite of such a
solutions obtained for the values g8 in the interval Ccomplicated behavior, on average, the pulse keeps the same
[~0.184, 0.196in Fig. 7. position int. The total perlod_ of pulsations in thls example is
N=38. The pulse changes its symmetry relative to the trans-
formation t— —t after approximately 19 round trips. As a
V. LONG PERIOD PULSATIONS consequence, the enerdy plotted versus the number of

We call “long period pulsations” those pulsating solutions'ound trips(see the right hand ingeshows the periodicity

that have a period much longer than the round-trip time. As £€ing~19. _ _ _ _
rule, the period in this case is not an integer of the round-trip The variety of possible pulsating solutions is enormous.
We observed a multiplicity of such solutions in various re-

gions of the parameter space. In this article, we restrict our-

selves only to one particular example shown in Fig. 13. A

complete study of the major properties of such solutions

would require a separate publication. The pulse can change
: _ ; T : : e periodically its profile, chirp, and group velocity and oscil-
il : ; I : : : late back and forth relative to its average position in the
et erer trrErr e ererrrrrtrn e moving frame of reference. We were able to reproduce all
LT : : { : : : types of pulsating solutions that were obtained earlier in the
bpepitiohitidiodeit o oottty Lo ettt e continuous modg10,1§. That includes examples of “creep-
ing” and “double creeping” solitons, etc. The period of pul-
sations that we observed in numerical simulations varied up
to a few hundred round trips. The pulse energy modulation
I can also be changed in a wide range reaching the values of
! up to 60%.

It would be hard to observe all the features of the pulse
transformation irz experimentally. The spectra and autocor-
relation techniques are usually applied to the case of station-
ary pulses. When the pulse changes its parameters, its accu-
rate characterization becomes a very difficult task. However,
we can see the periodic changes of the pulse energy in the

i 20.0mVQ 100ns Ch2 /7 116mV|

FIG. 12. Period-6 pulsation@xperiment
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FIG. 14. Two examples of long period pulsatiots. Pulsations

with small soliton energy modulation and with the peried6 FIG. 15. Two examples of long period pulsatiote.The period
round trips.(b) Pulsations with a larger soliton energy modulation js ground 815 round trips an@) the period is around 910 round
(the period=32 round trip3. trips.

oscilloscope traces and these show undoubtedly that |0”|%ngements, larger soliton energy modulations correspond to
period pulsations exist indeed. longer periods.

When the soliton energy modulation is high, it reveals
more complicated nonsinusoidal evolution. This is illustrated
. . ] by the oscillogram in Fig. 1#). These results are in quali-

In order to observe long period pulsations in the experitative agreement with numerical simulations that show com-
ment, we shift one of the four waveplates used to obtairyjicated but periodic behavior. Much longer periods, of the
mode locking. It affects the whole nonlinear loss function ingrder of 1000 and longer, have been achieved in our experi-
round trip to the next. These changes are generally periodigimost sinusoidal modulation to a modulation with more
It turns out that rotating the mode-locking waveplates maycomplicated structure.
result in the dramatic change from one type of periodic re- \ery |arge soliton energy modulations lead to the com-
gime to another. ) plete disruption of the single pulse mode-locking regime.

When the laser output features such amplitude modulagither the laser enters a multipulse regime of generation, or
tions, no additional p.ulses are formed in the g:avity and Weyulses in each round trip become so unstable that mode-
are always dealing with a single pulse. Changing the parampcking stops and the laser enters a quasi-cw noisy regime of
eters around the regime of stable mode lockisiggle pulse  gperation. However, the range of parameters where periodi-
period 1, we obtain long period modulation of the output cajly modulated pulse generation exists is very large and

pulse energy. After entering this regime, the increase of thgomparable to the range where we have stable pulse genera-
soliton energy modulation can be achieved either by increasign.

ing the pumping power or by a subsequent tuning of the
mode-locking waveplates. When the soliton energy modula-
tion is small, it appears as a sinusoidal modulation. This is
illustrated by the recording in Fig. 1&), which reveals Pulsations become complicated when two periods of os-
period-26 pulsations. In the majority of the experimental ar<illation are involved in the dynamics. A large variety of

Experimental observations

VI. DOUBLE PERIODIC SOLITON PULSATIONS
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£ FIG. 17. Bifurcation diagram showing the period tripling bifur-

cation with additional long period pulsations. The parameters of the
Isimulation are shown in the plot. The vertical line marks the case
Shown in Fig. 18.

FIG. 16. The total soliton energ® versuse. The lower inset
gives the values of other parameters used for the simulations. Th
diagram shows the period doubling bifurcationeat 1.332. Bifur-

cations leading to additional Iorjg period pulsations occur atsystem parameters. New periods appear and disappear at bi-
€~1.33 ande~1.292. Theupper inset showS) versus round- ¢ eation noints similar to those in Fig. 16. Figure 17 shows
trip time for the period-2 solution W'Fh add|t!onal long period another example of bifurcation diagram. This shows a bifur-
pulsations. The value af chosen for this case is 1.3hown by cation from single period to the short period-3 solution;
th . . . . ’

& arrow namely, period 1 can be seen clearly in the region below

such solutions can be found numerically. Here, we consideP ~—1.32 and theperiod-3 solution exists in the interval
only the simplest cases. Figure 16 is an example of one of1.05<D<-0.92. Inbetween these two regimes, we can
the possible bifurcation diagrams leading to double periodi¢ee @ wide area of soliton evolution with a continuous
pulsations. It shows the values of the output ene@ggs a  range of output energieQ. This area corresponds to the
function of . For a given set of parameters shown in thequasiperiodic soliton evolution with two incommensurate
lower inset of this figure, the solution is stableeat 1.332.  Periods involved in its dynamics. In order to show this we
The system generates the same soliton in each round trip. Aot in Fig. 18 the soliton energy versus the number of
bifurcation from stable single period operation to the periodround trips. Each successive pulse is shown by a thick
doubled solution occurs at arourd-1.332. Period-2 solu- Vertical line. This plot shows clearly the double periodic
tion exists below this value all the way down ts=1.25. hature of the solution. The line connecting every third
There are two other bifurcations at=1.292 ande~1.33,  Point in this plot has a periodicity of around 100 round
limiting a wide area of seemingly chaotic solution, where atrips. This longer period is not exactly a multiple of the
diversity of Q values can be obtained rather than two fixedround-trip time, thus creating in Fig. 17 the region with a
amounts. In fact, in this last region we have a quasiperiodi€ontinuous range of energies.

soliton evolution with two incommensurate periods_ The double perIOdICIty is addltlonally illustrated in Flg

The soliton energy versus the round-trip number for ondd(b). This plot is calculated for a different set of parameters
of these solutions is shown in the upper inset of Fig. 16 byout has the same properties: pulsations occur with the com-
the thick vertical lines. This plot shows clearly the double
periodic nature of the solution. After each round trip Qe
value jumps from a lowhigh) value to a highlow) value as
it should for period-2 solutions. In addition, the upper and
the lowerQ values oscillate with a longer periqapproxi-
mately 18 round trips The longer period is not exactly a
multiple of the round trip time thus creating in Fig. 16 the
region of seemingly chaotic motion. The additional period
and the amplitude of pulsations vary in the interval between
the two bifurcations.

The form of the bifurcation diagram depends on the path
in the parameter space that we choose for the simulations. In
the case presented in Fig. 16, we fixed all the parameters
except one,. This is one of the easiest ways to change
parameters. We can also change two or more parameters si-
multaneously. Each route creates a specific bifurcation dia-
gram. FIG. 18. Period-3 solution with long period soliton pulsations.

Any imaginable combination of long and short periods inThe parameters of this simulation are the same as in Fig. 17.
the dynamics can be realized with a proper choice of th&®=-1.3.

100 200
round trip number
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FIG. 19. Part of the bifurcation diagram in Fig. 17 that shows .
round trip number

“synchronization.”
o . ) ) FIG. 21. Period-4 solution with long period pulsations. The pa-

bination of a period-3 and a long period modulation. Therameters of the simulation are the same as in Fig. 20 with

triple limit cycle that is similar to the one shown in Figa  D=-2.0(indicated by the left hand dashed line

is shifted each round trip by a small amount defined by the

longer period of pulsations. The final result is this “attractor’yion to a period-4 solution through the combination of a

which fills the triangular “donut.” We stress that the motion period-4 and a long period pulsation in the same quasiperi-

is quasiperiodic rather than chaotic in this case. _odic dynamics. For the values Bf below —2.09 the system
The new long periods are generally incommensurate withs i, stationary and stable regime producing exactly the same

the existing short ones. However, at some range of paranse in each round trip. At the values Bfin the interval
eters, the “synchronization” of the two frequencies might__q g3 p< ~—1.52 the laser produces a period-4 soliton

happen. Then, a period which is an integer multiple of 3 can4in The soliton energy versus round-trip time for a particu-
be observed. An example of such synchronization can bg,. caseD=-1.8 is shown in the inset to Fig. 20.

seen in Fig. 17 in a small window in the region -~ In the intermediate range db values, the new period
<—1.1_9. The soliton energy takes _dlscrete values rz_;lther tha&bpears in addition to the period 4. The two periods are
an arbitrary amount from the continuous range. This can bgenerally incommensurate thus producing the transition re-
seen clearly if we plot the same figure with a higher resolu-gion (=-2.09<D< =-1.93 in the bifurcation diagram in

tion (se.e Fig. 13 When more than two frequencigs are in- Fig. 20. The pulse energy versus the round-trip number for a
volved in the pulsations, the sequence of bifurcations can bﬁarticular value ofD in this region (namely,D=-2.0) is

qw_:_e (_:I(I)mpllcatfed.h he f hat al binati shown in Fig. 21. The long period pulsations in this example
o illustrate further the fact that almost any combination;q g |t js remarkable that the transition from period 1 to

of frequencies is possible in pulsations, we give, in Fig. Zo’period 4 does not feature period-2 pulsations as it would

one more example. Obta'ﬂed In our numerical S.'mUIat'onShappen in the sequence of period doubling bifurcations. This
The plot shows a bifurcation diagram from a period-1 solu-

100 ————T——T————T— & B, ;
r L,=0.26 —| dLy=0.6 f 1
F 5=0.4 Lololitsoms s 20 apa 4—
r B=0.25 — + !

80 | e=1.9 of | | ] I
3 v=0 H
[ [ n=-014 O20-“ ||| ||| ‘ “
I D=-18
L 0 T X T B
L 10 20 REARNS 1L, i L

o 60 L round trip number il I '::‘ 1 ' T i
40 =
20 L
2.2 -1.8 -1.4

“.l

i 20.0mvs2 M 200ns] A _Ch2 J 130

FIG. 20. Bifurcation diagram for the period-4 solution. The inset
in the center show§) versus round-trip number for the period-4 FIG. 22. Experimental oscillogram showing the sequence of la-
solution atD=-1.8. The two boxes at the left upper corner give theser output pulses with period doubling and long periee32)
parameters of the simulations. pulsations.
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example shows that the sequence of bifurcations can béuction of the periodicity in the pulse propagation related to
much more involved and depends strongly of the choice othe cavity round-trip time improves the model significantly

parameters that we fix in simulations. and makes it closer to the real laser. This improvement al-
lowed us to find both short and long period soliton pulsations
Experimental observation in the laser cavity as well as quasiperiodic pulsations with

: . . . combined frequencies. The latter are examples of more com-
Not every dynamics obtained numerically can be easily licated limit cycles
observed in the experiment. This is related to the fact tha? Surely, the Iimitéd number of examples of quasiperiodic
s:])me edxtern?l paralme'tat\ars of thﬁ laser Sﬁsiﬁm cannot t?%otions with two periods in pulsations that we presented in
changed continuously. As a result, Some of the Tegions Ofys \york do not represent the whole complexity of possible
parameters cannot be reached in the fixed arrangement of the i~ 5 present study is only the first step in this
present setup. Nevertheless, we were SupceSSfUI in observi ection. We can find cases that have three and more periods
at IlfaSt somel of th? dc;r]ble periodic mé)nons. b in the pulsations. Any number of frequencies can be involved
or example, using the same procecure as above, We ogy o dynamics. In particular, chaotic pulsations are ex-

served .perlod _doublln'g with an addmonal puI;e e.nergyamples with multiple frequencies. All these complicated phe-
modulation. This experimental result is presented in Fig. 22 omena require a more careful study.

Here the same pattern Is repea_ted ever§2 round trips. . An important aspect of the problem is how accurately the
Thes‘? long penoq pulsations exist on .the top of the pe”p%odel describes an experiment and can it predict new fea-
doqblmg modulat]on and gengrally are incommensurate W't.rfures of pulse generation. In general, comparison of experi-
period 2. Changing the cavity parameters, we can Obta"ﬂwental results with simulations is not easy. In most of the

similar “?S““S for' the .pulse energy modylaﬂon W'th. Othercases these comparisons are qualitative rather than quantita-
frequencies combined in the same dynamics. In principle, Wve. In this work we made further improvements in laser

can obtain any combination of short and long periods in th%odeling and used parameter management in order to de-

pulse energy pulsations. scribe features of soliton generation that are specifically re-
lated to the periodicity of the pulse propagation in the laser
VIl. DISCUSSION cavity. This improvement allowed us to describe single and

A passively mode-locked fiber laser is a highly nonlineardouble periodicity in the soliton pulsations. _
dissipative system. Moreover, it is a system that has an infi- @St but not least, the additional frequencies can define
nite number of degrees of freedom. As such, it can reveal &dditional clock speeds in optical devices. If they are syn-
variety of interesting dynamics. In particular, the device carfhronized with the round-trip time, these can be quite accu-
serve as a playground for observing nontrivial nonlinear refate. We believe that our results can find a variety of practical
gimes of soliton generation. In some cases, the behavior giPPlications in photonics and optical communications.
these systems has a counterpart in the realm of finite-
dimensional systems although there is never a complete cor- VIII. CONCLUSIONS
respondence. Some nonlinear phenomena observed in these
systems are completely different. To give an example, ex- In conclusion, we observed, both numerically and experi-
ploding solitons[10] can be observed only in dissipative mentally, single and double periodic pulsations of solitons
systems with an infinite number of degrees of freedom. WeJenerated by a passively mode-locked fiber laser. Additional
have also found that solitons can have chaotic evolution angeriods in the laser dynamics appear as bifurcations at cer-

serve as strange attractqdsg]. tain values of the system parameters.
The pulsating behavior of solitons in dissipative systems
is one of the remarkable features that we were able to both ACKNOWLEDGMENTS

predict and observe experimentally. The pulsations are

infinite-dimensional analogs of limit cycles. Previous nu- The work of J.M.S.C. was supported by the MEyC under
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