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We extend earlier workPhys. Rev. Lett.84, 3740(2000] on the statistical mechanics of the cubic one-
dimensional discrete nonlinear SchrodingBINLS) equation to a more general class of models, including
higher dimensionalities and nonlinearities of arbitrary degree. These extensions are physically motivated by the
desire to describe situations with an excitation threshold for creation of localized excitations, as well as by
recent work suggesting noncubic DNLS models to describe Bose-Einstein condensates in deep optical lattices,
taking into account the effective condensate dimensionality. Considering ensembles of initial conditions with
given values of the two conserved quantities, norm and Hamiltonian, we calculate analytically the boundary of
the “normal” Gibbsian regime corresponding to infinite temperature, and perform numerical simulations to
illuminate the nature of the localization dynamics outside this regime for various cases. Furthermore, we show
guantitatively how this DNLS localization transition manifests itself for small-amplitude oscillations in generic
Klein-Gordon lattices of weakly coupled anharmonic oscillatanswvhich energy is the only conserved quan-
tity), and determine conditions for the existence of persistent energy localization over large time scales.
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[. INTRODUCTION The DNLS equation can be derived through an expansion on
) ) ) multiple time scales of small-amplitude oscillations in a ge-
There is a large interest in many branches of current scineric class of weakly coupled anharmonic oscillafétin-
ence in the topic of localization and energy transfer inGordon(KG) lattice], and thus approximates the KG dynam-
Hamiltonian nonlinear lattice systenisee, e.g., Refl] for  ics over large but finite time-rangetsee, e.g., Refs.
a comprehensive review, and Ref@-4] for more recent [1,12,13). A particular feature of the DNLS model is the
progresy Under quite general conditions, such lattices susexistence of a second conserved quantity in addition to the
tain exact, spatially exponentially localized and time-Hamiltonian: the total excitation numb@morm) of the solu-
periodic, solutions termed intrinsically localized modestion. In the KG model, this quantity roughly corresponds to
(ILMs) or discrete breathe®Bs). Although their existence the total action integral, which thus must be an approximate
as exact solutions has been rigorously proven in many exfvariant in cases where the DNLS description of the KG
plicit cases([5,6], and, e.g., Refs[7-9] and references dynamics is acceptable. S .
therein for extensions there is still an ongoing debate re- A fundamental question is, for which kinds of spatially
garding their relevance to actual physical phenomena, agxtende_dnmal states may we expect spontaneous formation
nonzero temperatures. Important fundamental questions cof! Persistent localized moden such lattices? The answer
cern whether ILMs may exist in thermal equilibrium, or if generally requires a statistical-mechanics description of the

not, whether their typical lifetimes are long enough to Con_model. Due to the existence of a second conserved quantity,

siderably influence transport properties of crystals, biomolt has been possible to obtain some analytical results for the

ecules, etc. thermodynamic properties of the DNLS model in the grand-

A frequently studied example of a nonintegrable Hamil_canonical ensemble, by identifying the norm with the num-
tonian lattice model is the discrete nonlinear Schrt’;dingeber of particles in the standard Gibbsian approg 'S

biso its physically relevant interpretation in the Bose-
(DNLS) equation(see Refs[10,17 for recent reviews of its phy y b

hi . d lcationdhi del is of Einstein DNLS realization In Ref. [14], it was found that
nistory, properties, and app |gat|c)n IS model Is of great o nget of persistent localization could be identified with a
interest from a general nonlinear dynamics point of view,

phase transition line in parameter space, such that on one
. Sside the system thermalized according to the Gibbsian distri-
fundamental phenomena such as energy localization, Wav§ ion with well-defined chemical potential argositive
instabilities, etc., resulting from competition of nonlinearity temperature, while on the other side the dynamics was asso-
and d.|s.creteness, as well as frqm a more applied VIeWpOItiated with a negative-temperature behayior finite sys-
descrlb[ng, €.g., arays of nqnlmear opucallwa}vegwdesf Ofems) creating a small number of large-amplitude, standing
Bose-Einstein condensates in external periodic pOtentIaI?ocalized breathers. The transition line was shown to corre-
spond to the limit of infinite temperatures in the “normal”
regime. Similar properties were later found also for other
*Email address: mjn@ifm.liu.se; http://www.ifm.liu.semajoh types of lattice models with two conserved quantities in Ref.
"Email address: kor@lanl.gov [15]. Most recently, in Ref.[16] Rumpf revisited the
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statistical-mechanics description of the DNLS localizationformation in generic KG models, and in particular describe
transition. Under the particular assumption of small-what kinds of initial conditions yield long-lived breathers in
amplitude initial conditiongan assumption not made in Ref. the regime of weak coupling and small averaged energy den-
[14)), he argues that the phase space generally can be dividegty where the DNLS approximation is justified. Although
into two weakly interacting domains, corresponding to low-particular examples of the manifestation of the DNLS local-
amplitude  fluctuations (“phonons’) and high-amplitude  jzation transition in KG models have been given eaiflie],
peaks(breathery respectively. Explicit expressions for mac- e derive here explicit general approximate expressions for
roscopic quantities, valid not only in the “normal” regime (e transition line in terms of direct properties of the KG

but in the full range of parameter space, can then be .O.btai”‘%Hitial state. Due to the violation of norigor actior) conser-
bY assuming the two domains to be in ther'mal equ'l'br.'umvation the transition in the KG model is not strict, and we
with each other, and the emergence of localized peaks in t% ’ !

N " ) X . perform numerical simulations to investigate how the long-
anomalous” phase arises as the system strives for maximi

ing its total entropy. Under these conditions, the temperatur;?;]eogycnoirzgs e';‘ Ingﬁii?cil?/ebsyu thzs.:,ltc;]v;t\t/r?(ralz;tlor;ogfcrt]her o-
is not negative but infinite in the thermal equilibrium state vedq Y- 99 pp P

with coexisting large-amplitude breathers and Sma"_posed here could_be used tp clarify the findings regarding the
amplitude fluctuations. role of breathers in thermalized KG |atFIC@3Ith or without

Let us mention a number of reasons that have led us t§N€rgy gapeof Refs. 25,30, which did not employ the
revisit and extend the results of RéL4]. First, so far only ~connection to the DNLS model. _
the one-dimensionallD) case with cubic nonlinearity was ~ The structure of this paper is as follows. Section Il de-
considered. However, apart from the natural interest in consScribes the statistical mechanics of general DNLS models.
sidering two- and three-dimension@D and 3D physical Section Il A generalizes the statistical-mechanics ap.proach
situations, there is also a fundamental difference to the 19 Ref.[14] to 1D models with general degrees of nonlinear-
case: there is aexcitation thresholdor creation of localized ity- As particular examples, we consider initial conditions
excitations for the cubic DNLS modgll7-19. A similar ~ taken as travelingSec. IIAD and standingSec. 1A2
threshold also occurs in the 1D DNLS equation for noncubicvaves. We obtain simple analytical conditions for the transi-
nonlinearities of the forniy, |2y, with ¢>2 [17-19, and  tion |nt'o the_statlst_lcal localization regime, and |IIustrat¢ with
generally the conditiomD > 2 for the existence of an exci- numerical simulations the actual dynamics on both sides of
tation threshold irD dimensions is the same as the conditionthe transition. Section Il B extends these results to higher
for collapse of the ground-state solution of the correspondinglimensions. In Sec. lll, we describe how the results from the
continuousNLS equation(e.g., Ref.[20]). For this reason, NLS model can be transferred into approximate conditions
one sometimes studies the 1D DNLS equation with |arger for statistical formation of IOng—Ilved breathers |r.1 We.akly
hoping to capture the main effects of higher dimensionalitycoupled Klein-Gordon chains, and confirm and illuminate
in a simpler 1D modele.g., Refs[21-24). Recently[25], th_ese predictions Wlth numerical S|mulat|ons_. Section IV
similar arguments were also used in the study of a 1D K@Jives some concluding remarks and perspectives.
chain with a¢® on-site potential, to mimic the effects of an
excitation threshold for breathers in the thermalization dy-
namics of a three-dimensional KG lattigé similar relation
between the degree of nonlinearity and dimension is valid A. 1D model with general degree of nonlinearity

also for KG lattices; see Refl7] and Ref.[26] for recent Generalizing the 1D DNLS equation of RefL4] to in-

e oAl oo o e 0, et %l a nonlineary of ariarghomogencousdegree, e
9 consider the DNLS equation in the form

nonlinearity and dimensions, in order to elucid@yavhether

Il. STATISTICAL MECHANICS OF GENERAL
DNLS MODELS

it is qualitatively affected by the existence of a breather ex- iU+ C + + 20, =0 1
citation threshold, andi) whether quantitative effects aris- Ui+ Clthmes + in-) + [l Y =0, @
ing from increasingr agree with those from increasiriy with the two conserved quantities Hamiltoniar

While the above connection motivates the study of par==S{C(¢mimer+ Yimthm) +[1/(0+1)]| 272, and norm
ticular on-site nonlinearities withr=2 and o=3, recent (excitation number A==, |,|2>. Compared to Eq(1) of
progress in studies of Bose-Einstein condensates in optic&ef. [14], we have used'=1 as the coefficient of the non-
lattices also provides motivation for considering nonintegetlinear term, included a coupling constait- 0 in front of the
values ofo< 1. It has been suggest¢a7] that the effective  coupling terms, and generalizéd |2/ t0 || tm With
power of the nonlinearity in the tight-binding DNLS ap- o>0. Note that although we formally discuss the case of
proximation depends on the effective dimensionalityf the  positive intersite coupling and positive nonlinearity, this is
condensate in each well, such that2/(2+d), whered  not a restriction, since changing the sign®ifs equivalent to
=0,1,2, or 3.Moreover, it is tempting to suggest a connec-the transformationf,,— (-1)¢;,, while the same transfor-
tion between the statistical localization transition in themation followed by a time reversal -t is equivalent to
DNLS model and experimentally observed superfluid-changing the sign of the nonlinearity. Thus, all obtained re-
insulator transitions of the condensaeg., Refs.[28,29 sults can be directly transformed to the cases of negative
and references thergin coupling and/or negative nonlinearity. Any finite coefficient

Last, but not least, we wish to employ the results for thein front of the nonlinear term can also be obtained through a
DNLS model to give quantitative predictions for breathersimple rescaling.
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With a canonical transformation into action-angle vari-  Similarly to the work of Ref[14], we use standard Gibb-
ables, = VA€ ¢m, the Hamiltonian for a chain ofl sites  sian statistical mechanics to predict macroscopic average
becomes values in the thermodynamic limit, by treating the nadras

analogous to “number of particles” in the grand-canonical

N
f 1 i i - i
H= <2C\'AmAm+1 oL — brmey) + Agl) ) ensemble. As in Eq(2) in Ref. [14], the grand-canonical
m=1

o+l partition function is thus defined as

and the norm

® 27 N
Z= J f H dep A e PHHHA) (4)
o Jo me

m=1

N
A=2 A €) N
m=1 where B=1/T (in units of kg=1) and i play the roles of

. ) inverse temperature and chemical potential, respectively. Us-
We first note that the staggeréd=) stationary homo- 4 £qs (2) and(3) and integrating over the phase variables
geneous plane-wave solutiof™" =\ A/Ne™ e\, with A by, yields
=-2C+(A/N)?, minimizes’H at fixed . A and N, for all o.
The minimum value is thus H™MYV=-2CA+[1/(c - (Zw)Nf

N - 7 a
+1)]A*1/N°. To prove this, write [T dAW o(2BC ArAR) X Al (72,
N

0 m
‘ —_— A
H-Hm =3 20( VArAmi1 COS = Bmit) + N) (5)
= wherely(2)=(1/m)[§ € @ is the modified Bessel func-
. 1 AL A o+l tion of the first kind. From this expression, one could pro-
o+l ™ N ' ceed as in Ref[14] by symmetrizing the partition function
. ) N ) and using the transfer integral operator to obtain thermody-
The first part is positive, since namic quantities in the limiN— o, corresponding to the
rere regime in(A,H) parameter space with well-defined chemi-
IATAL: - O ) o o
2 [VAAm Ot~ i) cal potential andpositive) temperature. This is, however, not
+(AIN)]= D [(AIN) = VA AR our main purpose here. Instead, we focus on the phase-
o transition line defined by the boundary of this regirf@
= 2> (VAL— VAR)?=0. =0, u=%, with Bu= v finite), which signals the transition

into the regime of persistent localization, suggested in Ref.
The second part is also positive, which can be seen fromi4] to be associated with a negative-temperature-type be-
Holder's inequality: S[aby| < (Z[a?)"P(Z|b )™ if 1/p  havior for finite lattices and time scales.
+1/g=1. Let a=A,, =1, p=o+1,g=1+1/o, which Close to the high-temperature limg@— 0%, we can ap-
givesSAZ - (1/N?)(EA,) 1 =0. Notice also that{™" is  proximate the slowly increasing Bessel function wigh= 1
bounded from below as a function gf for any finite number  (which is mathematically equivalent to letti@— 0, corre-
of sites N, with the global minimum H™Y=—[g/(c  sponding physically to thermalized independent ynithe
+1)]N(2C)**¥ obtained for.A=N(2C). partition function then becomeg=[2xy(3, x)]N, where

. > o+l o+1\ 2
y(IB, M) = J e—ﬁuxe—ﬁx‘”l/(aﬂ)dx: J e_B'“X{l _ 'BX_ + }< BX ) +.. ']dX
0

0 o+l 2\oc+1

o 2 o
-1 __B f e Buxgy s L P J W DBy 4 ...
Bu o+l 2(c+ 1)),

But [ X"e ®dx=T"(n+1)/a"?! [wherel is the Gamma func- tition function in the high-temperature limit, we get
tion, I'(n+1)=n! for integern]. This yields

1 (1 _Bl(o+ 1))”_

1 _ B Te+2) 1 p° I'2o+3) Z:(Z’T)N(ﬂu)” (B

y(Bu)=—— - p e
Bu o+1(Bw)? 2(c+1)? (Bw)?*"?
Thus, close to the limit of3—0,u— with Bu=7y const, For small 8, this reduces to =N In(2m)-N In(Bw)

we can neglect all higher-order terms j& and obtain —N[gBI'(oc+1)/(Bu)"™], so that we have in the high-
y(B,m)=(1/Bw)~[Bl(a+1)/(Bw)’*?]. Finally, for the par- temperature limit for the average energy

(6)
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ud J NI[(o+1) of the DNLS model in the limit of smalk, where phase
(H)= ,Eé'_ B % nz= W ) space naturally divides into a small-amplitude “fluctuation”
H H part and a large-amplitude “breather” p#t6] which only
and for the average norm interact weakly. In that case, the equilibrium state which
maximizes the total entropy fon larger than the critical
(A)=- laln_Z ~ N_ M_ (8) value (9) should consist of one single breather, with the rest
B du B u(Buw)t of the lattice corresponding to an ordinary Gibbsian distribu-

tion atT=c0 [16] (although the numerical simulations in Ref.
[16] never reached such a state, but rather one with a finite
breather density However, whena increases, the large-
amplitude and small-amplitude parts will not separate
h=T(o+ )a"*?, (9) straightforwardly anymore, and the thermodynamic equilib-
rium properties for genera remain unknown. Some of the
wherel'(o+1) can be replaced by! for integero. Note that  numerical simulations reported below aim at shedding some
the quantityy=Bu indeed is well-defined and finite in the light on this issue.
high-temperature limit for any nonzero norm density, Let us now discuss the thermodynamical equilibrium dis-
=1/a according to Eq(8). tributions for some particularly interesting choices of initial
For o=1, the corresponding phase diagram was illustrate@onditions. For certain families of exact solutions, we can
in Fig. 1 of Ref.[14]. Thus, for any given norm densit, analytically compute the curved®a), and thus within these
typical initial conditions with(Hamiltonian energy density  families obtain the transition into the statistical localization
smaller than the critical valu@) are expected to thermalize regime by finding their intersections with the phase-
(after “sufficiently” long time$ according to a Gibbsian transition line(9). Evidently, if the initial condition is strictly
equilibrium distribution at temperatuie=1/8 and chemical an exact solution, thermalization will not occur, but often
potential w. The correspondence betweémh) and (8, w) solutions are linearly unstable, e.g., through modulational
generally has to be found numerically through the transfef12] or oscillatory[13,31,32 instabilities, which may cause
integral formalism as in Ref14], but in the small-amplitude rather rapid thermalizatiofsee, e.g., examples far=1 in
limit a— 0 analytic expressions can be obtained as shown iRefs.[14,31]). Even for weakly perturbed linearly stable so-
Ref. [16], Egs.(7) and(8). Numerical evidence that such a lutions as initial conditions, it is expected that generically
thermalization generally takes place after sufficiently longnonlinear instability mechanisms finally should lead to ther-
integration times was given in Fig. 2 of R¢L4] (for o=1). modynamic equilibrium; however, the equilibration times
On the other hand, for initial conditions with energy den-can be extremely long as Arnol'd-type diffusion processes
sity h larger than the critical valug@), this description breaks are involved.
down, and one finds numerically that persistent large- Inthe numerical investigations below, we mainly focus on
amplitude standing breathers are created. Heuristically, thithe distribution functiorp(A,,) for the amplitudes\,=| /2,
can be understood as follows: For fixed nadnit is gener-  which most clearly illustrates the localization properties. In
ally possible to maximize the Hamiltonighi, and the maxi- the standard Gibbsian regime, the statistical prediction for
mizing solution is a single-site peaked, exponentially local-p(A,,) can also be obtained through the transfer integral for-
ized stationary standing breathsee, e.g., Re{18]), which  malism as show in Ref14]. Here, let us only note that close
for large A becomes essentially localized at one site so thaio the high-temperature limiB— 0, this prediction yields
HM =~ Ao*1/(g+1). Considering in the microcanonical en- (again by approximating,=~ 1)
semble(fixed A, H, andN) the entropyS(H,.4,N) (i.e., the
logarithm of the number of microstateas a function ofH, log p(Am) ~ = YAn = BAT (o +1), (10)
it is zero atH™"(4,N) defined above, increases towards its _ ,
maximum when Eq(9) is fulfiled and T=e (since 1T 1€ the curvature is zero foB=0 and becomes negative

=dS/aH| ), and then again decreases towards zero a&positiv@ for positive (negative temperatures. 'I_'hus, nega-
H(max)(A)" Thus, in the microcanonical ensemble at finite tive temperatures favor large-amplitude excitations.

andN, the temperature is well-defined and becomes negative
whenh="H/N is larger than the critical valu@). Returning

to the grand-canonical ensemble, it is then possible for the For a traveling wave, which is an exact solution of the
part of the system which is in the negative-temperature reform ,,=add™eAt (with A=2C cosq+a”), we have

gime to increase its entropy by transferring some of its su-

perfluous energy into localized breathers, which consume h=2Cacosq+
only a small amount of the norm. In other words, the “over- B q o+1
heated” negative-temperature system “cools itself off” by

creating breathers as “hot spots” of localized energy. Such 8imilarly as for the well known case=1 [12], traveling
mechanism for energy localization works quite generally inwaves with|g| < /2 are modulationally unstable and those
systems with two conserved quantitiesee, e.g., Reff15]  with w/2<|qg|< = linearly stable also for general>0 (see,
and references therginndeed, this type of argument could e.g., Ref.[27]). To find when such a solution crosses e
be used to explicitly calculate the thermodynamic properties=0 curve, we put Eq(11) equal to Eq(9), which yields

(The second term here is negligibl&hus, the relation be-
tween the energy density=(7)/N and the norm density
a=(A)/N in the high-temperature limit is

1. Traveling waves

o+l

11
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FIG. 1. Maximum value of norm densiy for statistical local-
ization to occur, according to E¢L2), from initial condition being
a traveling wave of wave vectay, for 1D DNLS with variouso.
From top to bottom ag=0: ¢=2/5,1/2,2/3,1,2,3Inset is a
blow-up for smalla.

o 2(c+1)C cosq, (12)
I'c+2) -1

where, as beforel'(c+2) can be replaced byo+1)! for

integero. Thus, for anyo and|q| < /2, there is a threshold

value for the norm density given by E@L2), so that only

above this threshold will one be in the “normal” Gibbsian

positive-temperature regime, while below it we expect statis

tical localization. The predicted threshold, plotted in Fig. 1
becomes quite small for large due to the factorial in the
denominator, but increases rapidly f@ismaller than Xe.g.,
for 0=0.4, corresponding to three-dimensional
Einstein condensates in the model of R&f7], the threshold
is a=455 forg=0 andC=1). On the other hand, fotr/2
<|g/<w, one is always in the normal thermalizing
regime.

In Fig. 2, we show some examples of resulting distribu-

PHYSICAL REVIEW E 70, 066610(2004)

tion functionsp(A) obtained from long-time numerical inte-
grations of constant-amplitudg=0) initial conditions. For

the small values=0.4 [Fig. 2a)], we can note that the nu-
merics perfectly confirms the predicted transitioraat 455
[with a linear dependence IqgA) ~—-yA according to Eq.
(10)]. However, to achieve an appreciable difference be-
tween the distributions at either side of the transition point
(compared, e.g., to the case=1 illustrated in Figs. 2 and 3

in Ref. [14]), we had to choose initial conditions quite far
from the transition line. Then, fittingg and 8 in Eq. (10) to

the obtained distributions, we find small valuesBofvith the
expectedopposite signs in the two cases. We attribute the
smallness ofB even for values oh far from the transition
point to the weakness of the nonlinear effects for smpall
Moreover, as we illustrate with another example in the fol-
lowing subsection, the thermalizing dynamics in the localiza-
tion regime is extremely slow for smait. Although we can
clearly identify several breatherlike excitations with ampli-
tudes considerably higher than their surroundings in the
simulations fora< 455, they are generally not persistent but
transient and recurring. Thus, it is necessary to remember
that curves such as those fax 455 in Fig. Z2a), obtained
after long but finite-time integrations, generally do not rep-
resent true equilibrium distributions in the localization re-
gime, but rather an intermediate stage in the approach to
equilibrium by breather-forming processes in a negative-
temperature regime. The=3 case[see Fig. 2b)] contrasts
this by showing an appreciable number of persistent breath-
erlike excitations in the breather-forming reginae=0.6
(circles. For 0=3, the critical amplitude i®=0.7, and we

see that the distribution functions obey the predicted behav-
‘ior EQ. (10) both in the breather-forming and in the normal

regime (a=0.8 (squarep until finite-size effects set in at
A=4.

Bose-

2. Standing waves

In addition to traveling waves, there are also exact solu-
tions in the form ofstanding wave$SWs), which are time-
periodic nonpropagating.e., with their complex phase spa-

@ M )
| Sogoven,
107t %%Duu%s
A) Sy
sqp P
P Por BRET,
1072 1
=
N&
ool 527
Q~O D
o ®~ o 1073} 0o’:'
10° . . . . . . ' N . .
0 1000 2000 3000 4000 5000 6000 7000 oTTos 1 15 2 25 & 35 4 s
A

FIG. 2. Numerically obtained distribution functiomgA,;) resulting from long-time integratioft=1.1x 10%) of (unstablé constant-
amplitude initial states)(0)=va, for a 1D DNLS chain withN=10 000(C=1). (a) o=0.4,a=100 (square} a=455 (triangleg, anda
=1000(circles. (b) 0=3, a=0.6 (circley, anda=0.8 (squares The dashed lines represent best fits to @S).
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FIG. 3. (a) Time-averagednon-normalized distribution functionsp(A,,) for weakly perturbedw/2 type-H SWs witha=1 (...,
—\52,0,\5,0, ..) as initial conditiongC=1). (*): ozg; (+): o=1; (X): 0=3. The points are obtained by averaging over 96 time instants
for 10 000<t< 200 000 andN=10 000(o= %), 177 time instants for 500 069t<1 380 000 andN=1000(o=1), and 91 time instants for
10 000<t=<55 000 andN=1000 (o=3). Straight lines foro-=§ and o=1 are predictions from Eq10) with =0 andy=1/a=1, while
curve foro=3 is a prediction from Eq(10) with fitted values of3=0.042 andy=0.65.(b) Average(over space and timef the coupling
part of h [i.e., (2CVALAm1 0L dm— dme1))] VS time for the simulations iia) with, from top to bottom at=10 000,02%, o=1, ando
=3, respectively. Magnification in the inset illustrates the slow long-time decreasae:@r

tially constan} solutions, with an inhomogeneous amplitude was noticed in Refq.13,3] that foro=1, the curven(a) for
distribution |¢,|> being periodic or quasiperiodic in space the Q=7/2 type- H SW indeed coincides with the phase-
[13,31,32. In the linear limita— 0, a standing wave of wave transition line(9), and that type- H SWs witfQ| < =/2 gen-
vector Q(0<|Q|< ) is a linear combination of two coun- erally resulted in the creation of large-amplitude breathers,
terpropagating traveling wavesq=+Q, ie., ¢, and those with7/2<|Q|< = in “normal” thermalization
=2a sin(Qm+¢)e for smalla. As a increases, one finds (see, e.g., Figs. 6-9 in RgB1]). However, for generar we
[13,31,32 that only for particular phases can these linear now have the relation foQ=/2 type-H SWs,

SWs be continued into exact nonlinear SW solutions. These ”

can be divided into two distinct classes: phasesz* (7 h= 2 ao+l. (13)
-Q)/2-m'Q (M’ integeh continue into solutions called o+l

“type E” while either o=—-m'Q (for genericQ) or ¢=—(m’ Thus. onl : _ : :

] i , o , only for the particular case=1 considered in Refs.
+_§)Q (for.speC|aIQ:[(2k+"1)/(2k +1)]m, kK" integers 11337 do the coefficients in Eqg9) and (13) agree. In
yield solutions calledtype H” (These two types of solutions  generg|, the transition line into the phase of statistical local-
can be represent_ed as elliptic and hyperbolic cycles, respezation and the line defined by tH@=m/2 type-H SW are
tively, of the cubic real 2D map13,31,33 wheno=1) In itferent. For 0< o<1, the w/2 type-H standing wave will
physical space, they are distinguished by their positioning IMways be in the breather-forming regime, while for 1 it
the lattice, with type-% SWs centered symmetrically betweenyi aiways be in the normal thermalizing regime. This is
lattice sites am=m’+3, and type-H SWs centered antisym- jjjystrated by the numerical simulations in Fig. 3.
metrically either around a lattice sitemt=m’ (genericQ) or For o=3, Fig. 3a) clearly confirms a positive-
between sites ah=m’+3 ( for Q=[(2k+1)/(2k' +1)]m), re-  temperature behavior, with a distribution function well fitted
spectively. In the opposite limit of larga, which is math- by Eq. (10) with positive 8, and very small probability for
ematically equivalent t&€ — 0, both classes of solutions can |arge_amp|itude excitations. F@r::% we do Observe' as pre-
be generated from a circle map, distributing solutiahs  dicted, a small positive curvature of the distribution function
=0, +/AéA™t periodically or quasiperiodically in space at finite times, as well as a tendency towards creation of
[13,31,32. Type-E solutions are generally linearly unstable,large-amplitude breathef®.g., the four points betweeA

while type-H solutions are linearly stable for largéC but =12 andA=14 in Fig. 3a)]. However, even for very large

generally oscillatorily unstable for smal/C (for o=1, see systems and long integration times, the breathers found are

Refs.[13,31,32). not persistent but transient and recurring, as for the srall-
Particularly interesting in this context are the SWscase discussed in the previous subsection.

with Q==/2, which have the form ¢,,.1=0,¢n: To check to what extent the finite-time averaged distribu-

=(-1)"2ad@"t (type H) and in=tono=(-1)"addt  tion functions in Fig. 8a) are representative for the true equi-
(type B), respectively. For smath, any wave(traveling or librium distributions, we monitor the average of the contri-
standing with wave vectors/2 coincides with the phase- bution to the total Hamiltonian from the coupling paftt,,,
transition line(9) as noted in Ref[16]. This is not true in  [first term in Eq.(2)]. By definition,(he,» =0 in equilibrium
general, and in particular it is clear from E(L2) that a  at the transition ling3=0, and, by the particular choice of
traveling wave withq=/2 lies inside the regime of “nor- /2 type- H SWs as initial conditions$y,,{0)=0 for all o.
mal” thermalization for all nonzera. On the other hand, it For o=1, Fig. 3b) confirms that(h.,,,, although being
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positive for intermediate times, asymptotically approacheglirection tg the tendency in Fig.®) over the used integra-
zero as expected. Far=3, (h,,,) approaches asymptoti- tion time.

cally a negative value, which is typical in the positive- In this context, we should also remark that, in contrast to
temperature regime, and implies a preference for out-ofthe ordinary DNLS caser=1 where theQ=m/2 type-H
phase excitations at neighboring sites. FerZ, a superficial SWS are alway? linearly unstable for smajithis is not the
look at the main Fig. @) seems to indicate an asymptotic case for 6<o <3, where they are linearly stable for all It
approach to a strictly positivé,,, signifying a preference  follows from a standard linear stability analysief., e.g.,

for in-phase excitations at neighboring sites. However, as i§ef- [%4]_) that these solutiongalso termed “period-doubled
shown by the inset in Fig.(B), the simulation indeed has not States” in Ref.[34]) are oscillatorily unstable for small-
reached a stationary regime even afte? X 10°, and there is wavzelength reIatlve. pertyrbauons .when the condition
a very slow decrease, close to logarithmic in time(f,,)- (22)%7+16(1-20) <0 is fulfilled, and linearly stable other-
We attribute this to an ongoing process of formation of large V/S€- Note that this condition is a_Iwayls fulfilled for smalif
amplitude breathers. Note that, if the hypothesis of approachZ = 2. but can never be fulfilled itr<3. _

ing a thermodynamic equilibrium state consisting of ¢oe Regarding the type-E SW witQ=/2, we note that this

a finite number of breathefs) together with an infinite- solution is a special case of the general_c;lassgof equivalent
temperature phonon bath would be correct, we should alway80IUtions g, =(=1)"Vae?™, yo,.,=(~1)"Vad*0e?™, where
asymptotically have(hy,,y=0 in the breather-forming re- o can take any real valughis class of solutions was called
gime for N—oc. Thus, our simulations are consistent with “7-7 states” in Ref[33] and “phase states” in Ref34]).
(although by no means provinghis hypothesis. However, Putting «=0 yields the type-E SW witlQ=/2, while aq
extrapolating the tendency of the curve in the inset in Fig=7/2 yields the traveling wave withg=7/2. Thus, h

3(b) to larger times would yield(h.,,»=0 only after t =a’*!/(o+1) for all solutions in this class, and they belong
~107, i.e., the times to reach a true equilibrium state in theto the “normal” thermalizing regime for all nonzeeo
breather-forming regime are indeed extremely long. Let us . . .

stress only for completeness that the observed slow decrease B. Higher-dimensional models

of (heoyp is a true behavior of the system, and not an artifact  An important point to note is that the results from the
of numerical drifting of the conserved quantities during theprevious subsection are readily generalized to higher-
simulation time. Indeed, there is a slow numerical driftiof dimensional DNLS equations. Considering, e.g., the 2D case
(increasing approximately> 10712 per time unij, but thisis  for a quadratic lattice o sites, we can write the expression
negligible compared wititand in addition in the opposite for the Hamiltonian analogous to E®) as

VN
r’ 1 o
H= E {ZC[\Am,nAmﬂ,n Coiqsm,n - ¢m+1,n) + \”Am,nAm,n+1 Coi(bm,n - ¢m,n+1)] + o+ 1AmJ,rnl}' (14)
m,n=1

With this Hamiltonian, the expression for the grand-canonical partition function analogous (6) Bgcomes

» N
M~ A~ . _ o
Z= (277)N ]._[ dAm,nlO(ZIBC\"’Am,nAm-»l,n)IO(ZBC\"Am,nAm,ml)e BAm'n[<Am'n/0+l)+#]1 (15
0 mn=1

from which we obtain the behavior close to the high-the expression for the Hamiltonian density by just replacing
temperature limit3— 0" again by approximatingdo=~1.  cosq with cosqy+cosqy in the 1D expressior(1l), and
Thus, in this limit all results are independent of dimension likewise we obtain the expression for the statistical localiza-
which is a consequence of the equivalence of this limit totion transition analogous to E¢12),
C—0, i.e., thermalized independent units which neglect all
interaction terms. Thus the expressi¢®) for the phase- »_ 2(0+1)C(cosq, + cosqy)
transition line is indeed valid for givear in any dimension. a= Mo+2)-1

To take a specific example in 2D, consider again a trav-
eling plane wavey, = Vad ®™aVgAt [with A=2C(cosq,  Thus, a necessary condition for breather formation from 2D
+cosqy)+a’]. It follows from standard analysiesee, e.g., traveling waves is to have cag+cosqg,>0, i.e., eithergy|
Ref. [35]) that the traveling waves are linearly stable only if or |qy| (but not necessarily botthas to be smaller than/2.
m/2<]|qy,|ay|< , and modulationally unstable if eithfg,| ~ Just as for 1D, the dynamics always enters the “normal”
or |qy| (or both are smaller thaar/2. We immediately obtain thermalizing regime if the norm density is large enough, and

(16)
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(@)

FIG. 4. (Color online Resulting distribution functionp(A,,) after long-time integrations of initial conditions consisting of weakly
perturbed 2D constant-amplitude,=q,=0) unstable solutions witka) a=5, (b) a=7, and(c) a=8. Curves in(@—(c) have been obtained
by averaging over a number of different random initial perturbatigén (a) ¢ 14 in (b), and 100 in(c)]; system size 128 128 (N
=16 389; integration time$=500 000(a), 200 000(b), respectively 50 00(c). Curves in(d) have been obtained from one single realization
for a 50X 50 system witha=7, by averaging over 20 different time instants in the intervals<60€ 10 000 (squares and 110 006<t
<300 000(circles, respectively. The scales are such that(ap{(c), the dots with smallest probability correspond to one site in one
realization, and ir(d) to one site at one time instant. Straight lines are predictions according td®aqvith 8=0. (c=C=1.)

the largest possibla for breather formation occurs fay,  obtain immediately the location of the localization transition
=q,=0. Note that for this constant-amplitude solution, theline by adding the term cog, to the numerator of Eq16).
threshold ina for o=1 is multiplied by an additional factor Taking ¢=1 andq,=0q,=0,=0, the critical value then be-
of 2 compared to the analogous 1> 0 case in Eq(12), comesa=12C for a constant-amplitude solution in 3D. This
becoming & instead of €. is illustrated numerically in Fig. 5. Again we see that the
Numerical illustrations of the resulting distribution func- distribution[Fig. 5&)] has the expected curvature both in the
tions in either regimes, together with predictions accordingPreather-forming regimgblue circles where 8<0 and in
to Eq. (10), are shown in Fig. 4. Note that in the breather- th€ normal regimeblack circleg where 3> 0. In Fig. %b),
forming regime[Figs. 4a), 4(b), and 4d)], the distributions W€ S€€ that high-amplitude breathers indeed do exist in the
closely follow the straight linep(Ay)=(1/a)e*'2 corre- system for?_:g, hi . h hat. i
sponding t08=0 in Eq.(10) up to some threshold value of To conclude this section, we thus see that, in contrast to

; . . o . . the condition for the existence of an energy threshold for
Am.' we f|.nd that exten.dlng thg mtggraﬂon time, this breaklngcreation of a single breather, which only involves the product
point typically moves in the direction of largé,. For small

! ) . X ; .. oD, there is no equivalence between the spatial dimension
integration times, one finds a smooth curve with positive,q the degree of nonlinearity as concerns the existence of an
curvature, indicating a negative-temperature behavior as digsyyilibrium state with persistent breathers. Indeed, the pres-
cussed in Refl14]. However, for larger times the tendency is ence or absence of such a threshold only affects the approach
that the curve becomes discontinuous, with the part belowg equilibrium and not the qualitative features of the equilib-
the breaking point corresponding to a phonon batfi=a®,  rium state itself. The degree of nonlinearity and the dimen-
and the points above to large-amplitude breathers with insionality in our case actually tend to work in opposite direc-
creasing amplitudes. This is illustrated by Figdy Thus,  tions, as we have seen, e.g., for a constant-amplitude initial
this suggests that the separation of phase space into two padsndition ¢,,=a, that increasingr decreases the maximum
as proposed in Refl6] is valid also for largem, although, amplitude a for which persistent breathers forfisee Eq.
as discussed in previous subsections, the time scales to ac{2)], while increasing the dimension increases it.
ally reach a true equilibrium state may be enormous and
beyond the reach of any numerical simulations.

It should be obvious that also the extension to 3D is
straightforward. We can, e.g., consider a traveling plane Let us now discuss how the DNLS statistical localization
wave in a cubic Iatticewmx,nvmf yad@&mtaymramIgAt and  transition manifests itself for general KG chains of coupled

lll. KLEIN-GORDON CORRESPONDENCE TO DNLS
PHASE-TRANSITION LINE
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107" N | | | | | | (a) -
®)

L 1 OO (886
0 20 40 60 80 100 120 140 160

FIG. 5. (Color) (a) Distribution functionsp(A,) after integrations over long but finite timés=5x 10f) of initial conditions consisting
of weakly perturbed 3D constant-amplituti=q,=q,=0) unstable solutions wita=9 (blue), a=12 (red), anda=15 (black). System size
64X 64X 64 (N=262 144, 0=C=1. (b) Intensities, in a representative ¥35X 15 subbox of the simulation box, at the end of the
simulation fora=9 in (a). Red and yellow patches are localized breathers.

classical anharmonic oscillators. In order to derive approxi- Uy + V' (Uy) = C(Upsg + Up—g — 2u,) = 0. (19)
mate expressions for quantities corresponding to the DNLS

Hamiltonian an(_JI norm densities valid for _small amp”tUdGSConsidering small-amplitude solutions(t) with typical os-
gnd weak coupling, we follow the perturbative approaqh OUtj|jation amplitudesu,| ~ ¢, they can be formally expanded
lined in Ref.[13] (see also Ref{12]). The KG Hamiltonian i, 5 Fourier series as

H for a chain ofN oscillators is given by

N .
1. 1 un(t) = >, aPlerert, 20
H=2 | ZU3+V(uy) + =Crl(Up —U)?|, (17 0 Ep & 20
n=1 2 2
where the general on-site potentiflu) for small-amplitude  where w, is close to some linear oscillation frequency and
oscillations can be expanded as the Fourier coefficients are slowly depending on time,
1 T o a;p)(ezt). Due to exponential decay of the Fourier coefficients
V= w+a+p -+ (18 in p, they must satisfya” ~ & for p>0, while al” ~ €%
2 3 4 Moreover,a”=a’™" sinceu, is real. Inserting Ec(20) into
’ n . 9
The KG equations of motion then take the form Eq. (19) yields

(80 + 2ipwdl? + (1 - pPod)al?’ - C(al) +alP) - 2alP)]ePs + a[z <>] +p {2 aamépwbtr =0+0(e).
p p p

(21)
Then, we derive from Eq.21) for the respective harmonigs=0, 1,2 thethree equation§l3]
al? + 2a/al? |2 - Cc (@9, + %, - 2al?) = 0 + O(), (22
2iogdl!) +(1 - wpay + 2a(@Ma +a)"a?) + 38/ |aPa)) - Cy(ali, + &l - 2a) =0+ O(e), (23)
(1-40))a? + a(@)? - Cy(a?; +al?; - 2al?) = 0 + O(e?). (24)
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Consider first the case of a symmetric potential. Then, altween breather-forming and non-breather-forming regimes
odd powers ofu in the expansior(18) vanish[implying @  becomes h=-¢'a? (the breather regime is above for
=0 and O(€®) in Eq. (21)], and we immediately obtain a o' =-1 and below fol’ = +1). We now wish to express this
DNLS equation toO(e) by considering Eq(23) for the  condition in KG quantities. First, we express the norm as
fundamental harmonip=1.

For the generalnonsymmetrit case, we proceed as in
Ref. [13] by assuming weak couplinGx ~ € (note that this
assumption is not necessary to derive the DNLS equation for

the symmetric cageThen, we can solve Eq22) to obtain By taking af})* % (27)—af11) X (27)" and summing oven, we

= —'2 lal" 2. (29

a©@ = - 2a]aP2 + O, (25)  find d/dt(Z,a'”[?) ~ €N, which together with Eq(29) im-
] plies that the DNLS norm in the general KG model behaves
and Eq.(24) to obtain as A/N~ (e2/Cy)f(e*) (wheref is some function of order
@_ 2 1o . 1). The DNLS Hamiltonian is then expressed as
a, _g(an )=+ O(€). (26) N R
— 1 1)* 1)* 4(1 14
[These are the weak-coupling limits of the more general so- H= C_ﬁzn CK(a&’f)lag) * aﬁflag )- E|a§‘ )| - (30

lutions (15—(18) in Ref. [13].] Inserting Eqs(25) and (26)
into Eq.(23), we get the general DNLS equation ¢¥(¢°), By takinga"" x (27)+a'” x (27)", summing oven, and de-
2iondl+ (1= B)ald - Cuafly + il - 2a(0) fining H=2,[~2alay >+ (\ /2)ap |+ Culaty, ~al ],
where 6= (w2-1)/2, we finddH?/dt~ N. Imposing the
+ <_ E)az + 33') |a§]1)|2a1(11) =0+0(&). (27) assumption of small couplinGy ~ € (which together with
3 the small-amplitude condition also implies~ %), we get
Defining &' =(w?-1)/Cy, N’ =202+ 34", o' =sgrir"), re- that H/N:—(|)u|/NC.|2<.)[H(1>+2(5—CK)2n|al<ql>|2]~f(§4t).
defining time ag’ =(Cy/2wp)t, rescaling the amplitudes and Thus, the DNLS quantltlesl/N_a_de/N corresfpond n thg
. . : L , general case to two KG quantities of order unity, whose time
moving into a rotating frame by defining ¢, L | i d f itude slower than the
= T Caa e -2t d neglecting terme(e5), the var_|at|oq is(at leasy two or ers of magnitu ) thar
V(A |/CK)a)w e'_ , an 9t 9 ; ’ typical time scale for the Fourier amphtuda&;1L (which in
DNLS equation in the newslow) time variablet’ takes the 1 is two orders of magnitude slower than the time scale of
standard form oscillations of the original amplitudes,).
o / "2, = Let us now explicitly calculate these quantities in terms of
= st doa) + 0 |49 = 0, 28) KG amplitudes and velocities,, U,. We do this by calculat-
equivalent to Eq(1) with o=1. For Eq.(28), we have the ing time averages of the different contributions to the KG
familiar conserved quantities as nord==]; [//> and  Hamiltonian(17) with general potential energyl8). Insert-
Hamiltonian H=S_ [, dh+ dhiie,— (0’ 12)|g[*]. With  ing the expansion20), averaging out all oscillating terms,
h=(H)/N, a=(A)/N as before, the transition cury®) be- and using Eqs(25) and(26), we get

3

2 2
<E ”5> =3 <( 2 apePots O(e“)) > =2 ( Al + (a0 + |a;2>|2) +O(E) =3 [P+ TS [afll+ 0.
n n n

n n p=-3
(31)
Further, using also Eq27) we get for the time-averaged kinetic energy
@2\ 1 > 2
=52 ( 2 (@& +ipwpa”)ePert + 0<e4)>
n 2 2 n p=-3
= w2 (a1 + 4la? ) +iwp (a8l - ay"ay) + O(€)
n n
26 * *
= (1+200 3 [P+ (' Eh 33')2 [~ G (althal” +aldiall) + O(e9). (32)
n n n

For the time-averaged cubic energy, we get

066610-10



STATISTICAL MECHANICS OF GENERAL DISCRETE. PHYSICAL REVIEW E 70, 066610(2004)

Uy
<2 a§> ES (S apert o)

n p=-3
:—E {6alal" P + 3[a (@) + & (@)l + O(e) = -g‘“zEl )+ 0(e) (33)
for the quartic energy
u4 Br 3 4
27 ) =2 2 aPerrt+ o) =-B 2 Jay|+ O(), (34)
n 4 4 n p=-3
and for the coupling-energy
C * *
<E > (Une1 = un>2> =2C¢ 2 |a? - CKE (afhal” +aiall) + O(e°). (35)
n n

Using EQ.(29), we can then write an approximate explicit expression for the DNLS norm as

N[ @), 19/ @ .
A-CK(<EZ>+30<§;,a3 +O(eY. (36)

Note that in particular for the symmetric caée=0), the DNLS norm is, toO(€*), directly proportional to the averaged
harmonic part of the on-site potential, while for the general case there is also an additional correction due to the cubic
contribution.

Then, there are sever@hdeed, infinitely manyways of combining the quantitig81)—(35), which all yield approximate
(to ordere?) expressions for the DNLS HamiltonigB0). One way of involving the KG HamiltoniaH (17) (showing thatH
and’H indeed are nontrivially relatgds to write

__ WL s @ w\_1/s an
H——Ci{H <Enz> (1+ZCK)<EHZ> 2<2n 3>]+0(¥) (37)

This is in some sense the most appealing KG analog to the DNLS Hamiltonian, since it emphasizes the contributions from the
coupling and quartic energies to the KG Hamiltonian. Using this expression, we obtain the condition for the phase-transition
curve in terms of the KG Hamiltonian and other quantities as

H (1 uw?\ 191 w\\? 1 U 1 w\ 11
ﬁ”(ﬁ<2nz> 30N<2 “§>) *N<Enz>+<1+ZCK>N<EnE> 2N<E 3>+O<66> (%

An example of another expression faf is

Y u\ 3 aul B'up
H=- ZCZ{H 2(1+2c,<)<2n2>—2<2n 3>—<§n‘, 2 +0(), (39)

which notably does not explicitly include the quartic part of the on-site energy.
Note also the following: By adding together all contributions from E84)—35), we express the KG Hamiltoniad in
terms of the fundamental Fourier amplitud;%é) as

37 9 « )
H=2(1+2C02 [ay*+ (— i 5ﬂ’>2 a1~ 20k (e + azan) + O(€). (40
n n
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FIG. 6. (Color online Numerical integration of KG Morse chain witB,=0.005,N=200, and randomly perturbed constant-amplitude
initial condition u,(0)=0.05.(a) Time evolution of local energy densityote logarithmic time scaje(b) Main figure: H/N vs A/N for the
simulation in(a), with .4 calculated from Eq(36) and, from top to bottom in the left part of the figuf, calculated from Eqg39), (37),
and (42), respectively. Time runs from right to left.e., A/N decreases Lowest curve is the localization transition lii®). Inset in(b)
shows the ratio of time-averaged culf&3) to quartic(34) energies vs time, compared to the DNLS prediciiéd) (lower line).

Comparing with the expressiof80) for the DNLS Hamil-  gration times, the three curves diverge from each oftedr
tonian, we see that, generally, part of Fig. &b)], where in particular Eqs(42) and (37)
) indicate an asymptotic decrease &fwhile Eg. (39) indi-
H=-— &H +2(1+2C )2 |a§11)|2 cates an increase. This discrepancy can be traced to the fact
\] e that the different expressions give different relative weights

to the cubic and quartic anharmonic energies. As long as the
+ <_ za2+ §,3'>E laD[4+ O(€9). (41) amplitude remains small everywhere in the lattice, this dif-
9 2 N ference is not important as all expressions are equivalent to
. . 07 ~ 0O(é). However, as breathers grow, locally the oscillation
So in the very special case whef=3;4', the coefficientin  amplitudes become significantly larger, indicating the begin-
front of =, [a’|* in Eq. (41) vanishes, and thetend only  ning of a local breakdown of the validity of the DNLS ap-
then) is it possible to simply express the KG conserved quanproximation at the breather sites. According to E§8) and
tity H in terms of the DNLS conserved quantititsand.A,  (34), the ratio between the averaged cubic and quartic parts
2C, of the anharmonic on-site energy remains fixed within the

H= m[— CcH + (1 +2C)Al+O(€b), (42)  DNLS approximation,

3 4 2
and to obtain an expression for the phase-transition curve > a% > ,3'% :—@i,+(9(e2)_ (449
involving only the average KG HamiltoniaH/N and the n 3 n 4 9B

average normd/N [calculated, e.g., using E¢36)], ) o ]
As can be seen from the inset in Figh§ the relative con-
H Cg A( A) 6 tribution from the quartic energy continuously increases with
NTV[N G+ 1-Cey )t o(e). (43 time, and gets significantly larger than the DNLS prediction
(44) as the breathers grow.
It is quite remarkable that one of the most studied examples, As another illustration of the role of the DNLS quantities
the Morse potentia‘i/(u):%(e‘“—l)z, belongs to this special for the KG dynamics, we consider a thermalized KG lattice
class, since for Morse:—g andﬁ’:% (O N =-4). with a pure(hard quartic potential V(u)=u*/4 (i.e., a=0,

In Fig. 6, we show an example of results from long-time 8'=1). We perform the following numerical experiment.
numerical integration of the Morse KG model, with a First, we drive the system into a thermalized state by cou-
slightly perturbed constant-amplitude solution as initial con-pling it to a thermal bath at temperatufé, using standard
dition. As is well known, such an initial condition leads to Langevin dynamics by adding a fluctuation terifift) and
breather formation through the modulational instabilgyg., a damping termyu, to the left-hand side of Eq19). (Note
Ref. [12]), which is explicitly shown in Fig. @). In Fig.  that this temperatur@’ is not equivalent to the previously
6(b), we show the variation of the above-derived approxi-discussed DNLS temperatufle since, as shown above, the
mate expressions for the DNLS quantitidsand 7 during ~ DNLS Hamiltonian? is nontrivially related to the energy
the simulation time. Note that for moderate integration timesf the KG chain) The fluctuation forceF(t) is taken as a
[middle part of Fig. )], the three different expressions for Gaussian white noise with zero mean and the autocorrelation
‘H are close and agree well within the expected accuracfunction (F,(t)F, (t"))=27T'8(t-t')é,,, according to the
O(€?). They also remain far from the localization transition fluctuation-dissipation theoregwith kg=1). As can be seen
line (9) [lower curve in Fig. @)]. However, for larger inte- from Fig. 7a), with the chosen damping constapt 0.1 the
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FIG. 7. Thermalization of a quartic KG chaim=0,8"=1) with Cx=0.01, N=800, coupled to a thermal bath at temperatilite
=0.005 with dissipation constant=0.1.(a) Time-averaged total kinetic energ}(U2/2)). (b) H/N vs A/N for the simulation in(a), with
A calculated from Eq(36), and’H calculated from Eq(37). Each dot represents a time average over the int¢tval00 t] at 15 382
different timest. Line in (b) is the localization transition lin€9). Larger points in(b) show the locations of the initial conditions used in
Fig. 8.

lattice thermalizes after a few thousand time units, with aeither of the quantitiesd/N or /N. Moreover, the fluctua-
time-averaged total kinetic energﬁn(uﬁ/Z)):(N/Z)T’ as tions of these quantities calculated as fixed-interval time av-
expected. In the thermalized regirte>4000 in Fig. 3, we  erages over 100 time units as in Figbyare very smal(less
monitor the quantitiesA/N and /N calculated as instanta- than 5x 107 for .A/N and 3x 102 for H/N) and practically
neous time averages over fixed time intervald(t)) negligible on the scale of Fig.(). Thus, the system will
:(Utom—to f(t')dt’, wheret,=100 in Fig. 7. The results for ~remain in the_ “breather-forming” regime, at least for ex-
a large number of time instants are illustrated by the dots iffféMely long time scales. Although most of the breathers that
Fig. 7(b). Note that taking simultaneously the limiT’ can be observed are rgther small and short—hved_, examples of
—0 (harmonic oscillations and Cx— 0 (thermalized un- larger breathers persisting for about 20 000 time units or
coupled oscillatorswith B'T'/C constant, Eqs(36) and irr?toerger;[riinntci)rt'nlé[nsueseujnaenfar?%ﬁ)(-??rr\ ::eig?gt]edly throughout the
. 3/ prr .
(37)_2([051_5% ;Sgah?llﬁldf At/hN_) 2(BT :CK) de Hf/l\'I: To further illustrate the dynamics on the two sides of the
—ulp Ko ch for the parameter values ol Fg. yansition line in Fig. ™), we compare in Figs.(8) and §c)
7_(b) corre_s_ponds to the p0|_|(m.7_5,—0.§6250n the localiza- the velocity distribution functiong(u,) obtained by long-
tion transition ling(dashed line in the figuyeAs can be seen,

he off f I b i 4 anh ' time integration of two initial conditions corresponding to
.t ee ef:t o sma .UI nonzero coupling an an arm"onlcnythe two large points in Fig. (B). In the breather-forming
is to shift the long-time averagdsenter of the “cloud” of

dots in Fig. {b)] towards smaller4/N and largerH/N regime([Fig. &b)], the calculategp(uy) shows a clear devia-

. I ) : tion from the standard Maxwell distribution, with a signifi-
[approximately(0.725,-0.505in Fig. 7(b)], moving slightly o " .
into the “non-breather-forming” regime of the DNLS cantly enhanced probability of larger velociti¢8.2< ||

. . - ~ =0.35 in Fig. 8b)]. Also the probability of very small ve-
approximation. However, due to t_he continuous 'nteraCt'O']ocities(|un|50.04) is enhancedsee the inset in Fig.(8)],
erct)hbattr)]itlait h?oatb:?:]h’thfah?b:(lalj;thuearfl]%rr];ir?r? r:aar?eé)eéllg\?v th hile the probability for intermediate velocities is decreased
Fhe dash)tlad ine in Fig. (B)] at a ivengtimeg ?r?stant is compared to the Maxwell distributiofthe decrease fdu,|
considerable 9. (B)] 9 =0.35in Fig. 8b) is likely to be related to the finite size of

We then consider the effect of turning off the heat bath inthe system Thus, the breather-forming processes tend to

the simulations in Fig. 7 at different time instants, and Ccm_polarize the lattice into “hotter” regions of larger oscillations

tinuing a microcanonical integration with the correspondin and “colder” regions of smaller oscillations, although due to
therm%lize d state as initial co% dition. We first choosg an in?_the repeated creation and destruction of breathers at different
) sites, the equipartition resu{ti,>/2)=T'/2 is still valid for

tial condition in the “breather-forming” regime, correspond- . ) , .

ing to the point(0.716,-0.568 in Fig. 7(b). [Even though eac.h.sne, prowdled that the time average is taken over a

this point is below the, “cloud” of dots in Fig.(B), it does sufficiently large interval. On the other hand, for the initial
P 9-(), condition belonging to the “non-breather-forming” regime

not represent a particularly exceptional initial condition in _. o ; :
the thermal ensemble, since the dots represent time-averagg%g' .8(0)]’ no such polarization relative to the Maxwell dis
ribution can be observed.

values rather than instantaneous, and the fluctuations of the

latter are considerably larggFor this particular initial con-

dition,. monitoring(En(gﬁ/2)> during the micrm;anonical in- IV. CONCLUSIONS

tegration shows that it corresponds to a lattice temperature

T'=~0.004 94. It is quite remarkable that even with integra- We have shown how a statistical-mechanics description of
tion times longer than FQwe observe no systematic drift of a general class of discrete nonlinear Schrédinger models
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FIG. 8. (a) Example of a breather appearing in the microcanonical integration of an initial condition represented by the lower large point
in Fig. 7(b). (b),(c) (Non-normalized velocity distribution functiong(u,) obtained from long-time numerical microcanonical integrations
(points compared to Maxwellian distributionB(U) ~ (27 T")"Y2 exp(-U2/2T’) (lines) at the estimated temperature. () the initial con-
dition is the same as fa@), the temperature i’ ~0.004 94, and the integration time is X240°. (c) corresponds to the upper large point
at(0.704,-0.471in Fig. 7(b), with T’ =0.004 85, and integration time 0610°%. In both cases, the velocities of all sites are registered in
intervals of 0.6 time units. Insets i) and(c) show magnification of the small-velocity regime in a nonlogarithmic scale.

yields explicit necessary conditions for the formation of per-amplitude “breathers” in the equilibrium state on the
sistent localized modes, in terms of thermodynamic averagbreather-forming side of the transition can be put on more
values of the two conserved quantitiés and A. Further-  rigorous grounds. Our numerical simulations are not com-
more, we illustrated how this approach can be extended tpletely conclusive in all the studied cases due to extremely
approximately describe situations with nonconserved bufong equilibration times, but give indications that this hy-
slowly varying quantitiegsee also Ref[16] for a different  pothesis could be valid also for large values of the norm
examplg, and explicitly used it to explain the formation of densitya.

long-lived breathers from thermal equilibrium in weakly  Finally, we stress the important connections to current ex-
Coupled Klein-Gordon oscillator chains. Concerning theperiments: Very recent'y, unambiguous experimenta| obser-
roles of the degree of nonlinearityand lattice dimensio®,  vations of discrete modulational instabilities have been re-
we found that, in contrast to the condition for the existenceported, for an optical nonlinear arrdg6], as well as for a

of an energy threshold for creation of a single breathergpse-Einstein condensate in a moving optical latf&#. It
which involves only the produatD, o andD tend to work il be very interesting to see whether such experiments also
in opposite directions as concerns the statistical localizatioggn confirm the DNLS result that the final outcome of these
transition. The energy threshold affects only the approach tghstapilities depend, in a qualitative and quantitative manner,
equilibrium and not the qualitative features of the equilib-on the particular values of the Hamiltonian and norm densi-
rum state. ties (the latter represents power in the optical case and par-

There are several directions in which we believe that th|&|c|e density in the Bose-Einstein Cont¢$ predicted here.
work should be continued. One important issue is to develop

a quantitative theory determining the time scales for ap-
proach to equilibrium in the breather-forming regime. As we
have seen numerically, these time scales may be extremely M.J. thanks Alexandru Nicolin for discussions regarding
long, and naturally one may argue that the equilibrium stateBose-Einstein applications, and Benno Rumpf for sending an
themselves are not physically relevant if they can only besarly version of Ref[16]. M.J. acknowledges financial sup-
reached after times of the order bf 10f°. Another impor-  port from the Swedish Research Council. Research at Los
tant point regards whether the hypothesis of separation ohlamos National Laboratory is performed under Contract
phase space in low-amplitude “fluctuations” and high-No. W-7405-ENG-36 for the U.S. Department of Energy.
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